No. 32 November 1993

ISBN 82-553-0866-0 Pure Mathematics

Vector fields and deformations of isotropic super-Grassmannians of maximal type

by

A. L. Onishchik, A. A. Serov*

PREPRINT SERIES – Matematisk institutt, Universitetet i Oslo

 $^{^*}$ Submitted under the 1993 cooperation project between the Department of Mathematics, University of Oslo, and the International Sophus Lie Center.

VECTOR FIELDS AND DEFORMATIONS OF ISOTROPIC SUPER-GRASSMANNIANS OF MAXIMAL TYPE

A.L.Onishchik, A.A.Serov

Yaroslavl University and Tver Institute for Agriculture

October 26, 1993

ABSTRACT. One determines the holomorphic vector fields and the deformations of the isotropic super-Grassmannians of maximal type $I^{\circ}Gr_{2r|2s,r|s}$ associated with the complex orthosymplectic Lie superalgebras.

1.Preliminaries

In [2,6,7] the holomorphic vector fields and the deformations of complex super-Grassmannians were studied. It was proved, in particular, that, for a wide class of super-Grassmannians, all holomorphic vector fields are induced by linear transformations and the tangent sheaf 1-cohomology vanishes. Here we want to apply the same methods in order to get similar results for isotropic super-Grassmannians of maximal type associated with orthosymplectic Lie superalgebras. It turns out that the super-Grassmannian of maximal type associated with the Lie superalgebra $\mathfrak{osp}_{2r-1|2s}(\mathbb{C})$ is isomorphic to a connected component of that associated with $\mathfrak{osp}_{2r|2s}(\mathbb{C})$ (which is well known in the classical situation), and so we shall study only the latter case.

Let us denote by $\mathrm{IGr}_{2r|2s,r|s}$ the isotropic super-Grassmannian of maximal type associated with the classical Lie superalgebra $\mathfrak{osp}_{2r|2s}(\mathbb{C})$ (see [4]). Its reduction is the product of two isotropic complex Grassmannians $\mathrm{IGr}_{2r,r}^s \times \mathrm{IGr}_{2s,s}^a$, where the first factor is the Grassmannian of isotropic r-planes in the vector space \mathbb{C}^{2r} endowed with a non-degenerate symmetric bilinear form, while the second one is that of isotropic s-planes in \mathbb{C}^{2s} endowed with a non-degenerate skew-symmetric bilinear form. The supermanifold $\mathrm{IGr}_{2r|2s,r|s}$ admits a natural transitive action of the orthosymplectic Lie supergroup $\mathrm{OSp}_{2r|2s}(\mathbb{C})$, inducing on its reduction the standard transitive action of the Lie group $\mathrm{O}_{2r}(\mathbb{C}) \times \mathrm{Sp}_{2s}(\mathbb{C})$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 58A50, 17C70.

Key words and phrases. Supermanifold, Lie superalgebra, isotropic super-Grassmannian.

The work partially supported by 'Centre for Advanced Study at The Norwegian Academy of Science and Letters' and by 'International Sophus Lie Centre'

Let (e_1, \ldots, e_{2r}) , (f_1, \ldots, f_{2s}) be the standard bases of \mathbb{C}^{2r} , \mathbb{C}^{2s} respectively. We suppose that the orthosymplectic Lie supergroup leaves invariant the bilinear form in $\mathbb{C}^{2r|2s}$ given in the basis $(e_1, \ldots, e_{2r}, f_1, \ldots, f_{2s})$ by the matrix

$$\begin{pmatrix}
0 & 1_r & 0 & 0 \\
1_r & 0 & 0 & 0 \\
0 & 0 & 0 & 1_s \\
0 & 0 & -1_s & 0
\end{pmatrix}$$

We denote by o the graded isotropy subspace of maximal dimension

$$o = \langle e_{r+1}, \dots, e_{2r}, f_{s+1}, \dots, f_{2s} \rangle$$

of $\mathbb{C}^{2r|2s}$. It is well known that the manifold $\mathrm{IGr}_{2r,r}^s$ has two connected components, while $\mathrm{IGr}_{2s,s}^a$ is connected. We choose the connected component

$$M = \mathrm{I}^{\circ} \mathrm{Gr}^{s}_{2r,r} \times \mathrm{IGr}^{a}_{2s,s}$$

of $\operatorname{IGr}_{2r,r}^s \times \operatorname{IGr}_{2s,s}^a$, containing the point o, and denote by $\operatorname{I}^\circ \operatorname{Gr}_{2r|2s,r|s}$ the corresponding connected component of $\operatorname{IGr}_{2r|2s,r|s}$. Sometimes we will denote this supermanifold by (M,\mathcal{O}) , where \mathcal{O} is its structure sheaf.

The natural action of the Lie supergroup $\mathrm{OSp}_{2r|2s}(\mathbb{C})$ induces the transitive action of its identity component $\mathrm{SOSp}_{2r|2s}(\mathbb{C})$ on (M,\mathcal{O}) . The reduction of the latter supergroup is

$$G = G_0 \times G_1$$
,

where

$$G_0 = \mathrm{SO}_{2r}(\mathbb{C}), \ G_1 = \mathrm{Sp}_{2s}(\mathbb{C}).$$

Let P denote the stabilizer G_o of the point $o \in M$ in G; we have

$$P = P_0 \times P_1,$$

where $P_0 \subset G_0, P_1 \subset G_1$. The subgroup

$$R = R_0 \times R_1$$

where

$$R_0 \simeq \mathrm{GL}_r(\mathbb{C}), \ R_1 \simeq \mathrm{GL}_s(\mathbb{C}),$$

leaving invariant the subspaces

$$\langle e_1, \ldots, e_r \rangle, \langle e_{r+1}, \ldots, e_{2r} \rangle, \langle f_1, \ldots, f_s \rangle, \langle f_{s+1}, \ldots, f_{2s} \rangle,$$

is the reductive part of P. The matrices from R are of the form

$$\begin{pmatrix} A & 0 & 0 & 0 \\ 0 & (A^t)^{-1} & 0 & 0 \\ 0 & 0 & B & 0 \\ 0 & 0 & 0 & (B^t)^{-1} \end{pmatrix},$$

where $A \in \mathrm{GL}_r(\mathbb{C}), B \in \mathrm{GL}_s(\mathbb{C})$, while those from P have the form

$$\begin{pmatrix} A & 0 & 0 & 0 \\ U & (A^t)^{-1} & 0 & 0 \\ 0 & 0 & B & 0 \\ 0 & 0 & V & (B^t)^{-1} \end{pmatrix}.$$

The tangent Lie algebras and Lie superalgebras of Lie groups and Lie supergroups will be denoted, as usually, by the corresponding Gothic lower case letters. We have

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1, \ \mathfrak{g}_0 = \mathfrak{so}_{2r}(\mathbb{C}), \ \mathfrak{g}_1 = \mathfrak{sp}_{2s}(\mathbb{C}).$$

The Lie algebra \mathfrak{p} of P admits the semi-direct decomposition

$$\mathfrak{p}=\mathfrak{r}+\mathfrak{n},$$

where \mathfrak{n} is the nil-radical of \mathfrak{p} . We have

$$\mathfrak{n}=\mathfrak{n}_0\oplus\mathfrak{n}_1,$$

where $\mathfrak{n}_0 \subset \mathfrak{g}_0$, $\mathfrak{n}_1 \subset \mathfrak{g}_1$ consist of the matrices

(1)
$$u = \begin{pmatrix} 0 & 0 \\ U & 0 \end{pmatrix}, v = \begin{pmatrix} 0 & 0 \\ V & 0 \end{pmatrix},$$

U and V being a skew-symmetric $r \times r$ and a symmetric $s \times s$ -matrix respectively. The subalgebra \mathfrak{n} is commutative.

