ISBN 82-553-0863-6 Pure Mathematics No.29 October 1993

Integrals in The Hida Distribution Space $(\mathcal{S})^*$

by

Fred Espen Benth

PREPRINT SERIES – Matematisk institutt, Universitetet i Oslo

Integrals in The Hida Distribution Space $(S)^*$.

Fred Espen Benth
Department of Mathematics
University of Oslo
Box 1053 Blindern, N-0316 Oslo
Norway

Abstract

We give sufficient conditions for $(S)^*$ -integrability. The results will be applied on Skorohod integrable processes, where we show the equality between the Skorohod integral and an $(S)^*$ -integral involving white noise and Wick product, only using the Skorohod integrability requirement.

1 Introduction.

This article considers integrals in $(S)^*$, and the connection between an $(S)^*$ -integral and the Skorohod integral. Moreover we will show that

$$\int_0^t Y_s \diamond W_s ds = \int_0^t Y_s \delta B_s \tag{1}$$

without any significant restrictions on the process Y_s , except the natural requirement of Skorohod integrability. The left hand side of this equation is to be understood as a Lebesgue integral in the $(S)^*$ -sense. The right hand side is the familiar Skorohod integral. The symbol \diamond denotes the Wick-product and W_s the white noise process. All these notions are discussed in detail.

In [LØU], Th.(3.3) there is an elegant proof of (1). However, the authors have put severe restrictions on the process Y_s . The restrictions are given in the following way: Define λ as the measure on the product- σ -algebra on \mathbb{R}^n such that

$$\int f(y)d\lambda(y) = \int_{\mathbb{R}} \dots \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(y_1, \dots, y_n) e^{-1/2y_1^2} \frac{dy_1}{\sqrt{2\pi}} \right) e^{-1/2y_2^2} \frac{dy_2}{\sqrt{2\pi}} \right) \dots e^{-1/2y_n^2} \frac{dy_n}{\sqrt{2\pi}}$$

Let $z^{\alpha} = z_1^{\alpha_1} \dots z_m^{\alpha_m}$ where $z_j \in \mathbb{C}$. If Y_t has the Wiener-Ito chaos expansion (to be defined later, see (13))

$$Y_t = \sum_{lpha} c_{lpha}(t) H_{lpha}(\omega)$$

then we define the Hermite transform of Y_t to be

$$ilde{Y}_t = \sum_lpha c_lpha(t) z^lpha$$

To obtain (1), [LØU] requires that

$$\int_0^t (\int \int | ilde{Y}_s ilde{W}_s|^2 d\lambda(x) d\lambda(y)) ds < \infty$$

This restriction ensures the existence of the inverse Hermite transform (for more information about the Hermite transform, see $[L \emptyset U]$). In this article however, we prove that Skorohod integrability of Y_t is sufficient to ensure the existence of the left hand side of (1). The proof of the equality goes by a direct calculation, without using any Hermite transforms.

2 The Spaces (S) and $(S)^*$.

We start by recalling some of the basic definitions and features of the white noise probability space. This brief introduction is mostly taken from [GHLØUZ]. For a more complete account, see [HKPS].

As usual, let $\mathcal{S}' = \mathcal{S}'(\mathbb{R}^d)$ denote the space of tempered distributions on \mathbb{R}^d , which is the dual of the well-known Schwartz space $\mathcal{S}(\mathbb{R}^d)$. By the Bochner-Minlos theorem there exists a measure μ on \mathcal{S}' such that

$$\int_{\mathcal{S}'} e^{i \langle \omega, \phi \rangle} d\mu(\omega) = e^{-\frac{1}{2} \|\phi\|^2}, \phi \in \mathcal{S}(\mathbb{R}^d)$$
 (2)

where ||.|| is the $L^2(\mathbb{R}^d)$ -norm. This measure corresponds to the bilinear form

$$\mathcal{E}(\phi,\psi) = \int_{\mathbb{R}^d} \phi \psi dx; \phi, \psi \in \mathcal{S}(\mathbb{R}^d)$$

Let \mathcal{B} denote the Borel sets on \mathcal{S}' (equipped with the weak star topology). Then the triple $(\mathcal{S}'(\mathbb{R}^d), \mathcal{B}, \mu)$ is called the white noise probability space.

