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Introduction

Enumerative geometry seeks to determine how many algebro-geometric
objects of a given type satisfy certain given conditions. Questions of this
type have been posed by mathematicians since Apollonius. More than 2000
years ago he considered problems like the following: find all circles that are
tangent to 3 given circles. He showed that there are 8 such circles, and
that they are constructible.

In the 17th century Fermat and Descartes represented geometric ob-
jects, namely plane curves, as solution sets of polynomial equations. Later
Modbius introduced homogeneous coordinates.

The geometric theory of plane curves was further developed and con-
solidated in the 19th century — by Monge, Poncelet, Pliicker, and others.*

In terms of complex projective geometry Apollonius’ question trans-
lates into: How many conics (in the complex projective plane) are tangent
to 5 given conics? The answer 3264 was found by Chasles in 1864 — with
this achievement, “modern” enumerative geometry really starts.

In the late 1800’s the subject flourished, prompting Hilbert’s 15th prob-
lem: “To establish rigorously and with an exact determination of the limits
of their validity those geometrical numbers which Schubert especially has
determined on the basis of the so-called principle of special position, or
conservation of number, by means of the enumerative calculus developed
by him.”

Much of contemporary enumerative geometry has dealt with giving
proofs, acceptable by modern standards, of formulas obtained by 19th cen-
tury mathematicians like Schubert and Zeuthen. A common method has
been to find a parameter space for the objects and realize the conditions
as cycles on this space. The results are then obtained from the intersection
theory on the parameter space. One of the main goals in the enumerative

* The great Norwegian mathematician Sophus Lie (1842-1899) was de-
cisively influenced by Poncelet and Pliicker — he decided to pursue math-
ematics seriously only after having read their work on geometry in 1868.
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theory of plane curves is to determine the characteristic numbers of a given
family, i.e., the numbers N, g of curves of the family that pass through o
points and touch § lines. For example, much work has recently been done
in the case of plane cubic curves.

It turns out that the problem of enumerating curves, especially rational
curves, pops up in various contexts. In 1986, Clemens asked if there are
only finitely many rational curves of a given degree on a generic quintic
threefold, i.e., a hypersurface of degree 5 in P* — and, if so, determine
their number ([25], [27]).

This problem, and the more general question of studying rational
curves on certain projective varieties, is related to at least three interesting
problems: one concerns intermediate Jacobians and the Abel-Jacobi map,
another is the classification problem for higher dimensional varieties, and
a third has to do with string theory in theoretical physics.

The number 2875 of lines on a generic quintic threefold was first found
by Schubert ([83], [46]), using his calculus on the Grassmann variety of
lines in P%. The number 609,250 of conics was computed by Katz [53].
The method was to realize the variety of conics on the threefold as the
zeros of a section of a bundle on the variety of conics in P4, and then
compute the top Chern class of this bundle. Similarly, but more involved,
was the computation of the number 317, 206, 375 of twisted cubics (rational
curves of degree 3), done by Ellingsrud and Strgmme [38]. They used the
knowledge of the Hilbert scheme (and of its intersection ring) of twisted
cubics in P3 to construct a parameter variety for twisted cubics in P#4;
the computations were performed in the intersection ring of this parameter
space.

A striking new approach to this type of enumerative problems has re-
cently come from string theory in theoretical physics. Rational curves on
three-dimensional Calabi—Yau varieties are interpreted as instantons. One
uses topological quantum field theory to find a polynomial whose coeffi-
cients determine the number of rational curves of given type (e.g., degree)
on a given Calabi—Yau variety, provided this number is finite. In the case
of a generic quintic threefold, Candelas et. al. were thus able to predict
the number of rational curves of any given degree [19]. Their approach has
been carefully studied by Aspinwall and Morrison ([13], [69], [70]). It is
also worth remarking that an interesting, unexpected phenomenon in alge-
braic geometry, called “mirror symmetry”, has popped up in this context
[10].

In addition to the classical open problems, like determining the char-
acteristic numbers of plane curves of degree d, for d > 4, there are other
open problems related to enumerative geometry. One such is to give a de-
scription of certain Hilbert schemes and their intersection rings (e.g., for
rational normal curves of degree 4 or more). Another, mentioned above, is
the question of existence of rational curves on (special) Calabi-Yau three-
folds. A third, maybe more peripheral, consists in investigating Fermat
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hypersurfaces (or intersections of such) in this connection. These varieties
play a special role both in characteristic 0 and in positive characteristic —
among other things they enter in the construction of special Calabi—Yau
threefolds via group actions, and they have special properties with respect
to existence of lines.