We shall use the standard coordinate system on $IGr_{2r|r,2s|s}$ in a neighborhood of o introduced in [4, Ch.5, Sec.6], changing slightly the notation; more precisely, transposing the coordinate matrix. This matrix will have the form

(2)
$$Z = \begin{pmatrix} X & \Xi \\ 1_r & 0 \\ -\Xi^t & Y \\ 0 & 1_s \end{pmatrix},$$

where $X=(x_{\alpha\beta})$ and $Y=(y_{ij})$ are a $r\times r$ -matrix and a $s\times s$ -matrix of even coordinates, $X^t=-X$, $Y^t=-Y$, and $\Xi=(\xi_{\alpha s})$ is a $r\times s$ -matrix of odd ones. At the point o we have $x_{\alpha\beta}=y_{ij}=0$. The natural action of $\mathrm{OSp}_{2r|2s}(\mathbb{C})$ on $\mathrm{IGr}_{2r|2s,r|s}$ is given by the matrix multiplication from the left.

Let ρ_0, ρ_1 be the standard representations of $\mathrm{GL}_r(\mathbb{C})$, $\mathrm{GL}_s(\mathbb{C})$ and σ_0, σ_1 their adjoint representations in the corresponding derived algebras $\mathfrak{sl}_p(\mathbb{C})$, p=r,s. The trivial 1-dimensional representation of any group will be denoted by 1. In what follows, we shall omit for simplicity the trivial factors 1 in the notation of the representations.

As in [6], we exploit the theory of homogeneous vector bundles. Let $E = E_{\psi}$ be a finite-dimensional P-module determined by a holomorphic linear representation ψ of P. We denote by $\mathbf{E} = \mathbf{E}_{\psi}$ the corresponding homogeneous vector bundle over M and by $\mathcal{E} = \mathcal{E}_{\psi}$ the sheaf of its holomorphic sections. As is well known, the

tangent sheaf Θ on M is isomorphic to \mathcal{E}_{τ} , where the isotropy representation τ of P is completely reducible and satisfies the condition

(3)
$$\tau | R = \bigwedge^2 \rho_0 + S^2 \rho_1.$$

The supermanifold (M, \mathcal{O}) is, in general, non-split. As usually, we associate with it the split supermanifold $(M, \operatorname{gr} \mathcal{O})$. Its structure sheaf is the graded sheaf associated with the filtration

$$(4) \mathcal{O} = \mathcal{J}^0 \supset \mathcal{J}^1 \supset \mathcal{J}^2 \supset \dots,$$

where $\mathcal{J} = (\mathcal{O}_{\bar{1}})$. We have $\operatorname{gr} \mathcal{O} \simeq \bigwedge \mathcal{E}$, where $\mathcal{E} = \mathcal{J}/\mathcal{J}^2$. The holomorphic vector bundle \mathbf{E} over M associated with \mathcal{E} has the fibers $\mathbf{E}_x = \mathcal{J}_x/m_x\mathcal{J}_x$, $x \in M$, where m_x is the maximal ideal of \mathcal{O}_x .

Clearly, the action of $\mathrm{OSp}_{2r|2s}(\mathbb{C})$ on the super-Grassmannian induces actions of G on the sheaves \mathcal{O} , \mathcal{J} , \mathcal{E} and on the vector bundle \mathbf{E} , covering the standard action of G on M. Thus, \mathbf{E} is a homogeneous vector bundle over M.

Proposition 1. We have

$$\operatorname{gr} \mathcal{O} \simeq \bigwedge \mathcal{E}_{\varphi},$$

where φ is the irreducible representation of P such that

$$\varphi|R=\rho_0^*\otimes\rho_1^*.$$

Proof. Clearly, $\mathcal{J}/\mathcal{J}^2 = \mathcal{E}_{\varphi}$, where φ is the representation of P induced in the fibre $\mathbf{E}_o = \mathcal{J}_o/m_o\mathcal{J}_o$. To calculate it, we use the coordinate matrix (2). The action of P on (M, \mathcal{O}) is expressed by means of the coordinates in the following way:

(5)
$$\tilde{Z} = \begin{pmatrix} A & 0 & 0 & 0 \\ U & (A^{t})^{-1} & 0 & 0 \\ 0 & 0 & B & 0 \\ 0 & 0 & V & (B^{t})^{-1} \end{pmatrix} \begin{pmatrix} X & \Xi \\ 1_{r} & 0 \\ -\Xi^{t} & Y \\ 0 & 1_{s} \end{pmatrix} \\
= \begin{pmatrix} AX & A\Xi \\ (A^{t})^{-1} + UX & U\Xi \\ -B\Xi^{t} & BY \\ -V\Xi^{t} & (B^{t})^{-1} + VY \end{pmatrix}.$$

We must reduce the result to the form (2) by multiplying from the right by the matrix $\begin{pmatrix} (A^t)^{-1} + UX & U\Xi \\ -V\Xi^t & (B^t)^{-1} + VY \end{pmatrix}^{-1}$. We may set X=0,Y=0 which simplifies the calculation. Then

$$\begin{pmatrix} (A^t)^{-1} & U\Xi \\ -V\Xi^t & (B^t)^{-1} \end{pmatrix}^{-1} \equiv \begin{pmatrix} A^t & -A^tU\Xi B^t \\ B^tV\Xi^t A^t & B^t \end{pmatrix}$$

modulo \mathcal{J}_o^2 . Hence,

$$\tilde{Z} \equiv \begin{pmatrix} 0 & A\Xi B^t \\ 1_r & 0 \\ -B\Xi^t A^t & 0 \\ 0 & 1_s \end{pmatrix}$$

modulo $m_o \mathcal{J}_o^2$. Since the entries of Ξ determine a basis of \mathbf{E}_o , this implies our assertion.

Our goal is to calculate the 0- and 1-cohomology of the tangent sheaf $\mathcal{T} = \mathcal{D}er\ \mathcal{O}$ of $\mathrm{IGr}_{2r|2s,r|s}$. As in [6], we consider first the \mathbb{Z} -graded sheaf $\tilde{\mathcal{T}} = \mathcal{D}er\ \mathrm{gr}\ \mathcal{O}$. It is known (see [4]) that for any $q \geq -1$ there exists a natural exact sequence of sheaves

(6)
$$0 \to \mathcal{T}_{(q+1)} \to \mathcal{T}_{(q)} \to \tilde{\mathcal{T}}_q \to 0,$$

where $\mathcal{T}_{(q)}$ are the subsheaves of \mathcal{T} forming a filtration of this sheaf and defined by

(7)
$$\mathcal{T}_{(-1)} = \mathcal{T},$$

$$\mathcal{T}_{(q)} = \{ \delta \in \mathcal{T} | \delta \mathcal{O} \subset \mathcal{J}^q, \delta \mathcal{J} \subset \mathcal{J}^{q+1} \}, q \ge 0.$$

The sequence (6) will permit us to relate the cohomology of \mathcal{T} to that of $\tilde{\mathcal{T}}$. To calculate the cohomology of the latter sheaf, one uses the exact sequence

(8)
$$0 \to \mathcal{A}_{q+1} \stackrel{\alpha}{\to} \tilde{\mathcal{T}}_q \stackrel{\beta}{\to} \mathcal{B}_q \to 0.$$

Here

$$\mathcal{A}_q = \mathcal{E}_{arphi}^* \otimes igwedge^q \mathcal{E}_{arphi} = \mathcal{E}_{\Phi_q}$$

with

(9)
$$\Phi_q = \varphi^* \otimes \bigwedge^q \varphi,$$

and

$${\cal B}_q = \Theta \otimes igwedge^q {\cal E}_{arphi} = {\cal E}_{{
m T}_q}$$

with

(10)
$$T_q = \tau \otimes \bigwedge^q \varphi.$$

The mapping β is the restriction of a derivation of degree q onto the structure sheaf \mathcal{F} of M, and α identifies any sheaf homomorphism $\mathcal{E}_{\varphi} \to \bigwedge^{p+1} \mathcal{E}_{\varphi}$ with its extension which is a derivation of degree q and is zero on \mathcal{F} . In particular,

$$\mathcal{T}_{(-1)} \simeq \mathcal{A}_0 = \mathcal{E}_{\varphi}^* = \mathcal{E}_{\varphi^*}.$$

Now we make some remarks concerning the action of the group G on the sheaves involved. Clearly, the action of G on the structure sheaf \mathcal{O} induces an action of

G on \mathcal{T} , preserving the parities. It follows that G preserves the filtrations (4) and (7), inducing an action on the sheaf $\tilde{\mathcal{T}}$. Thus, $\tilde{\mathcal{T}}_q$ for any q is a locally free analytic sheaf on M which is homogeneous with respect to G. One sees easily that the homomorphisms in the exact sequences (6) and (8) are G-equivariant.

