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ABSTRACT. One determines the holomorphic vector fields and the deformations of
the isotropic super-Grassmannians of maximal type I°Gry, |y, | associated with the
complex orthosymplectic Lie superalgebras.

1.Preliminaries

In [2,6,7] the holomorphic vector fields and the deformations of complex super-
Grassmannians were studied. It was proved, in particular, that, for a wide class
of super-Grassmannians, all holomorphic vector fields are induced by linear trans-
formations and the tangent sheaf 1-cohomology vanishes. Here we want to apply
the same methods in order to get similar results for isotropic super-Grassmannians
of maximal type associated with orthosymplectic Lie superalgebras. It turns out
that the super-Grassmannian of maximal type associated with the Lie superalge-
bra 05p,,_1j5,(C) is isomorphic to a connected component of that associated with
055,125 (C) (which is well known in the classical situation), and so we shall study
only the latter case.

Let us denote by IGry, 2,5 the isotropic super-Grassmannian of maximal type
associated with the classical Lie superalgebra 0sp,,,,(C) (see [4]). Its reduction
is the product of two isotropic complex Grassmannians IGrj, . x IGry, ;, where
the first factor is the Grassmannian of isotropic r-planes in the vector space C27
endowed with a non-degenerate symmetric bilinear form, while the second one is
that of isotropic s-planes in C?* endowed with a non-degenerate skew-symmetric
bilinear form. The supermanifold IGry, 2, s admits a natural transitive action
of the orthosymplectic Lie supergroup OSp,,|5,(C), inducing on its reduction the
standard transitive action of the Lie group Oz,(C) X Sp,,(C).
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2 A.L.ONISHCHIK, A.A.SEROV

Let (e1,...,e2r), (f1,-..,f2s) be the standard bases of C?", C?° respectively.
We suppose that the orthosymplectic Lie supergroup leaves invariant the bilinear

form in C2?712% given in the basis (e1,..- ,€2r, f1,..., f25) by the matrix
0O 1, 0 0
., 0 0 0
0o 0 0 1,
0 0 -1 O

We denote by o the graded isotropy subspace of maximal dimension

0= <6r+1,--~ ,ezr,fs+1,--- ,f2s)

of 2?7125 Tt is well known that the manifold IGrj, . has two connected components,
while IGrj; ; is connected. We choose the connected component

M =T1°Grj,, x IGrg, |

of IGrj, . x IGry, ,, containing the point o, and denote by I°Gry, 34,5 the cor-
responding connected component of IGryy o, 5. Sometimes we will denote this
supermanifold by (M, O), where O is its structure sheaf.

The natural action of the Lie supergroup OSp,,,,(C) induces the transitive
action of its identity component SOSp,,,,(C) on (M, 0). The reduction of the
latter supergroup is

G =Gox Gy,

where

Go = 502-(C), G1 = Spy,(C).
Let P denote the stabilizer G, of the point 0 € M in G; we have

P:PO XPl,
where Py C Gy, P; C G1. The subgroup
R =Ry X Ry,

where

Ry ~ GL,(C), R; ~ GL,(C),

leaving invariant the subspaces

(61)"' 767‘>7 <67‘+17'-- 7621”)) <f17"' 7f8>7 <fs+17"' 7f25>7

is the reductive part of P. The matrices from R are of the form
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where A € GL,(C), B € GL(C), while those from P have the form

A 0 0 0
U (491 0 0
0 0 B 0
0 0 V (BY!

The tangent Lie algebras and Lie superalgebras of Lie groups and Lie supergroups
will be denoted, as usually, by the corresponding Gothic lower case letters. We have

g = g0 ® g1, go = 502,(C), g1 = 5p,,(C).
The Lie algebra p of P admits the semi-direct decomposition
p=t+n,
where n is the nil-radical of p. We have
n=ny®ny,

where ng C go, N1 C gy consist of the matrices

()2 ),

U and V being a skew-symmetric r X r and a symmetric s X s-matrix respectively.
The subalgebra n is commutative.

We shall use the standard coordinate system on IGry.|.9s)s in a neighborhood
of o introduced in [4, Ch.5, Sec.6] , changing slightly the notation; more precisely,
transposing the coordinate matrix. This matrix will have the form

X =
1, 0

(2) Z = —Et Y )
0 1

w

where X = (zqp) and Y = (y;;) are a r X r-matrix and a s X s-matrix of even
coordinates, X* = —X, Y' = -Y, and & = (£4s) is a r x s-matrix of odd ones. At
the point o we have 4 = yi; = 0. The natural action of OSp,,5,(C) on IGra, 25 (s
is given by the matrix multiplication from the left.