Definition 1 The white noise process is a map

$$W: \mathcal{S} imes \mathcal{S}^{'}
ightarrow \mathbb{R}$$

given by

$$W(\phi,\omega) = W_{\phi}(\omega) = \langle \omega, \phi \rangle, \omega \in \mathcal{S}', \phi \in \mathcal{S}$$
(3)

Since S is dense in L^2 , we can define $\langle \omega, \phi \rangle$ for $\phi \in L^2$ by

$$\langle \omega, \phi \rangle = \lim_{n \to \infty} \langle \omega, \phi_n \rangle$$

where $\phi_n \in \mathcal{S}'$ is a sequence converging to $\phi \in L^2$. In particular, if we define

$$\tilde{B}_x(\omega) := \tilde{B}_{x_1, \dots, x_d}(\omega) := \langle \omega, \mathcal{X}_{[0, x_1] \times \dots \times [0, x_d]}(.) \rangle$$
(4)

then \tilde{B}_x has an x-continuous version B_x which then becomes a d-parameter Brownian motion. The d-parameter Wiener-Ito integral of $\phi \in L^2$ is defined by

$$\int_{\mathbb{R}^d} \phi(y) dB_y(\omega) = \langle \omega, \phi \rangle \tag{5}$$

The left hand side coincides with the Ito integral if $\operatorname{supp}(\phi) \subset [0, \infty)$. (See [LØU], p.4). Of special interest now will be the space $L^2(S'(\mathbb{R}^d), \mu)$ or $L^2(\mu)$ for short. The Wiener-Ito chaos expansion theorem says that every $F \in L^2(\mu)$ has the form

$$F(\omega) = \sum_{n=0}^{\infty} \int_{(\mathbb{R}^d)^n} f_n(u) dB_u^{\otimes n}(\omega)$$
 (6)

where $f_n \in L^2(\mathbb{R}^{nd})$ and f_n is symmetric in all its nd variables (in the sense that $f_n(u_{\sigma_1}, \ldots, u_{\sigma_{nd}}) = f_n(u_1, \ldots, u_{nd})$ for all permutations σ .) The right hand side of (6) are the multiple Ito integrals.

With F, f_n as in (6) we have

$$||F||_{L^{2}(\mu)}^{2} = \sum_{n=0}^{\infty} n! ||f_{n}||_{L^{2}(\mathbb{R}^{nd})}^{2}$$
(7)

There is an equivalent expansion of $F \in L^2(\mu)$ in terms of the Hermite polynomials

$$h_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} (e^{-\frac{x^2}{2}}); n = 0, 1, 2, \dots$$

We now explain this more closely. Define the Hermite function of order n as $\xi_n(x)$

$$\xi_n(x) = \pi^{-1/4} ((n-1)!)^{-1/2} e^{-\frac{x^2}{2}} h_{n-1}(\sqrt{2}x)$$
 (8)

where $x \in \mathbb{R}, n = 0, 1, 2, \ldots$ $\{\xi_n\}_{n=1}^{\infty}$ forms an orthonormal basis for $L^2(\mathbb{R})$. Therefore the family $\{e_{\alpha}\}$ of tensor products

$$e_{\alpha} := e_{\alpha_1, \dots, \alpha_m} := \xi_{\alpha_1} \otimes \dots \otimes \xi_{\alpha_d} \tag{9}$$

(where α denotes the multi-index $(\alpha_1, \ldots, \alpha_d)$) forms an orthonormal basis for $L^2(\mathbb{R}^d)$. Assume that the family of all multi-indices $\beta = (\beta_1, \ldots, \beta_d)$ is given a fixed ordering

$$(\beta^{(1)},\beta^{(2)},\ldots,\beta^{(n)},\ldots)$$

where $eta^{(k)}=(eta_1^{(k)},\ldots,eta_d^{(k)}).$ Put

$$e_n = e_{\beta^{(n)}}; n = 1, 2, \dots$$

Let $\alpha = (\alpha_1, \dots, \alpha_m)$ be a multi-index. It was shown by Ito that

$$\int_{(\mathbb{R}^d)^n} e_1^{\hat{\otimes}\alpha_1} \hat{\otimes} \dots \hat{\otimes} e_m^{\hat{\otimes}\alpha_m} dB^{\hat{\otimes}n} = \prod_{j=1}^m h_{\alpha_j}(\theta_j)$$
(10)

where $\theta_j(\omega) = \int_{\mathbb{R}^d} e_j(x) dB_x(\omega)$, $n = |\alpha|$ and $\hat{\otimes}$ denotes the symmetrized tensor product, so that, e.g., $f \hat{\otimes} g(x,y) = \frac{1}{2} [f(x)g(y) + f(y)g(x)]$ if $x,y \in \mathbb{R}$ and similarly for more than two variables. If we define, for each multiindex $\alpha = (\alpha_1, \dots, \alpha_m)$,

