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SOME MATHEMATICAL ASPECTS
OF 3D X-RAY TOMOGRAPHY

V.P.PALAMODOV

§1.RECONSTRUCTION FORMULAE

Let E be a three-dimensional Euclidean space and A be the variety of straight
lines L C E. The ray transform of a function f on E with compact support is the
family of integrals

(1) Rf(L) := /f dL,
L

defined on A, where dL is the line measure in E. There are several inversion

methods for the operator R which could be used for construction of tomography

algorithms. We discuss here some properties of presumable algorithms under the

following assumptions on the inversion method:

e the data (1) is used only for a three-dimensional family ¥ of straight lines or
rays L (called a pencil);

e an exact inversion is given by a simple formula.

A formula is called simple if it is a combination of finite set of derivations,
integrations and algebraic operations. Several cases are known, where there exists
simple formulas:

I Orlov’s pencil ¥ = £(Cx)
IT Kirillov-Tuy’s pencil ¥ = 3(Cy)
IIT pencil ¥ = X(S) of rays, which start with a smooth surface S and are tangent
to his surface.

The following completeness condition is assumed:

for any point z € supp f and for any plane H through this point there exists a
line L € ¥, which passes through = and belongs to H.

For each of the cases LILIII there is a simple reconstruction formula which
consists of two steps: first the two-dimensional Radon transform

Rf(H) = Rf(p,w) = / fdH
H

The author is acknowledging to the Center for Advanced Study at the Norwegian Academy of
Science and Letters for its hospitality and support for this research.

Typeset by ApS-TEX



2 V.P.PALAMODOV

or its derivative 0/0p Rf(p,w) is calculated. Here H means a plane with an equation
w-z = p. The second step is an application of the Lorentz-Radon inversion formula

1 H?
(2) flz) = ~5 a—p2Rf(w cz,w)dw.
Q

We call any reconstruction of this kind back-projection formula, because the back-
projection operation for the data 8% /9p? Rf(p,w) is used on the second step.
Now we list some first step reconstruction formulae for the above cases.
I The Orlov’s pencil 3(Cq) is the set of lines L(z, e), where e runs over a curve
Co in the unit sphere Q € E and L(z, ) means the line, which contains a point
z and is parallel to a unit vector e.
The completeness condition for this pencil means that any plane H is a union of
parallel lines L(z(t),e),e € Coo,t € R. Therefore we can find the Radon transform
integrating the line data on the parameter ¢ against the measure dt := dH/dL:

Rf(H) = / RF(L(x(t), ¢) dt.

II The Kirillov-Tuy’s pencil ¥(Cy) is the manifold of rays with origins on a curve
Cy C E. Then Grangeat-Finch formula gives a derivative of the Radon transform

a 2w a
5B = [ 5 RAL,e)lo=o de,

0

where L(z,e) means the ray in E, which starts from a point z € CN H and is
parallel to a vector e € Q; ¢ = longitude and 6 = latitude are coordinates of e
on  with the pole w. There are other reconstruction formulae for this pencil.

III For the pencil 3(S) there is the following reconstruction formula (A.S.Denisjuk-
V.P.Palamodov [1]):

a '_1 —Kli CSC2 i,()‘[i Z,e€ S
SR =5 [ [rg+ o WIRFLz ) ds,
c(H)

where s is the natural parameter on a curve C(H) C SN H, e is the tangent
vector and & is the curvature of this curve, 1 is the angle between H and S at a
point z; ¢ = w - e. The curve C(H) is submitted to the following condition: the
natural mapping C(H) x Ry — H is proper over the set supp f N H and its degree
6 does not vanish.

§2.ALGORITHMS AND ERRORS

Any simple formula may be used as a starting point for a computerized tomog-
raphy algorithm. The algorithm should include the following steps:
(d) discretization of integrals, in particular discretization of the back-projection op-
eration (2).
(f) filtering of derivations and
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(1) interpolation of the data if necessary.

We call it a back-projection algorithm and claim that any back-projection al-
gorithm produces image errors and artifacts whose geometry should have some
features which do not depend on the simple formula used for the first step.