Let po, p1 be the standard representations of GL,(C), GLs(C) and 09,0y their
adjoint representations in the corresponding derived algebras s[,(C), p =r,s. The
trivial 1-dimensional representation of any group will be denoted by 1. In what
follows, we shall omit for simplicity the trivial factors 1 in the notation of the
representations.

As in [6], we exploit the theory of homogeneous vector bundles. Let £ = Ey, be
a finite-dimensional P-module determined by a holomorphic linear representation
) of P. We denote by E = E,, the corresponding homogeneous vector bundle over
M and by £ = &y the sheaf of its holomorphic sections. As is well known, the
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tangent sheaf © on M is isomorphic to &;, where the isotropy representation 7 of
P is completely reducible and satisfies the condition

2
(3) 7[R = /\ po +S* p1.

The supermanifold (M,O) is, in general, non-split. As usually, we associate
with it the split supermanifold (M,gr ©O). Its structure sheaf is the graded sheaf
associated with the filtration

(4) 0O=J">J'>7%>...,

where J = (O3). We have grO ~ A\ €, where & = J/J?. The holomorphic vector
bundle E over M associated with £ has the fibers E, = J,/m;J;, * € M, where
mg 1s the maximal ideal of O,.

Clearly, the action of OSp,,55(C) on the super-Grassmannian induces actions
of G on the sheaves O, J, £ and on the vector bundle E, covering the standard
action of G on M. Thus, E is a homogeneous vector bundle over M.

Proposition 1. We have
grO ~ /\ &y,

where @ is the irreducible representation of P such that

¢|R = py ® p3.

Proof. Clearly, J/J? = E,, where ¢ is the representation of P induced in the fibre
E, = J,/moJ,. To calculate it, we use the coordinate matrix (2). The action of P
on (M, Q) is expressed by means of the coordinates in the following way:

A 0 0 0 X E

S_|U (At o 0 I, 0

10 0 B 0 —Et Y

0 0 VvV (BH! 0 1,
(5) AX B
| (AT +UX =
- —BE! BY

~VE' (BT 4+VY

We must reduce the result to the form (2) by multiplying from the right by the
" (AH™1 4+ UX U=
matrix _ymt (B + VY

simplifies the calculation. Then

4H=t U= \ 7' _ At —A'UEB!
~-VEt (BY)™! ~ \ B'VE! A B!

—1i
> . We may set X = 0,Y = 0 which
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modulo J2. Hence,

0 A= Bt
- 1, 0
Z = — BEt At 0

0 1,

modulo m,J2. Since the entries of = determine a basis of E,, this implies our
assertion.

Our goal is to calculate the 0- and 1-cohomology of the tangent sheaf 7 = Der O
of IGry jzs,rs- As in [6], we consider first the Z-graded sheaf 7 = Der gr O. It is
known (see [4]) that for any ¢ > —1 there exists a natural exact sequence of sheaves

(6) 0 = T(g1) = T(q) — T, -0,
where 7(,) are the subsheaves of 7 forming a filtration of this sheaf and defined by

T(—-l) =T,
(7) T = {6 € T|SO C J9,67 C J**'}, ¢ > 0.

The sequence (6) will permit us to relate the cohomology of 7 to that of 7. To
calculate the cohomology of the latter sheaf, one uses the exact sequence

(8) 0 A 27, 58, 0.
Here .
Aq:c‘/’;@/\&p:&bq
with
q
(9) &, =" @ N\,
and .
B, =0 \ & =ér,
with
q
(10) T;=7® /\ ©.

The mapping [ is the restriction of a derivation of degree ¢ onto the structure sheaf
F of M, and « identifies any sheaf homomorphism &, — A” + &, with its extension
which is a derivation of degree ¢ and is zero on F. In particular,

T 1y~ Ao = E5 = Epr.

