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Transformation of the Wiener measure under
non-invertible shifts

A.S. Ustiinel and M. Zakai

Abstract

In this paper we consider the transformation of measure induced by a not-necessarily-
invertible perturbation of the identity. The Radon-Nikodym density for the image
of the Wiener measure and the associated Girsanov-type density are derived. An
application of these results yields an extension of the degree theorem.






1 Introduction

Let (W, H, 1) denote an abstract Wiener space and let F(w) be an H-valued random vari-
able. The transformation Tw = w + F(w), induces the measure po T~ on W (ie. (no
T~1)(A) = u(T7'A)) and in many cases there also exists a Girsanov-type measure v defined
by v(T7*A) = u(A) for all measurable subsets A of W, (¢f e.g. lemma 2.1 of [14]). We
derive conditions for absolute continuity between these measures and the related Radon-
Nikodym derivatives. These problems were considered by many authors (cf e.g. [2, 3, 5,
7,8, 9,10, 13, 14] and the references therein). The case where W is the standard Wiener
space and the shift F is adapted to the canonical Brownian filtration is covered by the well
known Cameron-Martin-Maruyama-Girsanov theorem. Cameron and Martin were the first
to consider in 1949 invertible nonadapted shifts, their work was extended by Gross, Kuo,
Skorohod and others. Their results represented the density of the image measure in terms of
the Fredholm determinant of (I + VF), where VF' denotes the gradient and the exponent
of a Stratonovitch-type integral of F'. This representation imposed the strong assumptions
such as VF is of trace class and F' is Stratonovitch integrable. It was Ramer who in 1975
extended considerably the previous results by representing the density as the product of
a Carleman-Fredholm determinant ( which exists under the condition that VF'is Hilbert-
Schmidt ) and the exponent of what he called “an abstract version of the Ito integral”(this
integral was called the Ito-Ramer integral in [5] and appeared, independently, in the Malli-
avin calculus literature as the divergence or Skorohod integral). The results of Ramer [10]

were shown by Kusuoka [5] to hold under considerably weaker conditions.

In this paper we extend the results of Ramer [10] and Kusuoka [5] (¢f also [8]). In
particular, T'is not required to be invertible and the requirement that F' be H —C" is replaced
by a weaker condition. Moreover we give the explicit expressions of the corresponding Radon-

Nikodym densities.

The main results of this paper are presented in sections 3 and 4 and can be summarized
as follows: Let F(w) be a random variable with values in the Cameron-Martin space [ and

in some Sobolev space of positive index. F' will be said to belong to H — C},, if there exists a



random variable Q(w) > 0 almost surely and for almost all w, b — F(w + k) is continuously
differentiable on the set {h € H : |||z < Q(w)}. Let N(w, M) denote the cardinality of the
set T~ {w} N M, where M denotes the set on which the Carleman-Fredholm determinant of
I + VF is non-zero. If we denote by Ar the random variable defined by the equation (2.2),
then

Theorem 1.1 For Tw = w 4 F(w)

o The cardinality of the set T"*{w} N M is almost surely at most countably infinite and
the restriction of the measure o T~ to M 1is absolutely continuous with respect to p

furthermore the Radon-Nikodym derivative is given by

dpoT™?

» mw)= Y [Ar(O)H

feT-1{w}nM
e For every positive, bounded, measurable function f on W
E[f(Tw) - |Ar|] = E[f(«)N(w, M)]-

More generally, for any such f and g, we have

E[f(Tw) g(w)- [Ar(0)] = E |f(w) > 9(9)]'

6eT{winM

In the next section we first summarize the notation of the Malliavin calculus and recall
the definition of the p4(w) random variable of Kusuoka [5]. Then we introduce the H — Cj,
class which generalizes the H — C* class [10, 5] and show that the elements of the H — CL.
are Skorohod integrable. In section 3 we consider the case where Tw = w + F(w) with
| VF ||< ¢ < 1 generalizing previously known results (theorem 6.1 of [5]). In section 4 it
is shown that under the H — C! assumption on F, W can be decomposed into the w set

loc

on which (I + VF) is not invertible and a countable union of disjoint sets }; such that

Tw = w + F(w) is injective on M;, moreover, the restrictions of x o T to M;, poT Y

is absolutely continuous with respect to p|ras (note that T'M; is a measurable subset of W



since T' is injective on M;) and the density of the related Girsanov-type measure is evaluated.
This result is applied in section 5 to give an extension of previously known results for the
degree theorem ([4, 6, 14]) on Wiener space. Also an extension of the results of fourth
section, by removing the hypothesis of strict positivity of the control random variable Q(w),

is given in the same section.