$$H_{\alpha}(\omega) = \prod_{j=1}^{m} h_{\alpha_{j}}(\theta_{j}) \tag{11}$$

then we see that (10) can be written

$$\int_{(\mathbb{R}^d)^n} e^{\hat{\otimes}\alpha} dB^{\otimes|\alpha|} = H_{\alpha}(\omega) \tag{12}$$

using multi-index notation: $e^{\hat{\otimes}\alpha} = e_1^{\hat{\otimes}\alpha_1} \hat{\otimes} \dots \hat{\otimes} e_m^{\hat{\otimes}\alpha_m}$ if $e = (e_1, e_2, \dots)$. Since the family $\{e^{\hat{\otimes}\alpha}; |\alpha| = n\}$ forms an orthonormal basis for the symmetric functions in $L^2((\mathbb{R}^d)^n)$, we see by combining (6) and (12) that we have the representation

$$F(\omega) = \sum_{\alpha} c_{\alpha} H_{\alpha}(\omega) \tag{13}$$

(the sum being taken over all multi-indeces α of nonnegative integers). Morover, it can be proved that

$$||F||_{L^{2}(\mu)}^{2} = \sum_{\alpha} \alpha! c_{\alpha}^{2} \tag{14}$$

where $\alpha! = \alpha_1! \dots \alpha_m!$.

There is a subspace of $L^2(\mu)$ which in some sense corresponds to the Schwartz subspace $\mathcal{S}(\mathbb{R}^d)$ of $L^2(\mathbb{R}^d)$. This space is called the *Hida test function space* and is denoted (\mathcal{S}) . Using the characterization due to Zhang in [Z], a simple description of (\mathcal{S}) can be given as follows:

Definition 2 Let $F \in L^2(\mu)$ have the chaos expansion

$$F(\omega) = \sum_{lpha} c_lpha H_lpha(\omega)$$

Then F is a Hida test function, i.e. $F \in (S)$, if

$$\sup_{\alpha} c_{\alpha}^{2} \alpha! (2\mathbb{N})^{\alpha k} < \infty \ \forall \ natural \ numbers \ k < \infty$$
 (15)

where

$$(2\mathbb{N})^{\alpha} := \prod_{i=1}^{m} (2^{d} \beta_{1}^{(j)} \dots \beta_{d}^{(j)})^{\alpha_{j}} \text{ if } \alpha = (\alpha_{1}, \dots, \alpha_{m})$$

$$(16)$$

In this article, the dual of (S), denoted $(S)^*$, will be studied. It is therefore of great importance to have a nice characterization of this space, which is called the *Hida distribution space*. Another theorem in [Z] states the following:

Theorem 3 A Hida distibution G is a formal series

$$G = \sum_{\alpha} b_{\alpha} H_{\alpha} \tag{17}$$

where

$$\sup_{\alpha} b_{\alpha}^{2} \alpha! ((2\mathbb{N})^{-\alpha})^{q} < \infty \text{ for some } q > 0$$
 (18)

If $G \in (S)^*$ is given by (17) and $F \in (S)$ is given by (13), the action of G on F is given by

$$\langle G, F \rangle = \sum_{\alpha} \alpha! b_{\alpha} c_{\alpha} \tag{19}$$

Note that no assumptions are made regarding the convergence of the formal series in (17).

We can in a natural way regard $L^2(\mu)$ as a subspace of $(S)^*$. In particular, if $X \in L^2(\mu)$ then by (19) the action of X on $F \in (S)$ is given by

$$\langle X, F \rangle = E[X \cdot F]$$

Before we look at an example, we define the important $Wick \ product$ of two Hida distributions F, G:

Definition 4 Let $F = \sum_{\alpha} a_{\alpha} H_{\alpha}$, $G = \sum_{\alpha} b_{\beta} H_{\beta}$ be two elements of $(S)^*$. Then the Wick product of F and G is the element $F \diamond G$ in $(S)^*$ given by

$$F \diamond G = \sum_{\alpha,\beta} a_{\alpha} b_{\beta} H_{\alpha+\beta} \tag{20}$$