1. Plane curves

Let P2 = Pi denote the projective plane over an algebraically closed
base field k of characteristic 0. A plane curve of degree d, C C P?, is
defined (uniquely up to multiplication by a non-zero element of k) by a
homogeneous polynomial in 3 variables, of degree d. Hence the set of all
plane curves of degree d can be identified with

Cq = P(H' (P2, Op:(d))) 2 P2d(d+3),
Moreover, the “universal polynomial of degree d” defines a universal family
Fi C CgxP?

AN

such that ¢~1(c) = C is the curve corresponding to the point ¢ € Cy.
By a family of plane curves of degree d we shall mean a subvariety
Z C C4. The characteristic numbers of a given family Z are defined as

Nyp =#{C € Z|C passes through a points and touches 3 lines}

fora+ f =dim Z.

Many enumerative problems for plane curves, like the ones about con-
ics, can be reduced to finding the characteristic numbers (cf. Contact
Theorem [41]). Therefore, a main goal in the enumerative theory of plane
curves is to determine the characteristic numbers for “all” families of curves
of any given degree d.

The characteristic numbers for the 5-dimensional family of all conics
were determined by Chasles.
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Plane conics

(For a historical survey, and a review of the modern work on conics,
see [40], [57].)

For plane cubics, the numbers were determined independently by Mail-
lard [65] and Zeuthen [106]. Here are some of them:

B Nops Nsps Nrgp
0 1 12 24
1 4 36 60
2 16 100 114
3 64 240 168
4 256 480 168
5 976 712 114
6 3,424 756 60
7 9,766 600 24
8 21,004 400

9 33,616

smooth mnodal cuspidal

Plane cubics

Zeuthen also determined the characteristic numbers for the various
families of plane quartic curves — for the 14-dimensional family of smooth
quartics he found the following numbers [107]:
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Nog
1
6
36
216
1,296
7,776
46, 656
279, 600
1,668,096
9,840,040
10 56,481,396
11 308,389,896
12 1,530,345, 504
13 6,533,946, 576
14 23,011,191,144

© 00 IO U R WD HO®

Non-singular quartics
(a+ 8 =14)

In order to solve an enumerative problem one also has to prove that the
found numbers determine true solutions to the problem and that one does
not count “multiple” solutions. This can be considered as part of Hilbert’s
15th problem cited in the introduction.

One of the great achievements in mathematics in our century has been
to lay down the foundations of algebraic geometry. Of particular impor-
tance for enumerative geometry is the general intersection theory that has
been developed (see [57] for a historical survey and bibliography).

Over the past twenty years there has been a renewed interest in the clas-
sical problems of enumerative geometry, due in part to the availability of the
modern intersection theory (see [40]). For example, the results of Chasles,
Maillard, and Zeuthen on conics and cubics have been rigorously estab-
lished through the efforts of many people — for conics Fulton—-MacPherson
[40], Kleiman [56], Casas—Xambé [21]; for cubics Aluffi ([4], [5], [6], [9]),
Kleiman—Speiser ([58], [59], [60]), Sacchiero ([77], [78]), Sterz ([86], [87]),
Miret—Xambd ([66], [67], [68]). However, only a few of Zeuthen’s numbers
for quartics have been verified ([7], [8], [43]).

The methods used in the above cited works differ slightly — here we
shall only review the approach that uses a parameter space of “complete
curves” ([5], [35]).

Let P?* denote the dual projective plane, i.e., the projective plane
whose points corresponds to the lines of P2, If C C P? is a nonsingular
curve of degree d, its dual curve C* C P% is defined. It is a curve of degree
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d* = d(d—1) and its points correspond to the tangent lines of C. Thus we
obtain a rational map

[.C, =P _ _ ¢, o pid@+)

which sends a (nonsingular) curve to its dual curve. The map I' has a
unique extension to the subset U; whose points correspond to reduced

curves.
For P € P? let

IIp ={C eCqPcC}

The “point condition” IIp is a hyperplane in C.
For L € P*,i.e., for L a line in P2, let

AL ={C e€Cy| L istangent to C}.

The “line condition” Ay is a hypersurface in Cy of degree 2(d — 1) and is
equal to the (closure of) the pullback of the hyperplane

Il ={D eCs|L € D}.

The map T is defined by the linear system generated by the Ap’s.