Fix a back-projection algorithm A. The total error E(f) = E(A, f) of the
reconstruction of an original f is the difference

E(f) ::g_f7

where g is the result of the tomographic reconstruction. It can be written as a sum
of two terms

E(f) = Es(f) + En(f),

where E;(f) is the part caused by the operations (d),(f),(i) only (software part)
and Ej(f) the part caused by the physical origins (hardware part). Namely we
define the software part as follows

Es(f) = A(Rf(z[d]» - fa

where A(Rf(X[d])) is the reconstruction, which is given by the algorithm A with
the data of integrals Rf(L) for a finite sampling X[d] C £. Here d < 1 is the
average distance between adjacent segments L N supp f, L € X[d]. Whence, we get

En(f) = g — A(Rf(Z[d])).

This part of the total defect may be caused by several physical sources, in particular,
by
(1) the effect of “partially filled volume”: for a simple model this means that

/exp(—/de)cdt;Aexp(— //decdt),

where the function ¢ = ¢(t) is a characteristics of collimator of a detector.

(i) non-linearity of the detector characteristics, especially if the ratio noise/signal is
not small enough;
(iii) polychromatism of the radiation and “beam hardening”.

These effects imply together that the real data which the algorithm works up
does not coincide with (and sometimes is far from) the exact values of the integral
(1).

Remark Note that the software part F4(-) is a linear operator, unlike the hard-
ware part E(f) which is typically a non-linear operator. Therefore these operators
respond differently to a source of errors. The main such source is a discontinuity of
the original f. This source begets an error E(f) whose core is localized in a vicin-
ity of singular set of f, but an essential support of E,(f) may extend far beyond
of this set.
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§3.CONVERGENCE OF BACK-PROJECTION ALGORITHMS

We call an algorithm A convergent for an original f, if the software error E4(A, f)
tends to zero as d — 0.

Claim 1. Let A be a back-projection algorithm that includes an appropriate filter-
ing and interpolation and is applied to the integral data (1) available for a properly
distributed sampling X[d] C . Then the function Es(f) tends to zero uniformly
as d — 0 for any function f € CY(E) with compact support, if q is big enough.

We call a filter appropriate, if it has an effective window in the spectral domain
of the size < 1/2d like, for example, the 2D Shepp-Logan filter. Any properly
distributed sampling should be d—dense in the phase space T*(E) in the following
sense: for any point (z,£) € T*(E),z € supp f,|{| = 1 there is a line L € X[d],
such that

dist(z,L) < d, dist*(§,L)) < p- d
T

Here r is radius of the smallest ball that contains supp f, L* means the plane in
T#(E) that is orthogonal to L and dist* means the Euclidean distance the dual
space TF(E) = E*. This condition is akin to the Nyqwist inequality; the optimal
values of the factor p and an effective size of window of the filter should be found.
See [2] for a discussion of similar problems for 2D back projection algorithms. To
transform this Claim to a theorem the conditions on filters and interpolation should
be specified. We shall call an algorithm that satisfies these conditions an appropriate
Y-algorithm.

For a function f with singularities the convergence of an appropriate algorithm
is not certain even for an open set, where the function is smooth enough. Some
simple examples of 2D computer simulated tomography show that the singular set
of f spreads around a spot of error E,(f). The shape of this spot depends on the
geometry of the singular set. To get some ideas about the shape of Es we specify
the class of originals. Suppose that the function f has the following simple form

(3) f=aé(B) or f=ax(V)

where a € C$°(E), x(V') denotes the characteristic function of an open set V C E
with a smooth boundary B and §p is the delta-function on the boundary. In fact
the delta-function is a model for the delta-like density 21—€ x(Be), where ¢ is small
and B. means e-neighborhood of B. Apparently the value of |Es(f)| can not be
small near B since A(Rf) is an approximation of the discontinuous original f with
help of continuous functions.

We give a qualitative estimate of this value in terms of local geometry of B. In
particular, we shall say that the error E; is greater at a point 2z € B at one side of
the surface B than at another side, if the set y € U : |Es(f)| > [|F(z)|, is larger
at this side for a small ball U centered at z. Here F(z) is an average values of the
function f at this point and [ > 0 is a small parameter. We have F(z) ~ 1/2¢, if
f ~8(B) and F(z) =~ 1/2 if f = x(V') for any point z € B.

