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Abstract 

In the present paper we consider the one-dimensional stochastic delay difference equation 
with boundary condition 

{ 
Xn+l = Xn + f(Xn) + g(Xn-1) + en 

Xo = 7J;(XN) 

n E {0, ... , N- 1 }, N 2: 8 (where g(X_t) = 0) . We prove that under monotonicity (or Lip­
schitz) conditions over the coefficients J, g and 1j;, there exists a unique solution { Z1 , ... , Z N} 
for this problem and we study its Markov property. The main result that we are able to 
prove is that the two-dimensional process {( Zn, Zn+l), 1 :S n :S N - 1} is a reciprocal 
Markov chain if and only if both the functions f and g are affine. 
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1 lntrod uction 

In the last five years several authors have studied, with different techniques, stochastic differential 

equations with boundary conditions of the following type 

(1.1) { 
dXt = f(Xt)dt + a(Xt) o dWt 

h(Xa,Xl) = 0 

t E [0, 1] 

(see Ocone and Pardoux, 1989; Nualart and Pardoux, 1991; Donati-Martin, 1991; Alabert, 

Ferrante and Nualart, 1994). Due to the boundary condition, we can not in general expect the 

solution to this type of equation to be adapted to the Wiener filtration. Therefore in the study 

of equation (1.1) one makes use of the extended stochastic calculus for anticipating processes 

recently developed by several authors (see e.g. Nualart and Pardoux, 1988). A common result 

of these papers is that the solution is a Markov field (or a reciprocal process) if and only if 

the coefficients have some particular form. When a = 1, a nice dichotomy holds in the one­

dimensional case (see Nualart and Pardoux, 1991): we have that the solution is a Markov field 

if and only if f is affine. This first result with constant diffusion in the scalar case , has been 

generalized in the case where a(·) is linear (Donati-Martin, 1991) or strictly positive (Alabert, 

Ferrante and Nualart, 1994) and one proves that the Markov property of the unique solution to 

equation (1.1) is equivalent to the following condition over the coefficients: 

jx 1 
f(x) = A a(x) + B a(x) c a(t) dt 

(where A, B and c are constants). In dimension higher than one similar nice characterizations 

do not hold and one can prove (see Nualart and Pardoux, 1991; Ferrante, 1993; Ferrante and 

Nualart, 1995) that in some particular cases the Markov field property of the solution holds for 

coefficients that are partially free of any constraint. 

At the same time several authors (see e.g. Donati-Martin, 1993; Alabert and Nualart, 1992; 

Ferrante and Nualart, 1995) have considered the discrete-time equivalent to the boundary value 

problem (1.1 ), that can be described by the following stochastic difference equation 

(1.2) { 
Xn+l = Xn + f(Xn) + a(Xn) ~n , 

Xa = '1/J(XN)· 

n E {0, ... ,N -1} 

Equation (1.2) can be regarded as a discretization of equation (1.1) and in this sense the study 

of its Markov property helps to understand the continuous time case. The equation (1.2) has 
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been studied in the one dimensional case with a= 1 (see Donati-Martin, 1993): again the result 

obtained is that the solution is a Markov field if and only if f is an affine mapping. This first 

result has been generalized in Ferrante and Nualart, 1995, always in the scalar case, to the case 

where f and a are increasing strictly positive mappings and the boundary condition is the linear 

equation F0X 0 + XN = F. One proves that the Markov property of the unique solution to 

equation (1.2) is equivalent to the following condition over the coefficients 

{ 
x + f( x) = (3 x"~ , and 

a( x) = a x"~ , for all x E [0, T- 1(T- 1 ( F))] . 

with a > 0,(3 > 0,0 <"' ~ 1 and where T(x) := x + j(x). As in the continuous time case, 

the multidimensional problem is still not investigated, but one does not expect to obtain nice 

dichotomies as the previous ones. 

A first step in the analysis of the multidimensional case could be the study of the following 

delay stochastic difference equation 

(1.3) { 
Xn+1 = Xn + J(Xn) + g(Xn-d + ~n 

Xo = '1/J(XN) 

n E {0, ... , N- 1}, N ~ 6 (where g(X_ 1 ) = 0). This problem can be considered as a "trait­

d'union" between the one- and the two-dimensional cases. In fact, the technique that we use 

is the same as in the multidimensional case, but the result that we obtain is again a strong 

dichotomy as in the scalar case. Moreover this problem could be thought as the discretization 

of a similar continuous-time problem, not yet investigated. 

