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Introduction

The following pages are the notes from a seminar that I have given
during the spring and some portion of the summer of 1993 at the Math-
ematics Institute of Oslo University. The aim of the seminars was to
give a rapid but rigourous introduction for the graduate students to
the Analysis on the Wiener space, a subject which has grown up very
quickly these recent years under the impulse of the Stochastic Calculus
of Variations of Paul Malliavin.

Although some concepts are given in the first chapter, I assumed
that the students had already acquired the notions of stochastic calculus
with semimartingales, Brownian motion and some rudiments of the
theory of Markov processes. A small portion of the exposed material
is our own research, the rest has been taken from the works given at
the bibliography. Although we avoided to quote them as much as they
deserve to be quoted, the reason is to give a homogeneity to the text
and the warned reader will realize immediately the impact of all these
works all along the following lines.

I have had the chance of having an ideal environement for working
and a very careful audience. These notes have particularly profited
from the serious criticism of my colleagues and friends Bernt QPksendal,
Tom Lindstrgm, Ya-Zhong Hu, and the graduate students of the Math-
ematics departement. It remains to me to express also my gratitude to
Nina Haraldsson for her careful typing, and, the last but not the least,
to Laurent Decreusefond for correcting so many errors .

Ali Siileyman Ustiinel







Chapter

Preliminaries

This chapter is devoted to the basic results about the Wiener measure,
Brownian motion, construction of the Ito stochastic integral and the
chaos decomposition associated to it.

1 The Brownian Motion and the Wiener

Measure

1) Let W = Co([0,1]), w € W, t € [0,1], define Wi(w) = w(t) (the
coordinate functional). If we note by B; = o{W;;s < t}, then there is
one and only one measure g on W such that

i) p{Wo(w) =0} =1,

i) Y7 € CP(R), (FWw) = 3J5 f(Walw)ds) is o (B
martingale. u is called the canonical Wiener measure.

2) From the construction we see that for ¢t > s, E,[expia(W; —
W,)|Bs] = exp —a?(t—s), hence t — W, is a continuous additive process
and (Wit € [0,1]) is also a continous martingale.

3) Stochastic Integration
Let K : W x [0,1] — R be a step process :
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6 Preliminaries

n

Ki(w) = Z a;(w) - 1[ti,t¢+1[(t)7 a;(w) € Lz(Bti) .

=1

Define I(K) = [y K,dW,(w) as f: ai(w) - (Wi, (w) — Wy (w)). Then
=1

we have
1 2 1
re _ -2
E [(/0 Ades> l _E/O K2ds,

i.e. I is an isometry from the adapted step processes into L*(yx), hence
it has a unique extension as an isometry from

L3([0,1] x W, A, dt x dp) 5 L¥()

where A denotes the sigma algebra on [0,1] x W generated by the
adapted, left (or right) continuous processes. I(K) is called the stochas-
tic integral of K and it is sometimes denoted as fol K,dW,. With some
localization techniques, I can be extended to any adapted process K
such that fj K2(w)ds < 0o a.s.

Application: a) If f € C}(R) and M; = [} K,dW,, we have

F(M;) = f(0) + f5 f/(Mo)K,dW, + % 3 f"(M,)K2ds.| (Ito formula)

b) &(I(h)) = exp(fs hsdW, — % [3 h2ds) is a martingale for any h €
L*[0,1].

4) Alternative Constructions

A) Let (y5;¢ € N) be an independent sequence of N1(0,1) Gaussian
random variables. Let (g;) be a complete, orthonormal basis of L?[0, 1].
Then W; defined by

W) = Lo (e) - [ o)

is a Brownian motion.




Preliminaries 7

Remark: If (¢g;;¢ € N) is a complete, orthonormal basis of L?([0, 1]),
then <f0 gi(s)ds;t € N) is a complete orthonormal basis of H;([0,1])

(i. e., the first order Sobolev functionals on [0,1]).

B) Let (2, F,P) be any abstract probability space and let H be any
separable Hilbert space. If L : H — L*(Q), F,P) is a linear operator
such that for any h € H, ElexpiL(h)] = exp —%|h|};, then there exists

a Banach space with dense injection H 4w dense, hence W* s His
also dense and a probability measure p on W such that

/exp(w*,aJ)du(w) =exp—j3 | 77 (W) K

and
L(G™(w))(w) = (w,w)

almost surely. (W, H, p) is called an Abstract Wiener space and p is
the Wiener measure. If H = H;([0,1]) then p is the classical Wiener
measure and W can be taken as Co([0,1]).