In order to compute the numbers N,z we want to intersect o point
conditions IIp,,...,IIp, and B line conditions Az, ,...,Ar,. One of the main
problems of the theory is that the intersection of the line conditions need
not be proper, even for general choices of lines.

Define a wvariety of complete curves of degree d to be a variety B to-
gether with a surjective morphism B — Cg4, which is an isomorphism above
U, and such that I’ extends to a morphism I' : B — Cg. A “point condi-
tion” IIp on B is the strict transform of IIp. A “line condition” T'~(II},) on
B is the strict transform Az of Ay C Cq4, and the fact that ' extends to '
on B means that the intersection of the strict transforms Ay is empty. On
a variety of complete curves, the characteristic numbers N, g are given as
the intersection numbers IT1*A? of o general point conditions and (8 general
line conditions on B, with a + 8 = 1d(d + 3) ([5, Cor. I, p.505]).

Example. For d = 2, the blowup B — C; of the Veronese surface
V = {double lines} C C; = P®
is a variety of complete conics.

In the case of cubic curves, one has the following result:
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Theorem 1. (Aluffi [5, Theorem III, p.513], Sterz [86]) A nonsingular
variety B = By of complete cubics is obtained by a sequence of 5 blowups
B; — B;_1, where By = C3 = P?, with nonsingular centers. Moreover, the
intersection ring of B can be computed.

Aluffi was able to deduce the characteristic numbers for cubics from
this. He also tried to determine the characteristic numbers for plane curves
of higher degree, using a similar approach. By using one blowup, he ob-
tained the following numbers for curves of degree d:

/8 Na,ﬂ
0<s5<2d—2 (2d —2)*
2d — 1 (2d — 2)%1 — 29-3q(d — 1)(d* — d + 2)
2d (2d — 2)% — 2%%d(d — 1)(8d* — 21d® + 1942 — 20d + 32)

Non-singular curves of degree d
(a+p = Ld(d +3))

Note that the numbers for 8 < 2d—2 are trivial, in the sense that 2d—2
(general) line conditions intersect properly already on C4. The numbers for
B =2d —1 and B = 2d agree with Zeuthen’s for d = 4 and are new for
d>5.

However, it seems rather out of question to use the above method to
determine all the other characteristic numbers for curves of degree d. Van
Gastel ([43], [42]) has suggested another method, by which he too was
able to obtain the above numbers. His method is based on the intersection
algorithm due to Stiickrad and Vogel, together with a study of limits of the
conormal varieties of the curves (see also [55]) — this amounts to a study
of 1-parameter families of complete curves. Unfortunately, his method does
not so far give any more numbers than Aluffi’s method.

Positive characteristic. Suppose the base field k£ has characteristic
p > 0. Then the intersection numbers may count the characteristic numbers
with a multiplicity (equal to a power of p) [41, Contact Theorem].

If p # 2 then the characteristic numbers for conics are the same as
in the characteristic O case. The case p = 2 was treated by Vainsencher
[90]. The only non-zero characteristic numbers are N5 = 1, Ng3 =1, and
N3 = 1. From this, he deduced that for p = 2 there are 51 conics tangent
to 5 given conics.

In the case of cubics, the numbers are the same as in the characteristic
0 case as long as p # 2 and p # 3. In the case p = 2 most of the numbers
have been determined by Berg [16], in particular he found those for the
8-dimensional family of cubics with j-invariant 0. (Note that a plane cubic
curve has j-invariant 0 if and only if it has Hasse invariant 0, or again, if
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and only if it is projectively equivalent to a cubic defined by the “Fermat
equation” Y X3 = 0.)

B Nspgs
0o 1
12
2 4
3 8
410
5 8
6 4
T2
8 1

Non-singular cubics in characteristic 2
with j-invariant 0

The symmetry of this table reflects the fact that in characteristic 2 the
dual of a cubic with j-invariant 0 is also a cubic with j-invariant 0. This is
similar to the case of smooth conics and of cuspidal cubics in characteristic
0.

2. Curves in higher dimensional space

We have seen that in the case of plane curves, there are satisfactory
results only for curves of genus 0 or 1. Hence one would not expect much
enumerative geometry to be known for more general curves, i.e., curves in
P, for arbitrary n, of genus greater than 1.

Let C C P"™ = P}, be a curve in projective n-space, n > 2. Just as in
the case of plane curves, one can consider various conditions for curves in
a given “family”: to pass through a given point, to meet a given line, to
touch a given plane, to osculate a given linear space, etc. — and ask to
enumerate the curves in the family that satisfy certain conditions.

