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HOMOGENEOUS SUPERMANIFOLDS
ASSOCIATED WITH THE COMPLEX PROJECTIVE LINE

V.A.BUNEGINA, A.L.ONISHCHIK

Yaroslavl University

ABSTRACT. One studies homogeneous complex supermanifolds whose reduction is
the complex projective line CP!. For odd dimensions 1 and 2 a complete classification
is given.

0. Introduction

In [5] S.Lie published his classification of actions of local complex Lie groups
on the complex line, proving that any finite dimensional transitive Lie algebra of
holomorphic vector fields defined on an open set of C possess a basis e, h,f or
e, h, or e, where e, h,f can be expressed, after an appropriate choice of the local
coordinate z, by

d d 5 d

e= _d_z’h_ 22d—2,f— &

It follows, in particular, that any Lie algebra of holomorphic vector fields of the type

considered can actually be globalized to the Lie algebra of fundamental vector fields

corresponding to the standard action of SLy(C) on CP', to the standard action of
the affine group on C or to the standard action of C on itself.

It is quite natural to consider the similar problem for holomorphic Lie super-
algebras of vector fields on the superspace C'™, where m > 0. The goal of this
paper is to make a first step in this direction. We study here homogeneous super-
manifolds (M, ©) of dimension 1|m such that M = CP'. In the cases m = 1,2,
the explicit description of the Lie superalgebra of holomorphic vector fields is given
and the 1-cohomology of the tangent sheaf is calculated. It turns out that in the
dimension 1|2 there exists only one non-split homogeneous supermanifold of the
form ((C]P’l, ©). This supermanifold was constructed by V.P.Palamodov as one of
the first examples of non-split complex supermanifolds (see [1]). For m > 3, the
classification is not yet completed. We remark that in [3] a 1-parameter family
of non-split homogeneous supermanifolds of dimension 1|4, having CP' as their
reduction, was constructed.

Key words and phrases. Homogeneous supermanifold, Lie superalgebra, holomorphic vector
bundle.
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1. Generalities about supermanifolds

Under vector superspace and superalgebras we mean Zq-graded vector spaces and
algebras, where Zq = Z/27 = 0,1. The word ‘supermanifold’ is used in the sense of
Berezin-Leites, having in mind the complex-analytic version of the theory (see [6]).
Thus, a supermanifold of dimension n|m is a Z,-graded ringed space (M, O), where
O is a sheaf of commutative superalgebras on a topological space M, supposing
that (M, O) is locally isomorphic to a superdomain in C™™ i.e. to a ringed space
of the form (U, Fy|m), where U is an open subset of C", Fpjm = A £ (1,-+,6m)
and F, is the sheaf of germs of holomorphic functions in C*. Here we assume
that the functions from F, are even elements of the structure sheaf, while ¢; are
odd ones. Let zi,...,z, denote the standard coordinates in C". If we identify an
open subspace (U, ) of (M,0) with the superdomain (U, Fm) in C™" then
we get the elements z; (¢ = 1,...,n), £ (7 = 1,...,m) of I‘(ﬁ,(’)) called the local
coordinates on U. In the intersection of two coordinate domains we can express the
local coordinates in one domain by the local coordinates in another one; one gets
the so-called transition functions.

Let (M,O) be a supermanifold and J C O the subsheaf of ideals generated
by the subsheaf O7 of odd elements or, which is the same, J = O + (07)2.
One denotes O;q = O/J. Then Myq = (M,0:q) is a usual complex analytic
manifold of dimension n called the reduction of (M, ), and we have a morphism
red: Myq — (M, O), taking the odd local coordinates £; to 0 and the even ones z;
to certain local coordinates X7, ..., X, on Myq.

The simplest class of supermanifolds are the so-called split ones. Let (M, F) be
a complex manifold and £ a locally free analytic sheaf on it. Defining O = Az ¢,
we get a supermanifold (M, O). A supermanifold is called split if it is isomorphic
to a supermanifold of this form. The structure sheaf O of a split supermanifold
admits the Z-grading O = @, 5, Op, where Op ~ AL E; the Z,-grading on it is
defined from the Z-grading by reducing mod 2. In what follows, we often omit the
index F while denoting the exterior powers, the tensor products etc. of the sheaves
of F-modules. We recall a construction that associates with any supermanifold
(M, O) a split one. Consider the filtration

(1) O=J">7'>7*>...

by the powers of the sheaf J introduced above. The associated graded sheaf

gr(’):@grp(’),

p>0

where gr, O = JP/JPFL gives rise to the split supermanifold (M,gr O). In fact,
grO ~ A\ &, where F = gry O = Orq and € = gr, O. Clearly, (M, O) and (M, gr O)
have the same dimension.

Let (M, ) be a supermanifold of dimension m|n. In what follows, we usually
denote by F the structure sheaf Oq4 of its reduction. The complex manifold M;q =
(M, F) will be often denoted by M.

Using local coordinates z;,£;, we see that Op o~ C{z1,... , 22} @ Ac(&1,--- &m)
for any * € M is a local superalgebra, and m; = (z1,... ,2n,61,... ,Em) 1s its
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maximal ideal. The vector superspace T,(M,O) = (m,/m2)* is called the tangent
space to (M,O) at the point z. The vector space Ty(M, O); is identified with the
usual tangent space Ty(M) to the complex manifold M = M,q.