To conclude these preliminaries, we shall write explicitly certain fundamental vector fields on (M,\mathcal{O}) associated with the action of G, using the local coordinates from (2). Let us denote by $X \rightsquigarrow X^*$ the Lie superalgebra homomorphism $\mathfrak{osp}_{2r|2s}(\mathbb{C}) \to H^0(M,\mathcal{T})$ induced by the action of $\mathrm{SOSp}_{2r|2s}(\mathbb{C})$ on (M,\mathcal{O}) .

$$H = \operatorname{diag}(\lambda_1, \dots, \lambda_r, -\lambda_1, \dots, -\lambda_r, \mu_1, \dots, \mu_s, -\mu_1, \dots, -\mu_s)$$

be the general diagonal matrix lying in g. Using (5), we get

(11)
$$H^* = \sum_{\alpha \leq \beta} (\lambda_{\alpha} + \lambda_{\beta}) x_{\alpha\beta} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{i \leq j} (\mu_i + \mu_j) y_{ij} \frac{\partial}{\partial y_{ij}} + \sum_{\alpha, i} (\lambda_{\alpha} + \mu_i) \xi_{\alpha i} \frac{\partial}{\partial \xi_{\alpha i}}.$$

Now, for the elements $u, v \in \mathfrak{n}$ given by (1), we get, using (5) again:

$$u^* = \sum_{\alpha,\beta} (XUX)_{\alpha\beta} \frac{\partial}{\partial x_{\alpha\beta}} - \sum_{i,j} (\Xi^t U \Xi)_{ij} \frac{\partial}{\partial y_{ij}} + \sum_{\alpha,k} (XU\Xi)_{\alpha k} \frac{\partial}{\partial \xi_{\alpha k}},$$

$$v^* = -\sum_{\alpha,\beta} (\Xi V \Xi^t)_{\alpha\beta} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{i,j} (YVY)_{ij} \frac{\partial}{\partial y_{ij}} + \sum_{\alpha,k} (\Xi V Y)_{\alpha k} \frac{\partial}{\partial \xi_{\alpha k}}.$$

Let us choose the basis $X_{\alpha\beta}$ ($\alpha < \beta$), Y_{ij} ($i \leq j$) of $\mathfrak n$ given by

(12)
$$X_{\alpha\beta} = \frac{1}{2} (E_{\alpha\beta} - E_{\beta\alpha}),$$
$$Y_{ij} = \frac{1}{2} (F_{ij} + F_{ji}) \ (i \neq j),$$
$$Y_{ii} = F_{ii},$$

where $E_{\alpha\beta}$ and F_{ij} are the natural bases of the vector spaces of matrices $M_r(\mathbb{C})$ and $M_s(\mathbb{C})$ respectively. Then, in particular, we have

$$X_{\alpha\beta}^{*} = \sum_{\gamma,\delta} x_{\gamma\alpha} x_{\beta\delta} \frac{\partial}{\partial x_{\gamma\delta}} - \sum_{i,j} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial y_{ij}} + \frac{1}{2} \sum_{\gamma,k} (x_{\gamma\alpha} \xi_{\beta k} - x_{\gamma\beta} \xi_{\alpha k}) \frac{\partial}{\partial \xi_{\gamma k}},$$

$$Y_{ij}^{*} = -\sum_{\alpha,\beta} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{k,l} y_{ki} y_{jl} \frac{\partial}{\partial y_{kl}} + \frac{1}{2} \sum_{\gamma,k} (y_{jk} \xi_{\gamma i} + y_{ik} \xi_{\gamma j}) \frac{\partial}{\partial \xi_{\gamma k}} (i \neq j),$$

$$Y_{ii}^{*} = -\sum_{\alpha,\beta} \xi_{\alpha i} \xi_{\beta i} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{k,l} y_{ki} y_{il} \frac{\partial}{\partial y_{kl}} + \sum_{\gamma,k} y_{ik} \xi_{\gamma i} \frac{\partial}{\partial \xi_{\gamma k}}.$$

Let now \mathfrak{n}^- be the nilpotent subalgebra of \mathfrak{g} complementary to \mathfrak{p} ; it has the form $\mathfrak{n}^- = \mathfrak{n}_0^- + \mathfrak{n}_1^-$, where $\mathfrak{n}_0^- \subset \mathfrak{g}_0$, $\mathfrak{n}_1^- \subset \mathfrak{g}_1$ consist of the matrices

$$u = \begin{pmatrix} 0 & U \\ 0 & 0 \end{pmatrix}, \ v = \begin{pmatrix} 0 & V \\ 0 & 0 \end{pmatrix},$$

U and V being a skew-symmetric $r \times r-$ and a symmetric $s \times s-$ matrix respectively (cf. (1)). Consider the basis of \mathfrak{n}^- formed by the elements $U_{\alpha\beta}$ ($\alpha < \beta$), V_{ij} (i < j), V_{ii} corresponding to the matrices $U = E_{\alpha\beta} - E_{\beta\alpha}$, $V = E_{ij} + E_{ji}$ (i < j); E_{ii} respectively. One sees easily that

(14)
$$U_{\alpha\beta}^* = \frac{\partial}{\partial x_{\alpha\beta}}, \ V_{ij}^* = \frac{\partial}{\partial y_{ij}}.$$

2. The cohomology of A_q and B_q

In this section we shall calculate the 0- and 1-cohomology of the sheaves \mathcal{A}_q and \mathcal{B}_q . As in [6,7], we use the theorem of Bott (see [1], Theorem IV') permitting to calculate the cohomology of the homogeneous sheaf \mathcal{E}_{ψ} on M defined by a completely reducible representation ψ of P. More precisely, this theorem gives an algorithm for determining the highest weights of the G-modules $H^p(M, \mathcal{E}_{\psi})$ in terms of the highest weights of ψ . To apply it, we have to introduce some notation related to weights and roots of G.