Remark: In the case of the classical Wiener space, any element A of
W* is a signed measure on [0,1], and its image in H = H;([0,1]) can
be represented as 7*(\)(t) = f5 A([s, 1])ds.

5) Let us come back to the classical Wiener space:

i) It follows from the martingale convergence theorem and the mono-
tone class theorem that the set of random variables

{fWiyy.oo , W )5t €10,1], f € S(R™);n € N}

is dense in L?(u), where S(R") denotes the space of infinitely
differentiable, rapidly decreasing functions on R".

ii) It follows from (i), via the Fourier transform that the linear span
of the set {exp [y hodW, — 1 [i h2ds;h € L*([0,1])} is dense in
L* ().
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iii) Because of the analyticity of the characteristic function of the
Wiener measure, the elements of the set in (ii) can be approached
by the polynomials, hence the polynomials are dense in L?(u).

5.1 Cameron-Martin Theorem:

For any bounded Borel measurable function F', h € L?[0,1], we have
. 1 1 gt
B [F(w+ / hods) - exp[— / hodW, = 5 / h2ds]) = E,[F).
0 0 0

This means that the process W;(w)+ fi h,ds is again a Brownian motion
under the new probability measure

1 1 1
exp(— /0 hedW, — 5 /O h2ds)dy.

Proof: It is sufficient to show that the new probability has the same
characteristic function as p: if * € W*, then z* is a measure on [0, 1]
and

we{z™, wyw = /Ole(w):c*(d.s)
= W) 2 (08)] ~ [ = (0, )W)
W ((0,1]) - [ "2 ([0,4]). AW,

_ /01 (It 1])dW, .
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Consequently
Blexpi [ "ot ([t 1)) dWi(w + [ hads) - (=10

= Blewpi | (i, 1)) AW, + 6 / (1)) hedt— /  hed W, -% / "R2dt)
- E[expi/ol(ia:*([t,l]) _ ht)dI/Vt.expi/Ol 2*([t, 1]) hudt — %/01 h2dt]
- exp% / (o™ ([t 1]) — he)?dt + i / "o ([t 1)) hedt — % / “h2dt
= ey [ (051
= e i)l -

QED

Corollary (Paul Lévy’s Theorem) Suppose that (M;) is a contin-
uous martingale such that My = 0, M2 —t is again a martingale. Then
(M) is a Brownian motion.

Proof: We have the Ito formula
FO4) = £0) + [ F0n) - avt,+ 5 [ o) - ds.
Hence the law of {M; : t € [0,1]} is u. QED
5.2 The Ito Representation Theorem:
Any o € L*(p) can be represented as
¢ = Elg] + /01 K, dW,

where K € L*([0,1] x W), adapted.

Proof: Since the Wick exponentials

1 1 9
E(I(h)) = exp /0 hedW, —1/2 /0 h2ds

can be represented as claimed, the proof follows by density. QED
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5.3 Wiener chaos representation

Let K; = fol hsdWs, h € L*([0,1]). Then, from the Ito formula, we can

write
1 _ 1
Kp=p [ KIhdWW, + w / KP-2h2ds
0

1 11
. /0 [(p—l) /O K2 hy,dw, + £~ 1) / KPh? dtg]thl

iterating this procedure we end up on one hand with Kt(; =1, on the
other hand with the multiple integrals of deterministic integrands of
the type

J, = / hishey - he, W3 AW,
0<tp<tp_1 <~~<t1 <1
=0 or 1 with dW? = dt and dW} = dW,.

Let now ¢ € L?*(p), then we have from the Ito representation theo-
rem

1
¢ = Ely] +/0 K, dW,

by iterating the same procedure for the integrand of the above stochas-
tic integral:

¢ = Blel+ [ BUCIW, + [ [ Bl Jaw,aw, +
t1
4 / / / K128 AW, dW,, dW, .