2 Preliminaries

Let (W, H, 1) be an abstract Wiener space. We start with a short summary of the notation
of the Malliavin calculus. For h € H* = H, the Wiener integral W (k) will also be denoted
(h,w), w € W. Let X be a real separable Hilbert space; smooth, X-valued functionals on
(W, H, i) are functionals of the form

N

a(w) = > mi((h1,w), (o, @) @

1

with z; € X and n; € Cg°(IR™), h; € W* C H. For smooth X-valued functionals, define

N m
Va() =33 mi((hr, @), -+, (b)) - 25 ® i,
=1 j=1
and V* k = 2,3, ... are defined recursively. The Sobolev spaces IDP*(X) p > 1,k € IN are

the completion of X-valued smooth functionals with respect to the norm

k

Iallpr= 20 | Via ||zou xemes) - (2.1)
The gradient V : IDP*(X) — IDP*"(X ® H) denotes the closure of V as defined for
smooth functionals under the norm of (2.1). The gradient Va is considered as a mapping
from H to X and (Va)* will denote the adjoint of Va and is a mapping from X to H.
The adjoint of V under the Wiener measure y is denoted by é and called the divergence or
the Skorohod integral. (for the memory, it is defined by the“ integration by parts formula”
E(Géu) = E(VG,u)y for smooth real-valued G and H-valued u). Recall that if F' is in



IDP(H), for some p > 1, then for a.e. w, VF(w) is an Hilbert-Schmidt operator from
H to H and for any smooth H-valued F' and any complete orthonormal basis of H, say
{e;, 1=1,2,---} we have

An X-valued random variable F' is said to be in IDP*

(X)) if there exists a sequence

(A, F,) where A, are measurable subsets of W,U, A4, = W almost surely,F,, € IDp’k(X)

and for every n, F,, = F' almost surely on A,.

Let K be a linear operator from H to H and let \;, 2 =1,2,--- be the sequence of eigen
values of K repeated according to their multiplicity. The Carleman-Fredholm determinant

is defined as:

o]

dety(T+ K) = JT(1+ Xi)e™™

=1

and the product is known to converge for Hilbert-Schmidt operators. For F' € IDV(H), VF
is Hilbert-Schmidt and define

Ar(w) = dety(I + V) exp(—6F — % | F %) (2.2)

The following lemma will be needed in section 4. The proof is straightforward (cf

lemma 6.1 of [5] or lemma 1.5 of [8]).
Lemma 2.1 Let Fy, Fy, F3 belong to IDlz;i(H) and let Tiw = w + Fy(w), 1 = 1,2,3. Assume
that: (i) po T, ' < pand (1) Ts =T 0Ty (i.e. Fs=Fy+ Fyo T,). Then

(a) T+ VE; = [I +(VE)D)|(I + VF,)

(b) AF3 - (AF1 o} Tzw) . AFz(w),

Remark: Recall that for any measurable set A on W there exists a o-compact modification

of A, i.e. there exists a o-compact set G such that G C A and p(G) = p(A).



Following Kusuoka [5] we associate with every measurable subset A of W the follow-
ing random variable p4(w) which plays an important role in the construction of a class of

mollifiers:
Definition 2.0 Let A be a measurable subset of W, set
pa(@) = inf{ll b |l w -+ h € 4) (23)

and pa(w) =00 ifw g A+ H.
Clearly, pa(w) = 0 if w € A, moreover (cf [5] or [8]):

(i) If A C B then ps(w) > pp(w).
(i) [pa(w) — pa(w + R)| <[ 2 [|&-
(iii) A, /" A implies p4,(w) \, pa(w).