We will in the rest of the article only consider d=1, i.e. $\mathcal{S}=\mathcal{S}(\mathbb{R})$ and $\mathcal{S}'=\mathcal{S}'(\mathbb{R})$. Now, we turn the attention to an important element in $(\mathcal{S})^*$, namely the white noise, $W_t(\omega)$. This element is defined as

$$W_t(\omega) = \sum_{k=1}^{\infty} \xi_k(t) H_{\epsilon_k}(\omega) = \sum_{k=1}^{\infty} \xi_k(t) h_1(\theta_k)$$
 (21)

where $\epsilon_k = (0, ..., 0, 1)$ with 1 on the k'th place, k = 1, 2, ...We show that the white noise is an $(S)^*$ -element: By (16)

$$(2\mathbb{N})^{\epsilon_k}=2k$$

and (18) becomes

$$\sup_{\alpha}b_{\alpha}^{2}\alpha!(2\mathbb{N})^{-\alpha q}=\sup_{k}\xi_{k}(t)^{2}1(2k)^{-q}<\infty$$

for some q > 0, since $\sup_{t} |\xi_k(t)| = O(k^{-1/12})$. (See [HP], p.571).

After this rather brief introduction to the white noise theory, we will have a look at integrals in $(S)^*$.

3 Integrals in $(S)^*$.

The two concepts of integrability of stochastic processes we are going to study, are the following:

Definition 5 A process $Y_s \in (S)^*$ for $s \in [0,t]$ is called $(S)^*$ -integrable if

$$\langle Y_s, \psi \rangle \in L^1([0, t]), \forall \psi \in (\mathcal{S})$$
 (22)

The $(S)^*$ -integral is then defined as the unique $(S)^*$ -element

$$\langle \int_0^t Y_s ds, \psi \rangle = \int_0^t \langle Y_s, \psi \rangle ds \tag{23}$$

where $\psi \in (\mathcal{S})$. (See prop (6.1) in [HKPS]).

Definition 6 A process $Y_s \in L^2(\mu)$ for $s \in [0,t]$ is Skorohod integrable if

$$\int_0^t E[Y_s^2] ds + \sum_{m=1}^\infty (m+1)! ||\tilde{f}_m||^2 < \infty$$
 (24)

where \tilde{f}_m is the symmetrization of $f_m(.)\mathcal{X}_{(0,t)}(.)$ in the chaos expansion, (6). Moreover

$$\int_0^t Y_s \delta B_s = \int_0^t f_o(s) dB_s + \sum_{m=1}^\infty \int_{\mathbb{R}^{m+1}} \tilde{f}_m dB^{\otimes m+1}$$
 (25)

If we have chaos expanded an $(S)^*$ -integrable process, what is its $(S)^*$ -integral? The answer to this question is:

Proposition 7 Assume $Y_s \in (\mathcal{S})^*, s \in [0, t]$, has the chaos expansion

$$Y_s = \sum_{lpha} c_lpha(s) H_lpha$$

where

$$\sum_{lpha}lpha!|a_lpha|\int_0^t|c_lpha(s)|ds<\infty$$

 $\forall \psi = \sum a_{lpha} H_{lpha} \in (\mathcal{S}).$ Then Y_s is $(\mathcal{S})^*$ -integrable, and

$$\int_0^t Y_s ds = \sum_{\alpha} \left(\int_0^t c_{\alpha}(s) ds \right) H_{\alpha} \tag{26}$$

Proof: Since

$$\int_0^t |\langle Y_s, \psi \rangle| ds \leq \sum_{\alpha} \alpha! |a_{\alpha}| \int_0^t c_{\alpha}(s) |ds < \infty$$

by assumption, the $(S)^*$ -integrability follows from (22). By Th.(2.25) in [F] we can change sums and integrals. Now invoking the definition of $(S)^*$ -integrals, we get

$$\langle \int_0^t Y_s ds, \psi
angle = \int_0^t \langle Y_s, \psi
angle ds = \int_0^t (\sum lpha! a_lpha c_lpha(s)) ds$$

$$=\sum_{lpha}lpha!a_lpha\int_0^tc_lpha ds=\langle\sum_lpha\int_o^tc_lpha(s)dsH_lpha,\psi
angle$$

The proposition follows.