Now we make some remarks concerning the action of the group G on the sheaves
involved. Clearly, the action of G on the structure sheaf O induces an action of
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G on 7, preserving the parities. It follows that G preserves the filtrations (4) and
(7), inducing an action on the sheaf 7. Thus, 7~'q for any ¢ is a locally free analytic
sheaf on M which is homogeneous with respect to G. One sees easily that the
homomorphisms in the exact sequences (6) and (8) are G-equivariant.

To conclude these preliminaries, we shall write explicitly certain fundamental
vector fields on (M, Q) associated with the action of G, using the local coordi-
nates from (2). Let us denote by X ~» X* the Lie superalgebra homomorphism
05p5,125(C) — H°(M, T ) induced by the action of SOSp,,5,(C) on (M, O).

Let

H :dlag()\l, ))\r;_)\la--- 7_)\r,/-L1,~-- yMsy —H1y- - - ,—,us)
be the general diagonal matrix lying in g. Using (5), we get
. 0 0 0
(11) H" = Z()\ + )\ﬂ)maﬁa— + Z i + /»L]>yz] a + Z )\ + ﬂz)gazaéal .

a<lp 1<j

Now, for the elements u, v € n given by (1), we get, using (5) again:

0 @ 0 0
V=2 “ﬁa__z =gy + L XU

Z_Z( VE aﬁa +Z (YVY); Buis +;(EVY)ak8£7.

Let us choose the basis Xqp (a0 < ), Yi; (2 < j) of n given by

1
Xop = §(Eaﬂ — Ega),

12 1 S,
(12) Yij = 5(Fyj + Fi) (0 £ 9),
Yii = Fii,

where Eqp and Fjj are the natural bases of the vector spaces of matrices M, (C)
and M,(C) respectively. Then, in particular we have

;ﬁ = Zx'\/axﬂé Zéaz&ﬁ] 8

7,6
1 0
+ 5 ;(-Tvagﬁk - wvﬁgak)ﬂ>

= Zgazgﬂya + Zykzyjl

22 y]k671+yzk§7J)a§ ( #‘7)
= Zéazéﬂz + Zykzyzl

+ > yiré i—‘-
%I; 7 agyk

(13)
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Let now n™ be the nilpotent subalgebra of g complementary to p; it has the form
n~ =n, +nj, where ny C go, n; C g; consist of the matrices

L (0 U\ _(0V
“\o 0/)°""\o o)

U and V being a skew-symmetric 7 X r— and a symmetric s X s—matrix respectively
(cf. (1)). Consider the basis of n™ formed by the elements Uy (a0 < 3), Vij (i <
7), Vii corresponding to the matrices U = Eqp — Egqo, V = Eij + Ej; (1 < j); Eu
respectively. One sees easily that

0 0
14 P I/ .
(14) af axaﬂ’ Vz] Oyij
2. The cohomology of A, and B,

In this section we shall calculate the 0- and 1-cohomology of the sheaves A4, and
B,. Asin [6,7], we use the theorem of Bott (see [1], Theorem IV') permitting to cal-
culate the cohomology of the homogeneous sheaf £y on M defined by a completely
reducible representation 1 of P. More precisely, this theorem gives an algorithm
for determining the highest weights of the G-modules HP(M,Ey) in terms of the
highest weights of ¢. To apply it, we have to introduce some notation related to
weights and roots of G.

We choose the Cartan subalgebra t = t,@t; in the tangent Lie algebra g = go®g:
of G such that ¢y and t; are the Cartan subalgebras of gy and gy, respectively, formed
by all diagonal matrices

HO = dlag()q, ,/\r,—/\l,... ,—)\r),
H, = dla’g(lu‘l) y sy —H1,y .- )_IU’S)'

We consider the following system of positive roots:
AT =AfUAT,
where

AT ={Ni= X, i+ X (<)},
Af = {Mp_ﬂq (p<Q)a Ep + g (pSQ}~

The half of the sum of all positive roots of go, g1, g will be denoted by o, 71, v
respectively; we have v = 9 4+ 1. The corresponding system of simple roots of g is

I =1, Ull,

where

I :{051;--- 7ar}7 II; = {/Bb"' 7:88}
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are the systems of simple roots of gg, g1 respectively; here we denote

ap = A — /\27--- y Op—1 = /\T—-l - Am ar = A1 +/\r;
Pr =1 —p2,. .., Bs—1 = ps—1 — s, Bs = 2ps.