Denote by 7 = Der O the sheaf of derivations of the structure sheaf O. Its
stalk at * € M is the Lie superalgebra detcO, = detgO, @ 0et; O, of derivations of
the superalgebra O, (the summands with indices 0 and 1 consist of even and odd
derivations respectively). The sheaf 7 is called the tangent sheaf and its sections
holomorphic vector fields on (M, Q). The set v(M,O) = I'(M, O) of all holomorphic
vector fields is finite-dimensional if M is compact. We regard it as a complex Lie
superalgebra with the bracket

[X,Y] =YX + (=1)pXrM+1 xy,

Fix a point # € M. Any § € der O, satisfies §(m%) C m, and hence defines a
linear mapping 6 : my/m2 — O,/m,; = C which is an element of T,,(M, Q). This
permits us to define an even linear mapping

evgy 1 0(M,0) - T,(M,0) by
evg(v) = Uy.
We note that, in contrast with the classical case, a vector field v is not, in general,
uniquely determined by its values v, at all z € M.

We also make some remarks concerning vector fields on the split supermanifolds.
If (M, O) is split then 7 is a Z-graded sheaf of Lie superalgebras, the grading being

given by
7= 7,
p2-—1
where
(2) Tp =Der,O ={6 €T | §(O4) C Ogqp for all g € Z}.

Hence 0(M,0) = @, _, vp(M,O) is a Z-graded Lie superalgebra. We denote by
¢ the grading vector field, i.e. the element of v(M, ), given by

e(f) =pf for f € O,.
We have O = A\ &, where £ is a locally free analytic sheaf on M. In the odd local

coordinates ¢y, ... ,&n, forming a basis of local sections of &£, the grading vector

field is expressed by
= 0
=2 Lige
=9

The corresponding adjoint operator acts in v(M, O) as follows:
ade(v) = [e,v] = pv for v € v(M, O),.

Since (M, O) is split, 7 can be regarded as an analytic sheaf on the complex
manifold M = (M, F). It were useful to interprete 7 directly in terms of the sheaf
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£. A partial description of 7,, p > —1 is given by the following exact sequence of
locally free analytic sheaves on M (see [7,8]):

p+1 p
(3) 0o \NedT, Lo \e—o,

where © = DerF is the tangent sheaf of the manifold M. In particular, in the case
p = —1 we have an isomorphism

T_1 ~Homx(E,F) = E*.

The mapping [ is the restriction of a derivation of degree p onto the subsheaf F,
and « identifies any sheaf homomorphism & — AP 1 & with a derivation of degree
p that is zero on F.

One sees easily that (3) splits locally (but not globally!), and hence 7 is a Z-
graded locally free analytic sheaf on M, too. Over a coordinate neighborhood with
local coordinates x1,... ,2Zn,£&1,... ,&n We may take the vector fields

§it - Clp) 5 1 e 15 €31 iy s 1 <o

as basic sections of 7,. We denote by ST(M, O) the corresponding Z-graded holo-
morphic vector bundle over M (the supertangent bundle). Its fibre at z € M is
isomorphic to Ty (M,0) ® Ac(€1,--. ,6m). The tangent bundle over M will be
denoted by T(M).

The general case can be essentially reduced to the split one in the following way.
Endow the tangent sheaf 7 with the following filtration:

(4) T=T-1)2%0) 3 - 2 TItm) > T(mt1) =0,

where

Ty = {86 €T |6(0)C J*,8(T)C gt} for p > 0.

Thus we obtain a filtered sheaf of Lie superalgebras. One sees that the associated
graded sheaf of Lie superalgebras gr 7 is naturally isomorphic to 7 = Der gr O (see
[7]). Hence for any p > —1 we have the exact sequence

(5) 0= Tipen) = Ty = T, — 0.

2. Actions on supermanifolds

In order to avoid using the rather complicated machinery of Lie supergroups, we
shall deal with Lie superalgebras. Let (M, O) be a supermanifold and g a complex
(finite dimensional) Lie superalgebra. An action of g on (M,O) is an arbitrary
Lie algebra homomorphism ¢ : g — v(M,O). The action ¢ is called effective if
Kereo = 0. If an action ¢ is given, then with any ¢ € M the linear mapping
©* =evyop:g— Ty(M,O) is associated. The set g, = Ker ¢” is a subalgebra of
g, called the stabilizer of . The action ¢ is called transitive if ©® is surjective for
any ¢ € M. In this case one also says that (M, Q) is a homogeneous space of the
Lie superalgebra g.
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With any action ¢ : g — v(M,O) one associates the natural homomorphism
o : g5 — v(M,0); — v(M), where v(M) is the Lie algebra of holomorphic vector
fields on M. If M is compact, then this homomorphism is the differential of a
holomorphic action @ of the simply connected complex Lie group Gy with tangent
algebra g on M. Clearly, ®¢ is transitive in the usual sense if ¢ is transitive. It
follows that the stabilizers of a transitive action on a compact supermanifold are
conjugate by inner automorphisms of g (i.e. the automorphisms from the group
generated by exp(ad u), for u € gg).

If M is compact, then there is the natural action ¢ = id of the finite dimensional
Lie superalgebra v(M, Q) on (M, ). The supermanifold (M, Q) is called homoge-
neous if this action is transitive, i.e. if the mapping ev, : 0(M,0) — T,(M,O) is
surjective for any x € M.