After N iterations we end up with

N
=2 Jp(K") +on
0

and each element of the sum is orthogonal to the other one. Hence
(pn; N € N) is bounded in L?(x). Let (¢n,) be a weakly conver-
gent subsequence and ¢., = hm ¢n,. Then it is easy from the first

part that ¢ is orthogonal to “the polynomials, therefore ¢, = 0
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N N
and w — lim > Jp(K,) exists, moreover sup Y || Jp(K))||3 < oo, hence
N T

—)OOO

§JP(KP) converges in L2(i). Let now K, be an element of L2[0,1]?
1

(i.e. symmetric), defined as K, = K, on Cp = {t; < --- < t,}. We
define I,(K,) = p!J,(K,) in such a way that

E[|IL(E)2] = (p))? /C K2dty ... dt, = p! / K, |2dty . .. dt, .

[0,1]?

Let ¢, = %{1 , then we have

(e}

¢ = E[p]+ > I,(¢y)| (Wiener chaos decomposition)

1
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Chapter 1

Gross-Sobolev Derivative,

Divergence and
Ornstein-Uhlenbeck
Operator

Motivations

Let W = Co([0,1], R?) be the classical Wiener space equipped with y
the Wiener measure. We want to construct on W a Sobolev type anal-
ysis in such a way that we can apply it to the random variables that
we encounter in the applications. Mainly we want to construct a dif-
ferentiation operator and to be able to apply it to practical examples.
The Fréchet derivative is not satisfactory. In fact the most frequently
encountered Wiener functionals, as the multiple (or single) Wiener in-
tegrals or the solutions of stochastic differential equations with smooth
coefficients are not even continuous with respect to the Fréchet norm
of the Wiener space. Therefore, what we need is in fact to define a
derivative on the L?(u)-spaces of random variables, but in general, to
be able to do this, we need the following property which is essential: if
F,G € L?(u), and if we want to define their directional derivative, in
the direction, say @ € W, we write £ F(w+t)|=o and 4 G(w+1d)]=o.
If F =G p-a.s., it is natural to ask that their derivatives are also equal

13




14 Derivative, Divergence and Ornstein-Uhlenbeck Operator

a.s. For this, the only way is to choose @ in some specific subspace of
W, namely, the Cameron-Martin space H;:
t.

iy = (k0,1 RYh) = [ Bs)ds, Al :/011;;(3)|2d3}.

In fact, the theorem of Cameron-Martin says that for any F' € LP(u),
p> 1, h € H]

1.
Eu[F(w+ h)expl= [ h(s)- dW, = 3{hf3,)) = BF),
or equivalently
1.
E,[F(w+ )] = E[F(w) - exp/o ho - dW, — LB[%].

That is to say, if ' = G a.s., then F(-+ k) = G(- + k) a.s. for all
h € H.

1 The Construction of V and its proper-
ties
If F: W — R is a function of the following type (called cylindrical):
F(w) = f(Wy, (w), ..., Wi, (w)), [ €SRY,
we define, for b € H,

d
VaF(w) = 2 F(w+Ab)[o

Noting that Wi(w 4 h) = Wy(w) + h(t), we obtain
ViF(w) =Y 0 f(Wy (w),... , Wi, (w))h(t:),
1=1

in particular

VW) = h(t) = [ h(s)ds = [ "oa(s) h(s)ds.

If we denote by Uy the element of Hy defined as Uy(s) = [ 1jog(r)dr,
we have VW, (w) = (U, h)m,. Looking at the linear map h — V3 F(w)
we see that it defines a random element with values in Hy, i.e. VF is
an Hi-valued random variable. Now we can prove:
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Prop. I.1: V is a closable operator on any LP(x) (p > 1).

Proof: This means that if (F, : n € N) are cylindrical functions
on W, such that F,, — 0 in LP(p) and if (VF,;n € N) is Cauchy
in LP(p, Hy), then its limit is zero. Hence suppose that VF, — { in
LP(p; Hy).

To prove ¢ = 0 p-a.s., we use the Cameron-Martin theorem: Let
¢ be any cylindrical function. Since such ¢’s are dense in LP(p), it is
sufficient to prove that E[({,h)n, - ¢] = 0 a.s. for any h € H;. But we
have

E{(V Py h)g] = B[+ Ah) - gl oo

= %E[Fn(w)ip(w - )\h) exp(/\/ol h(s)dWs — Azi/ol |}'ls|2d8)”)‘=0

1,
= B[Fu(w)(=Vip(w) + p(w) [ h(s)aW,)] —,0
by the fact that F,, — 0 in LP(u). QED
This result tells us that we can define Dom,(V) as

F € Dom,(V) < 3(F,) cylindrical such that F,, — F in L? and
(VF,) is Cauchy in LP(u, H).

