ISBN 82-553-0855-5 Pure Mathematics No.24 August 1993

Une inégalité d'interpolation sur l'espace de Wiener

by

Laurent DECREUSEFOND, Yaozhong HU et Ali Süleyman ÜSTÜNEL

Une inégalité d'interpolation sur l'espace de Wiener

Laurent DECREUSEFOND, Yaozhong HU et Ali Süleyman ÜSTÜNEL

Abstract

In this note we prove an interpolation inequality in L^p -norm between the Sobolev spaces of order 0 and 2 on the Wiener space.

Résumé

Dans cette note nous démontrons une inégalité d'interpolation pour les normes L^p entre les espaces de Sobolev d'ordre 0 et 2 sur l'espace de Wiener.

Préliminaires- Soit (W, H, μ) l'espace de Wiener classique, c'est à dire $W = C_0([0,1])$, H est sous espace de W qui consiste de fonctions ayant des des dérivées de carré intégrables sur [0,1] et μ la mesure de Wiener sous laquelle l'application $(t,w)\mapsto w(t)$ de $[0,1]\times W$ dans $I\!\!R$, est un mouvement brownien standard. On notera par P_t le semi-groupe d'Ornstein-Uhlenbeck sur W, défini sur les polynômes par la formule de Mehler:

$$P_t \phi(w) = \int_W \phi(e^{-t}w + \sqrt{1 - e^{-2t}}y)\mu(dy).$$

Si on écrit ϕ suivant son développement en chaos de Wiener

$$\phi = \sum_{n=0}^{\infty} I_n(\phi_n),$$

alors $P_t \phi$ s'écrit comme

$$P_t \phi = \sum_{n=0}^{\infty} e^{-nt} I_n(\phi_n).$$

On note par -L le générateur infinitésimal de (P_t) et nous avons

$$(I+L)^{\alpha}\phi = \sum_{n=0}^{\infty} (1+n)^{\alpha} I_n(\phi_n).$$

Dans la suite nous allons noter par Q_t le semigroupe sous markovien défini par

$$Q_t \phi = e^{-t} P_t \phi = \sum_{n=0}^{\infty} e^{-(1+n)t} I_n(\phi_n),$$

dont le générateur est -(I+L), i.e.,

$$(1) dQ_t/dt = -(I+L)Q_t$$

et

(2).
$$||Q_t \phi||_p \le ||\phi||_p e^{-t}$$

Inégalités d'interpolation: Le résultat essentiel de cette note est le théorème ci-dessous, qui réponds à une question de D. Stroock:

Théorème 1 Pour tout p > 1, il existe une constante $C_p > 0$ telle que l'inégalité suivante soit verifiée:

$$\|\nabla \phi\|_{p} \le C_{p}(\|\phi\|_{p} + \|\phi\|_{p}^{1/2}\|\nabla^{2}\phi\|_{p}^{1/2}),$$

pour toute fonctionnelle ϕ sur W.

Remarque 1 L'inégalité ci-dessus signifie qu'elle est vraie pour toutes les fonctionelles de Wiener régulières, par exemples les polynômes ou les fonctions test au sens de Meyer-Watanabe; elle s'étend ensuite par fermeture aux domaines appropriés.

Un corollaire immédiat est

Corollaire 1 Si $(\phi_n, n \in \mathbb{N})$ converge vers 0 dans L_p et $\sup_n \|\nabla^2 \phi\|_p < \infty$, alors $(\nabla \phi_n, n \in \mathbb{N})$ converge vers 0 dans $L_p(\mu, H)$.

Le théorème 1 résulte aussitot des inégalités de Meyer et du théorème suivant, pour lequel (P_t) pourrait être n'importe quel semi-groupe sousmarkovien symétrique (en fait on n'utilise même pas la symétrie, mais elle permet de ne pas redéfinir les opérateurs).

Théorème 2 Soit $1 \le p \le \infty$. Alors nous avons

(3)
$$||(I+L)^{1/2}\phi||_p \leq \frac{\sqrt{2}}{\Gamma(1/2)} ||\phi||_p^{1/2} ||(I+L)\phi||_p^{1/2}.$$

Preuve: (a). Posons $\psi = (I+L)\phi$, comme l'opérateur $(I+L)^{-\alpha}$, $\alpha > 0$ est borné sur les espaces L^p , $p \geq 1$, nous avons $\phi = (I+L)^{-1}\psi$. Remplaçant ϕ dans la formule (3), nous voyons qu'il suffit de démontrer

(4)
$$||(I+L)^{-1/2}\psi||_p \le \frac{\sqrt{2}}{\Gamma(1/2)} ||\psi||_p^{1/2} ||(I+L)^{-1}\psi||_p^{1/2}$$

Nous avons

$$(I+L)^{-1/2}\psi = \frac{1}{\Gamma(1/2)} \int_0^\infty t^{-1/2} e^{-t} P_t \psi dt$$
$$= \frac{1}{\Gamma(1/2)} \int_0^\infty t^{-1/2} Q_t \psi dt.$$

