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Yaozhong Hu, Tom Lindstrem, Bernt @Jksendal, Jan Ubge and Tusheng Zhang

Abstract

In this paper we will show how to construct what we would like to call inverse Wick
powers of white noise. It is easily seen that no element W-1! in the space (S)* of
Hida distributions can have the property that the Wick product W ¢ W=! = 1. We
can, however, find objects W=°" s.t. W°" o W~°" = 1 except from delta function
singularities at the origin.

§1 Introduction
The simplest way to describe a white noise W is through a mapping W : D x Q — R:

(1.1) W, w) = j¢<s>st<w>

where D = D(R) is the space of Schwartz test functions, B; is a Brownian motion de-
fined on a probability space (Q, P, F) and [ ¢dB denotes an Ito integral, see e.g. [J]. It
is then easy to see that W is the derivative of B; in the sense of Schwartz distributions.
Since a Brownian motion is a.s. nowhere differentiable, W is a pure distribution (i.e.
not a function). In a stochastic calculus one wants to study products of such objects.
This, however, is certainly nontrivial and several spaces and constructions have been
introduced to deal with this problem. One such space is the space (S)* of Hida dis-
tributions, see [HKPS] or [K]. A very convenient property of (S)* is that this space is
closed under Wick multiplication, see [HKPS] or [GHLOUZ].

Wick multiplication is closely related to Hermite polynomials. In particular one can
show that if ¢ € D is such that [|¢|[L2g) = 1, then:

(1.2) W (p,w)=WoWo...oW(p,w)=Hy(W(p,w))

where the ¢ indicates that we perform Wick products between these distributions. As
a consequence, we get:

(1.3) Wem o W (¢, w) = Hpin(W (P, w))
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§2 Properties of Hermite polynomials

Hermite polynomials can be defined in several different ways. According to the con-
text, different scalings and normalizations have been preferred. The Hermite polyno-
mials we use in this paper, are defined through the relation:

t2
(2.1) Hy(x) = (x+it)re 2dt n=01,2,...

1 [o0)
V21T J—oo
These Hermite polynomials are solutions of the differential equation:

(2.2) y'-xy' +ny=0

and satisfies the classical relations:

(2.3) Hyi1(x) =xHn(x) —nHu_1(x)
d
(2.4) —Hyu(x) =nHy_1(x)
dx
2 d" X2
(2.5) Hn(x) = (=D)"er - (e77)
X
1 °° _x2 n' n=m
(26) ﬁ J_m Hn(x)Hm(x)e Tdx = {O n _,i_ m

If x # 0, the definition (2.1) also makes sense when 7 is negative integer. The func-
tions that appear by this construction, are not polynomials. It turns out, however,
that these functions have several nice properties with natural connections to the or-
dinary Hermite polynomials. By a slight abuse of notation, we will call them Hermite
polynomials of negative index, and we define:

2

-~ dt n=01,2,..., x40

1= 1
@7 Mol = \/ELO (x+itm®

We can, with some minor modifications, extend the fundamental properties (2.2)-(2.6)
of the Hermite polynomials to the case with negative indices. To integrate the func-
tions correctly across the origin, however, a correction term must sometimes be in-
troduced in the formulas. We start out to examine the case H_;(x).
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Figure 1

f(x) g(x)

In figure 1 we have shown plots of H_;(x) = f(x) and H_2(x) = g(x). The behaviour
we see is typical. When the index is odd we always get odd functions, and they are
even when the index is even. The following proposition gives detailed information.
To simplify the notation we introduce the constants:

(2.15) cn={g;~—2:,’<f ifn=2k+1,k=0,1,...
0 otherwise

(2.16) 2:4-6---n ifn=2k k=1,2,...

1-3-5---m ifn=2k+1,k=0,1,...
nll =
1 ifn=20

Proposition 2.2
The Hermite polynomials of negative index have the following properties:

(2.17)  H-(n+1)(x) = ‘%H_n(x) + %H—(n—l)(x) forallx #0,n=1,2,...
_ {odd if nisodd
(2.18) Hon(x) = {even if n is even

s

Y ifn=2k+1,k=0,1,...

(2.19) Iim H_,(x) = (n—ll)”
x—=0% oDn ifn=2kk=1,2,...
(2.20)
%H_n(x) = —-nH_(n+1)(x) + Cho(x) in D', 5(x) = Dirac’s delta function
(2.21) H_/_/n_xH,_n_nH—n:Cnél_(nCn+1+xc-n)5 ln D,,’I’L-_— 1,2,... ~



We want to prove that these objects converge to well defined objects in D’, and start
out with the following lemma.