(iv) If G is o-compact and ¢ € Cg°(IR) (compact support) then o(pe(w)) € IDP* for all p

and

I Vo(pa(w)) lla

IN

| @' lloo “Ligi(pe)z0} (2.4)

IN

¢ [leo -

(v) Tt follows also from the 0 —1 law on the Wiener space that, if p(A) > 0, then py < +o0

almost surely.

The following lemma is implicit in [5] (cf also [8]), it is formulated here explicitly since it
demonstrates the applicability of p4 to the construction of certain mollifiers and thus clarifies

the role of p4 in section 4.



Lemma 2.2 Let F € ID};(X), consider the H-parameterized random fields on
Qx Al A lla< 1}

V(w,h) = F(w+h)
U(w,h) = VF(w+h).

Assume that the random fields V(w, h), U(w, h) are separable and consequently sup <, || F(w+
h)|| and supjy <1 [|VF(w + k)| are well defined random variables. Set

A:{w: sup || F(w+h)|x <K and sup ||VF(w+h)HX®H§K}. (2.5)

[lAll <1 [|hlle<1

Let ¢ € C=(IR) satisfy |p(z)| < 1, p(z) = 1 for |z| < %, p(z) = 0 for 2| > 2 and

[@]loo < 4.
Let G be the o-compact modification of A. Set
o(po() F(w) = Fa(w). (26)
Then
(i) for every w € G, Fg(w) = F(w) and VFg(w) = VF(w),
(1) || Fo ||x< K and || VFg |xea< 5K, almost surely.
Remark: As defined above, G may be empty and further assumptions are needed in order
to apply this result.
Proof: Obviously F(w) = Fg(w) on G, therefore by the locality property of V,
Lip-re=0}V(F — Fg) =0
therefore VFg = VF on G. Turning to (ii), by definition
| Fo(w) [|x< 1jpczy(w)- | F(w) llx -

However, if pg(w) < :,2;, then there exists an h, € H such that || k, ||< % and w + h, € G.
Therefore
oup || Flw+h+ho) x< K

lIRflz<t



and, in particular, | F(w) [|x< K for w for which pg(w) < 2. Now

VFg(w) = ¢(pa(w))VE(w) + F(w)Ve(pa(w))-
| VPe(w) [[xae< L2y (@) | VE(@) | +4 | F(@) || Liicpe<zi(@)

and by the same arguments as above it follows that || VFg ||xgr< 5K, which completes the

proof.

Definition 2.1 A random variable F' will be said to be in H — C* if, for almost all w, the
mapping h — F(w + h) is continuously differentiable in H.

Definition 2.2 F will be said to be in H — CL._ if there exists a random variable Q(w) such
that Q(w) > 0 a.s. and the mapping h — F(w + h) is continuously differentiable in the

region {h € H || b |a< Q(w)}.

As an example of a r.v. in H — CL, but not in H — C*, consider ¢(W(h,)) where h,
is a fixed element of H and 9(X),X € IR is the periodic continuous function defined by
¥(0) = 0 and ¥(X) = sign(cosmX), i.e. [¢'(X)| = 1 except at the points of discontinuity
X =(3+mn), n=0,£1,£2,---. Consequently, (W (h,))isin H — CL, but not in H — C*.

Proposition 2.1 H—CL_ C ID{" where ID;S" denotes the set of Wiener functionals which

are locally in L™ as well as their first order Sobolev derivatives.

Remark: This extends the result # — C* C ID;; ([5]).

Proof: Let FF€¢ H— C},. Set

An=fweW: (a) Q)= 4/n
(b) sup |F(w+h) <n

2
Ihlla<s

(c) sup [[VF(w+h)|a<n}

2
lIRller <3



Then (A,) / W almost surely. Let G,, denote the o-compact modification of A, and
Fo(w) = ¢(npa, (w))F(w)
where ¢ is in C{°(IR) and pg is as was defined earlier. Choose ¢ such that |[¢]|. < 1,
| ¢ |[lo< 4, ¢(t) =1 on |t| < + and zero on [¢t| > 2. Then:
1. On {w : npg,(w) < 3}, Fa(w) = F(w) and these sets increase to W since 4, / W
almost surely.