Example: Assume

$$f \in L^2((0,t))$$
 a.e. $s \in [0,t]$

Then for $\psi = \sum_{\alpha} a_{\alpha} H_{\alpha} \in (\mathcal{S})$ we have

$$\sum_{k}|a_{e_k}|\int_0^t|f(s)||\xi_k(s)|ds<\infty$$

This is so because we can define the element

$$Z = \sum_{k} (\int_{0}^{t} |f(s)| |\xi_{k}(s)| ds) H_{\epsilon_{k}}$$

which is in $(S)^*$, since

$$\begin{split} \sup_k (\int_0^t |f(s)| |\xi_k(s)| ds)^2 (2k)^{-q} & \leq \sup_k (\int_0^t f^2 ds) (\int_0^t \xi_k^2 ds) (2k)^{-q} \\ & \leq ||f||^2 1 \sup_k (2k)^{-q} < \infty, \forall q > 0 \end{split}$$

This implies

$$\infty > \ \langle Z, ar{\psi}
angle = \sum_k |a_{\epsilon_k}| \int_0^t |f(s) \xi_k(s)| ds$$

Here $\bar{\psi}=\sum_{\alpha}|a_{\alpha}|H_{\alpha}$. By prop.(7) it follows that $f(s)W_{s}$ is $(\mathcal{S})^{*}$ -integrable on [0,t] and

$$\int_0^t f(s)W_s ds = \sum_k \int_0^t f(s)\xi_k(s)ds H_{\epsilon_k}$$

Note the following equality:

$$\int_0^t f(s)dB_s = \sum_k (f\mathcal{X}_{(0,t)}, \xi_k) \int_{\mathbb{R}} \xi_k(s)dB_s = \sum_k \int_0^t f(s)\xi_k(s)dsH_{\epsilon_k} = \int_0^t f(s)W_sds \qquad (27)$$

To proceed, we need a useful lemma:

Lemma 8 Assume

$$\sup_{\alpha}\alpha!\int_{0}^{t}|c_{\alpha}(s)|^{2}ds<\infty$$

Then

$$X = \sum_{lpha} (\int_0^t |c_lpha(s)| ds) H_lpha$$

will be an element of $(S)^*$.

Proof: We must show that

$$\sup_{lpha} (\int_0^t |c_lpha(s)| ds)^2 lpha! (2\mathbb{N})^{-lpha q} < \infty$$

for a q > 0. By the Hölder inequality, we get

$$\sup_{\alpha}(\int_0^t|c_{\alpha}(s)|ds)^2\alpha!(2\mathbb{N})^{-\alpha q}\leq t\sup_{\alpha}(\int_0^tc_{\alpha}^2(s)ds)\alpha!(2\mathbb{N})^{-\alpha q}$$

$$\leq t \sup_{\alpha} (\int_0^t c_{\alpha}^2(s) ds) < \infty$$

since

$$(2\mathbb{N})^{lpha}=2^{|lpha|}(1^{lpha_1}2^{lpha_2}\dots m^{lpha_m})\geq 1\;,\,orall lpha$$

To prove (1), we must classify the processes Y_s which make $Y_s \diamond W_s$ $(S)^*$ -integrable. The next proposition deals with this:

Proposition 9 Assume $Y_s \in (\mathcal{S})^*$ for $s \in [0,t]$ with chaos expansion

$$Y_s = \sum_{lpha} c_lpha(s) H_lpha$$

such that

$$\sup_{\alpha}\alpha!\int_{0}^{t}|c_{\alpha}(s)|^{2}ds<\infty$$

Then $Y_s \diamond W_s$ is $(S)^*$ -integrable on [0,t] and

$$\int_0^t Y_s \diamond W_s ds = \sum_{\alpha,k} \left(\int_0^t c_\alpha(s) \xi_k(s) ds \right) H_{\alpha + \epsilon_k} \tag{28}$$

Proof: Let $\psi = \sum_{\alpha} a_{\alpha} H_{\alpha}$. According to (22), the proposition is proved if

$$\sum_{lpha,k} (lpha + \epsilon_k)! \int_0^t |c_lpha(s)| |\xi_k(s)| ds |a_{lpha + \epsilon_k}| < \infty$$

By the estimate $\sup_{s\in\mathbb{R}}|\xi_k(s)|=O(k^{-1/12})$ in [HP], p.571, we have

$$\sum_{\alpha,k}(\alpha+\epsilon_k)!\int_0^t|c_\alpha(s)||\xi_k(s)|ds|a_{\alpha+\epsilon_k}|\leq \sum_{\alpha,k}(\alpha+\epsilon_k)!Ck^{-1/12}(\int_0^t|c_\alpha(s)|ds)|a_{\alpha+\epsilon_k}|$$

$$\leq C \sum_{\alpha,k} (\alpha + \epsilon_k)! (\int_0^t |c_{lpha}(s)| ds) |a_{lpha + \epsilon_k}|$$