Lemma 2.3

(2.29) Hi 0 H.y(x) = H (n-1)(x) = C16(x)
Proof

Choose ¢ € D(R). To prove the lemma we have to show that:

o0 N 00
@300 Jim [ Y w0 E)dx = | Hoon()$(x)dx = Ca(0)
~® k=0 -

li
N—o00

We first use the relations (2.3) and (2.4) to rewrite the expression to the following
form: ‘

N
Hm | > ankHye1 () (x)dx

N—o J_

N
=lim | > ank (xHi(x) = kHi-1(x)) p(x)dx

N=e Joe 7
00 N o N d
2.31)  —jim | x> amHr(x)p(x)dx — lim J > ank—Hi(x)p(x)dx
NoeoJoe 10 NeeoJooo (2 dX

o N o N
= lim X Z AnkHr (x)p(x)dx + },im [ Z ankHi(x)P' (x)dx

N=eoJoeo g Bl ¢

I
(e}

[ee]

IJ xH_n,(x)Pp(x)dx + Jm H_y(x)¢'(x)dx

To proceed further we use (2.17) and (2.20):

( 00

xH_n(x)p(x)dx + Joo H_n(x)¢"(x)dx

J — 00
~ 00

=] (H_(n_1)(X)—nH*(n+1)(X))¢(X)dx

(2.32) e
+ NH_(n+1)(X)P(x)dx — Cr(0)

J —00
o0

= H_(n-1)(x)p(x)dx — Cn(0)

J — 00




Proposition 2.4
For k = 0,1,... the Wick product H, ¢ 6(x) € D" and there exist constants Dy s.t.:

k
(2.39) Hy 0 8(x) = Z k6™ (x)
Proposition 2.5
If either m > 0 or n > O, then:
mvn
(2.40) Hy © Hy = Hpyn — Z Ck—(m+n)Hk-1 ¢ 0
k=1

Proof
Trivial if both m,n = 0 (all the C-s are 0). Assume m > 0 and p = 0, then:

(2.41)

m-—1
=Hm-—p — z Co-kHm-k-1© 0

m
=Hm-p — Z Ck-m+pHr-1 © o

k=1
a
Corollary 2.6
If n >0, then:
(2.42) HyoH n=1- Z CrHy-1 © 6
k=1

and there exist constants Ky S.t.:

n-1
(2.43) H,oH_,=1- z K 6™

k=0

Remark: It is also interesting to note that H, ¢ H_, acts as the zero functional on the
chaos of order < n. We will return to these questions in §3.
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Proof
By (2.21) we see that for x # 0, then:

(2.52) nH_n(x) = H”, (x) — xH_, (x)

We use this result together with integration by parts to carry out the following calcu-
lation:

nJ: H_n(X)H—m(X)B—%%
= JOOO H,_/n(X)H_m(X)e_% \/% - JOOO xH’_n(x)H_m(x)e‘% jzx_n
=\/%H’_n(x)H_m(X)e'% |y — J: H', (x) (H_m(X)e'%), %
2.53) - j: XH' () Hom (x)e™ j;—n
= - %H:n(owmm(ow - J: H. Oy ()% j—zx;
N JOOO xH’_n(x)H_m(X)e“%% - Ooo xH’_n(x)H_m(X)e_%z_ \;%xﬁ
__ J_gan’_n(oﬂH_m(o*) - J: HiMX)H'—m(")e_%%

By the same calculation we see that:

* _x? dx
~mJ1) H_,(x)H_p(x)e 2 N

(2.54)

1 , N J’°° , , _x2 dx
= H_ * H
ﬁH‘m(O JH »(07) + . H ,(x)H_, (x)e" 2 o
We add the results of (2.53) and (2.54) together, and divide by n — m to get:
*© 2 dx
| Hon G Hmx)e
(2.55) ° Jem
= (H’ H_ Y- H' YH_ *

Using (2.20) we can rewrite this:

® 2 dx
H () H m(x)e™ T
(2.56) [0 ) V21T
- V2T (n —m) (nH”m(0+)H—(n+l)(O+) - mH—(m+1)(0+)H_n(0+))
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Proposition 2.9
Let n > 1,m > 0. If one of the pair m, n is even and the other is odd, then:

(2.61) n(x)Hm(x)e“%dx =0

1 00
—— H_
V21T J—oo

If m and n are both odd, then with m = 2k + 1:

(2.62) Lr H_ () Hyy (x)e =T dx = (-1l
' 2T )e " " T (n+m)(m-1D(n - 1)
If m and n are both even, then with m = 2k:
I (® 2 (=Dkam!
(2.63) V21 J—oo Hon (X)Hpm (x)e” = dx = (n + m)m!in!

If n is odd, then:

2 (-1k
(2.64) Honx) = ,2:0 s 2k D @RN(n — D 2k ()
If n is even, then:
x _1\k
(2.65) Honl)= S — Vg (x)

iy (n+ 2k) (2k)n!

Proof
(2.61) is trivial. Use exactly the same calculation as in (2.52) - (2.56) to get:

0 %2 dx
JO Hon () Hm (X)e™5 22

(nHm(0+)H—(n+l) (0") + mHpm— (0+)H—n(0+))

(2.66) 1
T 2n(n+m)

We then apply the formulas (2.33) and (2.19) to get (2.62) and (2.63). The last two

results follows easily from (2.62) and (2.63).