2. In order to show that F), is bounded, note that
|Fo(@)] < 1inpg, <23 - [F(@)].

Now, for a given w, npg, (w) < 2 implies that there exists an h, with w +h, € G, and
2
|| ho ||< 5n. Hence
sup F(w+ho+7n) <n

<2
and |F(w)| <7n on {w : npg, (w) < 2}.
3. Similarly, in order to show that VF,, is bounded:

VF, = [Ve(npe, (@) F + ¢(npa,(w)) - VF

and since |Vo(npa, (@) <[] ' |0 7 * L{w: p/(npg, )20} it follows that

I Vig(rnpa,(w)) - F1 [|la

SIFLT ¢ oo Plinpg, <23 + Lnpe, <3y | VE -

Again as in (2) above, if npg, (w) < %, then there exists an h, ||h||g < %n such that

w+h € Gy, hence |F(w)| < n, |[VF(w)||g < 5n, on {w: npg,(w) < %}



3 The case | VF ||<c<1

Theorem 3.1 Let F : W — H be a measurable map belonging to ID”'(H) for some p > 1.

Assume that there exists constants c¢,d (with ¢ < 1) such that for almost every w

| VEF(w) || < e¢<1 (3.1)

and
| VF(w) [[g-s < d<oo (3.2)
where || - || denotes the operator norm and || - ||g-s=|| - ||ner denotes the Hilbert-Schmadt

(or H® H) norm (otherwise stated, for a.c. w,| F(w+h)— F(w) |[g<c || h ||z for all
h € H where ¢ is a constant, c <1 and VF € L>®°(p, H ® H)). Then:

(a) Almost surely w — Tw = w + F(w) is bijective, cf [5].
(b) The measures p and po T~ are mutually absolutely continuous.

() Ef(w) = E{f(Tw)- [Ar(w)|} (3.3)

for all bounded and measurable f(w) and in particular E|Ap| = 1.

Remarks: (a) In theorem 6.1 of [5] it was shown that without the assumption || VF ||g_s<
d < oo, that (a) T is bijective (8) poT7' < p and (y) Ef(w) > Ef(Tw)|Ar(w)|. (cf also
[2] and [3]).

(b) Note that by the assumptions above, E[exp A|F|?] < oo for all A < 5% (¢f [11, 12]).

(c) From the conclusions of the theorem, we have immediately

dpoT™Y) 1
dp  |Apo T
d(po (Tt
( (d ) _ Apl.
I



Proof: Let us choose a complete, orthonormal basis (e,) of H from W*. Let V, be the
sigma algebra generated by {ei,...,8e,} and denote by 7, the orthogonal projection from
H onto span{ei,...,e,}. Define F,, n =1,2,..., as

F, = E[Py/,m, F|V,],

where P, /, represents the Ornstein-Uhlenbeck semigroup on W. It is evident that the bound-
edness properties of VF' are inherited by VF,, 1. e,

IVF,|| < cand |VF,|g-s <d

almost surely, for any n. Furthemore F),’s are now smooth functionals. Let Thw = w+ Fp(w),
then as in [5], one can construct via iteration the inverse of Ty, noted T,;'w = w + Gp(w).

G,, satisfies the relation F, o ;' = —G,. We have

|Ga(w+ k) = Ga(@)|g = [[FaoT (w+h)=FaoT (@)lr
[Fa(w + b+ Gu(w + k) = Fa(w + Ga(w)) ||z
cllhllz + el Gn(w + h) = Gn(w)l|,

IN

therefore
c

Gl + 1) = Ga(w)ll < T

1Al

We also have
VG, =—(Ig+VG,)*"VE, o T

n

hence

IVGulla-s < |+ VGal|VEno T a-s
< (47 IVE o T a-s

d

<
- 1—-c

almost surely. From the finite dimensional Jacobi theorem ( or from [10]) we know already

that the image of i under T, or its inverse are equivalent to p, with E[f o T,|A,|] = E[f] for

10



any f € Cy(W), where A, denotes Ap,. Asn goes to infinity, (F},) converges to F'in ID?' for
any p > 1, taking a subsequence, if necessary, A, — A almost surely. To prove the relation
(3.3), it is then sufficient to prove the uniform integrability of the sequence (An;n = 1,2,...).

From the de la Vallé Poussin lemma, the uniform integrability is implied if we can show that

sup Ef|Aq|| log |Ax[[] < +oo.