We choose the Cartan subalgebra $\mathfrak{t} = \mathfrak{t}_0 \oplus \mathfrak{t}_1$ in the tangent Lie algebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ of G such that \mathfrak{t}_0 and \mathfrak{t}_1 are the Cartan subalgebras of \mathfrak{g}_0 and \mathfrak{g}_1 , respectively, formed by all diagonal matrices

$$H_0 = \operatorname{diag}(\lambda_1, \dots, \lambda_r, -\lambda_1, \dots, -\lambda_r),$$

$$H_1 = \operatorname{diag}(\mu_1, \dots, \mu_s, -\mu_1, \dots, -\mu_s).$$

We consider the following system of positive roots:

$$\Delta^+ = \Delta_0^+ \cup \Delta_1^+,$$

where

$$\Delta_0^+ = \{ \lambda_i - \lambda_j, \ \lambda_i + \lambda_j (i < j) \},
\Delta_1^+ = \{ \mu_p - \mu_q (p < q), \ \mu_p + \mu_q (p \le q) \}.$$

The half of the sum of all positive roots of \mathfrak{g}_0 , \mathfrak{g}_1 , \mathfrak{g} will be denoted by γ_0 , γ_1 , γ respectively; we have $\gamma = \gamma_0 + \gamma_1$. The corresponding system of simple roots of \mathfrak{g} is

$$\Pi = \Pi_0 \cup \Pi_1,$$

where

$$\Pi_0 = \{\alpha_1, \dots, \alpha_r\}, \ \Pi_1 = \{\beta_1, \dots, \beta_s\}$$

are the systems of simple roots of \mathfrak{g}_0 , \mathfrak{g}_1 respectively; here we denote

$$\alpha_1 = \lambda_1 - \lambda_2, \dots, \alpha_{r-1} = \lambda_{r-1} - \lambda_r, \ \alpha_r = \lambda_{r-1} + \lambda_r;$$

 $\beta_1 = \mu_1 - \mu_2, \dots, \beta_{s-1} = \mu_{s-1} - \mu_s, \ \beta_s = 2\mu_s.$

We denote by $\mathfrak{t}^*(\mathbb{R})$ the real subspace of \mathfrak{t}^* spanned by all λ_i , μ_p , and define the scalar product on $\mathfrak{t}^*(\mathbb{R})$ such that λ_i , μ_p form its orthonormal basis. As usually, $\lambda \in \mathfrak{t}^*(\mathbb{R})$ is called dominant if $(\lambda, \alpha) \geq 0$ for all $\alpha \in \Delta^+$ or, equivalently, for all $\alpha \in \Pi$. Following Bott [1], we say that λ has index 1 if $(\lambda, \alpha) > 0$ for all $\alpha \in \Delta^+$ except of one root $\beta \in \Delta^+$, for which $(\lambda, \beta) < 0$. Now, λ is called singular if $(\lambda, \alpha) = 0$ for a certain $\alpha \in \Delta$. These definitions will be used with respect to \mathfrak{g}_0 , \mathfrak{g}_1 as well.

Clearly, the subgroup $P = G_o$ defined above is a parabolic subgroup of G containing the Borel subgroup B^- corresponding to $-\Delta^+$. The system of simple roots of its reductive part R is $\Sigma = \Pi - \{\alpha_r, \beta_s\}$. An element $\lambda \in \mathfrak{t}^*(\mathbb{R})$ is called R-dominant if $(\lambda, \alpha) \geq 0$ for all $\alpha \in \Sigma$.

It is convenient to characterize an element $\lambda \in \mathfrak{t}^*(\mathbb{R})$ by the numbers $\lambda_{\alpha} = 2\frac{(\lambda,\alpha)}{(\alpha,\alpha)}$, $\alpha \in \Pi$, which are actually the coordinates of λ in the basis of the so-called fundamental weights. We have $\gamma_{\alpha} = 1$ for all $\alpha \in \Pi$. An element λ is dominant if and only if $\lambda_{\alpha} \geq 0$ for all $\alpha \in \Pi$.

The following proposition is well known and very easy to verify:

Proposition 2. An element

$$\lambda = \sum_{i=1}^{r} k_i \lambda_i, \, k_i \in \mathbb{R},$$

is dominant if and only if $k_1 \geq k_2 \geq \ldots \geq |k_r|$. It is R-dominant if and only if $k_1 \geq k_2 \geq \ldots \geq k_r$.

An element

$$\lambda = \sum_{j=1}^{s} l_i \mu_j, \ l_j \in \mathbb{R},$$

is dominant if and only if $l_1 \geq l_2 \geq \ldots \geq l_s \geq 0$. It is R-dominant if and only if $l_1 \geq l_2 \geq \ldots \geq l_s$.

We have to study the highest weights of the representations Φ_q and T_q of P defined by (9) and (10), respectively. It follows from Proposition 1 that

$$\Phi_q|R = (\rho_0 \otimes \rho_1) \bigwedge^q (\rho_0^* \otimes \rho_1^*).$$

Denote by i, i_{α} indices running over $1, \ldots, r$, and by j, j_{β} those running over $1, \ldots, s$. The weights of Φ_q have the form

$$\Lambda = \Lambda_0 + \Lambda_1,$$

where

(16)
$$\Lambda_0 = \lambda_i - \lambda_{i_1} - \dots - \lambda_{i_q}, \\ \Lambda_1 = \mu_j - \mu_{j_1} - \dots - \mu_{j_q}.$$

Similarly, (3) implies that

$$T_q = T_q' + T_q'',$$

where

$$T'_{q}|R = (\bigwedge^{2} \rho_{0}) \bigwedge^{q} (\rho_{0}^{*} \otimes \rho_{1}^{*}),$$
$$T''_{q}|R = (S^{2} \rho_{1}) \bigwedge^{q} (\rho_{0}^{*} \otimes \rho_{1}^{*}).$$

The weights of T'_q , T''_q have the form

$$\Lambda = \Lambda_0 + \Lambda_1,$$

where for T'_q we have

(18)
$$\Lambda_0 = \lambda_i + \lambda_k - \lambda_{i_1} - \ldots - \lambda_{i_q}, \ i < k,$$
$$\Lambda_1 = -\mu_{j_1} - \ldots - \mu_{j_q},$$

and for T_q''

(19)
$$\Lambda_{0} = -\lambda_{i_{1}} - \ldots - \lambda_{i_{q}}, \\ \Lambda_{1} = \mu_{j} + \mu_{l} - \mu_{j_{1}} - \ldots - \mu_{j_{q}}, \ j \leq l.$$

We denote by Id_0 , Id_1 the standard representations and by Ad_0 , Ad_1 the adjoint representations of G_0 , G_1 respectively. Remark that in the case r=1 we have $G_0 = R_0 \simeq GL_1(\mathbb{C})$, and $Id_0 = \rho_0 + \rho_0^*$.

Proposition 3. Suppose that $r \geq 2$, $s \geq 1$. Then the G-module $H^0(M, \mathcal{A}_0) \simeq \mathbb{C}^{2r} \otimes \mathbb{C}^{2s}$ is irreducible with the representation $Id_0 \otimes Id_1$. For r = 1, $s \geq 1$, the G-module $H^0(M, \mathcal{A}_0) \simeq \mathbb{C}^{2s}$ is irreducible with the representation $\rho_0 \otimes Id_1$.

We have

$$H^p(M,\mathcal{A}_0)=0$$

for any $p \geq 1$.

Proof. The highest weight of $\Phi_0 = \varphi^*$ is $\lambda_1 + \mu_1$. It is dominant and is the highest weight of the representation $Id_0 \otimes Id_1$ (for $r \geq 2$) or $\rho_0 \otimes Id_1$ (for r = 1) of G. Our assertions follow from the theorem of Bott.

Proposition 4. Suppose that $r \geq 1$, $r \neq 2$, $s \geq 1$. Then

$$H^0(M,\mathcal{A}_1)\simeq \mathbb{C}$$

(the trivial G-module). In the case r=2, $s\geq 1$ we have

$$H^0(M, \mathcal{A}_1) \simeq \mathbb{C} \oplus \mathfrak{sl}_2(\mathbb{C}),$$

where the first summand is the trivial G-module and the second one is the irreducible G-module with heighest weight $\lambda_1 - \lambda_2$. In both cases we have

$$H^p(M, \mathcal{A}_1) = 0, \ p \ge 1.$$

Proof. Clearly, for $r \geq 2$, $s \geq 2$ we have

$$\Phi_1 | R = (\rho_0 \rho_0^*) \otimes (\rho_1 \rho_1^*)
= (1 + \sigma_0) \otimes (1 + \sigma_1) = 1 + \sigma_0 + \sigma_1 + \sigma_0 \otimes \sigma_1.$$

The trivial component gives the 1-dimensional trivial G-module. The highest weights of the non-trivial components are

$$\Lambda_0 = \lambda_1 - \lambda_r$$
, $\Lambda_1 = \mu_1 - \mu_s$, $\Lambda_0 + \Lambda_1$.