Returning to the general case, we now suppose that an action ¢ of a Lie super-
algebra g on a supermanifold (M, O) is given. We are going to define an action on
the split supermanifold (M, gr O). To do this, we note that the filtration (4) gives
rise to the filtration

(6) g=0(-1) D80 D --- D Fm) D Im+1) =0,
defined by
g =8N (T(M, ) = {u € glo(u)(O) C TP, o(u)(J) C TP}

Clearly, g becomes a filtered Lie superalgebra, and ¢ determines a homomorphism
@ of the correspondent graded Lie superalgebra g into the graded Lie superalgebra
o(M,gr O), i.e. an action of g on (M, grO).

In particular, if we consider the natural action ¢ = id of g = 8(M,0) on a
compact supermanifold (M, O), then g(,y = ['(M,7(,)), and ¢ will be the injective
homomorphism g — v(M, gr O) that is implied by the exact sequence (5).

Proposition 1. For any transitive action of a Lie superalgebra g on (M,Q), the
corresponding action of the subalgebra §_1 @ go C @ on (M, gr O) is transitive. If
a compact supermanifold (M, Q) is homogeneous, then (M, gr O) is homogeneous,
too.

Proof. Fix a point x € M and denote O = grO. Since (M, 0O) is always locally
splittable, we may identify (’5|U with O|U over a neighborhood U of z and, hence,
O, with O,. It is sufficient to choose local coordinates z1,... ,Zn,&1,... ,&m of
(M,0) in U and to identify z; with z; + J and ¢; with & + J2. As a result, we
have an identification of Ty(M, ) with T,(M, O). Let &7, : 0(M,0) — Ty (M, O)
be the evaluating mapping for (M, (’j)

Let ¢ be an action of g on (M, ). Consider the filtration (6) of g determined
by ¢. Clearly, g5 C g(o) and hence g(o) = g5 @ (g¢o) N g1)- We have ¢(u)(O;) C m,
for all u € g(o) N g7, and so ev,(p(u)) = 0 for these u. Therefore, we get a mapping
go — T»(M,O); which, as is easy to check, coincides with €v, o ¢. It follows that
62 (#(80)) = ov2 (¢ (a0).

We also see from the above that ev,op : g7 — T(M,O); induces a mapping
01/(g1 N geoy) — To(M,O);. Since g = g7 + g(o)), we have an isomorphism g_; =
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g/8(0) — 91/(g91 N g(0)). Hence we get a mapping g1 — T,(M,O); which, as is
easy to check, coincides with €v, o ¢. It follows that €v,(@(g—1)) = evi(p(g7)).

Now we make some remarks concerning the action of the group Gy on the sheaves
involved. Suppose that M is compact and that an action ¢ of g on (M, O) is given.
Let us denote by Aut(M,O) and Bih M the groups of automorphisms of (M, O)
and of biholomorphic transformations of M, respectively. Then, as in the classical
Lie theory, it is possible to integrate the homomorphism ¢ : gz — v(M, O)j, getting
a homomorphism ® : Gy — Aut(M, O) that induces the action &, : Go — Bih M.
The corresponding action of Gy on O preserves the parities and hence leaves in-
variant the filtration (1). As a result, we get actions of Gy on the sheaf £, on the
supermanifold (M, gr O) and on the holomorphic vector bundle E corresponding to
E. If @y is transitive then E becomes a homogeneous vector bundle.

Now, the action ® induces an action of Gy on 7 preserving the parities. It
follows that G preserves the filtration (4) and induces an action on gr7 which,
clearly, coincides with the action induced on the tangent sheaf 7 of (M, gr O) if
we identify this sheaf with 7 by the above isomorphism. One sees easily that the
homomorphisms in the exact sequence (3) (corresponding to 7) and in (5) are
Gy-equivariant.

3. The case when M = CP!

As usually, we cover CP! by two affine charts Uy, U; with local coordinates X
and Y = % respectively. On any supermanifold of the form (C]P’l, O) of dimension
1|m we may choose local coordinate systems z, {1,... ,{m iIn Up and y, n1,... ,0m
in U7 in such a way that red(z) = X, red(y) =Y.

First we consider the simplest case when the supermanifold is split. Then O =
Az €, where € is the sheaf of sections of a holomorphic vector bundle E of rank m
over M = CP'. As is well known, we always have

E = éEj,
j=1

where E; are holomorphic line bundle. Now, any line bundle over CP! is determined
by its degree k € Z. We denote by L(k) the line bundle of degree k and by F(k)
its sheaf of holomorphic sections (usually denoted by O(k) in algebraic geometry).
Then the transition function of L(k) in Uy N U; has the form

Zo = szl,
where z;, © = 0,1, is the coordinate in the fibre over U;. In what follows we denote
the degree of E; by —k; and assume that the sequence k1, ... , kn is not decreasing.

Thus, we have

) £ = D F(-ky)
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For the corresponding supermanifold (CP', Ax€), we may choose as even local
coordinates = X, y = Y on Uy, U; respectively and as odd ones the basic sections
¢ over Uy and n; over Uy of the locally free analytic sheaf F(—k;). Then the
transition functions in Uy N U; will have the form

N |
y=z

8
(®) nj::c_kffj,jzl,...,m.
We would like to know when this supermanifold is a homogeneous one, and to
describe the Lie superalgebra v(M, O) of all holomorphic vector fields in this case.
To answer these questions, we shall first construct an action of sl3(C) on (M, O).
Consider the standard action of the Lie group SLy(C) on M = CP'. It is well
known that its image is the whole group Bih CP'. Therefore the Lie algebra v(M)
of holomorphic vector fields on M is isomorphic to sla(C). It is also known that
the following vector fields form a basis of this Lie algebra:

d o . ., 0
(9) E=—ao H=2X50 F=X'o0

We have
[H,E|=2E, [H,F|=-2F, [E,F]=H.