Hence it suffices to show

sup E[|(6F,) o T '] < +oo,

in fact |dety(I + VF,)| < expd? from a well-known inequality on the Carleman-Fredholm

determinants. From the formula (cf for example [13])
(6F,) o T = —6Gn + ||Gol|y + trace[(VE, 0 T, 1).VG,],

and since ||8¢||, < cpl|€||p,1 ( With c; = 1), using the bound for the Hilbert-Schmidt norm of
V@G, we obtain

E[((§F,) o T;YY? < E[(8(Fuo T, M)V + E[|Galli)"?
+ E[[|[VF,o0 T7:1||§1—SHVGn||§f—s]1/2

d2
1—c¢

< NGl + IV Gallz2(umom +

d &2
< Gully + ——
S Gt 72+

Since ||VG,||lg-s < i—f—c, it follows from [11, 12] that

sup Elexp a| Gl < +o0,

for any a < 7(33%)* and this completes the proof.

11



4 Decomposing {dety(Ig + VF) # 0} into sets on which

T is injective

Theorem 4.1 Let F: W — H be a H— CL_, map, Tw = w + F(w). Let M denote the set
M = {w: dety(Ig + VF(w)) # 0}

or, what is the same, M is the set on which Iz + VF is invertible. Then there exists a
measurable partition of (My;n = 1,2,...) of M and a sequence of shifts (Tn;n = 1,2,...)
with Tow = w + Fo(w), F, € IDY! for some p > 1 such that, for each n, T, = T almost

loc

surely on M, and T,,: W — W 1s bijective. Moreover
E[f o To|Axl] = E[f],
for any f € Co(W). Consequently
(i) For almost all w, the cardinal of the set T~*{w} N M, denoted by N(w, M) is at most
countably infinite.
(i3) For any f € Cy (W), we have
E[f o T|Al] = E[fN(w, M)],
and for anyn > 1,
E[1ra,(w)f(w)] = E[1a, () f(Tw)|Ar(w)[] (4.1)
(i53) poT Yy < p with

dpoT Vm, | 1
N

6eT-1{w}nM [Ar(6)| ‘

Remark: The first part of (iii) restricted to F' in H — C? is the first half of theorem 6.2 of
[5]. In the particular case where the restriction of T to a measurable set D is injective, (4.1)

yields (by replacing M, in (4.1) with D N M, and summing over n):

E1r(pam)(w)f(w)] = E[1p(w) f(Tw)[Ar(w)]]- (4.2)

12



This improves upon part (ii) of theorem 6.2 of [5] where it is shown that for M°® = ¢,
Elrp(w)f(w) > Elp(w)f(Tw)|ArF|.
Proof: The proof follows the approach of Kusuoka [5] (cf also Nualart [8]). Due to its

length, we explain the main idea in the first part, then the rigourous proof is given .

Let e;, 7 = 1,2,--- be a complete, orthonormal basis of H. Let A = {);;,1 <1,j < n}
be a real valued n X n matrix such that I,x, + A is invertible. Let Ty (w) = w+ Fy (w) where

FA(W) = zn: )\i,j<w, ej>ei (4.3)

ilj—__l

and note that VFy = Y );je; ® e; is deterministic and p o Til ~ p and Ty is bijective.
With T'= I + F', consider the following factorization of T

T:(TOT)_\I)OTA:TCOTA. (4.4)

Therefore,
T.=To Txl; Tow =Ty 'w + F(T)_\lw) :

Since T;\lw = w — Fy (T} 'w), it follows that
Two = w — Fy(Ty'w) + F(T5'w).
Setting Tow = w + F,(w), yields
Fw) = F(T5lw) - Fy(T5'w), ()
and since Tw = T(T\w) = w + F) (w) + F(Tyw)
VF = VF)\(w) + ((VF) o Tyw) - VT (4.6)

A rough outline of the proof is as follows:

Let w, be a particular w in M, choose n and A such that || VF(w,) — VF)(wo) ||z-s< €.