We denote by t*(R) the real subspace of t* spanned by all A;, y,, and define the
scalar product on t*(R) such that A;, s, form its orthonormal basis. As usually,
A € t*(R) is called dominant if (\,a) > 0 for all @ € AT or, equivalently, for all
a € II. Following Bott [1], we say that A has indez 1 if (A\,a) > 0 for all @« € At
except of one root B € At for which (A, 8) < 0. Now, X\ is called singular if
(A, a) =0 for a certain a € A. These definitions will be used with respect to go, g1
as well.

Clearly, the subgroup P = G, defined above is a parabolic subgroup of G con-
taining the Borel subgroup B~ corresponding to —A™. The system of simple roots
of its reductive part R is ¥ = II — {a,,fs}. An element A € t*(R) is called R-
dominant if (A\,«) > 0 for all a € L.

It is convenient to characterize an element A € t*(R) by the numbers )\, =

a € II, which are actually the coordinates of A in the basis of the so-called

fundamental weights. We have v, = 1 for all a € II. An element A is dominant if
and only if Ay > 0 for all « € II.
The following proposition is well known and very easy to verify:

Proposition 2. An element

A= zr:k,‘/\i, ki € R,

1=1

is dominant if and only if ky > ko > ... > |k,|. It is R-dominant if and only if
ki > ke >...> k.
An element

A= Zl,‘/,tj, l; €R,
j=1
is dominant if and only if [ > Iy > ... > I > 0. It is R-dominant if and only if
L>>...> 1.

We have to study the highest weights of the representations ®, and T, of P
defined by (9) and (10), respectively. It follows from Proposition 1 that

q
®y|R = (po @ p1) [\(p§ ® p}).

Denote by 17, i, indices running over 1,...,r, and by j, j3 those running over
1,...,s. The weights of ®, have the form
(15) A= Ao+ Ay,
where
Ao=Xi—= iy —...— Niys

(16)

Ay = pj— gy — oo — g,
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Similarly, (3) implies that
T,=T,+T,,

where
2 q
T, IR = (\ po) \(o§ ® pY),

q

Ty R = (5% p1) (05 ® p})-
The weights of T'q, T;’ have the form
(17) A=Ao+ Ay,

where for T'q we have

(18) A0:/\i+)\k“/\i1—~-—)\iq7i<k,
Av=—pj == pj,,

andforT'q'

(19) Ao =—Xip —...— Ay,
Ay =pj+pm—pg ==y, J <L

We denote by Idy, Id; the standard representations and by Ady, Ad; the adjoint
representations of Gg, GG1 respectively. Remark that in the case r = 1 we have

Go = RO ~ GLl(C), and Ido = pPo + p;

Proposition 3. Suppose that r > 2, s > 1. Then the G-module H°(M, Ay) ~
C?*r ® C?* is irreducible with the representation Idy ® Idy,. Forr = 1, s > 1, the
G-module H°(M, Ay) ~ C?* is irreducible with the representation py ® Id;.
We have
HP(M,Ay)=0
for any p > 1.

Proof. The highest weight of &y = ¢* is A1 4+ p1. It is dominant and is the highest
weight of the representation Idy ® Idy (for r > 2) or pp ® Id; (for r = 1) of G. Our
assertions follow from the theorem of Bott.

Proposition 4. Suppose thatr > 1,7 # 2, s > 1. Then
H(M,A) ~C
(the trivial G-module). In the case r =2, s > 1 we have
H°(M, A;) ~ Ca sly(C),

where the first summand is the trivial G-module and the second one is the irre-
ducible G-module with heighest weight \y — A2. In both cases we have

HP(M, A1) =0, p> 1.
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Proof. Clearly, for r > 2, s > 2 we have

®1|R = (popy) @ (p1p1)
=(1+00)®(1+01)=1+00+01+00® 0.

The trivial component gives the 1-dimensional trivial G-module. The highest
weights of the non-trivial components are

No =AM — Ary Ay = p1 — psy, Ao+ Ax.
The weight Ag 4 v is singular for r > 3, since
(Ao +7)a, = (Ao +70)a, = —1.

In the case when r = 2 the weight Ag = Ay — A2 is dominant and determines the
restriction of Ady onto one of the simple ideals of gy ~ sl3(C) @ sl2(C) (which
coincides actually with [tg, to]). Now, Ay + v is singular for s > 2, since

(A1 +7)s, = (A1 +m)p, = —1.