It is easy to lift these vector fields to our supermanifold, i.e. to construct vector
fields e, h, f € v(M, O) inducing the vector fields E, H, F' on M. (This means that

any holomorphic vector bundle on CP' is homogeneous.) We put

0 .0 L, 0
(10) e——gw—,h—&z:a—x—kvk,f—m 8_x+$vk’

where

= d
Vi = Zkig,-a—&, E=(ki,... kn)
=1

One checks easily that these vector fields are holomorphic on the whole CP* and
that

(11) [h,e] = 2e, [h,f] = —2f, [e,f] = h.

Thus, the span s =< e, h, f > is a subalgebra of v(M, O) isomorphic to sl;(C).
Under the adjoint representation of s, the Lie superalgebra v(M, O) splits into
the direct sum of irreducible s-submodules. Hence, it is generated, as the s-module,
by the highest vectors of this representation. We are going to describe them.
First we regard h as a derivation of the superalgebra O(Uy) and prove that it is
”diagonalizable” with integer eigenvalues.

Proposition 2. The function

(12) o=a"¢,...&,,r,s>0, 71 <...<Js,
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is an eigenvector of h in O(Uy) with the eigenvalue
(13) A=2r+kj, +...+k;,.

Any eigenvalue A of h in O(Uy) has the form (13), and the correspondent eigenspace
O(Uy)x is spanned by all functions (12) satisfying (13). In particular, O(Uy)y is of
finite dimension.

Proof. The first assertion is checked by a direct calculation. To prove the second
one, we use the power series expansion. We can write any ¢ € O(Up) in the form

o0
_ T
99_2 arx’,

r=0
where a, € A = A\(&1,... ,&m). Then h(e) = Ap, A € C, implies
Viar = (A —2r)a,,r =0,1,...

Clearly, Vi is diagonalizable in A with basic eigenvectors &j, ...&;, (71 < ... < Js)
and corresponding eigenvalues k;, + ... + kj,. Therefore, if a, # 0, then A — 2r =
kiy+...+kj,,and ap =< &, ... &, |2r + K + ...+ kj, = A >,

We prove now a similar proposition concerning the adjoint operator ad h in the

Lie superalgebra 7 (Up).
Proposition 3. The vector field

. 9 - :
(14) v:xéjl'-"fjsa_xarwszoﬁ]1<"'<]87
is an eigenvector of ad h in 7 (Uy) with the eigenvalue
(15) A=2—2r+kj, +...+kj,).
The vector field

0 : :
(16) w:fojl,,.fjsa—g_,r,sZO,]1<...<]s,

is an eigenvector of ad h in T (Uy) with the eigenvalue
(17) AN=ki—Q2r+kj,+...+kj,).

Any eigenvalue A of ad h in T(Uy) has the form (15) or (17), and the correspon-
dent eigenspace T (Uy)x is spanned by all vector fields (14) and (16) satisfying (15)
or (17), respectively. In particular, dim7 (Uy)x < oco.

Proof. For any v = ¢ € T(U,) we have
[h,v](z) = 2¢p — h(p); [h,v](&)=0,7=1,...,m.
Thus, [h,v] = Av if and only if h(p) = (2 — X)p. If ¢ has the form (12) then, by

Proposition 2, \ satisfies (15). Quite similarly one investigates the vector fields w
of the form (16). The last assertion follows, as in Proposition 2.

It is important to know, which vector fields over Uy actually lie in v(M, O). For
the eigenvectors the folllowing is true.
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Proposition 4. Let v be a vector field of the form (14) such that kj = 0 for all
J #J1,--+,Js. Then v is holomorphic on the whole M if and only if

(19) r+kj +...+kj, <2

Otherwise, the condition is that

(20) r4+kj 4. 4k, <1

A vector field w of the form (16) is holomorphic on M if and only if
(21) r+kj+.. +k <k

Proof. For a vector field v of the form (14) we see from (8) that

'U(y) — _yZ—(T+kj1+,..+kj8)77j1 o 77_]'3 ,

o(n;) = =kt TR TR s

This implies our assertion. One argues quite similarly for the vector fields (16).
An eigenvector v from 7 (Uy) or (M, O) is called a highest vector if it satisfies
[e,v] = 0.

This condition is, clearly, expressed by

0 0 :
a—xv(x) = a—xv(fj) =0,7=1,...,m.

The corresponding eigenvalue A is called a highest weight. By the classical theory
of representations, for any highest vector v € v(M,O) we have A > 0, and the
irreducible submodule generated by v has dimension A + 1.

These remarks and Proposition 4 imply the following

Proposition 5. A vector field of the form (14) is a highest vector of T (Uy) if and
only if it is expressed by
0 . .
(22) v:§j1"'§j38_xa]1<"‘<]sv
where the corresponding highest weight
)\:2——-(]6]'1 +"'+kjs)20'

Ifk; =0 for all j # j1,...,Js then b € v(M,QO). Otherwise, v is holomorphic on
M if and only if
kj1+'--+kjs < 1.