Claim 2. If the set V is convex, then for an appropriate Y-algorithm A the error
E,(x(V)) tends to zero uniformly as d — 0 on any compact set K C E\B. In a
neighbourhood of B the quantity |Es(f)| is smaller inside of V' than outside.
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A theorem of this kind can be proved by means of technique like [3,4].

Let now V be an arbitrary domain with smooth boundary B. Denote by K the
Gaussian curvature of the boundary. Recall that an inflezional tangent to a surface
B is a tangent with zero normal curvature. A curve A C B is called an asymptotic
curve, if any tangent line L to A is inflexional for B. An inflexional tangent line L to
B is called simple, if it is not an inflexion tangent for the corresponding asymptotic
curve A. This means that

(4) dist(z, B) ~ dist(z, B N L)**?

for z € L close to BN L, where k = 2. We call a straight line a double inflexional
tangent to B, if it is a simple inflexional tangent to A. This is equivalent to the
relation (4) with k£ = 3.

Claim 3. For any appropriate Y-algorithm A and any original of the form (4)
such that K(z) < 0 the error Ey(f) is greater near a point z € B, where there is a
double inflexional tangent L, € ¥ comparing with points y € B, where there is no
such inflexional tangent as d tends to 0.

It is plausible that Es(x(V)) — 0 outside the union of all inflexional tangents
L, C %. In spite of that the error E, may be not small at least the shape of V can
be recognized by means of an appropriate algorithm. This is no more the case, if
the completeness condition is not fulfilled. A reconstruction will be not adequate
for the open part B' of the boundary such that for any z € B’ there is no line
L € ¥ such that z € L C T,(B). This failure is a corollary of the lack of the data
and does not depend on the kind of algorithm used. See [2,5,3] for discussion of the
similar problem in 2D-tomography.

§4.GEOMETRY OF LINE SPACE AND SINGULARITY OF TANGENT LINE PENCILS

The line space A possesses a geometric structure of pseudo-Minkowski space:
if we consider E as a real twistor space, we get an exact analogy with Penrose’s
construction of the complex Minkowski space which starts with a complex twistor
space C*. To explain the pseudo-Minkowski geometry we choose the following
charts for A: fix two parallel planes Hy, Hy in E and two linear functions «, 3 on
E, which are linearly independent on these plains. Taking a line L that is not
parallel to these planes, we denote by aq, 1 and ay, f2 the values of a and 8 in
the points L N Hy; and L N Hy correspondingly. Hence we get four coordinates
a1, B1,az, B2, defined on an open part of A. Note some simple properties of these
coordinates:

(i) varying the functions «,f and the plane H; one makes a linear affine trans-
formation of the coordinates. A change of the planes H;, Hs, induces a linear
projective transformation of the coordinates.

(ii) For two lines L, L' the equation

oy — o B — B ! ! ! !
det h Ll =0, .= o;(LY), B; = Bi(L
a|B 0 BT o = ai(L), B = Bi(L)
holds if and only if these lines have a common point or are parallel. For a fixed
line L this equation defines a quadratic cone in A of signature (2,2), which is
called the light cone with the vertex L.
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(i) the set A(z) of lines that contains a fixed point ¢ € E is the set of solutions of
two linear affine equation on coordinates a1, B1, a2, f2. Really we may shift the
plane Ho, because of (i) hence, we may suppose that z € Hy. Then the set of
lines through z will be given by the equations a; = 0,8, = 0. Whence, A(z) is
a plane in A.

For any plane H in E the set A(H) of lines L C H is as well a plane in A. This
implies that

(iv) For any point z € E and any plane H through z the set of lines L such that
z € L C H is a projective line A(z, H) in A (called light ray).

Now we take in the play a smooth surface B C E. The pencil Y(B) of lines,
which are tangent to B is a threefold in A, which may be singular. This pencil is
an union of projective lines A(z,T;(B)),z € B, where T(B) is the tangent bundle
of B. It is easy to check the following

Proposition 1. If B is strictly convex, i.e. K >0, then X(B) is smooth.