The weight $\Lambda_0 + \gamma$ is singular for $r \geq 3$, since

$$(\Lambda_0 + \gamma)_{\alpha_r} = (\Lambda_0 + \gamma_0)_{\alpha_r} = -1.$$

In the case when r=2 the weight $\Lambda_0=\lambda_1-\lambda_2$ is dominant and determines the restriction of Ad_0 onto one of the simple ideals of $\mathfrak{g}_0\simeq\mathfrak{sl}_2(\mathbb{C})\oplus\mathfrak{sl}_2(\mathbb{C})$ (which coincides actually with $[\mathfrak{r}_0,\mathfrak{r}_0]$). Now, $\Lambda_1+\gamma$ is singular for $s\geq 2$, since

$$(\Lambda_1 + \gamma)_{\beta_s} = (\Lambda_1 + \gamma_1)_{\beta_s} = -1.$$

Therefore, $\Lambda_0 + \Lambda_1 + \gamma$ is singular, too.

Thus, the proposition follows from the theorem of Bott. In the cases r=1 or s=1 the corresponding adjoint representation does not enter into the expression of Φ_1 , and we get the same result.

Proposition 5. For any $r \ge 1$, $s \ge 1$ we have

$$H^0(M, \mathcal{A}_q) = H^1(M, \mathcal{A}_q) = 0, \ q \ge 2.$$

Proof. Let Λ be a highest weight of Φ_q . Using its expression given by (15) and (16), we easily see from Proposition 2 that Λ_0 and Λ_1 can not be dominant. Therefore the situation when Λ is dominant or $\Lambda + \gamma$ has index 1 is impossible.

Proposition 6. For $r \geq 3$, $s \geq 1$, the G-module

$$H^0(M,{\mathcal B}_0)\simeq \mathfrak{so}_{2r}(\mathbb{C})\oplus \mathfrak{sp}_{2s}(\mathbb{C})$$

splits into the sum of two irreducible components with the representations Ad_0 , Ad_1 . In the case r = 2, $s \ge 1$ the G-module

$$H^0(M,\mathcal{B}_0)\simeq\mathfrak{sl}_2(\mathbb{C})\oplus\mathfrak{sp}_{2s}(\mathbb{C})$$

splits into the sum of two irreducible components the first of which has the highest weight $\lambda_1 + \lambda_2$ while the second one is Ad_1 . In the case r = 1, $s \ge 1$ we have the irreducible G-module

$$H^0(M,\mathcal{B}_0)\simeq \mathfrak{sp}_{2s}(\mathbb{C})$$

with the representation Ad_1 .

We have

$$H^p(M,\mathcal{B}_0)=0$$

for any $p \ge 1$ and all $r \ge 1$, $s \ge 1$.

Proof. By (3), the highest weights of $T_0 = \tau$ are $\lambda_1 + \lambda_2$ (for $r \geq 2$) and $2\mu_1$. These are the highest weights of Ad_0 (if $r \geq 3$) and Ad_1 . If r = 2, then $\lambda_1 + \lambda_2$ is the highest weight of the restriction of Ad_0 onto a simple ideal of \mathfrak{g}_0 (the complement to the ideal considered in Proposition 4).

Proposition 7. If $r \geq 2$, $s \geq 1$, then we have

$$H^p(M,\mathcal{B}_1) = 0$$

for any $p \ge 0$. If r = 1, $s \ge 1$, then

$$H^0(M,\mathcal{B}_1)\simeq \mathbb{C}^{2s}$$

is the irreducible G-module with the representation $\rho_0^* \otimes Id_1$ and

$$H^p(M,\mathcal{B}_1)=0$$

for any $p \geq 1$.

Proof. One see easily that, for $r \geq 2$,

$$T_1 | R = (\bigwedge^2 \rho_0 \rho_0^*) \otimes \rho_1^* + \rho_0^* \otimes (S^2 \rho_1) \rho_1^*.$$

Clearly, $\lambda_r + \gamma$ and $\mu_s + \gamma$ are singular, and hence $\Lambda + \gamma$ is singular for any weight of T_1 . The theorem of Bott implies our assertion.

In the case r = 1 we have

$$T_1 | R = \rho_0^* \otimes (S^2 \rho_1) \rho_1^*.$$

The highest weights of this representation are $-\lambda_1 + \mu_1$ and (for $s \geq 2$) $2\mu_1 - \mu_s$. The first weight is dominant and gives the representation $\rho_0^* \otimes Id_1$, while the sum of the second one with γ is singular.

Proposition 8. Suppose that $r \geq 2$, $s \geq 1$. Then

$$H^0(M,\mathcal{B}_2) = 0, \ H^1(M,\mathcal{B}_2) \simeq \mathbb{C}^2$$

(the trivial G-module). If $r = 1, s \ge 1$, then

$$H^p(M, \mathcal{B}_2) = 0, \ p = 0, 1.$$

Proof. By (3) we have

$$T_{2} | R = (\bigwedge^{2} \rho_{0} + S^{2} \rho_{1}) \bigwedge^{2} (\rho_{0}^{*} \otimes \rho_{1}^{*})$$

$$= (\bigwedge^{2} \rho_{0} + S^{2} \rho_{1}) (\bigwedge^{2} \rho_{0}^{*} \otimes S^{2} \rho_{1}^{*} + S^{2} \rho_{0}^{*} \otimes \bigwedge^{2} \rho_{1}^{*})$$

$$= (\bigwedge^{2} \rho_{0}) (\bigwedge^{2} \rho_{0}^{*}) \otimes S^{2} \rho_{1}^{*} + (\bigwedge^{2} \rho_{0}) (S^{2} \rho_{0}^{*}) \otimes \bigwedge^{2} \rho_{1}^{*}$$

$$+ (\bigwedge^{2} \rho_{0}) \otimes (S^{2} \rho_{1}) (S^{2} \rho_{1}^{*}) + (S^{2} \rho_{0}^{*}) \otimes (S^{2} \rho_{1}) (\bigwedge^{2} \rho_{1}^{*}).$$

The first three of these four summands exist only when $r \geq 2$. For the first one, any highest weight has the form (see (17),(18),(19))

$$\Lambda = \Lambda_0 + \Lambda_1$$

where

$$\Lambda_0 = \lambda_i + \lambda_j - \lambda_k - \lambda_l, \ \Lambda_1 = -2\mu_s.$$

Clearly,

$$r_{\beta_s}(\Lambda_1 + \gamma_1) = r_{\beta_s}(-\beta_s + \gamma_1) = \beta_s + \gamma_1 - \beta_s = \gamma_1.$$

Hence, $\Lambda_1 + \gamma_1$ has index 1. Therefore, we have interest only in the case when Λ_0 is dominant. Using Proposition 2, one sees easily that this is possible only for $\Lambda_0 = 0$ (which is a highest weight indeed!). Then $\Lambda + \gamma$ has index 1. By the algorithm of Bott, there corresponds to Λ an irreducible component of the G-module $H^1(M, \mathcal{B}_2)$ with highest weight $r_{\beta_s}(\Lambda + \gamma) - \gamma = 0$. Quite similarly, the third summand gives (if $r \geq 2$) only the 1-dimensional trivial component of $H^1(M, \mathcal{B}_2)$.

Now let $\Lambda = \Lambda_0 + \Lambda_1$ be a highest weight of one of two remaining summands. One sees easily from Proposition 2 that neither Λ_0 , nor Λ_1 is dominant ($\Lambda_0 = 0$ is not a highest weight in these cases!). Therefore Λ can not be dominant, nor can $\Lambda + \gamma$ have index 1.

Proposition 9. Suppose that $r \geq 1$, $s \geq 1$. Then

$$H^0(M,\mathcal{B}_q) = H^1(M,\mathcal{B}_q) = 0$$

for any $q \geq 3$.