In the second section we shall give two existence and uniqueness results for the problem 

(1.3). Moreover we are able to prove that, under suitable regularity assumptions over the noise 

process {~;, 0 ~ i ~ N- 1}, the solution of equation (1.3) {X;, 1 ~ i ~ N} has an absolutely 

continuous law, that we shall compute explicitly. 

In the third section we shall investigate the Markov property of the unique solution to equa­

tion (1.3), {X;, 1 ~ i ~ N}. A first difference, with respect to the classical one-dimensional 

problem, is that here it makes sense to require the Markov property just for the two-dimensional 

process {(X;,X;+l), 1 ~ i ~ N- 1}. The main result of this paper provides a complete char­

acterization of the coefficients for which the Markov property holds. In fact we obtain that the 

Markov property holds if and only if both the coefficients f and g in (1.3) are affine maps. 

To conclude this introduction, let us recall the definition of reciprocal Markov chain: 
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Definition 1.1 We shall say that a sequence of random variables { X 0 , ••• , XM} zs a 

reciprocal Markov chain if for every 0 ~ m < n- 1 < M- 1, the 0'-jields O'(Xm+1, ... ,Xn) 

and O'(X0 , ••• ,Xm,Xn+1, ... ,XM) are conditionally independent given O'(Xm,Xn)· 

2 Existence, uniqueness and absolute continuity 

We shall consider in the present paper the following stochastic delay difference equation with 

nonlinear boundary condition 

(2.1) { 
Xn+1 = Xn + f(Xn) + g(Xn-d + tn , 

Xo = 'lj;(XN) 

n E {0, ... ,N- 1} 

(with the convention that g(X_ 1) = 0) where f,g and 'lj; are maps from JR into itself and 

{ t;, 0 ~ i ~ N - 1} is a sequence of independent random variables. 

To deduce existence and uniqueness for our equation, we shall follow two different approaches. 

The first one (in the spirit of Ferrante and Nualart, 1995) will require monotonicity conditions 

over the coefficients f, g and 'lj;, while the second one (that follows the ideas of Nualart and 

Pardoux, 1988 and Donati-Martin, 1993) requires Lipschitz conditions. 

Let us start by assuming the following set of conditions: 

( i) f is continuous and x f------+ x + f ( x) is increasing and onto JR; 

(H.1) ( ii) g is continuous and increasing; 

(iii) 'lj; is continuous and decreasing. 

Our first result is the following. 

Proposition 2.1 Under (H.J), equation {2.1) admits a unique solution. 

Proof It is enough to prove that equation (2.1) admits a unique solution for each to, ... , tN- 1 

fixed. Solving the first equation in (2.1) with initial data x 0 fixed, we have that, for all n E 

{1, ... , N}, Xn is a function of x 0 • Now, by (H.l.i) we have that the map x 0 f------+ X 1(x 0) = 

x 0 + f( x 0 ) + to is continuous, increasing and onto JR. If we consider now the map x 0 f------+ 

X2(xo) = X1(x0 ) + g(x 0 ) + f(X1(x0 )) + t1 and we take into account (H.l.ii), we immediately 

obtain that it is itself a continuous, increasing map and that it is onto JR. Repeating the same 

computation for each n we obtain that the map x 0 f------+ XN(x 0 ) is itself continuous, increasing 
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and onto JR. Since by (H.1.iii) 'lj; is continuous and decreasing, the equation x = 'lj;(XN(x )) 

admits a unique solution x0 • Therefore we obtain that equation (2.1) admits a unique solution 

that can be recursively computed by solving the first equation in (2.1) with initial data x 0 = x0 . 

D 

An alternative result of existence and uniqueness to equation (2.1) can be obtained under 

Lipschitz conditions over J, g and 'lj;. More precisely, we shall consider the following assumption: 

I d + f , g and 'lj; are Lipschitz maps with constants M, L and K, respectively, 

(H.2) and we have that ]( aN < 1, where 

In this case the following result holds. 

Proposition 2.2 Under (H.2), equation (2.1) admits a unique solution. 

Proof We shall prove again that (2.1) admits a unique solution for each ~0 , ••• , ~N-l fixed. 