Proposition 2. If K(z) < 0 or K(z) = 0,dK(z) # 0 for a point z € B and L, is
a simple inflexion tangent to B, then the set ¥3(B) C Y(B) of all simple inflexion
tangent to B is locally diffeomorphic to the product Dy x R%, where D, is the plane
cusp curve, given by the equation

(5) 453 +27s2 = 0.
This means that there exists a diffeomorphism of germs
(5,8) (A, L) = (S x B%,(0,0))

that takes ¥.(B) onto Dy X R? and ¥5(B) onto 0 x R2, where S is a plane with the
coordinates Sg, S1-
The following equation holds

(6) SO(L) = a1 + 0(a17a27ﬁ1762)a

if we choose for a a linear function that vanishes on the tangent plane T, (B), for
3 a function that vanishes on L., and take for H, a plane that contains z.
Any line Az, T,(B)) meets So(B) twice and is tangent to this surface.

Proposition 3. Suppose that K(z) < 0 and L, is a double inflexional tangent to
B at z. Then there exists a diffeomorphism of germs

(5,t): (A, Ls) = (S x R,(0,0))

such that
»(B) & D3 x R, ¥3(B) = {0} x R,

where Y3(B) is the set of all double inflexion tangents and Dj is the discriminant
surface in S = R® (“swallow tail”). If we choose coordinates on A as in Proposition 2
and coordinates sg, 51,52 on S as below, then the equation (7) holds once more. The
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light ray A(z,T;(B)) is tangent to the surface given by the equations so = s1 =0
in A.

The surface Dj is given by the equation
(7) 25655 — 1285252 + 165550 — 4s5s3 + 144sys7s9 — 2757 =0,

with the parabola sy < 0,51 = 0,459 = s3 cut off. See [6] for details and pictures.

Proof Choose a smooth function ¢ such that ¢ = 0,dp # 0 on B and consider
the mapping A : R x A — E that takes a pair (¢,L) into y = y(¢,L), where
y(-.L) is a smooth parameterization of lines L € A. The pullback ¢ := M (¢) is
a smooth function on R x A and satisfies the equation v (t,L;) ~ (t — t(z))**+!
where y(t(z),L,;) = z and k = 2,3 correspondingly. Applying the Malgrange’s
preparation theorem [7] we get a factorization 1) = hgq, where h is a smooth function
which does not vanishes at the point (¢(z), L) and

g(t, L) = t" psptP fsp 1 tF7 4 st + s

where sg,s1,... ,5; are smooth functions of L. Setting ¢t = r — %5, we get the

equation ¢(¢,L) = pi(r,s(L)) where pi(r,s) is a similar polynomial with sy = 0.
A line L is tangent to B if and only if the function (-, L) has a real multiple
root. This is equivalent to the condition that px(-,s(L)) has a multiple root, where
s = (80,81,.-.,8k—1). The last condition means that the point s(L) belongs to the
corresponding discriminant set (5),(7). This proves Propositions 2 and 3.

Corollary 4. In a neighbourhood of the set ¥3(B) there exists a smooth mapping
z2 : A — B whose restriction on X3(B) coincides with the natural projection onto

B.

We define z2(L) to be the point on B, where the line L(0,t) is an inflexional
tangent, ¢t = t(L) is a component of the mapping given in Proposition 2 and L =
L(s,t) is the inverse mapping. Using Proposition 3 we define in a similar way a
projection z3 : A — I. Here I C B is a smooth curve of points y, where a double
inflexion tangent L, touche B.

§5.SINGULARITIES OF THE RAY TRANSFORM

Consider the ray transform Rf of the original like (3). This function is in C*°
outside the threefold X(B), whose singularities were described in the previous sec-
tion. We give here an asymptotic representation of Rf near X(B) by means some
special functions.

If the body V is convex, then an asymptotic of Rf near 3(B) is well-known for
a function like (4) as well as for more general singular functions. For the sake of
completeness we write it down here. Taking a line L that is close to ¥(B) and
meets V, we find a point z € B such that the plane P(L,z) through L and z
contains the normal vector n(z) to B. We denote z1(L) := z, o(L) := dist(L, 1)
and define k(L) to be the curvature of the section P N B at z;. Then we have the
following asymptotic development for the ray transform of the delta-like original:

R(ab(B))(L) = [a(w1 (L)) + o(1)] [x(z1(L))| 72 o(L) ™.
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For the original f = ax(V) we get a similar formula where the function o77 is
changed by its primitive 203.