Then we define |VF = lim VF,|.

n—00

We will denote by D, ; the linear space Dom, (V) equipped with the
norm |[F|lp,1 = [ F'llp + [V F| Loy,

Remarks: 1) If X is a separable Hilbert space we can define D, ;(&X)
exactly in the same way as before, the only difference is that we take
Sy instead of S, i.e., the rapidly decreasing functions with values in X.
Then the same closability result holds (exercise!).

2) Hence we can define D, by iteration:

i) We say that F € D,, if VF € D, (H), then write V?F =
V(VF).
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ii) F e D,yif VF-1F € -Dp,l(H®(k_1)).

3) Note that, for F € D,x, VFF is in fact with values H®* (i.e.
symmetric tensor product).

4) From the proof we have that if F' € Dy, h € Hy and ¢ is cylindrical,
we have

E[ViF -] = —E[F - Vyp| + E[I(R)- F - ],

where I(h) is the first order Wiener integral of the (Lebesgue) density
of h. f ¢ € Dyy (¢7* +p~' = 1), by a limiting argument, the same
relation holds again. Let us note that this limiting procedure shows in
fact that if VF € LP(u, H) then F.I(h) € LP(u), i.e., F is more than
p-integrable. This observation gives rise to the logarithmic Sobolev
inequality.

1.1 Relations with the stochastic integration

Let ¢ = f(Wyy,... ,Wi,), t; < t, f smooth. Then we have

n

Vth(UJ) = Z atf(thl’ v amn)h(tl) )

=1

hence Vi is again a random variable which is B;-measurable. In fact
this property is satisfied by a larger class of Wiener functionals:

Proposition I1.1 Let ¢ € D,y, p > 1 and suppose that ¢ is B;-
measurable for a given ¢t > 0. Then Ve is also B;-measurable and fur-
thermore, for any h € Hy, whose support isin [t,1], Vi = (Ve, h)g =
0 a.s. :

Proof: Let (¢,) be a sequence of cylindrical random variable converg-
ing to ¢ in D,1. If ¢, is of the form f(W,,,...,W,,), it is easy to see
that, even if ¢, is not Bi-measurable, E[p,|B:] is another cylindrical
random variable, say 6, (Wi, at, - .. , Wiaz). In fact, suppose that tx > ¢
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and t1,...,tx_1 < t. We have
E[f(Wt:n" . aVVtk)lBt] = E[f(Vth s 7mk—1’Wtk - Wi+ I/Vt)|Bf]
= /Rf(vvtw 7Wtk—17m-l_w)ptk—t($)dx
:G(th,.__ >I/Vtk—171/Vt)7

and 0 € S if f € S(R¥), where p; denotes the heat kernel. Hence we
can choose a sequence (¢, ) converging to ¢ in D, such that Vi, is
B;-measurable for each n € N. Hence Vi is also B;-measurable.

If A € H; has its support in [¢, 1], then, for each n, we have V¢, = 0
a.s., because V,, has its support in [0, ¢] as one can see from the explicit
calculation for Vi,,. Taking an a.s. convergent subsequence, we see that

Vie =0 a.s. also. QED.

Let now K be a step process:

Ki(w) = Zaz W)Lt 041 (F)

where a; € D, and By,-measurable for any 7. Then we have

1
/0 KodW, = 3 ai(Wiyy — Wi)

and
1 n
v, /0 K dW, = 3" Viai(Wi,, — W) + ai(h(tiss) — h(t:))
1
1 1 '
- / VK, dW, + / K,h(s)ds.
0 0
Hence
1 2 2 1
’v 52{ |+ |KS|2ds}
0 H H 0
and

(/=

ANEE(
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1 p/2
+ |Ks|2ds> }
0

Using the Burkholder-Davis-Gundy inequality for the Hilbert space val-
ued martingales, the above quantity is majorized by

2, ([(/Ol |va|§{dS)P/2] e l(/ol |Ksl2d3>p/2])

= 6p||Vf{||Z£p(#,H®H) + | K\ Le(ury, where K.= | K,dr.
0

Thanks to this majoration, we have proved:

Proposition IL.2 Let K € D,1(H) such that K; = ﬂgtﬂ be B;-
measurable for almost all t. Then we have

1 1 ~
\V / K,dW, = / VK, AW, + K as.
0 0

Corollary 1: If ¢ = I,(fy), fn € L2([0,1]"), then we have, for h €
Hy,

Vila(fa) = n / Flty oo t)dWey, . AW, h(ty).dt .