§3 Inverse Wick powers of white noise

We will now consider the Schwartz space S(R) together with its dual S"(R) equipped
with the white noise measure p which is uniquely characterized by the characteristic

function:
i<w,p> _ sl .
(3.1) e du(w) =e (®); forallp € S
S!
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For A € C and ¢ € S(R) we may extend the definition above to X € (S)* by the dual
pairing:

(3.9) SX(AP) =< X,Exp[AWy] >
It is well known that the elements X € (S)* are uniquely characterized by their S-

transforms; see [PS]. S-transforms always extend to ray entire functionals ¥ = SX
satisfying an estimate of the form:

(3.10) ¥ (A )| < CeKINIBIE,

where C and K are constants, p a non-negative integer and | ¢l , := |[AP ¢|2(g). Con-
versely every ray entire functional V¥ satisfying an estimate as above is the S-transform
of some element X € (S)*. The S-transform can be used to prove the convergence in

(S)* . In this case we have the following result, see [PS]:

Proposition 3.1 [PS]
Let X, X € (S)* . Then X,, — X if and only if the following conditions are satisfied:

(3.11) SXn(P) — SX(P)

(3.12) 1SXn (A P)] < CeKIPI13,

where the constants C, K and p do not depend on n.
m]

This result is very convenient when we try to make sense out of various functionals
of white noise. It is easily seen that:

(3.13) S(Wy)(E) = jcﬁ(s)as)ds

In this formula, we let ¢ approach a delta function concentrated at a point t. We then
consider:

(3.14) SW) (&) = dl)lf% p(s)&(s)ds = &(t)

Although this calculation is only formal, we see using proposition 3.1, that (3.14)
uniquely characterizes an element W; €(S)* . Since (S)* is closed under Wick multi-
plication and we have the convenient property (1.8), it is easy to see that:
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Once we have proved lemma 3.2, it is clear that the formulas corresponding to propo-
sition 2.5 and corollary 2.6 follow in exactly the same way as before.

Theorem 3.3
If either m > 0 or n > 0, then:

mvn
(3.21) Wgm o W = W™ ™ = 3 Cr_mam Wy © ™ 0 5(Wy)

k=1

a
Theorem 3.4
If n >0, then:
n

(3.22) Wgh o Wgom=1- 3 GWs* ™ o 8(Wg)

k=1

[m]

In the two previous theorems we also want to be able to pass to the limit, i.e. replace
Wg by W;. Since we know how to calculate the S-transforms of W(; "and 6(Wg), we

can use (3.22) to calculate the S-transform of W, °". The result is the following:

Theorem 3.5
If n > 0, then:
(3.23) SWGTM(E) = b BT S < E S

k=[3+1]
where [% + 1] denotes the integer part of 5 + 1.

Proof
We take S-transforms on both sides in (3.22) and use (2.15), (3.15) and (3.17) to get:

[7] S
21T 1 1 >
n. —on =1- Yer 2k ~3<pE>
(324) < ¢,§ > S(Wd) )(E) 1 kgo 2kk| < (l),g > 2Tre 2
The formula:
1 2 i 1
(3.25) e2<®&>" _ Z W <P, & < 2k

is then used to rewrite (3.24) to the form (3.23).
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§4 Some properties of the Hermite transform

The H -transform was introduced in [L@U 1] and [L@OU 2]. This transform has turned
out to be a useful tool when we address problems related to stochastic partial differ-
ential equations. One of the main advantages is the existence of an explicit inverse,
see [GHLQUZ] for more details.

(4.1) H:(L*)xC) - C
where CJ)' denotes all finite sequences of complex numbers, can be defined as follows:

If X € (%) =3 axHx(w), see (1.4), then:

(4.2) HX(z) =D axz®
64
WheI‘e z = (Z],‘ZZ’ .. ) and ZO( — ZEXIZS‘Z I

In particular we have:
(4.3) HW¢(2) = lPll2w)21
In this case we end up with an entire function of one complex variable. This is typical

when we consider power series in the white noise. If the # -transform is a function
f(z) of one complex variable only, the inverse transform takes on the form:

(4.4) H1(f(2)) =J_ f(>c+iy>e"l;\72y—7T [ gas

When we apply the # -transform to solve some stochastic differential equations, see
[HLOUZ 1] and [HL@UZ 2], it turns out that we sometimes encounter transforms that
are not entire functions. It is therefore of considerable interest to be able to apply
inverse transforms to meromorphic functions or even functions that are only defined
locally. In this connection we observe the following:

Theorem 4.1

If f(z) is a meromorphic function with a finite number of poles, all located on the
real axes, and there exist constants C, A and r s.t.:

(4.5) |f(2)| < CeM?! z| =¥

then H 1 (f(z)) € (L?).
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