Under this condition, we have A\ > 1.
Any highest vector from w € T (Uy) of the form (16) actually lies in v(M, O)

and is expressed by
o . .
(23) U):Ejl...fjsa—é_i,]l<...<]s,

where the corresponding highest weight
)\:ki_(kjl ++k])20

Now we prove the following homogeneity criterion.



10 V.A.BUNEGINA, A.L.ONISHCHIK

Proposition 6. The supermanifold (CP', Az E), where E is given by (7), is ho-
mogeneous if and only if k; > 0 forallt =1,... ,m.

Proof. Since SL2(C) acts on M transitively and this action can be lifted to O, the
mapping ev, : 8(M,O)s — T,(M,O); is surjective for all z € M.

Let us denote by o the point X = 0 of Uy. Consider the mapping ev, :
o(M,0); — T,(M,0);. If it is surjective then for any ¢ there exists a vector
field v € v(M, O) such that evy(v) = 85 Then we may suppose that

(24) V=

on the whole Uy. In fact, since (M, Q) is split, b(M,O) possesses a natural Z-
grading. One sees easily that ev,(w) = 0 for all vector fields w of positive odd
degrees. It follows that we may choose v as a vector field of degree -1, but then
it is clear that (24) is true. Then, by (8), v(n;) = y** is holomorphic on U; which
implies that k; > 0.

Conversely, suppose that k; > 0 for all 7 = 1,... ,m. Then the vector fields %

and 5 lie in v(M, O) for all 7. The vectors evz( 3¢;) span T (M, O); for all z € M
except of the point ¥ = 0 in Uy, and the vectors ev( m) span the odd tangent

vector space at this remaining point. Thus, the supermanifold is homogeneous.
4. Homogeneous supermanifolds of dimension 1|1

Here we study the homogeneous supermanifolds (M, O), where M = CP!, of odd
dimension 1. It is well known that all they are split. By Proposition 6, we have

0=\ F(=k), k> 0.

Denoting ¢ = &, we write (10) in the form

e h—2x3+k§ = ﬁwmg

Oz’ Oz 85 e oE

By Propositions 3 and 5, any highest vector in b(M, Q) is a linear combination
of the following vector fields:

In o(M,0)5: e (A =2); szfa% (A =0).
In o(M,0)s : -a% A=k); 2, k=0,1,2(A=2—k).

The Lie superalgebra v(M, Q) is Z-graded by the degrees —1,0,1, and so

o(M,0); = v(M,O),
o(M,0); =o(M,0)_1 ®0(M,0);.

Clearly, we have for all £ > 0

o(M,0)y =56 < e >~ gly,(C).
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It is also easy to see that the odd part is as follows:

For k =0:

o(M,0)_; =< 9 >, 0(M,0); =< §£,x§£,x2§£ >, dimv(M,O) = 4/4.

o0& Oz’ "0z Oz
For k = 1:
o 0 0 0 )

o(M,0)_1 =< %’ 5‘6 >, o(M,0); <€5§’x§8_x >, dimo(M,O) = 4/4.

For k = 2:
8

o(M,0)_1 =< a%,xba—g 85 b(M,0)y _<§ — > dimo(M,O) = 4/4.

For k > 3:
5‘ 0 r O X
o(M,0)_1 35 35 8_§>’ dimo(M,0) = 4|k + 1.

Let us add some comments to the cases k£ = 0,1, 2.

For k = 0 we have O = F ® A, where A = /\¢, and hence
o(M,0) = As + et A.

For k = 2 we have O = Q0 — the sheaf of holomorphic forms on M (¢ is identified
with the 1-form dX). Then f— is the exterior derivative, and xqa—e is the interior

multiplication by the vector field X2 55> ¢ = 0,1,2. The Lie superalgebra v(M, O)
is isomorphic to the previous one, after changing the Z-grading.

For k = 1 we have o(M,O) =~ pgly;(C) = gly;(C)/ < 13 >, and (M, O) is the
projective superline CP!I' of (1]0)-subspaces in C2I' defined in [6].

5. Split homogeneous supermanifolds of dimension 1|2

Here we study the split homogeneous supermanifolds (M, ©), where M = CP*,
of odd dimension 2. By Proposition 6, we have

O = N\(F(—k1) & F(—k2)), k1 > ks > 0.
The Lie superalgebra v(M, Q) is Z-graded by the degrees —1,0,1,2, and so

o(M,0); = 0(M,0) & v(M,O)q,
o(M,0); =o(M,0)_1 & v(M,0).

We shall distinct the cases k1 = ko and k1 > k.
Suppose that k; = ks =k > 0. If £ =0 then O = F® A, where A = A\(§1,62),

whence

o(M,0) = As 4 det A.
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It is easy to write down a basis of this Lie superalgebra.
Let now k£ > 1. By Propositions 3 and 5, any highest vector in v(M,O) is a
linear combination of the following vector fields:

In U(M,O)()I e(/\_z) 6135 ()‘_0) 516231:, 11 (/\:0)
In v(M,0); : agj (A =k); €Jaaza k=1(A=1).

For k = 1, we see easily that (M,0) = Cp'l (the projective superline of (1|0)-
subspaces in C?2, see [6]). In this case all the highest vectors listed above are
holomorphic on M and hence generate the s-module v(M, O). As a result we get

o(M,0) =56 < 51 751 — &2

762 >h<e>

P 351

~ 50, (C) @ sl(C) & C,
0

U(Ma 0)2 =< 516287 >,
o 9 0 o
06’ 06’ 06y’ 06

0 0 0 0
U(M7 O)l =< 618_.’13,1;618_37,628_.’13,3:625; >
dimo(M, O) = 8|8.