Assume that there exists a “neighborhood of w,”, say V = V(w,) C M on which
| VF(w) — VF)(w) ||a-s< 2¢, we can use this relation to define V(w,). Therefore, by

13



(4.5) it must hold that on V(wo), || (VF.) o Tyw ||g-s is small. Consequently, 7' = T, o T},
Tow = w + F,(w) where T} is very well behaved for all w and || VF, ||g-s is small on the set
Ty 'V (w,) and in order to apply the results of the previous section to T. in the vicinity of
Ty 'V(w,) we have to mollify F, outside this region. Namely, we have constructed a mollifier,

say 9(w; Ty'V) such that for w € T3V (wo)
P(w, Ty 'V)Fe(w) = Fe(w) (4.7)
and v - F. is in ID*'(H), and
| V($(w, Ty V)Fe(w)) la-s< e <1.

This will enable us to apply part (b) of theorem 3.1 to yield the equivalence of the measures

-1y and /J‘T—IV, by part (a) of theorem 3.1. The restriction of T' to V' 1s injective

A A
and by lemma 2.2 and part (c) of theorem 3.1 yields equation (4.1) with M, replaced by V.

poTit

n—1 ¢
Assuming that a countable sequence of V’s, say Vy, covers M, setting M,, = V,, N (U V})

=1
yields the decomposition of M. Note that instead of the relation

Tw =w+P(w)F(w) onwe€ T/{lv

we can also use
Tow = w + v + P (w)(Fo(w) — v)

for some fixed v € H.

Returning to the proof, let A denote an n X n matrix and assume that L,xn, + A 1s

invertible. Denote by || (Inxn + A)™! || the operator norm of (Inxn +X)™" and set

(Il T+ 2) DT = 7(A) -

Let A(n,v,A) denote the set

A(n,v,A) = {w D Q(w) > é, sup || F(w+h)—Fy\(w+h)—v|a< aFYSLA)

n ||hHH<,17

14



and sup || (VF)(w+h)—VEFy [|g-s< a'y(A)}

1
[|hllE<%

where F) is as defined by (4.3) and a is a constant to be determined later. Let A denote any
of the sets A(n,v,A) and let G be a o-compact modification of AN M,ie. G C AN M and
w(G) = (AN M). Let 1 and p be as defined in section 2. Consider

Fi(w) = o(npa(Ty 'w))Fo(w)

then obviously Fi(w) = F.(w) on {w : T;\lw € G}. We want to show now that

| VFy(w) ||g-s< 5a, for this purpose it suffices to show that
| V(ATy)) -5 507(N). (13)

By (4.4)
V(F(Taw)) = V {p(npe(w))[F(w) - Fy(w) = o]} -
Hence
| V(ETA@)) l1-5< Lpgiizayy | VEW@) = VE [lm-s

If pg(w) < 52-7; then there exists an |h,| < % such that w + ho € G, hence | VF(w) —

VFy |lz-s< avy(X). Similarly, if pe(w) < 2 then || F(w) — Fy(w) — v [[g< av(A)/n.

Substituting in (4.8) yields (4.7) with a < 1/6.

Set Tow = w4 F.(w), then T = TcoTA on @G, recall now that G = G(n,v, A), assume that
the elements of A are rational and v belongs to a countable dense set in H, the totality of

n—1 ¢
G(n,v, A) is countable, say {G,,v = 1,2,---} and U, G, = M. Setting M,, = G,,N (U Gk)

=1
yields the first the existence of the partition. Let us denote by Th(w) = w + Fy(w) the shift
T. o T which corresponds to the set G(n,v, ), then with the help of the Theorem 3.1, we

have

E[f o To|Axl] = E[f];

15



for any f € Cyp(W), which completes the proof of the first part of the theorem. We have
T HwinM = {#eM:T() =w}
= U{@EMn:Tn(G) =w},
n=1

since the shifts 7}, are bijective, the cardinal of the above set is at most countably infinite,

and this proves (i).

For (ii), we have
E[foTIAll = > E[la,f o TulAnl]

n=1

= Y Ellr,an) o Tn - f o TolAs]]

n

= Y Ellr,au,)f]

n

= E[fN(w, M)],

for any f € C;f (W), with the convention that if one side of the equality is +oco so does the

other side. For the second part of (ii) we have
Ellrar)f] = Ellr,a)f]
= E[lp, f o Tu|AL]
= E[lp,foTI|A|).
To prove (iii), we have, for any f € Cy(W),

A

|AjoT 1o Tn]

= ZE[IMnfoTn

1
= Y E[lrwmf MTT_;I]

1

feT—{winM

16



which completes the proof.