Proof. Let Λ be a weight of T'_q . Using (18), we see, by Proposition 3, that Λ_0 can not be dominant if $q \geq 3$ and that Λ_1 can not be dominant if $q \geq 1$. Quite similarly, for any weight Λ of T''_q we see, using (19), that Λ_0 can not be dominant if $q \geq 1$ and that Λ_1 can not be dominant if $q \geq 3$. Thus, Λ can not be dominant, nor can $\Lambda + \gamma$ have index 1. The proposition follows now from the theorem of Bott.

3. The cohomology of $\widetilde{\mathcal{T}}$

As in [6], we shall use here some further results of Bott's paper [1]. Let E be a holomorphic P-module. Then (see [1], Theorem I and Corollary 2 of Theorem W_2) we have an isomorphism

 $H^p(M,\mathcal{E})^G \simeq H^p(\mathfrak{n},E)^{\mathfrak{r}}$

between the G-invariants and the \mathfrak{r} -invariants of the corresponding cohomology groups. This isomorphism is compatible with the homomorphisms induced by homomorphisms of P-modules.

These considerations can be applied to calculate the cohomology of \mathcal{A}_q and \mathcal{B}_q by expressing explicitly the cocycles which represent the basic cohomology classes. We need such an expression for the group $H^1(M, \mathcal{B}_2)$.

We shall use the standard coordinate system on $\mathrm{IGr}_{2r|r,2s|s}$ in a neighborhood of o given by (2). As in [6], we note that the adjoint action of \mathfrak{p} on \mathfrak{n} coincides with τ^* ; hence \mathfrak{n} , as a \mathfrak{p} -module, is isomorphic to the cotangent space $T_o(M)^*$ of M. By

this isomorphism, the basis $dx_{\alpha\beta}$ ($\alpha < \beta$), dy_{ij} ($i \leq j$) of $T_o(M)^*$ corresponds to the basis (12) of \mathfrak{n} .

The result of Bott mentioned above gives the identification

$$H^1(M,\mathcal{B}_2) = H^1(\mathfrak{n},T_o(M) \otimes \bigwedge^2 E_\phi)^{\mathfrak{r}}.$$

Since τ and ϕ are completely reducible, \mathfrak{n} acts on the coefficients trivially, and hence the coboundary δ of the cochain complex $C(\mathfrak{n}, T_o(M) \otimes \bigwedge^2 E_{\phi})$ is zero. It follows that

$$(20) \ H^{1}(\mathfrak{n}, T_{o}(M) \otimes \bigwedge^{2} E_{\phi})^{\mathfrak{r}} = C^{1}(\mathfrak{n}, T_{o}(M) \otimes \bigwedge^{2} E_{\phi})^{\mathfrak{r}} \simeq (T_{o}(M) \otimes T_{o}(M) \otimes \bigwedge^{2} E_{\phi})^{\mathfrak{r}}.$$

We are going to describe this vector space explicitly in terms of 1-cochains.

Proposition 10. The following two cochains c_0 , c_1 form a basis of $C^1(\mathfrak{n}, T_o(M) \otimes \bigwedge^2 E_{\phi})^{\mathfrak{r}}$:

$$c_0(X_{\alpha\beta}) = \sum_{i,j} \frac{\partial}{\partial y_{ij}} \otimes \xi_{\alpha i} \xi_{\beta j} + \sum_i \frac{\partial}{\partial y_{ii}} \otimes \xi_{\alpha i} \xi_{\beta i}, \ c_0(Y_{ij}) = 0;$$
$$c_1(Y_{ij}) = \sum_{\alpha,\beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta j}, \ c_1(X_{\alpha\beta}) = 0.$$

Proof. By Proposition 1, the P-module E_{ϕ} is identified with $(\mathbb{C}^r)^* \otimes (\mathbb{C}^s)^*$ in such a way that $\xi_{\alpha i} = x_{\alpha} \otimes y_i$, where x_{α} , y_i are the standard coordinates. Then $\bigwedge^2 E_{\phi} = \bigwedge^2 ((\mathbb{C}^r)^* \otimes (\mathbb{C}^s)^*)$ will contain an irreducible P-submodule isomorphic to $\bigwedge^2 (\mathbb{C}^r)^* \otimes S^2(\mathbb{C}^s)^*$ which is spanned by the elements

$$(x_{\alpha} \otimes x_{\beta} - x_{\beta} \otimes x_{\alpha}) \otimes (y_{i} \otimes y_{j} + y_{j} \otimes y_{i}) = \xi_{\alpha i} \otimes \xi_{\beta j} - \xi_{\beta i} \otimes \xi_{\alpha j} + \xi_{\alpha j} \otimes \xi_{\beta i} - \xi_{\beta i} \otimes \xi_{\alpha j} = 2(\xi_{\alpha i} \xi_{\beta j} - \xi_{\beta j} \xi_{\alpha i}).$$

Then, by (20), $H^1(\mathfrak{n}, T_o(M) \otimes \bigwedge^2 E_{\phi})^{\mathfrak{r}}$ contains the invariants of the submodule $T_o(M) \otimes T_o(M) \otimes \bigwedge^2 (\mathbb{C}^r)^* \otimes S^2(\mathbb{C}^s)^*$. Using (3), we see that precisely two linearly independent invariants lie there, while the complementary submodule does not contain any non-zero invariant. Since the basis $\frac{\partial}{\partial x_{\alpha\beta}} (\alpha < \beta)$, $\frac{\partial}{\partial y_{ij}} (i \leq j)$ is dual to (12), we get the basic invariants c_0 , c_1 given by:

$$c_{0}(X_{\alpha\beta}) = \sum_{i < j} \frac{\partial}{\partial y_{ij}} \otimes (\xi_{\alpha i} \xi_{\beta j} + \xi_{\alpha j} \xi_{\beta i}) + 2 \sum_{i} \frac{\partial}{\partial y_{ii}} \otimes \xi_{\alpha i} \xi_{\beta i}$$

$$= \sum_{i,j} \frac{\partial}{\partial y_{ij}} \otimes \xi_{\alpha i} \xi_{\beta j} + \sum_{i} \frac{\partial}{\partial y_{ii}} \otimes \xi_{\alpha i} \xi_{\beta i},$$

$$c_{0}(Y_{ij}) = 0;$$

$$c_{1}(Y_{ij}) = \sum_{\alpha < \beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes (\xi_{\alpha i} \xi_{\beta j} + \xi_{\alpha j} \xi_{\beta i}) = \sum_{\alpha,\beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta j},$$

$$c_{1}(Y_{ii}) = 2 \sum_{\alpha < \beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta i} = \sum_{\alpha,\beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta i},$$

$$c_{1}(X_{\alpha\beta}) = 0.$$

We are now able to calculate $H^p(M, \tilde{T}), p = 0, 1$.

Theorem 1. Suppose that $r \geq 2$, $s \geq 2$ or $r \geq 3$, $s \geq 1$. Then the G-modules $H^p(M, \tilde{T}_q)$, p = 0, 1; $q \geq -1$, are indicated in the following table:

Here $\mathfrak{osp}_{2r|2s}(\mathbb{C})_{\bar{0}}$ and $\mathfrak{osp}_{2r|2s}(\mathbb{C})_{\bar{1}}$ are endowed with the adjoint representation of G, and \mathbb{C} is the trivial G-module.

If r = 2, s = 1, then the table has the form

Here \mathbb{C}^2 is the trivial G-module.

If r = 1, s > 1, then the corresponding table is as follows:

Here $\mathfrak{sp}_{2s}(\mathbb{C})$ is endowed with the adjoint representation of G, \mathbb{C} is the trivial G-module and \mathbb{C}^{2s} for q=-1,1 is endowed with the representation $\rho_0\otimes Id_1$ or $\rho_0^*\otimes Id_1$ respectively.