Therefore, Ay + Ay + 7 is singular, too.

Thus, the proposition follows from the theorem of Bott. In the cases r = 1 or
s = 1 the corresponding adjoint representation does not enter into the expression
of @1, and we get the same result.

Proposition 5. For anyr > 1, s > 1 we have

H°(M,A,)=H'(M,A,)=0, ¢ >2.

Proof. Let A be a highest weight of ®,. Using its expression given by (15) and (16),
we easily see from Proposition 2 that Ay and A; can not be dominant. Therefore
the situation when A is dominant or A + v has index 1 is impossible.

Proposition 6. Forr > 3, s > 1, the G-module
H®(M, By) ~ 503,(C) @ 5, (C)

splits into the sum of two irreducible components with the representations Ady,
Ady. In the case r = 2, s > 1 the G-module

H®(M,By) ~ sl5(C) @ sp,,(C)

splits into the sum of two irreducible components the first of which has the highest
weight A1 + A2 while the second one is Ad;. In the case r =1, s > 1 we have the
irreducible G-module

H(M, Bo) = spy,,(C)

with the representation Adj.

We have
HP(M,By) =0

foranyp>1landallr>1,s2>1.

Proof. By (3), the highest weights of Tg = 7 are Ay + A (for r > 2) and 2p;. These
are the highest weights of Ady (if » > 3) and Ady. If r = 2, then A\ + A; is the
highest weight of the restriction of Ady onto a simple ideal of go (the complement
to the ideal considered in Proposition 4).
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Proposition 7. Ifr > 2, s > 1, then we have
HP(M,B,) =0
forany p> 0. If r =1, s > 1, then
H°(M,B;) ~ C*
is the irreducible G-module with the representation pgy ® Id; and
HY(M,B:) =0

for any p > 1.
Proof. One see easily that, for r > 2,

2

T1 R = (/\ pory) ® o} + o @ (S* p1)p}.
Clearly, A\, + v and us + 7 are singular,and hence A + « is singular for any weight

of T. The theorem of Bott implies our assertion.
In the case r = 1 we have

T |R = p; ® (S* p1)pi-
The highest weights of this representation are —A; + p1 and (for s > 2) 2u; — ps.

The first weight is dominant and gives the representation p§ ® Id;, while the sum
of the second one with v is singular.

Proposition 8. Suppose that r > 2, s > 1. Then
H°(M,B;) =0, H'(M,B;) ~ C?
(the trivial G-module). If r =1, s > 1, then

HP(M,BQ) :0, P = 0,1

Proof. By (3) we have

Tz |R = /\po+S pl)/\ (o ® p1)
(/\po+S p1)( /\P0®52 +S2p3‘®/2\pf>
=(/\po)(/\p3)®82pf+(/\po)(82p3>®/2\p1‘
+(/2\po)®(S2 p1)(S p7) + (S p5) ® (S m)(/z\pi‘)-
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The first three of these four summands exist only when r > 2. For the first one,
any highest weight has the form (see (17),(18),(19))

A=A+ Ay,

where

Ao :)\i+)\j_/\k_)\l, A = —2us.

Clearly,
re. (A +71) =7, (=Bs +711) = Bs + 11— Bs = M.

Hence, A1+ 7 has index 1. Therefore, we have interest only in the case when Ay is
dominant. Using Proposition 2, one sees easily that this is possible only for Ay = 0
(which is a highest weight indeed!). Then A + v has index 1. By the algorithm of
Bott, there corresponds to A an irreducible component of the G-module H'(M, B,)
with highest weight rg,(A +v) — v = 0. Quite similarly, the third summand gives
(if » > 2) only the 1-dimensional trivial component of H'(M, Bz).

Now let A = Ay + Ay be a highest weight of one of two remaining summands.
One sees easily from Proposition 2 that neither Ag, nor Ay is dominant (Ag =0 is
not a highest weight in these cases!). Therefore A can not be dominant, nor can

A 4 v have index 1.
Proposition 9. Suppose that r > 1, s > 1. Then

H°(M,B,) = H'(M,B,) =0

for any q > 3.