5 062

U(M, O)_l =<

It follows that
o(M,0)~Hy® < e >,

where Hy is a Cartan type Lie superalgebra denoted in [4] as H(4). (Notice that in
8,9] it was claimed erroneously that o(CP'?) ~ paly)s.)
For k > 2 we get

U(MO)0—5@<§18§ ,5135 628{ ’6235 >P<e>
~ 5[,(C) @ sl2(C) & C,
U(M,O)QZO,
0 0 r 0 0 0 r O
MO)_ 1 =< —, T, L ) oy Ty e e, L —— >,
o ) 061 1351 ! 0&1’ 0&, xafz ! 0,
U(M,O)l =0,

dimo(M, 0) = T|2(k + 1).

Suppose that k; > ko > 0. Then the highest vectors are linear combinations of
the following vector fields:

In 0(M,0); : e (A =2); @%—(A:k]—kz)- €z (A =0).

In o(M,0)1 : 55,7 = L2 (A= k)i &g ki <2 (A =2 k)); abaggs b =
0()=0).
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Here we get

M, — ki—ko
o(M,0)o = (s& <€13§ ,5286 )-I—<§za£ mﬁzag , T £ 361
U(M,O)z :0,

0 0 o 0 0 0
o(M,0)_1 =< —, 20—, ... e — — z— ... P2 — > .
( )1 06 xafl g &1’ 0&, xﬁﬁz ’ 0, >

The component v(M, O); is non-zero only in the following cases:

kl Z 3, kz =0:
0 0 3
o(M,0); =< 62(79'1?, 2$£28 — k&b — 85 f kixé €y — 661
0
o< 5152 96
kl = 2, kz =0:
0
U(Ma O)l =< fla_x >
0
D < 528 ) 9052 — &= (% 2528 2081607 65
0
D < &ibogr 8{1
kl = 1, kz =0:
o(M,0); =< 51 5651
8
@<52 2%52 515286 2528 61626{
(9
O < &bomr 8§
k‘l > kg =1:
0 0
b(M,0); =< 525‘572»"6528 — k161 65
We h
° e ki — ko +5|k1 + k2 +6
ki — ko +5lky + ko +7
dim o(M, 0) = 1 2 + 5|k + ky +
ki — kg + 5lk1 + k2 + 8
ki — ko + 5|k1 + k2 + 4,
respectively.

6. Non-split homogeneous supermanifolds of dimension 1|2

Here we determine all homogeneous non-split versions of the supermanifolds
studied in the previous section. It turns out that there exists only one homogeneous
supermanifold of this kind.
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First we will make some general remarks. Let (M, A £) be a split supermanifold
of dimension n|2. In [6], Ch.4,Sec.2,Prop.9, a family of supermanifolds was con-
structed that contains all the supermanifolds having (M, A £) as the associated split
supermanifold. This family is parametrized by elements ( € H*(M,0® /\2 £). The
class (, corresponding to a supermanifold (M, O) of the family, is the characteristic
class of the extension

(25) 0—>J@—>C’)@]§1f—>0,

where J5 ~ /\2 £ as sheaves of F-modules.

Suppose that there is an action of a group G on (M, O) such that the induced
action on M is transitive. Then (cf. Sect. 2) we have a G-action on (M, gr Q) and
on the corresponding cohomology groups.

Lemma 1. In the situation described above we have
2
Ce H' (M08 /\£)°.

Proof. To calculate the characteristic class of (25), we may proceed as follows.
Choose an open set U C M such that the sequence (25) admits a splitting g :
F|IU — O4|U, redog = id. Then (¢U)geq is an open covering of M, and over any
gU we have the splitting ¢, of (25) given by

95(7) = 9(a(g7' (7)), v € FlgU.

Then ( is determined by the cocycle z = (24,1), g,h € G of our covering with values
in @ ® A\’ € defined by

2g,1(7) = ar(7) — a9(7), v € Fl(gU N RO).

It is sufficient to prove that z is G-invariant. But, for any a € G, we have

(az)g,n(y) = a(za—lg,a—lh(a_l’Y) = a(qa—lh(a_l'y) — qa-lg(a"l'y))
= qr(7) — 24(7) = 2,0 (7).

We deduce from this the following

Proposition 7. Let (M,0), M = CP', be a non-split supermanifold such that
gr O ~ N\(O(k1) ® O(k2)). Then (M,O) admits an action of sl3(C), inducing on
(M, gr O) the action defined in Sec.3, if and only if ky + ko = 4. In this case
the supermanifold (M, Q), together with the action, is determined uniquely, up to
isomorphism. Its transition functions in the covering (Uy,Uy) are given by

y=a 427366,

(26) ke
nj=a 5 g, j=1,2
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Proof. Since © ~ O(2), we have @ ® A\ € ~ O(2 — (k; + k3)). It follows that
HY (M, 0 @ \°€) # 0 if and only if 2 — (ky + kg) < —2, i.e., if ky + ko > 4 (see
[6], Ch.4,Sec.10). To determine the action of Gy = SL(C) on this cohomology
group, one may use the theorem of Bott [2]. By (9), the stabilizer (go), of the
point o € Uy given by X = 0 coincides with b =< h,f > which is the Borel
subalgebra of gy corresponding to the negative root —a, where a(h) = 2. Let 7
be the fundamental weight of go, 7(h) = 1. Then the homogeneous line bundle
T(M) @ \*E is determined by the representation of b with highest weight 2 —
(k1 + ko). By the theorem of Bott, H'(M,0 ® A*&) is an irreducible Gp-module
with highest weight k1 + k3 —4. Non-zero invariants exist if and only if k& + k2 = 4,
and in this case H!(M,0 ® /\2 £) ~ C. Applying Lemma 1, we see that the desired
action on (M, Q) exists if and only if k1 + k2 = 4. Besides, (M, O) is determined
uniquely, since the supermanifolds, corresponding to the classes ( and ¢(, ¢ € C*,
are isomorphic.