Proof. We use the cohomology exact sequences associated with (8). Almost in all cases the mappings in these sequences are determined uniquely. The only difficulty occurs when we try to calculate $H^1(M, \tilde{T}_2)$ with the help of the exact sequence

$$0 \to \mathcal{A}_3 \stackrel{\alpha}{\to} \tilde{\mathcal{T}}_2 \stackrel{\beta}{\to} \mathcal{B}_2 \to 0.$$

By Proposition 5, we have the exact sequence

$$0 \to H^1(M, \tilde{\mathcal{T}}_2) \stackrel{\beta^*}{\to} H^1(M, \mathcal{B}_2).$$

If r=1 then, by Proposition 8, we have $H^1(M,\mathcal{B}_2)=0$. Hence, $H^1(M,\tilde{\mathcal{T}}_2)=0$ in this case. In what follows we assume that $r\geq 2$.

By Proposition 8, $H^1(M, \mathcal{B}_2) \simeq \mathbb{C}^2$ (the trivial G-module). The sheaves $\tilde{\mathcal{T}}_2$ and \mathcal{B}_2 are the sheaves of holomorphic sections of homogeneous vector bundles $\tilde{\mathbf{T}}_2$ and $\mathbf{B}_2 = T(M) \otimes \bigwedge^2 \mathbf{E}_{\phi}$, and β is induced by a homomorphism of these bundles. As we have seen in the beginning of this section, β^* is interpreted as the homomorphism of the invariant 1-cohomology of the Lie algebra \mathfrak{n} :

$$H^1(\mathfrak{n}, (\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}} \to H^1(\mathfrak{n}, T_o(M) \otimes \bigwedge^2 E_\phi)^{\mathfrak{r}},$$

where $(\tilde{\mathbf{T}}_2)_o$ is the fibre of $\tilde{\mathbf{T}}_2$ at the point o endowed with a natural structure of the \mathfrak{p} -module. The group $H^1(\mathfrak{n},(\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}}$ coincides with the 1-cohomology of the complex $C(\mathfrak{n},(\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}}$ of \mathfrak{r} -invariant cochains. Since $H^1(M,\mathcal{A}_3)=0$ by Proposition 5, the vector space $C^1(\mathfrak{n},(\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}}$ is mapped isomorphically onto $C^1(\mathfrak{n},T_o(M)\otimes \bigwedge^2 E_\phi)^{\mathfrak{r}}$. It follows from Proposition 10 that the cochains $c\in C^1(\mathfrak{n},(\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}}$ have the form

$$c(X_{\alpha\beta}) = a(\sum_{i,j} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial y_{ij}} + \sum_{i} \frac{\partial}{\partial y_{ii}}),$$
$$c(Y_{ij}) = b \sum_{\alpha,\beta} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial x_{\alpha\beta}},$$

where $a, b \in \mathbb{C}$. Clearly,

$$H^1(\mathfrak{n}, (\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}} \simeq \{c \in C^1(\mathfrak{n}, (\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}} | \delta c = 0\}.$$

By the definition of δ we have

$$(\delta c)(x,y) = xc(y) - yc(x), \ x, y \in \mathfrak{n}.$$

The action of \mathfrak{n} on $(\tilde{\mathbf{T}}_2)_o$ is induced by commuting the fundamental vector fields of the action of G on $\mathrm{IGr}_{2r|r,2s|s}$ with the elements of $\tilde{\mathcal{T}}_2$, followed by evaluating the commutator at X=0, Y=0. It follows from (13) that

$$(\delta c)(X_{\alpha\beta}, X_{\gamma\delta}) = (\delta c)(Y_{ij}, Y_{kl}) = 0$$

and that

$$(\delta c)(X_{\alpha\beta},Y_{ij}) = (b-a)\sum_{\gamma,k}(\xi_{\alpha j}\xi_{\beta k}\xi_{\gamma i} + \xi_{\alpha k}\xi_{\beta j}\xi_{\gamma i} + \xi_{\alpha i}\xi_{\beta k}\xi_{\gamma j} + \xi_{\alpha k}\xi_{\beta j}\xi_{\gamma i})\frac{\partial}{\partial \xi_{\gamma i}}.$$

One sees easily that if $r \geq 2$, $s \geq 2$ then $\delta c = 0$ is equivalent to a = b. The same is true if s = 1, $r \geq 3$. In the remaining case r = 2, s = 1 we have $\delta c = 0$ for any invariant cochain c. Thus,

$$H^1(M, \tilde{\mathcal{T}}_2) \simeq H^1(\mathfrak{n}, (\tilde{\mathbf{T}}_2)_o)^{\mathfrak{r}} \simeq \left\{ \begin{array}{ll} \mathbb{C} & \text{if } r \geq 2, \, s \geq 2 \text{ or } r \geq 3, s = 1 \\ \mathbb{C}^2 & \text{if } r = 2, \, s = 1. \end{array} \right.$$

4. The cohomology of \mathcal{T}

In this section, we prove our main theorem about 0- and 1-cohomology of the isotropic super-Grassmannian with values in the tangent sheaf. The proof repeats that of Theorem 2 of [6]. First we state a proposition that will play the main part in it.

It is clear that on the split supermanifold $(M, \operatorname{gr} \mathcal{O})$ there exists a vector field $\varepsilon \in H^0(M, \tilde{\mathcal{T}}_0)$ such that $\varepsilon(f) = qf$ for any $f \in \operatorname{gr}_q \mathcal{O}$. This vector field commutes with any $X^*, X \in \mathfrak{g}$, and hence is a basic element of the trivial G-submodule $\mathbb{C} \subset H^0(M, \tilde{\mathcal{T}}_0)$ (see Theorem 1).

Proposition 11. If $r \geq 2$, then ε does not lie in the image of the canonical mapping $H^0(M, \mathcal{T}_{(0)}) \to H^0(M, \tilde{\mathcal{T}}_0)$.

Proof. We take as odd coordinates in a neighborhood of o in $(M, \operatorname{gr} \mathcal{O})$ the elements $\tilde{\xi}_{\alpha i} = \xi_{\alpha i} + \mathcal{J}^2$. Then, clearly, ε is expressed in this neighborhood as

$$\varepsilon = \sum_{\alpha,i} \tilde{\xi}_{\alpha i} \frac{\partial}{\partial \tilde{\xi}_{\alpha i}}.$$

Suppose that there exists $\hat{\varepsilon} \in H^0(M, \mathcal{T}_{(0)})$ inducing the vector field ε . One may suppose that $\hat{\varepsilon} \in (H^0(M, \mathcal{T}_{(0)})_{\bar{0}})^G$. Then $[\hat{\varepsilon}, X^*] = 0$ for any $X \in \mathfrak{g}$. Consider the action of the derivation $\hat{\varepsilon}$ in \mathcal{O}_o . The mapping $X \to X^*$ is a linear representation of the Cartan subalgebra \mathfrak{t} of \mathfrak{g} , commuting with $\hat{\varepsilon}$. We see from (11) that $x_{\alpha\beta}$, y_{ij} , $\xi_{\alpha i}$ lie in the weight subspaces of this representation, corresponding to the weights $\lambda_{\alpha} + \lambda_{\beta}$, $\mu_i + \mu_j$, $\lambda_{\alpha} + \mu_i$ respectively. It is clear that all these weight subspaces have dimension 1. Since $\hat{\varepsilon}$ maps any weight subspace into itself, we have

$$\hat{\varepsilon} = \sum_{\alpha,i} \xi_{\alpha i} \frac{\partial}{\partial \xi_{\alpha i}} + \sum_{\alpha < \beta} a_{\alpha \beta} x_{\alpha \beta} \frac{\partial}{\partial x_{\alpha \beta}} + \sum_{i < j} b_{ij} y_{ij} \frac{\partial}{\partial y_{ij}},$$

where $a_{\alpha\beta}$, $b_{ij} \in \mathbb{C}$. Now, we have $[\hat{\varepsilon}, U_{\alpha\beta}^*] = [\hat{\varepsilon}, V_{ij}^*] = 0$ which, by (14), implies that $a_{\alpha\beta} = b_{ij} = 0$ for all $\alpha < \beta$, $i \leq j$. Thus,

$$\hat{\varepsilon} = \sum_{\alpha,i} \xi_{\alpha i} \frac{\partial}{\partial \xi_{\alpha i}}.$$

Now, by (13) we see that

$$[\hat{\varepsilon}, X_{\alpha\beta}^*](y_{ij}) = 2\xi_{\alpha i}\xi_{\beta j}.$$

This can not be 0 if $r \geq 2$, giving a contradiction.