Proof. Let A be a weight of T'q. Using (18), we see, by Proposition 3, that Ay can
not be dominant if ¢ > 3 and that A; can not be dominant if ¢ > 1. Quite similarly,
for any weight A of T'q' we see, using (19), that Ay can not be dominant if ¢ > 1
and that A; can not be dominant if ¢ > 3. Thus, A can not be dominant, nor can
A + ~ have index 1. The proposition follows now from the theorem of Bott.

3. The cohomology of 7

As in [6], we shall use here some further results of Bott’s paper [1]. Let E be a
holomorphic P-module. Then (see [1], Theorem I and Corollary 2 of Theorem W)
we have an isomorphism

HP(M, )¢ ~ HP(n, E)*

between the G-invariants and the t-invariants of the corresponding cohomology
groups. This isomorphism is compatible with the homomorphisms induced by ho-
momorphisms of P-modules.

These considerations can be applied to calculate the cohomology of A, and B,
by expressing explicitly the cocycles which represent the basic cohomology classes.
We need such an expression for the group H'(M, By).

We shall use the standard coordinate system on IGry,|r,24|s in a neighborhood of
o given by (2). As in [6], we note that the adjoint action of p on n coincides with
7*; hence n, as a p-module, is isomorphic to the cotangent space T,(M)* of M. By
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this isomorphism, the basis dzqog (o < B), dy;; (1 < j) of To(M)* corresponds to
the basis (12) of n.
The result of Bott mentioned above gives the identification

H'(M,By) = H'(n,T,(M) @ [\ Ey)".

Since 7 and ¢ are completely reducible, n acts on the coefficients trivially, and hence
the coboundary 6 of the cochain complex C(n, T,(M) ® A\* Ey) is zero. It follows
that

2 2 2
(20) H'(n, T,(M)®/\ Es)* = C'(n, T,(M)® \ Eg)* = (T,(M)QT,(M)® |\ Ey)".
We are going to describe this vector space explicitly in terms of 1-cochains.

Proposition 10. The following two cochains cg, ¢; form a basis of C*(n, T,(M) ®

A’ Eg)™:
b 0
Kag) = 3 5= @ bailps + 3 5= © st V) = 0
i 7Y i o

c1(Yij) =

) Cl(Xa,B) =0.

3 O0zag

Proof. By Proposition 1, the P-module Ey4 is identified with (C")* ® (C*)* in such
a way that {4, = T4 ®Yy;, where z,, y; are the standard coordinates. Then /\2 Ey =
/\2(((CT)* ®(C*)*) will contain an irreducible P-submodule isomorphic to /\2(CT)* ®
S?(C*)* which is spanned by the elements
(2a®2p—25Q2a) @ (¥ Qyj +y; Qui) =
Cai @ Epj — £8i @ Laj + Eaj ® Epi — Epi ® Laj = 2aipj — £pjlai)-

Then, by (20), H'(n, T,(M) ® \* E4)* contains the invariants of the submodule
To(M) @ T,(M) @ \*(CT)* @ S*(C*)*. Using (3), we see that precisely two linearly
independent invariants lie there, while the complementary submodule does not

contain any non-zero invariant. Smce the basis aza (a < B), ay (1 < j)is dual

to (12), we get the basic invariants ¢g, ¢; given by:

co(Xap) = Z 8_ ® (Eaibpj + Eajépi) +2 Z dy;

1<J

- Z E ® €ailpj + Z "a‘az: ® €ailpi
1,] t

co(Yij) = 0;
0
cl(Y”)—Za i) = D 5
a<lfB a,f o
Y”)—2Z — @ Laibpi = Z - @ Laibsi
oz<,8

Cl(Xaﬁ) = 0
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We are now able to calculate H?(M,T), p =0, 1.

Theoregn 1. Suppose that r > 2, s > 2 orr > 3, s > 1. Then the G-modules
HP(M,1;), p=0,1; ¢ > —1, are indicated in the following table:

g = 1 0 1 2 >3
p=0 05p2r|23((c)i 05p2r|23((c>(_) ®@C 0 0 0
p=1 0 0 0 C 0

Here 05py,125(C)g and 05p,,5,(C);1 are endowed with the adjoint representation of
G, and C is the trivial G-module.
If r = 2, s = 1, then the table has the form

g= -1 0 1 2 >3
p=0 05p42(C)1  08py(C)g®C 0 0 0
p=1 0 0 0 C2 0

Here C? is the trivial G-module.
Ifr =1, s > 1, then the corresponding table is as follows:

g= -1 0 1 2 >3
p=0 C2 5p,,(C)®C C* 0 0
p=1 0 0 0 0 0

Here sp,,(C) is endowed with the adjoint representation of G, C is the trivial G-
module and C?® for ¢ = —1, 1 is endowed with the representation po®1Idy or p®Id;
respectively.