Suppose that k1 + ky = 4. We want to express the cocycle z, defining (M, O),
and the transition functions of this supermanifold. The cocycle z = (zp1) can be
given in the covering (Up, Uy) by

0 _ 4.0
201 ZH(X)a—X®§1f2=Y 20(Y 1)8—Y®771772,

where 6 € F(Uy N Uy). If 6 is holomorphic in Uy or Y ~26(Y ~!) is holomorphic in
Ui, then z is a cobord. If it is not the case, then, expanding 6 into the Laurent
series, we see that §(X) = cX !, where ¢ € C*. Thus we may write

4, 0 4 0
zo1 =X 15—X®€1€2:Y 1'6?@)7]1772-

Consider now the sheaf O, corresponding to this cocycle. Let ¢; : F|U; —
O5|U;, @ = 0,1, be the local splittings of (25). Then we may take z = ¢o(X), y =
q1(Y) as even coordinates in Uy, Uy, respectively. Then

z01(X) = qo(X) —qu(X) =z —y .
Identifying J; with A\* &, we get
z—y =276,

whence
y l=z—-17'66

or
y=a ' +z736.

It follows that the transition functions have the form (26).
Now we have to construct an action of 5l3(C) on (M, O), inducing on (M, gr O)
the action defined in Sec.3. This can be done in a unique way. In fact, if e, h,f
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denote the fundamental vector fields of the action to be constructed, then, clearly,
e(¢;), h(¢;), (&) must have the same form as in (10). In addition,

e(z) = =1+ a1bs, h(z) = B, £(z) = 76162,
where a, 3,7 depend on z only. Using (26), we get
e(y) =277 + 327 16 — 22 abiby.

One easily sees that
‘T—l =Y - y_1771772,

whence
72 =y —2mina.

Therefore
9 -2
e(y) =y  +mn2 —ay” “nina.

This shows that e(y) € O(Uy) if and only if & = 0. One verifies quite similarly
that h(y), f(y) € O(Uy) if and only if § = 0,y = 1, respectively. Thus, e, h,f

necessarily have the following expression:

8 0 8

One easily checks that (11) is satisfied.

Now we are able to characterize the homogeneous supermanifolds of the class in
consideration.

Theorem 1. The only non-split homogeneous supermanifold (CP*, O) of dimen-
sion 1|2 is the superquadric of isotropic (1|0)-subspaces in the vector space CsI2
endowed with a non-degenerate even symmetric bilinear form. The Lie superalge-
bra v(M,O) has dimension 6|6 and is isomorphic to 0sp;,(C); its even and odd
parts are spanned by the following vector fields:

o(M,O); —<ehf>€9<€1a£ ,5186 52662752861
25[2(@)@5[2(@),
o(M,0); =< 13 +2$6 $§—+($ —ff)a
) 1= é— ) 2 aé- 2 162 61
0 0
ET —51 -I-2908E ) 90515:; (2? —5152)852 >

Proof. We have the following three possibilities:

(kla k2) = (4’ 0)> (37 1)’ (272)'



HOMOGENEOUS SUPERMANIFOLDS 17

It is easy to check that the mapping ev, : v(M,0); — To(M,O); is always sur-
jective for any = € M. Consider now the basic highest vectors in 7(Up);. By
Proposition 5, these are

0 0 0 0

55(/\Sk1), -a—é‘_;()\zkz), xa—&(/\:kl—2), .’.E—ag, k‘l :kz :2(/\:0)
Using (26), we get
9 — 3 _8_ — ok i —
5'5(?;) =2z éZa 861 (771) =T ) 861 (772) =0,

(28) 0 0 0
— = —27%, — =0, — =z k2,
852 (y) - 6 ) 662 (Th) 07 862 (772)

If &y = 4, then %(y) = —y !, and so 3%2 is not holomorphic. Since there
are no other odd highest vectors with A = 4, this implies that v(M,O) acts non-
transitively.

If &, = 3, then 5‘95(772) = y—y nin2, and so v(M, O) act non-transitively again.

In the case k; = ko = 2, we have

0 0 g 0 0 0

=Ygt a = Y + 57—

8§1 Yy (9y 8771 852 ¥ 8y 6772
This shows that ev, : o(M,0); — T,(M,O); is surjective for any z € Up,. To
show this for ¢ € U;, one should consider the vector fields a%j, j = 1,2, that are
holomorphic, too. Thus (M, O) is homogeneous in this case.

Suppose now that k; = ko = 2. As the theory of representations shows, the
highest vectors —a%, i = 1,2, generate two irreducible submodules of odd vector

fields < Bifi’ If, a—%], if, [f, %]] >, where f is given by (27). On the other hand,

we see from (28) that 3:8%1(771) = xa—%(nz)]m_l =y — y~ 172 is not holomorphic
on U;. This implies that v(M,O); has the form indicated in the statement of the
theorem. The Lie algebra v(M, O); is calculated as in Sec. 4, taking into account
the fact that Z§=1 @% is not holomorphic on U;.