The following corollary, whose proof is immediate, gives a more symmetric version of the

identity of (ii) of the theorem:

Corollary 4.1 Let F' be as in the theorem 4.1, then, for any positive, bounded, Borel mea-

surable, real valued functions f and g, we have

E[f(Tw)g(w) A= E |f(w)- > g(6)]-

0T -1{w}nM
In particular, for g = 1, B € B(W') we have
E[fOT 1p ’AH = E[f 'N(vamM)L

where N(w, BN M) denotes the cardinal of the set T~ {w} N BN M.

5 A generalization of the degree theorem and exten-

sions

Let Tw = w + F(w), F € IDYY(H) for some p > 1 and E[N(w, M)] < co. Let

loc
Nt(w) = card{f:T0=w,Ar > 0}
N (w) = card{f:T0=w,Ar <0}

Consider the following three statements:

(A) E[f(Tw)Ap(w)] = E{f(w)(N*(w) — N~ (w))} for every bounded and measurable f.
(B) N*(w) = N™(w) = E(NT(w) = N™(w)).

(C) E[f(Tw)Ap(w)] = E[Ap(w)|E[f(w)] for every measurable and bounded F'.

Note that (A), if F is H — CL,, follows from the theorem 4.1 and (B) and (C) form the
degree theorem (cf [4, 6, 14]). Moreover statements (A) and (B) imply (C) and statements
(A) and (C) imply (B). This yields the degree theorem under weaker assumption as follows.
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Theorem 5.1 Let F(w) € H — C}_, suppose that for some v > 0 and 7 > (1 +7)/7,
F(w) € ID"*(H), Ap € L*™(p) and Ap - (Ig + Vo)™ v € L**(u, H) for all v € W*.

Then, a.s.

EArp = ). signArp(f)
0T 1{w}
= NT(w)— N (w).

Proof: Statement (C) holds under the assumed integrability conditions by theorem 3.1 of
[14] and statement (A) holds under the assumptions of theorem 4.1 and since E[N(w, M)]
is finite. (B) follows directly from (A) and (C).

In the fourth section we have used a strictly positive random variable @ to define the
region of Fréchet differentiability of the drift " in H. In fact, it is not necessary to suppose

Q strictly positive as one can see below:

Theorem 5.2 Let Q : W — IR, be a random variable with p{w : Q(w) > 0} > 0 and
denote this set with Q. Let also F': W — H be in ID?! for some p > 1. Suppose that

loc

h — F(w+ h) is continuously Fréchet differentiable on the set {h € H : [|h||g < Q(w)} for
almost all w € Q4. Define Tw as w + F(w) and denote by M the set

M = {w: dety(Ig + VF(w)) # 0}

or, what is the same, M is the set on which Ig + VF is invertible. Then there ezists a
measurable partition of (Mu;n = 1,2,...) of MNQ 4 and a sequence of shifts (Tn;n = 1,2, .. )
with Thw = w + Fp(w) and with F, € ID?! for some p > 1. Furthemore, for eachmn, T, =T

loc

almost surely on M, and T, : W — W 1is bijective with
E[f o Tu|Ax]] = EIf],

for any f € Cy(W). Consequently

(i) For almost all w, the cardinal of the set T~™'{w} N M N Q, denoted by N(w,MNQy4)

15 at most countably infinite.
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(ii) For any f € Cf (W), we have
E[foT - 1g,|Al] = E[f(w)N(w, M N Q4)],
and for any n > 1,
El1ry, (@) - f(w)] = 1y, (w)f(Tw)|Ar(w)]): (4.10)
(iii) po T~ ang, < p with the Radon-Nikodym density

d(:uoT_l)|Mﬂ + _
o w= X

0T {w}NMNQ 4 |Ar(6)]

Proof: The proof goes exactly as in the proof of the theorem 4.1, once we realize that the

sets {A(n, v, A)Horm a covering of the set M N Q.
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