Proof. We use the cohomology exact sequences associated with (8). Almost in all
cases the mappings in these sequences are determined uniquely. The only difficulty
occurs when we try to calculate H'(M,7;) with the help of the exact sequence

0—>¢43£>']-2£>BQ—->0
By Proposition 5, we have the exact sequence
0 — HY(M,T;) 5 HY(M,By).

If 7 = 1 then, by Proposition 8, we have H!(M,By) = 0. Hence, Hl(M,’j}) =0in
this case. In what follows we assume that r > 2.

By Proposition 8, H(M,By) ~ C? (the trivial G-module). The sheaves 7, and
B are the sheaves of holomorphic sections of homogeneous vector bundles 'i‘g and
B; = T(M)(X)/\2 E4, and § is induced by a homomorphism of these bundles. As we
have seen in the beginning of this section, §* is intrepreted as the homomorphism
of the invariant 1-cohomology of the Lie algebra n:

2

H'(n,(T2),)" — H' (0, T,(M) ® |\ Ey)",
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where (’]~?2)0 is the fibre of 'i‘g at the point o endowed with a natural structure of the
p-module. The group H'(n ,(T43),)" coincides with the 1-cohomology of the complex
C(n,(T3),)" of v-invariant cochains. Since H'(M, As) = 0 by Proposition 5, the
vector space C}(n, (T32),)" is mapped isomorphically onto C’l(n T,(M) @& N> Ey)".
It follows from Proposition 10 that the cochains ¢ € C''(n,(T32),)* have the form

( aﬂ =a Z gazgﬂ]a + Z ay“
Yi; =} ot '_7
C( J) az,;ﬁ gﬁJ axaﬂ

where a, b € C. Clearly,

H(n,(T2)o)" ~ {c € C*(n,(T2),)"|6c = 0}.

By the definition of 6 we have

(6c)(z,y) = zc(y) —ye(z), =,y €n.

The action of n on (T2) is induced by commuting the fundamental vector fields of
the action of G on IGry,|r s With the elements of ’2'2, followed by evaluating the
commutator at X =0, Y = 0. It follows from (13) that

(8¢)(Xap, Xvs) = (6¢)(Yij, Yrt) = 0

and that
0
(6¢)(Xap,Yij) = (b—a)) (fajfﬁkf'yi+fak§ﬂj§7i+fai€ﬂk§7j+§ak§ﬂj§7i)—'a€ -
Yt

v,k

One sees easily that if 7 > 2, s > 2 then 6c = 0 is equivalent to a = b. The same
is true if s = 1, r > 3. In the remaining case r = 2, s = 1 we have éc = 0 for any
invariant cochain ¢. Thus,

C ifr>2,8s>2o0rr>3,s=1

HI(M,’?Z) ng(n,(TZ)o)f ~ { C? ifr=2s5=1

4. The cohomology of T

In this section, we prove our main theorem about 0- and 1-cohomology of the
isotropic super-Grassmannian with values in the tangent sheaf. The proof repeats
that of Theorem 2 of [6]. First we state a proposition that will play the main part
in it.

It is clear that on the split supermanifold (M,grO) there exists a vector field
e € H'(M,T) such that e(f) = ¢f for any f € gr, O. This vector field commutes
with any X*, X € g, and hence is a basic element of the trivial G-submodule

C C H°(M,Ty) (see Theorem 1).
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Proposition 11. Ifr > 2, then ¢ does not lie in the image of the canonical mapping
H°(M,Ty) — H*(M,T).