As in the case of plane curves, the natural strategy would be to find
a good parameter space for the family (or a modification of it), represent
the conditions as cycles on this space, and do intersection theory — taking
care that one counts the exact number of solutions to the original problem
in this way.

The first obstacle one meets is how to find a parameter space. There
are two natural candidates to look at, the Chow wvariety and the Hilbert
scheme.
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The Chow varieties parametrize curves of given degree d:

Chow?(P™) = {C|C = ZmiCi,mi >0,C; reduced and
irreducible curve in P", Z m;degC; = d}.
In general, however, not much is known about this variety — e.g., when

it is nonsingular, what its intersection ring is.
The other candidate is the Hilbert scheme

Hilb%I(P™) = {C|C c P* 1-dimensional subscheme
of degree d and arithmetic genus g}.

In general, not so much is known about this scheme either (but see
[47]). The advantage of the Hilbert scheme as parameter space is that it
comes equipped with a universal family:

Fiy, C Hilb®9(P") x P"
|
™ Hilb% (P

just as in the case of plane curves.
Example. For n = 2 we have

Chow(P2) = Hilb®3(@Dd-2)(p2) = ¢, o prdld+d),

Twisted cubics. Consider the simplest example of non-plane curves,
namely the twisted cubics. By definition, a twisted cubic is a nonsingular
curve in P3 of degree 3 and genus 0. One can show that any such curve
is projectively equivalent to the curve given as the image of the Veronese
morphism

Pl N P3

sending (u,v) to (u®,u?v,uv? v®). The set of twisted cubics can therefore

be identified with the quotient
T = PGL(4)/PGL(2),
which is a homogeneous space of dimension 12.

The enumerative theory of twisted cubics was considered already by
Cremona [34] and Schubert [82].




10 Ragni Piene

As opposed to the case of plane curves, the parameter space for twisted
cubics has no easily understood compactification. Since all questions in
enumerative geometry translate into problems about computing the inter-
section ring of a parameter space (preferably, but not necessarily, compact),
there has been a natural quest for understanding compactified parameter
spaces and their intersection rings. Since 1981 this problem has again been
attacked, eventually by many people ([1], [36], [37], [72], [73], [74], [79],
[91]). In particular it was shown that the component Hj of the Hilbert
scheme containing the twisted cubics is nonsingular, hence gives a nice
compactification of the homogeneous space T'.

Theorem 2. (Piene-Schlessinger [74]) Hilb**(P?) consists of two irredu-
cible components, Hs and Hj, both nonsingular and rational, of dimension
12 and 15 respectively. The intersection Hz N Hy is nonsingular, of dimen-
sion 11.

Note that a general point of Hj corresponds to the union of a plane
nonsingular cubic curve and a point in P3, whereas a general point of
Hj3 N Hj corresponds to a singular, plane cubic with an embedded point
at the singularity, “sticking out of” the plane. It is furthermore known
that Hj3 is the blowup of a minimal nonsingular compactification of T" in
a nonsingular subvariety (isomorphic to the point—plane flag variety) [36],
and that the Chow ring is computable ([36], [37], [38]).

Kleiman—Strgmme-Xambé [61] were able to verify some of the char-
acteristic numbers of twisted cubics found by Schubert in 1879, by using
complete 1-parameter families contained in a locally closed subset of the
Hilbert scheme.

Rational normal curves. More generally, consider rational normal
curves of degree d, i.e., curves projectively equivalent to the image of the
Veronese embedding of P! in P¢. Let

H, C Hilb*'(P?)
denote the irreducible component containing (as a dense, open subset) the
points corresponding to the rational normal curves. Then, as in the case
d = 3, one can compute

dimH, = dimPGL(d + 1) — dimPGL(2) = (d — 1)(d + 3).

Unfortunately, the situation for d > 4 does not seem to be as nice as for
d < 3, namely we have the following (see [22]):

Conjecture. For d > 4, Hy is singular along a subvariety of dimension
2(d—1).




On the enumeration of algebraic curves 11

The evidence for this conjecture is the following observation: Let L C
P?be a line, 7}, its sheaf of ideals, and let L be the subscheme defined by
Z?. Then L € H; and

dim Ty, 1 = d(d —1)*.