Alors pour tout $\varepsilon > 0$

$$(I+L)^{-1/2}\psi = \frac{1}{\Gamma(1/2)} \left[\int_0^{\varepsilon} t^{-1/2} Q_t \psi dt + \int_{\varepsilon}^{\infty} t^{-1/2} Q_t \psi dt \right].$$

Donc

$$||(I+L)^{-1/2}\psi||_{p} \leq \frac{1}{\Gamma(1/2)} [||\int_{0}^{\varepsilon} t^{-1/2}Q_{t}\psi dt||_{p}] + ||\int_{\varepsilon}^{\infty} t^{-1/2}Q_{t}\psi dt||_{p}].$$

Le premier terme ci-dessus est facile à controler par

$$\| \int_0^{\varepsilon} t^{-1/2} Q_t \psi dt \|_p \le \int_0^{\varepsilon} t^{-1/2} \| Q_t \psi \|_p dt$$

$$\le \int_0^{\varepsilon} t^{-1/2} \| \psi \|_p dt$$

$$= \varepsilon^{1/2} \| \psi \|_p.$$

Pour controler le deuxième terme on utilise

(8)
$$\frac{dQ_t}{dt} = (I+L)Q_t = Q_t(I+L).$$

Pour simplifier la notation, notons $f = (I + L)^{-1}\psi$. Alors

$$(9) \int_{\varepsilon}^{\infty} t^{-1/2} Q_t \psi dt = \int_{\varepsilon}^{\infty} t^{-1/2} Q_t (I+L)(I+L)^{-1} \psi dt$$
$$= \int_{\varepsilon}^{\infty} t^{-1/2} Q_t (I+L) f dt$$
$$= \int_{\varepsilon}^{\infty} t^{-1/2} \frac{dQ_t}{dt} f dt.$$

Remarquons d'abord que $||Q_t f||_p \le e^{-t} ||f||_p \to 0$. En appliquant la formule d'intégration par partries (ordinaire) à (9), on obtient

(10)
$$\int_{\varepsilon}^{\infty} t^{-1/2} \frac{dQ_t f}{dt} dt = -\varepsilon^{-1/2} Q_{\varepsilon} f + \frac{1}{2} \int_{\varepsilon}^{\infty} t^{-3/2} Q_t f dt.$$

Comme $||Q_{\varepsilon}f||_{p} \leq ||f||_{p}, ||Q_{t}f||_{p} \leq ||f||_{p}$ on a

$$\begin{split} \| \int_{\varepsilon}^{\infty} t^{-1/2} Q_{t} \psi dt \|_{p} & \leq \varepsilon^{-1/2} \| Q_{\varepsilon} f \|_{p} + \frac{1}{2} \int_{\varepsilon}^{\infty} t^{-3/2} \| Q_{t} f \|_{p} dt \\ & \leq \varepsilon^{-1/2} \| f \|_{p} + \frac{1}{2} \int_{\varepsilon}^{\infty} t^{-3/2} \| f \|_{p} dt \\ & = \varepsilon^{-1/2} \| f \|_{p} + \varepsilon^{-1/2} \| f \|_{p} \\ & = 2\varepsilon^{-1/2} \| f \|_{p} \\ & = 2\varepsilon^{-1/2} \| (I + L)^{-1} \psi \|_{p}. \end{split}$$

Finalement nous avons

(12)
$$||(I+L)^{-1/2}\psi||_p \le \frac{1}{\Gamma(1/2)} [\varepsilon^{1/2} ||\psi||_p + 2\varepsilon^{-1/2} ||(I+L)^{-1}\psi||_p].$$

L'inégalité ci-dessus est vraie pour toute $\varepsilon>0$ et le minimum est atteint en prenant

$$\varepsilon = \frac{2\|(I+L)^{-1}\psi\|_p}{\|\psi\|_p}$$

et nous obtenons finalement

(13)
$$||(I+L)^{-1/2}\psi||_{p} \leq \frac{\sqrt{2}}{\Gamma(1/2)} ||\psi||_{p}^{1/2} ||(I+L)^{-1}\psi||_{p}^{1/2}.$$

Ce qui achève la démonstration.

References

- [1] N. Bouleau and F. Hirsch: Dirichlet Forms and Analysis on Wiener Space. De Gruyter Studies in Math., Vol. 14, Berlin-New York, 1991.
- [2] P.A. Meyer: "Notes sur les processus d'Ornstein-Uhlenbeck". Séminaire de Proba. XVI, Lect. Notes in Math. Vol.920, p.95-133 (1982).
- Y. Z. Hu: Institute of Math. Univ. Oslo, P.O. Box 1053, Blindern, N-0316, Oslo, Norway, détaché de Inst. of Math. Sci., Acad. Sinica, Wuhan, Chine.
- L. Decreusefond: ENST, Dépt. Réseaux, 46, rue Barrault, 75013, Paris, France.
- A. S. Ustünel: ENST, Dépt. Réseaux, 46, rue Barrault, 75013 Paris, France et Institute of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N-0316, Oslo, Norway.