Now we pass to the case of non-convex V, where the geometry of ¥(B) was
described by Propositions 2 and 3. Fix k > 1 and consider the following family of

polynomials
p(rys) =rFt psp 7Pl fsp o rF 2 s 4 s

with real coefficients s = (so,81,...8k—1). Let Dy be the set of points s € S = R*
such that p(r,s) has at least one real multiple root r. For k = 2,3 this set was
described in the previous section. For s € S\Dy we define

1
Uk(S) = Z _]p’(ri(s), S)la

where the sum is taken over the set of all simple real roots r;(s),z = 1,2,... of p;
we put vg(s) = 0, if there is no such a root. This function is real analytic on the
complement to Dy.

Theorem 1. Under the conditions of Proposition 2 the ray transform of the func-
tion f = a8(B) admits the following asymptotic representation in a neighborhood
of 35(B):
Rf(L) = [a(z2(L)) + o(1)] g2(z2(L)) v2(s(L))
as L — Y3(B), where s = s(L) is the submersion defined in Proposition 2, z3(L)
is given in Corollary 4 and g2(z) is a smooth non-zero function on B (see below).
In a neighborhood of the set ¥.3(B) a similar equation holds:

Rf(L) = [a(z3(L)) + o(1)] g3(z3(L)) va(s(L))

as L — Y3(B), where g3 is a smooth non-vanishing function on the curve I.
The quantity o(1) tends uniformly to zero as L tends to a compact subset of
Y2(B) and of £3(B) correspondingly.

To get a similar formulae for an original like x (V') we use the following continuous
special functions:

wa(s) := /vg(u,sl)du, ws(s) = /vg(u,sl,sz)du.
0 S0

Note that the function w3(s) vanishes in the component of S\Djs, where sy >
O(|s1]% + s2), since the function vs does.

Theorem 2. Under the same hypothesis if f = ax(V'), then we have
Rf(L) = [a(zk(L)) + o(1)] gk (zr (L)) wr(s(L))

as L — X, where k = 2,3.

We specify the functions g¢z,¢s in the following way: take a point z € B an
inflexional tangent L, at z and the plane P that is orthogonal to B at z and
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contains L,. Then choose Euclidean coordinates «,7 in P with the origin in z,
where « is as in Proposition 2; we can reach the equation ||| = 1 keeping (6) and
(7) and rescaling in S. Write down an equation a = a(7) of the curve PN B and
have

a(0) = a'(0) = &' (0) = 0,a""(0) # 0, if L, is simple inflexional
and
a(0) = o'(0) = &"(0) = &'"(0) = 0,a"""(0) < 0, if L, is double inflexional.

The negative sign of the forth derivative means that the a-axis has the outward
direction with respect to the (non-strictly) convex curve P N B. Then we have

24
; ga(e) =| 0) |

|-
=

1 6

g2(z) = 2 l 12/7(0)] ]

Remark 3. The similar statement is true as well for the case K(z) = 0 and any
order k of contact in (4) however the mapping (s,t) may be not a diffeomorphism.

Note that the singular support of the function vi(s(L)) coincides with the set
Yx(B) for k = 2,3 since this set is a pullback of the discriminant set Dj according
to Propositions 2 and 3.

For a proof of Theorems 1, 2 and Remark 3 we apply [8, Theorem 3, Ch.5,Sec.5]
to the function Rf. This function belongs to the class 5" (W), m = 1/2, where W
is an integral subvariety in the contact manifold K (A) (see loc.cit.Ch.5). In fact W
is the set of tangent spaces to the threefold ¥(B) or to be precise W is the image
of T(®(B)) under the natural mapping K(®) — K(A) (see sect.6). Therefore we

get an representation

k
(8) Rf(L) = Z/v;’(so —t,81,...,86-1)bj(L,t)dt  (mod C*(U)),

where s; = s;(L) and vi,j = 0,1,...,k — 1 are some special functions (called
versal integrals), b;dt are some distributions which belong to the class 2(1),0 and U
is a neighbourhood of a given line Ly € Zx(B). The equation singsuppv; = Dy
holds for j = 0,...,k — 1; the function v} is positive has the sharpest singularities
and coincides with vy, as above. The inclusion b;dt € XY ; implies that the Fourier
transform Zj (L,7) = F4—(bj(L,t)dt) is bounded as |7| — oco. In fact the function
30 (L,-) has a non-zero limit b at infinity. It can be proven by comparing character
of singularities of functions Rf(L) and of function v; on the a;-axis. This assertion
implies that bo(-,t)dt = b6(t)dt + b’ where a distribution b’ is smoother than delta-
distribution 8dt. Then we change the distribution bodt in (8) to b6(t)dt and omit
all the terms with j > 0. This gives an asymptotic for Rf and proves Theorem 1.
Theorem 2 can proved on the same lines.