Now put

$$X = \sum_lpha \int_0^t |c_lpha(s)| ds H_lpha \ Z = \sum_k 1 \cdot H_{\epsilon_k}$$

By lemma(8), $X \in (\mathcal{S})^*$.Since

$$\sup_k (2k)^{-q} < \infty, \forall q > 0$$

we have that $Z \in (\mathcal{S})^*$. Hence $X \diamond Z \in (\mathcal{S})^*$ and

$$X\diamond Z=\sum_{lpha,k}\int_0^t|c_lpha(s)|dsH_{lpha+\epsilon_k}$$

which implies

$$\langle X\diamond Z, ar{\psi}
angle = \sum_{lpha,k} (lpha + \epsilon_k)! \int_0^t |c_lpha(s)| ds |a_{lpha + \epsilon_k}| < \infty$$

where $\bar{\psi} = \sum_{\alpha} |a_{\alpha}| H_{\alpha}$. Hence the proposition follows.

An important consequence of this proposition is

Corollary 10 Assume Y_s is Skorohod integrable on [0,t]. Then $Y_s \diamond W_s$ is $(\mathcal{S})^*$ -integrable, and

$$\int_0^t Y_s \diamond W_s ds = \sum_{\alpha,k} \left(\int_0^t c_\alpha(s) \xi_k(s) ds \right) H_{\alpha + \epsilon_k} \tag{29}$$

Proof: By the Skorohod integrability, (24), we have

$$\int_0^t E[Y_s^2] ds = \int_0^t (\sum_{\alpha} \alpha! c_{\alpha}(s)^2) ds = \sum_{\alpha} \alpha! \int_0^t c_{\alpha}^2(s) ds < \infty$$

and hence

$$\sup_{lpha} lpha! \int_0^t |c_lpha(s)|^2 ds \leq \sum_lpha lpha! \int_0^t c_lpha^2(s) ds < \infty$$

We are now ready to prove the main result of this article:

Theorem 11 Assume Y_s Skorohod integrable on [0, t]. Then

$$\int_0^t Y_s \delta B_s = \int_0^t Y_s \diamond W_s ds \tag{30}$$

Proof: In the proof we use the definitions of the Wick product and the Skorohod integral. Direct calculation will then show (30).

The Wiener-Ito chaos expansion gives

$$egin{aligned} Y_s &= f_0(s) + \sum_{m=1}^\infty \int_{\mathbb{R}^m} f_m(s;u) dB_u^{\otimes m} \ &= f_0(s) + \sum_{m=1}^\infty \sum_{\substack{lpha \mid lpha \mid = m}} (f_m(s;.), \xi^{\hat{\otimes} lpha}) \int_{\mathbb{R}^m} \xi^{\hat{\otimes} lpha} dB^{\otimes m} \ &= f_0(s) + \sum_{\substack{lpha \mid lpha \mid lpha \mid lpha \mid lpha}} (f_{|lpha|}(s;.), \xi^{\hat{\otimes} lpha}) H_lpha \end{aligned}$$

Hence, taking the Wick product with W_s , we get

$$Y_s \diamond W_s = f_0(s)W_s + \sum_{lpha,k} (f_{|lpha|}(s;.), \xi^{\hat{\otimes}lpha}) \xi_k(s) H_{lpha+\epsilon_k}$$

By corollary (10):

$$\int_0^t Y_s \diamond W_s ds = \int_0^t f_0(s) W_s ds + \sum_{lpha,k} (\int_0^t (f_{|lpha|}(s;.), \xi^{\hat{\otimes}lpha}) \xi_k(s) ds) H_{lpha+\epsilon_k}$$

By the definition of the Skorohod integral, we have

$$\int_0^t Y_s \delta B_s = \int_0^t f_0(s) dB_s + \sum_{m=1}^\infty \int_{\mathbb{R}^{m+1}} \tilde{f}_m dB^{\otimes m+1}$$

$$= \int_0^t f_0(s)dB_s + \sum_{m=1}^{\infty} \sum_{\substack{|\alpha|=m+1\\|\alpha|=m+1}} (\tilde{f}_m, \xi^{\hat{\otimes}\alpha}) \int_{\mathbb{R}^{m+1}} \xi^{\hat{\otimes}\alpha} dB^{\otimes m+1}$$

$$= \int_0^t f_0(s)dB_s + \sum_{\substack{|\alpha|\geq 2\\|\alpha|\geq 2}} (\tilde{f}_{|\alpha|-1}, \xi^{\hat{\otimes}\alpha}) H_{\alpha}$$