As before it will be sufficient to prove that the map x ~------+ 'lj;(XN(x)) admits a unique solution 

and to do it we shall prove that it is a strict contraction of 1R into itself. 

We want to prove that for each x and y in 1R 

(2.2) 

with 0 < A < 1. By (H.2), we have that 

and 
jxN(x)- XN(Y)j = jxN-l(x) + g(XN-2(x)) + f(XN_ 1(x)) 

-XN-l(Y)- g(XN-2(Y))- f(XN-l(Y))I 

::; M jxN-l(x)- XN-l(Y)j + L jxN-2(x)- XN-2(Y)j. 

For each i = 1, ... , N - 1, we have 
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having defined recursively, for each i = 1, ... , N- 1: 

(2.3) M. 

Now we have 

lxN(x)- XN(Y)I < aN-1 IX1(x)- X1(y)l + L aN-2Ix- yl 

< [aN_1 M + L aN-2] lx- yl = aN lx- yl, 

and therefore that 

It is easy to prove that 

and therefore, by (H.2.iii), we have that 

is a strict contraction. 

0 

In the sequel we shall always assume that (H.1) is satisfied and under stronger regularity 

conditions we shall be able to compute the probability law of the unique solution (X1 , ... , XN) 

to equation (2.1). From now on we shall assume the further hypothesis 

{ 

{~0 , ... , ~N- 1 } are indipendent absolutely continuous random variables 
(H.3) 

with a.e. strictly positive densities Aa(·), ... , AN_ 1 (·) , respectively. 

We can prove the following result. 

Proposition 2.3 Let j, g and 1/J be of class C 1 and let (H.3) hold. Iff' > -1, g' ~ 0 

and 1/J' ::; 0, then the random vector (X1 , .•. ,XN ), unique solution to equation (2.1), has an 

absolutely continuous law with density 

N-1 
(2.4) fx(x1, ... ,xN) =IT [A;(xi+1-x;-g(xi-1)-f(x;))] I.J(x1,···,xN)I, 

i=O 
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(with the convention X0 = 'lj;(xN) and g(x_ 1) = 0) where 

{2.5) 

and A1 ( x 1 , ••• , x N) is recursively defined by: 

Proof Let us define the following map 

E>: ---+ 

Since, by the assumptions and (H.1), (2.1) admits a unique solution, the map E> is well defined. 

Moreover it is immediate to see that E> is a bijection of JRN into itself and, by the smoothness 

of j, g and 'lj;, that it is a C 1 - diffeomorphism. From (2.1) we have 

~0 E>11(x1, ... ,xN) X1- 'lj;(xN)- f( 'lj;(xN )) 

6 E>21(x1,···,xN) x2- X1- g('lj;(xN )) - j(x1) 
(2.6) 

•• 0. 0 0 0 0. 0 •• • 0 0 •••• 0. 0 0. 

~N-1 E>j~/(x1, ... ,xN) XN- XN-1- g(xN-2)- f(xN-1)· 

If we denote by :J(x1, ... , xN) the Jacobian of e- 1 , it is easy to prove that the random variable 

X = (X1, ... , XN) has an absolutely continuous law with density 

where fe denotes the density of the random vector ~ = (~0 , ••• , ~N-d· From (2.6) and (H.3), 

we have that 

N-1 
IT [.xi(xi+1- Xi- g(xi-1)- f(xi))] 
i=1 
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again with the convention X0 = 'ljJ(xN) and g(x_!) = 0 and to complete the proof it remains 

to compute the Jacobian of e- 1 . From (2.6) we have that :J(xl, ... 'XN) is equal to the 

determinant of the following matrix 

1 0 0 -[1 + f'('ljJ(xN ))]'1/J'(xN) 

-1- J'(x1) 1 0 -g'( '1/J( XN) )'1/J'( XN) 

-g'(x1) -1- j'(x2) 0 0 
(2.7) 

0 0 1 0 

0 0 -1- f'(xN-d 1 

Recalling that 1 + f' ( x) > 0, V x E JR, it holds 

detB, 

where B is the following matrix 

1 0 

0 0 

0 0 

0 0 1 0 

0 0 -1- f'(xN-d 1 

Expanding now the determinant of B by means of minors of the first row, we obtain: 
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where C is the following (N- 1) x (N- 1) matrix 

0 0 0 

0 0 

0 0 

0 0 

Defining recursively 

( ) [ '() g'('lj;(xN))] '()A A1 x1, ... ,xN = 1+f x1 + 1 +f'('lj;(xN)) A2 + g X1 3· 

(notice that the assumptions over j, g and 'lj; imply that 

(2.8) 

for every n 1, ... , N), a simple computation shows that 

At the end we obtain that 

and the proof is complete. 