An alike asymptotic representation for the ray transform Rf(L), f = ¢} (z),\ €
C can be written under the similar conditions on geometry of the hypersurface

B = {z € R", ¢(z) = 0}.
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§6.GEOMETRY OF NON-LINEAR ARTIFACTS

Consider a singular original that admits the following form
f~apép+acdc + ardr,
where ap,ac,ar arein C§°(E) and 6B, éc¢, 6 mean respectively the delta-function

on a smooth surface B, smooth curve C and on a finite set F'. We mean that f is

in fact a sum of “delta-like” functions
1

(9) fe = ap wiE X(Be) + ac
where GG. means e-neighborhood of a set G C E and wy is the volume of the
k-dimensional unit ball. A reconstruction of a function of this type with small
parameter d may have heavy artifacts, which are big far from the singularity set
B UC U F of the original. Artifacts of this kind are well-known for 2D case; they
should be identified as images of the non-linear part Ej(f) of the defect. We try
to describe the geometry of Ej(f) for an appropriate algorithm without specifying
its details.

For this we need more geometry. First, introduce a flag space @, which consists
of pairs (z,L), where € L € A. This is a five-dimensional manifold which has
two natural projections

1
3 X(F€)+a7

1
g2 x(Ce) +ar w3€E

w2

EEd A,
which send a pair (z, L) to  and L correspondingly. For any smooth surface B C E
we define a threefold ®(B) C @ that consists of pairs (z,L),z € B, where L is a
tangent line to B at z. Evidently A\(®(B)) = £(B). Then for any curve C in E
we define ®(C') to be the threefold of pairs (z, L),z € C N L. For any finite subset
F C E a surface ®(F) is defined in a similar way. For a function like (9) we set
o(f) := @(B)) U (C)) U B(F)).
This is a subvariety of @, which may have self-intersection. Consider the mapping
(10) 0 0(f) > ADT,
which is a restriction of the projection A, ¥ is a pencil. We call a line L € ¥ a
singular element of the pencil, if
(i) it is a critical value of ¢ or
(ii) it has several preimages under ¢ or
(iil) it is a point, where the mapping ¢ is not transversal to X.

The following lines are examples of singular elements:

any line that is tangent to B in two or more points;

each inflexional tangent to B;

any line that is tangent to B and meets the set C U F;

any line that meets C' U F' two or more times.

For some cases nonlinear artifacts may appear near any singular line. To show
it we choose a simple mathematical model for Ej. Set

g := ATra(Rf(Z[d]))},
where Tra is the following truncation operator: Tra(a) = a, if |a] < A and
Tra(a) = signa- A, if |a| > A, a € R. Hence we have

Ew(f) = A{Tra(Rf(Z[d])) — Rf(Z[d])}-
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Claim 4. For any appropriate X-algorithm, any function f. like (8) and any sin-
gular line L of the pencil ¥ the function E(f.) may tend to infinity near L as
e~A"l~d—0.

We mean that the hardware error may tend to infinity near a given singular line
for a certain relation between the small parameters ¢, A™! and d. See [9] for 2D
case.

It may be worthwile to take in account all the points of ¥, where the mapping
¢ has a peculiarity with respect to the quasi-Minkowski geometry. A plane A(H)
or A(z) may have a non-generic intersection with the image of the mapping ¢. We
call such points = and planes H singular. The error Ej(f.) may be relatively big
near any singular point or plane.

We anticipate a complicated structure of Ex(f) near singular points, lines and
planes (cf. [9]). Apparently if we change the singular function §(B) in (10) to the
function x(V'), some artifacts on singular lines still may appear. But the analysis
of Ex(f) is more complicated in this case.
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