From (27)

$$\int_0^t f_0(s)dB_s = \int_0^t f_0(s)W_s ds$$

Hence, we must show that

$$\sum_{\substack{\alpha,k\\|\alpha|\geq 1}} \int_0^t (f_{|\alpha|}(s;.),\xi^{\hat{\otimes}\alpha}) \xi_k(s) ds H_{\alpha+\epsilon_k} = \sum_{\substack{\alpha\\|\alpha|\geq 2}} (\tilde{f}_{|\alpha|-1},\xi^{\hat{\otimes}\alpha}) H_{\alpha}$$

Considering the right hand side, we find that

$$\sum_{\alpha \atop |\alpha| \geq 2} (\tilde{f}_{|\alpha|-1}, \xi^{\hat{\otimes}\alpha}) H_{\alpha} = \sum_{\alpha, k \atop |\alpha| \geq 1} (\tilde{f}_{|\alpha|}, \xi^{\hat{\otimes}(\alpha+\epsilon_k)}) H_{\alpha+\epsilon_k}$$

Hence, it is sufficient to show that

$$\sum_{\substack{\alpha,k\\|\alpha|=n}} (\tilde{f}_{|\alpha|}, \xi^{\hat{\otimes}(\alpha+\epsilon_k)}) H_{\alpha+\epsilon_k} = \sum_{\substack{\alpha,k\\|\alpha|=n}} (\int_0^t (f_{|\alpha|}(s;.), \xi^{\hat{\otimes}\alpha}) \xi_k(s) ds) H_{\alpha+\epsilon_k}$$
(31)

Let $|\alpha| = n$. Then we might write α as

$$\alpha = \epsilon_{i_1 i_2 \dots i_n}$$

where $\epsilon_{i_1i_2...i_n}$ has ones on the coordinate $i_1, ..., i_n$, and zeros everywhere else. If $i_j = i_k$, then the multi-index has 2 on the coordinate i_j , and so on. In addition we have

$$\epsilon_{i_1 i_2 \dots i_n} + \epsilon_k = \epsilon_{i_1 i_2 \dots i_n k}$$

If $u \in \mathbb{R}^{n+1}$, we get

$$\xi^{\hat{\otimes}(\epsilon_{i_1\dots i_n}+\epsilon_k)}(u) = \frac{1}{(n+1)!} \sum_{\sigma} \xi_{i_1}(u_{\sigma_1}) \dots \xi_{i_n}(u_{\sigma_n}) \xi_k(u_{\sigma_{n+1}})$$

where the sum is taken over all permutations σ of the set $\{1, \ldots, n+1\}$. In addition

$$\tilde{f}_n(u) = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathcal{X}_{(0,t)}(u_j) f_n(u_j; u_1, \dots, \hat{u_j}, \dots, u_{n+1})$$

Therefore

$$(\tilde{f}_{n}, \xi^{\hat{\otimes}(\epsilon_{i_{1}...i_{n}}+\epsilon_{k})}) = (1/((n+1)!(n+1))) \sum_{j=1}^{n+1} \sum_{\sigma} \int_{\mathbb{R}^{n+1}} \mathcal{X}_{(0,t)}(u_{j}) f_{n}(u_{j}; u_{1}, \dots, \hat{u_{j}}, \dots, u_{n+1})$$

$$\times \xi_{i_{1}}(u_{\sigma_{1}}) \dots \xi_{k}(u_{\sigma_{n+1}}) du$$

$$= (1/((n+1)!(n+1))) \sum_{j=1}^{n+1} n! \{ \int_{0}^{t} (f_{n}(u_{j}; ...), \xi^{\hat{\otimes}(\epsilon_{i_{2}...i_{n}}+\epsilon_{k})}) \xi_{i_{1}}(u_{j}) du_{j} + \dots$$

$$+ \int_{0}^{t} (f_{n}(u_{j};.), \xi^{\hat{\otimes}(\epsilon_{i_{1}...i_{n-1}}+\epsilon_{k})}) \xi_{i_{n}}(u_{j}) du_{j} + \int_{0}^{t} (f_{n}(u_{j};.), \xi^{\hat{\otimes}(\epsilon_{i_{1}...i_{n}})}) \xi_{k}(u_{j}) du_{j} \}$$

$$= (1/((n+1)!(n+1)))n!(n+1) \{ \int_{0}^{t} (f_{n}(s;.), \xi^{\hat{\otimes}\epsilon_{i_{2}...i_{n}k}}) \xi_{i_{1}}(s) ds + ... + \int_{0}^{t} (f_{n}(s;.), \xi^{\hat{\otimes}\epsilon_{i_{1}...i_{n}}}) \xi_{k}(s) ds \}$$

$$= (1/(n+1)) \{ \int_{0}^{t} (f_{n}(s;.), \xi^{\hat{\otimes}\epsilon_{i_{2}...i_{n}k}}) \xi_{i_{1}}(s) ds + ... + \int_{0}^{t} (f_{n}(s;.), \xi^{\hat{\otimes}\epsilon_{i_{1}...i_{n}}}) \xi_{k}(s) ds \}$$