Moreover, L is arithmetically Cohen-Macaulay, and Christophersen [22]
proved that every arithmetically Cohen—Macaulay curve C € Hilbd’O(Pd)
specializes to some L. To prove the conjecture, it suffices to show that Lis
not contained in any other component of Hilb®? (P9), or, equivalently, that
all arithmetically Cohen—Macaulay curves are contained in Hy, or that the
open subset of arithmetically Cohen—Macaulay curves is irreducible.

Another approach to finding a parameter space for rational (not nec-
essarily normal) curves in a projective space, is to consider parametrized
curves, i.e., maps from P! to P" ([88], [93], [94], [75]). In addition, there
have also been made some attempts to find enumerative results for such
curves without using parameter spaces at all ([32], [33]).

Concerning curves of genus 1, Avritzer and Vainsencher constructed
a compactification of the space of elliptic quartic curves in P3 [15], by
blowing up the Grassmann variety of pencils of quadrics twice, and they
were able to determine formally the intersection ring of this space.

3. Rational curves on projective threefolds

Suppose now that we want to consider curves lying on a given 3-
dimensional nonsingular variety (or threefold) X C P™ — in other words,
suppose that one of the conditions we impose is “to lie on a given three-
fold”. It turns out that this situation occurs naturally for rational curves,
in at least the three following situations:

A) The study of codimension 2 cycles on varieties.
B) The classification of threefolds.
C) String theory in theoretical physics.

Codimension 2 cycles. Let X C P" be a threefold, and set
HY .= HI(X,0%).

Define the Griffiths group of X to be the group G(X) of algebraic codi-
mension 2 cycles on X homologous to 0, modulo those which are rationally
equivalent to 0. There is a natural map, the Abel-Jacobi map,

(H3’0+H2’1)*

@5 G(X) = J(X) i= s
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from this group to the intermediate Jacobian J(X) ([45],[23], [24], [25],
[26]).

Suppose X C P* is a generic hypersurface of degree 5. Let G,(X) C
G(X) denote the subgroup generated by cycles algebraically equivalent to
0. Griffiths [45, Cor.14.2, p.508] proved that ®(G,(X)) = 0 and that
G(X)/G.(X) has elements of infinite order. Later Clemens [23] proved
that ®(G(X)/G4(X)) ® Q is infinite dimensional.

The proof of the first result uses the existence of isolated lines on X, the
proof of the second the existence of isolated rational curves of arbitrarily
large degree on X — we shall return to the quintic threefold below.

A different proof of Clemens’ theorem has been given by Voisin [95],
using an infinitesimal approach. This method can probably also be applied
to some other complete intersection threefolds with trivial canonical bundle
(i.e., threefolds X such that Q% = Ox), as well as to the double cover
of P3 ramified along an octic surface. Moreover, Voisin ([96], [97]) has
generalized Griffiths’ result by proving that if X is non-rigid and has trivial
canonical bundle, then for a general deformation of X the image of the
Abel-Jacobi map ® is not contained in the torsion part of the intermediate
Jacobian.

The differential of the Abel-Jacobi map is called the infinitesimal Abel—
Jacobi map and has been studied as well ([25], [26], [27], [28]).

The differential of another map, the socalled period map ([20], [45],
[69]), induces a map

H'(X,Tx) ® H'(X, %) — H*(X, %),

where Ty = (24)* denotes the tangent sheaf. If X has trivial canonical
sheaf, i.e., Q% = Oy, then 0% =~ Tx and H%(X, QL) is dual to H'(X, Tx),
so that this map induces a cubic form

Hl(X,TX) ®H1(X’TX) ®H1(XaTX) - C7
to which we shall return when discussing string theory.

Classification of threefolds. One of the most important problems in al-
gebraic geometry, is the problem of classification of varieties, or the search
for general structure theorems. Curves and surfaces are well understood
— for varieties of dimension 3 there are still a number of problems, though
enormous progress has been made recently (see [62], [30]). In particular,
there is a program — due essentially to Mori — for constructing a (unique)
minimal model for each class of birationally equivalent threefolds. A three-
fold is called minimal if it has no subvarieties that can be contracted (even
allowing the contracted variety to acquire singularities of certain kinds). A
threefold which is not minimal contains rational curves, and it turns out
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that understanding rational curves on the variety gives a key to under-
standing the variety — the variety is “easier” to understand if it contains
no rational curves, and the more rational curves it contains, the more com-
plicated its birational geometry is. In this connection consider the following
three situations involving the existence of rational curves on a variety. Here
X is a threefold, and we let Kx denote a canonical divisor (i.e., a divisor
corresponding to the invertible sheaf Q%).