[0,1]™

Proof: Apply the above proposition n-times to the case in which, first
fn is C*([0,1]™), then pass to the limit in L?*(u). QED

The following result will be extended in the sequel to much larger classes
of random variables:

Corollary 2: Let ¢ : W — R be analytic in H-direction. Then we

" o= s+ X1, (54),

n=1
i.e., the kernel ¢, € j}Z[O, 1]™ of the Wiener chaos decomposition of ¢
is equal to

BVl

n!
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Proof: We have, on one hand, for any h € H,
1, 1.
Elo(w + h)] = E[go.exp [ hedw, -1 | hgds] — E[p.£(I(h)].
0 0

On the other hand, from Taylor’s formula:

Bletw+ 1) = Blgl+ 35| TEELI)

e ]+; (B0 pron
)+ 53 P L)
_ M+§ (LB 10

hence, from the symmetry, we have

In(‘Pn) = %In(E[V"go]),

where we have used the notation (k) = I(h) = J} hydW, and

0"on
In(gon) —[0‘1/]71 —m(tl, ce ,tn)thl, . ,dmn .

QED

Definition IL.1: Let { : W — H be a random variable. We say that
¢ € Dom,(8), if for any ¢ € Dp; (¢ + p~' = 1), we have

E[(Ve,E)r] < cpqlé)-llells
and in this case we define 6¢ by

i.e., 6 = V* with respect to the measure y, it is called the divergence
operator. Let us give some properties of it:
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1.) Let a: W — R be “smooth”, ¢ € Dom,(§). Then we have, for
any ¢ € Dy,

E[6(al)p] = E[(a&, Vo)
= E[(&aVe)]
= E[(¢,V(ap) — ¢.Va)]
= E[6t.ap—¢.(Va, )],

hence | é6(af) = adf — (Va,§)

2.) Let h € Hy, then we pretend that | §h = [} h(s)dW, | To see
this, it is sufficient to test this relation on the exponential martingales:
if k € Hy, we have

Blsh.exp- | g, — 1 /01 kyds] =
= E[(h, VE(I(K))m,)]

= E[(h, k).£(I(k))]

= (h,k)g, -

On the other hand, supposing first h € W™,

BUR).EAH)] = B w+ )]
= E[I(h)] + (h, k)Hl
= (h7 k)H1 .

I:Ience in particular, if we denote by i[s,t] the element of H such that
Lis(r) = fo 1[s,q(u)du, we have that

6(1’[51-5]) = Wt - Ws .

3.) Let now K be a step process

I{t(v) = Z ai(w)'l[tntiﬂ[(t) 5
1
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where a; € D, and By;;-measurable for each ¢. Let K be Jo Ksds. Then
from the property 1, we have

n

5K = 5(2 ai'I[t,',t,'.l.l[) = Z {aié‘(i[ti’ti_'_l[) —_ (Va,‘, I[ti,ti+1[)} .
1 1

From the property 2., we have 6(i[ti,t;‘+1[) = Wy, — Wy, , furthermore,
from the proposition II.1, the support of Va; is in [0,¢;], consequently,
we obtain

1
§K =Y ai(Wy,, — Wi,) =/0 K.dW, .

Hence we have the important result which says, with some abuse of
notation that

TheoremII.1: Dom,(6) (p > 1) contains the adapted stochastic pro-
cesses (in fact their primitives) such that

1 /2
E[(/ Kjds) ] <
0
and on this class § coincides with the [to stochastic integral.

Remark: To be translated as: the stochastic integral of K is being
equal to the divergence of K!
We will come back to the notion of divergence later.

2 The Ornstein-Uhlenbeck Operator

For a nice function f on W, ¢ > 0, we define
Fif(z) = /W fle7e + V1 —e2y)u(dy).