This inserted in the left hand side of (31), gives

$$\begin{split} \sum_{\substack{\alpha,k\\ |\alpha|=n}} & (\tilde{f}_{|\alpha|},\xi^{\hat{\otimes}\alpha+\epsilon_k}) H_{\alpha+\epsilon_k} = \sum_{i_1,\dots,i_n,k} (\tilde{f}_n,\xi^{\hat{\otimes}\epsilon_{i_1\dots i_n}+\epsilon_k}) H_{\epsilon_{i_1\dots i_n}+\epsilon_k} \\ &= (1/(n+1)) \sum_{i_1,\dots,i_n,k} \{ \int_0^t (f_n(s;.),\xi^{\hat{\otimes}\epsilon_{i_2\dots i_n k}}) \xi_{i_1}(s) ds + \dots + \int_0^t (f_n(s;.),\xi^{\hat{\otimes}\epsilon_{i_1\dots i_n}}) \xi_k(s) ds \} H_{\epsilon_{i_1\dots i_n k}} \\ &= (1/(n+1)) \{ \sum_{i_2,\dots,i_n,k} (\sum_{i_1} \int_0^t (f_n(s;.),\xi^{\hat{\otimes}\epsilon_{i_2\dots i_n k}}) \xi_{i_1}(s) ds H_{\epsilon_{i_2\dots i_n k}+\epsilon_{i_1}}) + \dots \\ &+ \sum_{i_1,\dots i_n} (\sum_{k} \int_0^t (f_n(s;.),\xi^{\hat{\otimes}\epsilon_{i_1\dots i_n}}) \xi_k(s) ds H_{\epsilon_{i_1\dots i_n}+\epsilon_k}) \} \\ &= \sum_{i_1,\dots,i_n,k} (\int_0^t (f_n(s;.),\xi^{\hat{\otimes}\epsilon_{i_1\dots i_n}}) \xi_k(s) ds) H_{\epsilon_{i_1\dots i_n}+\epsilon_k} \\ &= \sum_{\alpha,k} (\int_0^t (f_n(s;.),\xi^{\hat{\otimes}\epsilon_{i_1\dots i_n}}) \xi_k(s) ds) H_{\alpha+\epsilon_k} \end{split}$$

which shows (31), and hence the theorem.

Corollary 12 Assume $Y_s \in L^2(\mu), s \in [0,t]$ is Ito integrable then

$$\int_0^t Y_s dB_s = \int_0^t Y_s \diamond W_s ds \tag{32}$$

Proof: Ito integrability implies Skorohod integrability. See [NZ] for more information about this.

Acknowledgements: I would like to thank professor Bernt Øksendal for introducing me to the white noise theory and for many inspiring and fruitful talks.

References

[F] G.B.Folland: Real Analysis. Wiley Interscience 1984.

[GHLØUZ] H. Gjessing, H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe and T.-S. Zhang: The Wick Product. To appear in A.Melnikov(editor): New Trends in Probability and Statistics, Vol iv. TVP Publishers, Moscow.

[HKPS] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: White Noise -An Infinite Dimensional Calculus. Kluwer Academic Press 1993.

- [NZ] D. Nualart and M. Zakai: Generalized Stochastic Integrals and the Malliavin Calculus. Prob. Theory and Rel. Fields 73 (1986), 255-280.
- [HP] E. Hille and R. Phillips: Functional Analysis and Semigroups. Am. Math. Soc. Colloq. Publ. Vol xxxi, 1957.
- [LØU] T. Lindstrøm, B. Øksendal and J. Ubøe: Wick-Multiplication and Ito-Skorohod Stochastic Differential Equations. In S. Albeverio et al (editors) Ideas and Methods in Mathematical Analysis, Stochastics, and Applications. Cambridge Univ. Press 1992, pp.183-206.
- [Z] T.-S.Zhang: Characterizations of White Noise Test Functions and Hida Distributions. Stochastics 41, 1992.