It is not difficult to prove that the non-split homogeneous supermanifold (M, O)
constructed above can be described as the super-Grassmannian of isotropic (1|0)-
subspaces in the vector space C*|? endowed with a non-degenerate even symmetric
bilinear form (see [6]) or, equivalently, as the submanifold of CP?? given in homo-
geneous coordinates zo, 21, 22, (1, (2 by the equation

Zg + 2122 + (1(2 = 0.

7. The supertangent bundle and the 1-cohomology

In previous sections, we studied vector fields on split supermanifolds, using the
representation theory of sl2(C). Another way is the direct study of the supertangent
bundle ST(M, Q). In this section, we determine this vector bundle explicitly for
m = 1,2 and, as an application, we calculate the group H Y(M, T) for homogeneous
supermanifolds studied in Sections 4,5,6.
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Proposition 8. . Suppose that O = F(—k), k € Z. Then

ST(M,O)_1 ~ Ly,

Lo ® Lif k=0
2Ly if k # 0,
ST(M,0); ~ La_y.

ST(M,0)y ~ {

Proof. Clearly, in Uy N U; we have

9 _ k0

on "~ a¢’

o .0 98  ,0 9
’7}977‘505’ oy " 8:10_]”635’
0 a5, 0

This obviously implies our assertion in degrees -1 and 1. The transition functions
of ST(M,O), are given by the matrix

1 —kx
0 —=z2)°

If k=0, then ST(M,O)o ~ Lo ® Ly. If k # 0, then we can write

(5 062G )-62)

whence ST(M,O), ~ 2L;.
Corollary. Suppose that k > 0. Then

H'(M,T,) = Ofor p = —1,0,
HY(M,T;) = CF3.

We mean here that a vector space of negative dimension is 0.

Proposition 9. Suppose that O = F(—k1) ® F(—kz), where ky1,ky € Z. Then

ST(M,0)_; ~ Ly, & Ly,,

Lo @ 2L; @ Ly, —x, ® Lk, g, if k1 # 0 or ky # 0
3Lo @ Laif ky = ky = 0,

9L _k, @ 2L1_g,if k1, ky # 0

L i, ®Lo g, ®2L1ifky #0, ky =0

L i, ®Lo g, ®2L1ifky =0, ky # 0

Lo @ 2Lyif ky = kg = 0.

ST(M,0); ~ Ly_ (k4 k)-

ST(M, ) ~ {

ST(M, O)l =
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Proof. Clearly, we have

8?71 =2t aczi, i=1,2,
gy < e s = klél@a&
m@%: —a kg ke hg gz%
gy = gy the bt
77177232 = ~$2—(k1+k2)£1£2£

In degrees -1,2 this proves our assertion.
The transition functions of ST(M, O), are given by the matrix

1 0 —k1$ ki—k
0 1 —koz | ® <x 10 2 xkzo—lm) :
0 0 —=z?

If, e.g., ko # 0, then, as in the proof of Proposition 8, the first summand can be
replaced by

1 0 —kla: 1 0 —k‘l 1 0 O
0 =z 0 =10 1 O 10 2 O
0 0 T 0 0 1 0 0 =z

This proves our assertion for ST(M, O)o.
The transition functions of ST(M,O); are given by the matrix

™k —kyglTR gk pyglRe
0 _xz—kl @ 0 _mZ—kz :

If k3 # 0, then, by the proof of Proposition 8, we may replace the first summand

by
.’E_kl z 0 _ iEl_kl 0
0 z/) 0 27k )¢
If k1 # 0, then the same operation can be made with the second summand. This
implies our assertion.
Corollary. Suppose that k1 > ko > 0. Then
HY(M,T_,) =0,

H' (M, Ty) = Ch Rt
Ch=1oCh=3ifky, =0
2Ck 2 @ 2CH3if ky =0,

HY(M,T;) ~ Chrtk2=3,

Now we determine the tangent sheaf 1-cohomology of the non-split homogeneous

supermanifold described in the previous section.

HI(M,CG)E{
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Theorem 2. Let ((ClP’l, O) be the non-split homogeneous supermanifold of dimen-
sion 1/2. Then H*(CP',T) = 0, and hence the supermanifold is rigid.

Proof. We use the cohomology exact sequences associated with (5) for p = 2,1,0,
—1, the cohomology of ’i‘p being determined above. By Corollary of Proposition
9, we have H'(M,T(3)) = H'(M,T;) ~ C'°. Since H°(M,T;) = 0 by Sect.5 and
HY(M,T;) = 0 by Corollary of Proposition 9, we obtain, using (5) for p = 1, that
HY(M, T1y) C'1°. Consider now the exact sequence, corresponding to p = 0:

H* (M, Tt) & HO(M, To) = H' (M, Ty)) — H* (M, To)) — H' (M, Ty) — 0.

We see from the proof of Theorem 1 that < ¢ > does not lie in Im p. Therefore §
maps < ¢ > onto H'(M,7(yy). Since H'(M,75) = 0 by Corollary of Proposition 9,
we see that H1(M, T(oy) = 0. Further, H'(M, ’j'_l) = 0 by Corollary of Proposition
9, and the exact sequence, corresponding to p = —1, shows that H*(M,7T) = 0.
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