Since p(dz)p(dy) is invariant under the rotations of W x W, i.e., (i X
p)(dz,dy) is invariant under the transformation

Ty(z,y L yV1 — eyl mee 2 — ye ),
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we have obviously

1P S @)y < [ [1(F @ DT, )Pu(de)u(dy)
= [[ 1t @ )@, y)Pu(de)u(dy)
= [1f(@)Pu(da),

for any p > 1, ||Pif|lze < ||f]lze; hence also for p = oo by duality. A
straightforward calculation gives that, for any h € H N W* (= W*),

P(E(I(R) = E(e7"I(h))

o L(hEm)
_ —nt N
N ,;) ¢ nl

Hence, by homogeneity, we have
Py(I,(h®™)) = e ™I, (h®")
and by density, we obtain

PtIn(fn) = e_nt]n(fn) )
for any f, € L2([0,1]"). Consequently P, o P, = Py, ie., (P;) is a

measure preserving Markov semi-group. Its infinitesimal generator is
denoted by £ and is £ is called the Ornstein-Uhlenbeck or the number
operator. Evidently, we have LI,(f,) = nJ,(f.); i-e., the Wiener chaos
are its eigenspace. From the definition, it follows directly that (for a;
being F;,-measurable)

Pt(z ai(WtiH VVt, tz Ptaz I/Vt +1 — an),
that is to say

1 1
P, / H,dW, = ¢~ / P.H,dW,,
0 0

and by differentiation
1 1
L / H,dW, = / (I + £)H,dW, .
0 0

Also we have
VP =e¢"PVep.
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Lemma: We have §0V = L.

Proof: Let o = £(I(h)), then

(60 V) 6(h.E(1(Rh)))
= (I(h) = [R[))EI(R))

— LE(I(h))

QED
Let us define for the smooth functions ¢, a semi-norm

ol = 1+ £) || o -

At first glance, these semi-norms (in fact norms), seem different

koo
from the one define by ||¢|px = 2 V79|l Lr(u,mei) . We will show that
0

they are equivalent. Before that we need

Proposition We have the following identity:

6oV =_L.

Proof: It is sufficient to prove, for the moment that result, on the
exponential martingales; if h € Hy,

ce((n) = ~Sreqin)
d —t
= e (b))

= (T I() = Al )EC ()|
= (I(h)—|R)EI(R)).

t=0

t=0

On the other hand:

VE(I(R) = h- E(I(h))
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and

Derivative, Divergence and Ornstein-Uhlenbeck Operator

§(VEI(R) = 6(h-EI(R)))
§h- E(I(h)) — (VE(I(R)), R)
= ShE(I(R)) — |RI*E(1(R)).

QED




Chapter 11

Meyer Inequalities

Meyer Inequalities and Distributions

Meyer inequalities are essential to control the Sobolev norms defined
with the Sobolev derivative with the norms defined via the Ornstein-
Uhlenbeck operator. The key point is the continuity property of the
Riesz transform on L?([0,27],dz), i.e., from a totally analytic origin,
although the original proof of P. A. Meyer was probabilistic (cf. [5]).
Here we develope the proof suggested by [3].

1 Some Preparations

Let f be a function on [0, 27], extended to the whole R by periodicity.
We denote by f(z) the function defined by

/f:c—l—t :c—t)dt

2tant/2 (principal value).

then the famous theorem of M. Riesz, cf. [21], asserts that, for any
f € L?[0,2x], f € LP(]0,27]), for 1 < p < oo with

1Flls < AllFl

where A, is a constant depending only on p. Most of the classical
functional analysis of the 20-th century has been devoted to extend
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this result to the case where the function f was taking its values in
more abstract spaces than the real line. We will show that our problem
also can be reduced to this one.

In fact, the main result that we are going to show will be that

VU + L) 20l = llell

by rewriting V(I + £)~'/2 as an L?(u, H)-valued Riesz transform. For
this we need first, the following elementary

Lemma 1: Let K be any function on [0,27] such that
K(0) — fcot & € L([0, 7)),
then the operator f — Tk f defined by
1 g
Tif(a) = —po. [ (F(o+1) - fla — D) K(D)dt
is again a bounded operator on L?([0, 2x]) with

Tk fllp < Byl fll,  for any p € (1,00)
where B, depends only on p.

Proof: In fact we have
R 1 7
Ticf = fle) < = [If(e+1) = flz =D K() - } ot &ldt
0

< | fllze || K — %cot 'Z‘”Loo .