D 

3 Markov property 

We want now to study the Markov property of the unique solution to equation (2.1). First 

of all we shall recall a simple result (see Ferrante and Nualart, 1994) that allows as to give 

a characterization of the reciprocal Markov chain property of a random vector which has an 

absolutely continuous law. 
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Lemma 3.1 Let us assume that the vector X = (X a, ... , XM) has an absolutely contin-

uous law with density f 0 (x 0 , ••• , XM ). Then X is a reciprocal Markov chain if and only if, 

for every 0 ~ m < n -1 < M- 1, there exist two measurable functions f 1(xm, ... ,xn) and 

h(xo, ... , Xm, Xn, ... , XM) such that 

An easy application of the previous Lemma gives the following result: 

Proposition 3.1 Under (H.3} and assuming that f , g and 7/J are maps of class C1 such that 

f' > -1, g' ~ 0 and 1/J' ~ 0, the two-dimensional process {(Xn,Xn+1),1 ~ n ~ N -1}, 

where { Xn, 1 ~ n ~ N} denotes the unique solution of equation (2.1 }, is a reciprocal Markov 

chain if and only if for each 1 ~ m < n - 2 < N - 3 there exist two measurable functions 

such that 

(3.1} 

Proof It follows immediately from previous Lemma 3.1 and (2.4)-(2.5). 

0 

In the sequel we shall need this simple technical lemma. 

Lemma 3.2 Let F be a twice continuously differentiable and positive real function defined on 

JRa+f3, where a and j3 are positive integers. The following two statements are equivalent: 

(1) There exist two measurable functions ¢1 and ¢2 such that 

(2) We have 

for all i E {1, ... , a}, j E {1, ... , /3} and for every ( x1 , x 2 ) E JRa+f3. 
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Proof From the regularity of the function F(x 1 ,x2 ), we obtain that ¢1 (xl) and ¢2 (x 2 ) have 

to be itselves regular. Now, taking the logarithm in (1) (we have that 1 + F(x 1 ,x2 ) is strictly 

positive) and differentiating with respect to xi and xt we immediately obtain (2). Integrating 

(2) with respect to xi and x~ one obtains easily the converse result. 

D 

Remark 3.1 In Alabert and Nualart, 1992 and Ferrante and Nualart, 1994 one makes use 

of a stronger technical Lemma (see Alabert and Nualart, 1992, Lemma 2.3}, since in that papers 

one can assume that the function F(x1 ,x2 ) factorizes as a product of two functions G1(x1 ) 

and G2(x 2). Here, due to the factor A1(x 1 , ... , xN ), we have to use Lemma 3.2. This lack 

of factorization is a characteristic of the multidimensional case and makes the analysis in this 

paper more complicated than in the case Ferrante and Nualart, 1994. 

Making use of the factorization property of Proposition 3.1, the technical Lemma 3.2 and 

requiring the strict monotonicity of the map g, we are now able to prove the main result of the 

present paper. 

Theorem 3.1 Let N ?:: 8 and let us assume that (H.3} hold, f, g and 1/J are of class C2 , with 

f' > -1, g' > 0, 1/J'::; 0 and 1/J' ¢. 0. The two-dimensional process {(Xn,Xn+ 1 ), 1::; n::; N- 1}, 

associated to the unique solution of equation {2.1) { Xn, 1 ::; n ::; N}, is a reciprocal Markov 

chain if and only if both the functions f and g are affine. 

Remark 3.2 Note that if 1/J' = 0, then X 0 is deterministic and the two-dimensional process 

{(Xn,Xn+l), 1::; n::; N- 1} is a Markov chain for each pair of coefficients f and g. 

Proof of Theorem 3.1 By Proposition 3.1, it is sufficient to prove that condition (3.1) holds 

for each 1 ::; m < n - 2 < N - 3 and for suitable measurable functions 

if and only if both the functions f and g are affine. 