a) Extremal contraction. If Kx is not nef (hence there exists a curve
C C X s.t. Kx.C <0), then there exists a morphism X — Y contracting
those rational curves on X that generate the “extremal rays” of the cone
of positive curves on X (Mori, see [30], [62]).

b) Small resolution. A node (i.e., a quadratic singularity) z € X can
be resolved by replacing z by a curve isomorphic to P! (Atiyah [14]) —
though the resolved variety need not be algebraic.

c) Flops. Suppose C C X, C 2 P! is a rational curve on X which can be
contracted to a point. Assume Kx = 0. Then X can be “flopped” along
C: there exists a threefold X containing a rational curve C* such that
X-C=2X"—-C%, Kx+ =0, and X and X™ are not (in general) even
diffeomorphic (Reid, see [30], [62]).

In order to start a birational classification of threefolds, one considers
the Kodaira dimension x(X), defined as one less than the transcendence
degreee of the canonical ring ®H°(X, K%) over the base field k. It is known
that xK(X) = —1 if and only if X can be covered by rational curves (see
[63] and [31]). If K(X) > 1, one can use pluricanonical maps to obtain a
“stable canonical variety” and use these for classification. In the remaining
case k(X) = 0, however, one can only classify those threefolds that have
first Betti number b;(X) # 0 — otherwise very little is known.

Definition. A Calabi—Yau threefold is a projective, non-singular variety
X of dimension 3, with Kx =0 and H'(X,Ox) = 0.

The simplest examples of Calabi—Yau threefolds are the quintic hyper-
surfaces in P%. The only other complete intersections in projective space
that are Calabi-Yau threefolds are: those of types (3,3) and (2,4) in P5,
those of type (2,2,3) in P®, and those of type (2,2,2,2) in P7. Note that,
for X a Calabi-Yau threefold, also H*(X,Ox) = 0 (by Serre duality) and
H°(X,0%) =0 and HY(X,0%) = H*(X,Tx) = 0 (by Hodge duality).

An important problem is to describe a moduli space for Calabi-Yau
threefolds. The 2-dimensional analogue to Calabi—Yau threefolds are the
K3 surfaces. Inspired by the classification problem for these, Reid has the
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following speculation [76]: If X has enough contractible rational curves to
span Hy(X;Z), then X contracts to a (non-K&hler!) space with a “simple”
structure — from these one can make a moduli space where the projective
threefolds correspond to singular spaces.

String theory. In the string theory of theoretical physics, the compact-
ification of superstrings leads to an effective field theory for which the
“space—time manifold” is a product

R! x X,

where R? is ordinary space-time and X is a very small “curled up” manifold
of real dimension 6. Further constraints in the theory imply that X has the
structure of a complex Kahler variety with Kx = 0, and that in fact only
the Calabi—Yau threefolds give potentially interesting models (see [50] and
references therein).

In this theory, the two families (a family and its “anti-family”) of mass-
less particles correspond to the elements of

HY = HY(X, Q%) and H*' := HY(X,0%),
and they come equipped with “Yukawa couplings”
e HM @ HY — C
and
' @ H*' @ H! — C.

We observe that, for a Calabi—Yau threefold, the tangent bundle T :=
(92%)* is isomorphic to 2% — in fact, the latter coupling is the differential
of the period map encountered earlier in this section.

Finally, the theory also implies that the absolute value of the Euler
number x(X) = 2(h}! — h%!) of X should be equal to twice the number
of “generations” (groups of elementary particles). Since it is now widely
agreed that there are only three generations, one would want the Euler
number of X to be plus or minus 6. Thus the obvious problem becomes:
Describe all Calabi-Yau threefolds with Euler number 6 or —6. The very
first step was to show that such varieties do exist.

Example. (Tian—Yau [89]) Set

X =58 xS NnHCP?xP?,
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where S; C P3 is the Fermat cubic surface Z?:o X3 =0 in the first factor,
similarly Ss is given by E?:o Y;? = 0 in the second, and H is the hypersur-
face 23’:0 X;Y; = 0. There is a free action of the group Z3 on X, and the
quotient X := X /Z3 is a Calabi-Yau threefold with Euler number —6.