As a corollary, we want to characterize the split isotropic super-Grassmannians.

Corollary. The super-Grassmannian $I^{\circ}Gr_{2r|r,2s|s}$ is split if and only if r=1.

Proof. Proposition 11 shows that the super-Grassmannian is non-split if $r \geq 2$. Now, for r = 1 we have $H^1(M, \mathcal{B}_q) = 0$ for all $q \geq 2$, by Propositions 8 and 9. Thus, all the obstructions to the splitness are 0 (see [4], Ch.4, Sec. 2), and hence $I^{\circ}Gr_{2|1,2s|s}$ is split.

Theorem 2. We have, for any $r \ge 1$, $s \ge 1$,

$$H^0(M,\mathcal{T})\simeq \mathfrak{osp}_{2r|2s}(\mathbb{C})$$

as Lie superalgebras, isomorphism being defined by the standard action of $\mathrm{OSp}_{2r|2s}(\mathbb{C})$. Also

$$H^{1}(M,\mathcal{T}) = \begin{cases} 0 & \text{if } (r,s) \neq (2,1) \\ \mathbb{C}^{1|0} & \text{if } r = 2, s = 1. \end{cases}$$

Proof. Suppose first that $(r,s) \neq (1,s)$ and $\neq (2,1)$. Then the proof goes precisely as in [6]. Using Theorem 1 and the cohomology exact sequence corresponding to (6), we see that $H^0(M, \mathcal{T}_{(q)}) = H^1(M, \mathcal{T}_{(q)}) = 0$ for $q \geq 3$. For q = 2 this exact sequence shows that $H^0(M, \mathcal{T}_{(2)}) = 0$ and that $H^1(M, \mathcal{T}_{(2)})$ is mapped injectively into $H^1(M, \tilde{\mathcal{T}}_2) \simeq \mathbb{C}^{1|0}$. Thus, $H^1(M, \mathcal{T}_{(2)}) \simeq \mathbb{C}^{k|0}$, $k \leq 1$. For q = 1 the exact sequence shows that $H^0(M, \mathcal{T}_{(1)}) = 0$ and that $H^1(M, \mathcal{T}_{(1)}) \simeq \mathbb{C}^{k|0}$. For q = 0 we get the exact sequence

(21)
$$0 \to H^{0}(M, \mathcal{T}_{(1)}) \to H^{0}(M, \mathcal{T}_{(0)}) \to H^{0}(M, \tilde{\mathcal{T}}_{0}) \\ \to H^{1}(M, \mathcal{T}_{(1)}) \to H^{1}(M, \mathcal{T}_{(0)}) \to H^{1}(M, \tilde{\mathcal{T}}_{0}).$$

This implies that $H^0(M, \mathcal{T}_{(0)})$ is mapped injectively into $H^0(M, \tilde{\mathcal{T}}_0)$. By Proposition 11, the trivial submodule \mathbb{C} does not lie in the image. Therefore $H^1(M, \mathcal{T}_{(1)}) \neq 0$, and hence $H^1(M, \mathcal{T}_{(1)}) \simeq \mathbb{C}^{1|0}$, $H^1(M, \mathcal{T}_{(0)}) = 0$. Also, $H^0(M, \mathcal{T}_{(0)}) \simeq \mathfrak{osp}_{2r|2s}(\mathbb{C})_{\bar{0}}$. Now, for q = -1 we get the exact sequence

$$0 \to H^{0}(M, \mathcal{T}_{(0)}) \to H^{0}(M, \mathcal{T}) \to H^{0}(M, \tilde{\mathcal{T}}_{-1})$$

 $\to H^{1}(M, \mathcal{T}_{(0)}) \to H^{1}(M, \mathcal{T}) \to H^{1}(M, \tilde{\mathcal{T}}_{-1}).$

It implies that

$$H^0(M,\mathcal{T}) \simeq H^0(M,\mathcal{T}_{(0)}) \oplus H^0(M,\tilde{\mathcal{T}}_{-1}) \simeq \mathfrak{osp}_{2r|2s}(\mathbb{C}),$$

$$H^1(M,\mathcal{T}) = 0.$$

For the 0-cohomology we mean here an isomorphism of G-modules. Since $\mathfrak{osp}_{2r|2s}(\mathbb{C})$ is simple [3], the homomorphism $X \rightsquigarrow X^*$ of this superalgebra into $H^0(M,\mathcal{T})$ is injective. Therefore it is an isomorphism of Lie superalgebras.

Suppose that r=2, s=1. Then the super-Grassmannian has dimension 2|2. Using Theorem 1, we see that $H^1(M, \mathcal{T}_{(1)}) \simeq H^1(M, \mathcal{T}_{(2)}) \simeq \mathbb{C}^{2|0}$. Then the exact sequence (21) and Proposition 11 give that $H^1(M, \mathcal{T}_{(0)}) \simeq \mathbb{C}^{1|0}$. It follows that $H^1(M, \mathcal{T}) \simeq \mathbb{C}^{1|0}$.

The case r = 1 is the simplest one, and we omit the proof.

It follows from Theorem 2 that the supermanifold $I^{\circ}Gr_{2r|r,2s|s}$ is rigid if $(r,s) \neq (2,1)$ (see [8]). The remaining case r=2, s=1 was actually studied before. It is easy to see that $I^{\circ}Gr_{4|2,2|1}$ is precisely the supermanifold G(1,1) from the family $G(t_1,t_2)$ constructed in [2], where the corresponding part of Theorem 2 was proved. By Theorem 4 of [2], this family is a versal deformation of $I^{\circ}Gr_{4|2,2|1}$. Thus, we get

Corollary. The super-Grassmannian $I^{\circ}Gr_{2r|r,2s|s}$ is a rigid supermanifold if and only if $(r,s) \neq (2,1)$.

REFERENCES

- 1. R. Bott, Homogeneous vector bundles, Ann. Math. 66 (1957), 203-248.
- 2. V. A. Bunegina, A. L. Onishchik, Two families of flag supermanifolds, Different. Geom. and its Appl. (to appear).

- 3. V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-96.
- 4. Yu. I. Manin, Gauge Field Theory and Complex Geometry, Springer-Verlag, Berlin e.a., 1988.
- 5. A.L. Onishchik, *Transitive Lie superalgebras of vector fields*, Reports Dep. Math. Univ. Stockholm **26** (1987), 1-21.
- 6. A. L. Onishchik, On the rigidity of super-Grassmannians, Ann. Global Analysis and Geom. (to appear).
- 7. A.L. Onishchik, A.A. Serov, *Holomorphic vector fields on super-Grassmannians*, Lie Groups and Homogeneous Spaces. Advances in Soviet Mathematics. V. 8, Amer. Math. Soc., Providence, 1992, pp. 113-129.
- 8. A. Yu. Vaintrob, Deformations of complex superspaces and coherent sheaves on them, J. Soviet Math. 51 (1990), 2069-2083.

YAROSLAVL UNIVERSITY, 150 000 YAROSLAVL, RUSSIA

TVER INSTITUTE FOR AGRICULTURE, 171 314 TVER, RUSSIA