Sufficiency: Let us assume that f and g are affine maps. In this case we have 
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where k1 and k2 are suitable constants, and therefore that A1 (x1 , .•. ,xN) is itself a constant. 

We have 

and therefore (3.1) trivially holds by taking 

Necessity: Let us now assume that for each 1 ~ m < n-2 < N -3 there exists two measurable 

functions 

such that 

To avoid the trivial cases, let us choose m and n such that 

3 ~ m < n - 2 < N - 3, 

(in this way the interior- and exterior a - fields are not degenerate) and fix i E {2, ... , m - 1} 

and j E {m + 2, ... ,n- 1}. We can apply Lemma 3.2 to the function 

We obtain therefore that 

(3.2) 

[1+!'(1/J(xN))] 1/J'(xN) {1- [1+!'(7/J(xN))] 1/J'(xN) A1} (}x~~xiA1 

+ [1 + f'( 1/J(xN )) r ( 1/J'(xN) r ~~; ~:: = 0. 

Now, since 1 + f' ( 1/1( x N)) > 0 by (H .l.i) and 1/1' ¢. 0, there exists x N E 1R such that from 

(3.2) we have 

(3.3){1- [1+f'(1jJ(xN))] 1/J'(xN)Al} ax~~X·A1+ [1+f'(1/J(xN))] 1/J'(xN) ~~~ ~:~ =0. 
J ' ' J 
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We have now to compute and 
{)2 

{) A1 . It is not difficult to prove that for each 
XjaXi 

1<j<N-1 

(3.4) 

+g''(xj)AH2(xi+2, ... ,xN-d], 

where the Bj's are recursively defined by: 

Eo 1 

(3.5) 

Moreover we have 

(3.6) 

for each j 2:: i + 2, where 

iJ!+l = 1 
' 

(3.7) 

Remark 3.3 Notice that, under the present assumptions, we have that Bj and .BJ+1 are 

strictly positive for every i + 2 ::; j. 

From (3.4) we obtain that (3.3) is equal to the following equation 

{1- [1+f'(~(xN))] ~'(xN) A1} {):. [Bi-l(xl, ... ,xi-l,xN) (f"(xi)Ai+l 
J 
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and by (3.6) that 

{ 1- [1 + f'( 1{7(xN ))] 1{7'(xN) A1} Bi-1 [f"(xi) BJ:!:i (f"(xi )Ai+1 + g"(xi )Ai+2) 

(3.8) +g''(xi)BJ:!:i (f"(xi)Ai+1+g''(xi)Ai+2)] + [1+f'(7{7(xN))] 

Let us assume that f or g is not an affine map and let us prove that this assumption leads 

to a contradiction. We shall need the following technical lemma: 

Lemma 3.3 Under the assumptions of Theorem 3.1, iff or g is nonlinear, then there exists 

U open and non empty subset of IR such that 

(a) for a. e. (xi, ... ' XN-d E uN-i and i E {2, ... 'N- 3}; 

on U 

Proof: 

Step 1: Let f be affine and g not (and the same holds when g is affine and f not); by the 

regularity conditions over g there exists an open, non empty subset U of 1R where g" =f. 0. For 

i E {2, ... , N - 3}, we shall have that 

a A; 
= g"(xi)Ai+2· 

OXj 

Now, since Ai+ 2 > 0, the result is proved, being ~Ai =/:- 0 on uN-i, fori E {2, ... ,N- 3}. 
UXi 

Step 2: Let f and g be both nonlinear; by the regularity of f and g there will exist two open 

subset of IR, U and V, on which hold that f" =/:- 0 and g" =/:- 0, respectively. We shall proceed 

by induction, proving the property (a) also for i = N- 2, N- 1. 

Let us start by AN_ 1 ; since 

aAN-1 ( ) "( ) {) XN-1 = f XN-1 , 
XN-1 

we have that condition (a) holds on U. Let us now consider AN_ 2 ; differentiating with respect 

to XN_ 2 and XN_ 1, we obtain that 

f "( ) aAN-1( ) ..../.. O = XN-2 >:~ XN-1 I 
UXN-1 
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for every ( xN_ 2 , xN-d E U2 • It clearly implies that 

and condition (a) is proved to be true. 