Proof We take as odd coordinates in a neighborhood of o in (M, gr O) the elements
faz £ai + J?. Then, clearly, € is expressed in this neighborhood as

~ 0
€= zﬁaz@

Suppose that there exists é € H(M, T(o) inducing the vector field . One may
suppose that & € (H°(M,T(0))5). Then [¢,X*] = 0 for any X € g. Consider the
action of the derivation € in O,. The mapping X — X * is a linear representation of
the Cartan subalgebra t of g, commuting with £. We see from (11) that 48, yij, ai
lie in the weight subspaces of this representation, corresponding to the weights
Aa + Ag, pi + pj, Aa + pi respectively. It is clear that all these weight subspaces
have dimension 1. Since € maps any weight subspace into itself, we have

£ = ng + Z aaﬂxaﬂa + Zbuyz] _a

where aqg, bi; € C. Now, we have [¢,U},] = [¢,V;7] = 0 which, by (14), implies
that aqp = bjj =0 forall @ < 3, 2 < j. Thus,

. 0
€= Zéaz%

Now, by (13) we see that
(€, Xapl(yis) = 2Lailp;-
This can not be 0 if » > 2, giving a contradiction.
As a corollary, we want to characterize the split isotropic super-Grassmannians.

Corollary. The super-Grassmannian 1°Gry,|y 24|s s split if and only if r = 1.

Proof. Proposition 11 shows that the super-Grassmannian is non-split if r > 2.
Now, for r = 1 we have H'(M,B,) = 0 for all ¢ > 2, by Propositions 8 and 9.
Thus, all the obstructions to the splitness are 0 (see [4], Ch.4, Sec. 2), and hence
I°Gry|y,24)s 18 split.

Theorem 2. We have, for anyr > 1, s > 1,
HO(M?T) =~ 05p2r|25(c)

as Lie superalgebras, isomorphism being defined by the standard action of

OSp2r|25(C). A]SO

0 if (r,s) # (2,1)

1
a (M’T):{C”O ifr=2s=1.
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Proof. Suppose first that (r,s) # (1,s) and # (2,1). Then the proof goes precisely
as in [6]. Using Theorem 1 and the cohomology exact sequence corresponding to
(6), we see that H'(M,T(,)) = H'(M,T(,)) = 0 for ¢ > 3. For ¢ = 2 this exact
sequence shows that H(M,7(3)) = 0 and that H'(M,7(5)) is mapped injectively
into H'(M,73) ~ C'°. Thus, H'(M,T3)) ~ CHO, k < 1. For ¢ = 1 the exact
sequence shows that H°(M,7(;)) = 0 and that H'(M,T(;)) ~ CH°. For ¢ = 0 we

get the exact sequence

0 — H°(M,T(1y) — H(M, Tiy) — H°(M, 7o)

(21) ) . ) .
— H (M, T(1)) » H (M, T(0)) — H (M, To).

This implies that H°(M, T(o)) is mapped injectively into H° (M, 75). By Proposition
11, the trivial submodule C does not lie in the image. Therefore H' (M, 7)) # 0,
and hence H' (M, T(1)) ~ C1°, HY(M,T(5)) = 0. Also, H°(M, T(p)) ~ 05P2,125(C)o-

Now, for ¢ = —1 we get the exact sequence
0 — H'(M,Tiy) — H*(M,T) — H(M,T_,)
— HY (M, To)) — H'(M,T) — H (M, T_4).

It implies that

HO(M,T) ~ HO(M,,Jd(o)) @ HO(M7’j;—1) s OspZTIZS(C)’
HY(M,T)=0.

For the 0-cohomology we mean here an isomorphism of G-modules. Since
05P5,125(C) is simple [3], the homomorphism X ~» X* of this superalgebra into
H°(M,T) is injective. Therefore it is an isomorphism of Lie superalgebras.

Suppose that 7 = 2, s = 1. Then the super-Grassmannian has dimension 2|2.
Using Theorem 1, we see that H'(M,T(y)) ~ H'(M,T(3)) ~ C2l9, Then the exact
sequence (21) and Proposition 11 give that H'(M, 7)) =~ C'1°. Tt follows that
HY(M,T) ~ C'l°.

The case r = 1 is the simplest one, and we omit the proof.

It follows from Theorem 2 that the supermanifold I°Gryy |y 245 1s rigid if (r,s) #
(2,1) (see [8]). The remaining case r = 2, s = 1 was actually studied before. It is
easy to see that 1°Gryjg g1 is precisely the supermanifold G(1,1) from the family
G(t1,t2) constructed in [2], where the corresponding part of Theorem 2 was proved.
By Theorem 4 of [2], this family is a versal deformation of I° Gry|z oj1- Thus, we get

Corollary. The super-Grassmannian 1°Gryp, 245 is a rigid supermanifold if and

only if (r,s) # (2,1).
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