One can show, for example, that there are exactly 162 “lines” (i.e.,
curves of bidegree (1,0) or (0,1)) on X, 567 rational curves of bidegree
(1,1), 81 of bidegree (2,0), 918 of bidegree (2,1), and none of bidegree (3,0)
[85]. This gives at least 2727 isolated rational curves on X — and hence
X has at least 2727 : 3 = 909 isolated rational curves. Whenever one or
several of these curves are contractible, they can be “flopped”, and one
thus obtains other examples of Calabi—Yau threefolds of similar type [89].

Other examples of Calabi-Yau threefolds with |x(X)| = 6 have been
given by Hirzebruch [49], Werner ([98],(99]), Schoen [81], Borcea [17],
Schimmrigk [80], Candelas and Lynken [18].

The existence of rational curves on Calabi—Yau threefolds turns out
to be interesting also in the string theory context. Witten [103] pointed
out that the existence of rational curves on X obstructs the solutions to a
certain differential equation. This made it interesting to look for Calabi-
Yau threefolds with no rational curves — however, there are no known
examples of such threefolds, and the general belief seems to be that they
do not exist.

In fact, maps P! — X, for X as above, are interpreted as instantons
(or instanton corrections) in the physical theory — and physicists would
like there to be few of these. So again one inquires whether there are
only finitely many, and — if so — how many. This leads to the following
problem: Describe all rational curves on a given Calabi—Yau threefold —
are they isolated (hence only finitely many of each type — if so, how many),
what are their normal bundles, describe the families if there are infinitely
many, etc. All known examples of Calabi—Yau threefolds contain rational
curves, but the only general results one has is the following. Note that for
a Calabi-Yau threefold X, the rank p(X) of the Picard group Pic(X) is
equal to h11(X), since A0 = K02 = 0.

Theorem 3. (Peternell [71]) Let X be a Calabi-Yau threefold with Picard
number p(X). If p(X) > 3, then X contains rational curves.

There are also other interesting results on the structure of Calabi-
Yau threefolds by Wilson ([100], [101], [102]), and by Heath-Brown and
Wilson:

Theorem 4. (Heath-Brown-Wilson [48]) Let X be a Calabi-Yau threefold
with Picard number p(X). If p(X) > 14, then there exists a contraction
X — Y such that p(Y) < p(X) and the exceptional locus is covered by
rational curves.
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Rational curves on the quintic threefold. The Calabi—Yau threefolds
that have been studied the most regarding the question of existence of
rational curves, are certainly the quintic hypersurfaces. In addition to
these, only a few other special Calabi—Yau threefolds have been considered
in this context ([52], [84], [85]).

Let X C P* be a nonsingular quintic threefold. Then X has Picard
number p(X) =1 and Euler number

x(X) = 2(hM — h?!) = 2(1 — 101) = —200.

Clemens’ Conjecture. ([25], [27]) A generic quintic threefold contains
only finitely many rational curves of each degree d. Each rational curve is
nonsingular, with normal bundle O(—1) @ O(-1), and they are mutually
disjoint.

The first part was proved by Katz [53] in the case d < 7. He also
proved: For all d there exists a rational curve C C X of degree d, with
normal bundle Ng/x = O(—1) ® O(-1).

The evidence for the conjecture is given by counting dimensions: the
space of maps from P! to P* of degree d, modulo automorphisms of P?,
has dimension 5(d+1)—4 = 5d+ 1, whereas the condition “to be contained
in a given quintic hypersurface” has codimension 5d + 1.

The number 2875 of lines on a generic quintic threefold was found by
Schubert ([83], [46], [51]), whereas the number 609, 250 of conics was found
by Katz ([53], [54]).

To the surprise of many algebraic geometers, a group of physicists [19]
were recently able to make a computation which predicted the number of
rational curves on X of each degree (provided these numbers were finite).
The ingredients in their computation are a g-expansion principle for func-
tions on the moduli space of Calabi—Yau threefolds and a mirror symmetry
for (at least some) Calabi-Yau threefolds. Their idea is the following (see
(10], [11], [12], [13], [44], [69], [70], [104], [105]):

We start with the 1-dimensional family {Xy}, where X, C P* is given
by the equation

4
> XD —50Xo.. X4 =0.
=0

Note that these quintic threefolds are not “generic” — for example, they
contain infinitely many lines ([2], [3]). There is an action of the group
G = (Zs)? on {X,}, and each quotient variety {X,}/G admits a small
resolution {Y)}, which is again a Calabi-Yau threefold. We call {Y)} the
mirror family of a (generic) quintic X C P*. The correspondence between
X and Y is summarized in the following table.
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x(Y) = 200 x(X) = —200
H>\(Y) HY(X)
HYN(Y) H>(X)

(H*1(Y))® — C (HY(X))® - C

The coupling on Y is computable as a function on the given 1-
dimensional moduli space:

f(q) = 5+ 2875q + 4876875¢° + ...