Let us now assume that (a) holds for every j E {i + 1, ... ,N- 1} and prove that it holds 

for j = i. Differentiating now A; with respect to x; and to xi+ 1 , we obtain that 

for a.e. (x;, ... 'XN-1) E uN-i' by the induction assumption. Therefore 

8A; 
~(x;, ... , XN-d f. 0 
uX; 

and condition (a) holds. To complete the proof it will be sufficient to recall that (b) is satisfied 

on U. 

D 

Form now on we shall assume that x2 , ••• , xN_ 1 belong to U, the open set defined in Lemma 

3.3. Since 

!"( )A "( ) 8Ai -~.. 
Xj j+1 + g Xj Aj+2 = ox. T 0 

J 

UN-j a.e. on , 

previous equation (3.8) is equivalent to the following one 

{ 1- [1 + f'( 1/;(xN ))]1/;'(xN) A1} [f"(x;)Bj~i + g"(x;)Bj~i] 
(3.9) 

+ [ 1 + f'( 1/;(xN ))] 1/J'(xN) Bj-1 [f"(x;)Ai+1 + g"(x;)Ai+2 ] 0 

Differentiating now with respect to xi+1 we have 

- [1 + f'(tf;(xN))] 1/J'(xN) [f"(x;)BJ~i + g"(x;)Bj~i] Bj [f"(xi+1)Aj+z + g"(xj+1)Aj+a] 

+ [1 + f'(tf;(xN))] 1/;'(xN) Bj_1 [f"(x;)iJj+1 + g"(x;)iJj+2 ] 

Since 
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and, by Lemma 3.3, 

we obtain 

(3.10) B· [!"(x·)iJ~+l + g"(x·)iJ~+2 ] = B· J ' J-l ' J-l J-l 

Now, recalling that 

from (3.10) we have 

Proceeding in the same way, we obtain at the end that 

(3.11) 

A simple computation gives that (3.11) is equivalent to 

and therefore 

g" (X; )B; 

which implies 

(3.12) Bi-l g'(x;) J"(x;) = B; g"(x;). 

From (3.12) and the positivity of g' and 1 + f', we deduce 

0 
ox; (log g'(x;) ) 

0 
- (log B;) 
OX; 

which gives that 

(3.13) 1 + f'(x;) = 

with K 1 a strictly positive function. 

K1 '( ) Bi-2 '( ) -- g X; - -B g Xi-l. 
E;-1 i-1 
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K1(x1, ... ,x;-1,xN) h b h f It is easy to see that, if the function is not constant, t en ot 
E;-1(x1, ... , x;-1, XN) 

and g have to be affine functions on U, which leads to a contradiction with our hypothesis. 

Assuming therefore that ](1 = a > 0 on Ui, from (3.13) we have that there exists a positive 
E;-1 

constant b such that 

(3.14) 

and therefore we have that 

(3.15) 1 + j' (X) = a g' (X) - b for every x E U. 

From the definition of E;_1 and (3.14), we obtain 

E;-2g'(x;_l) = b [Ei-2(1+f'(xi-1)) + E;_ag'(xi-2) ], 

and, since x;_1 E U, by (3.15) we have 

(3.16) E;_2 g'(x;_l) ( 1 - ab) = b [- Ei-2 b + E;-a g'(xi-2)]. 

If 1 - ab =/:- 0, we obtain that g'(x;_l) is constant on U and again we obtain a contradiction 

with our assumption. If 1 - ab = 0 we shall arrive to a contradiction. In fact from (3.16) 

E;_a(x1, ... ,x;-a,xN) '( ) _ b 
( ) g Xi-2 - , 

Ei-2 x1, ... ,x;-2,xN 

and proceeding in the same way for every i at the end we obtain that 

( ) Eo '( ) 3.17 g x1 = b. 
E1(x1, XN) 

g'( 1/J(xN )) 
Recallingthat Eo= 1, E1(x 1,xN) = 1 +!'(1/J(xN)) + 1 + f'(x1)andchoosing x1 EU, 

from (3.15) we have 

(3.18) for every xN E JR, with 'lj;(xN) =/:- 0. 

Choosing now x1 E Jm('lj;)\{0}, from (3.18) it follows 

(3.19) g' ( xl) = b ( 1 + f' ( xl)). 

From (3.17), (3.18) and (3.19) we deduce 

which clearly leads to a contradiction. 

Therefore, if the factorization property (3.1) holds, then f and g have to be affine maps. 

D 
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