The coupling on X can be expressed in terms of instantons:

fl@)=a0+ > ai’d'(1—¢) " = a0+ a1g+ (2Pa2 + a1)’ + ...

i>1

where a; denotes the number of rational curves on X of degree 4 (if finite).
Hence the predicted numbers are as follows:

ag=deg X =5
 aq = #lines on X = 2875
ag = #conics on X = 609,250
az = F#twisted cubics on X = 317,206, 375
a4 = Ftwisted quartics on X = 242,467,530, 000
ete.

The predicted number 317,206, 375 of twisted cubics was recently ver-
ified by Ellingsrud and Strgmme [38], using essentially the same methods
as in the conics case, though things are much more complicated. The idea
of their proof is as follows:

Consider the component

Hy C Hilb™*(P*)

containing (as a dense, open subset) the points corresponding to the ratio-
nal curves of degree d. It has dimension 5d + 1. Given a (generic) quintic
threefold X C P*, the condition “to be contained in X” has codimension
5d 4+ 1 in Hg; we want to compute the degree of this cycle. Let

F; C PixHy
Pl

Hq
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denote the universal family and consider the exact sequence
0— Tz, — Opiyy, — Of, — 0.
Twisting with Op4(5) and applying ¢, we obtain
0= $,Z5,(5) — HO(P*, Opu(8))ry > 6.05,(5) — B'6.T5,(5) — 0.

Let F € H°(P*, Op:(5)) correspond to X C P4. Then v(F) is zero at
those points C of Hy s.t. F € Zg,(5), i.e., such that C C X. Moreover, if
C € Hg, then

tk$, O, (5) = dimH(C, O¢(5)) = 5d + 1 = dimH,.
Therefore we conclude that if
R'¢.Zr,(5) =0

— in particular, if d < 3 — then the number of rational curves on a generic
quintic X C P* is finite and is given as the degree of the top Chern class
c5d+1(P«Ox,(5)). This degree can be computed “by hand” for d = 1,2 and
with the aid of a computer for d = 3. The computation in the last case
relies on the knowledge of Hs, Hs, and their intersection rings ([74], [36],
[37], [38]).

For the moment, there seems to be no hope of using these methods to
verify the numbers a4 for d > 4. As we have seen, even for d = 4 we don’t
know what the corresponding component of the Hilbert scheme is like.

Complete intersection Calabi—Yau threefolds. Morrison [70] has
computed the g-expansion for the other Calabi—Yau threefolds that can be
obtained as hypersurfaces of a (weighted) projective 4-space. It is inter-
esting that he is able to check one special case of these computations with
a formula due to Schubert [83]: There are 14,752 lines that are 4 times
tangent to a general octic surface in P3.

Libgober and Teitelbaum [64] have looked at the cases of the remaining
complete intersection Calabi—Yau threefolds in a projective space. Under
suitable hypotheses, they give predictions for the number of rational curves
of each degree on these varieties, which coincide with the known numbers
in the case of lines [52].

4. Open problems

To sum up, we see that there are still many interesting open problems
in the theory of enumeration of algebraic curves — here are some that we
have discussed:
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Problem 1. Determine the characteristic numbers for plane curves of
degree d > 4.

Problem 2. Determine the characteristic numbers for cubic plane curves
in characteristic 2 and 3 — and, more generally, for curves of degree d in
positive characteristic p < d.

Problem 3. Describe the Hilbert scheme of rational normal curves of
degree d in P? and determine its intersection ring — and similarly for
rational curves of degree d in P", for n < d.

Problem 4. Prove the finiteness of rational curves of each degree d on a
generic quintic threefold. More generally, find the number of rational curves
of given “type” — if finite — on a given (general) Calabi—Yau threefold.

Problem 5. Prove that every Calabi—Yau threefold X contains a rational
curve.

By Peternell’s theorem quoted above, the last problem is solved for
X with Picard number p(X) > 3, and, moreover, it is true for all known
Calabi—Yau threefolds. As observed by Peternell [71], a solution of Problem
5 would prove Kobayashi’s conjecture for hyperbolic threefolds: A complex
manifold X is called hyperbolic if every holomorphic map C — X is con-
stant. Kobayashi conjectured that every hyperbolic manifold has ample
canonical sheaf.
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