Hence || Tx flly < (cll& — & cot &z + A,) |1l QED

Remark: If for some a # 0, aK(0) — 1 cot & € L>([0,2n]), then we
have

1 1 " 1 -
Tefll, = —llaTefll, < —|aTxf — -
“ Rf”P |a|”a kf”P = |a| ”a I\f f”p + |a|“f||P
1 A
< m”al{ - %COt %“Loo ”f“p + Egl'”f”p
< ollfly

with another constant c,.
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Corollary: Let K be a function on [0, 7] such that K = 0 on [%,n]
and K — %cotg € L“([O, %D Then Tk defined by

/2

Tif(z) = [ (o +1) = fla— ) K(H)ds

0

is continuous from L?([0,2~]) into itself for any p € [1,00].

Proof: We have cK (0)10,z1—3 cot £ € L>([0,7]) since on the interval
[%, 7r], sin % € [%, 1], then the result follows from the Lemma. QED

2 V(I +£)7'2 as the Riesz Transform

Let us denote by Ry(z,y) the rotation on W x W defined by
Ry(z,y) = (zcosb +ysin b, —z sind + y cos 9).

Note that Ry o Ry = Rsy¢. We have also, putting e™* = cos 0,

Pf@) = [f(ea+VI= e y)u(dy)

- /(f ® 1)(Ro(z,y))(dy) = P-10gcosa () -

w

Let us now calculate (I + £)~'/%¢ using this transformation:

(I + L) (o) = [ 72 Pp(a)dt
0

/2

= /(— log cos 8) /2 cos 0 - /((p ® 1)(Ry(z,y))pu(dy) tan 6d6

/2

= /,u(dy)[ /(— log cos §) /2 sinH(go@l)(Rg(x,y))dG].

w 0
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On the other hand, we have, for h € Hy (even in C§°(]0, 1]))

Vi Pro(z)

d
= dAPtso(:chAh)h 0
= [ ole @+ AR + VI ey u(dy) oo
= d)\/ (e :1:+\/1—6‘2t<y+

= ﬁ/go(e_tm—l—my)g(

t

mh)) #(dy)|r=o
et

S (1)) () o
= %/go(e_tx + V1 —e2y)oh(y) u(dy) .

1 —e2
W
Therefore

Vil + L) (2)

- / 171261V, Pro(a)dt
= /t'l/2 = /6h(y etz + V1 — e 2t y)u(dy)dt

12 cos? @

- tand [ 8h(y)(p © 1)(Ro(z,y))u(dy)do

/2
= / —log cos )~

2

0
7/
= / —log cos §) /2 cos0/6h (e ®@1)(Re(z,y))pu(dy)db

Since u(dy) is invariant under the transformation y — —y, we have

| 8h()le ® D(Rale,v)pdy) = = [ 8h(y)( @ )(B-s(z,y) (),
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therefore:
Vil + L) ()

/2

= / (—log cos 0) /2,

0

/5h(y) (p®1)(Re(z,y)) —2(90 ® 1)(R—e(w,y))ﬂ(dy)d0

/2
= [én(y) [ K(O) (0 ® D)(Bale,9)) ~ (¢ © 1)(Roo(z,y))) ddu(dy)
w

0

where K () = L cos §(—log cos §)~1/2.

2

Lemma 2: We have 2K(6) — cot & € L>(0, Z]).

Proof: The only problem is when # — 0. To see this let us put

-t _ 0 _ Vide ® o 2
e~ = cos §, then cot 3 =VE=rR 7 and

—~t

o

K(6) =

~
~Y

3
Sl

hence 2K (0) — cot § € L>([0, Z]). QED

2

Using Lemma 1, the remark following it and the corollary, we see
/2

that the map f — pv. [ (f(z +0) — f(z — 0))K(6)df is a bounded
0

map from L?[0, 7] into itself. Moreover

Lemma 3: Let F: W x W — R be a measurable, bounded function.
Define TF(z,y) as

/2

TF(z,y) = p.v. /(F o Ry(z,y) — F o R_g(z,y))K(0)db.

0

Then, for any p > 1, there exists some ¢, > 0 such that

1T F | ousn) < el FllLo(uxn) -
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Proof: We have

/2

(TF)(Bylz,y)) = po- [ (F(Baso(z,y)) — F(Bos(z, ) K (6)d0,

0
this is the Riesz transform for fixed (z,y) € W x W, hence we have

/2 T

[ ITF By, y))Pds < ¢ [ 1F(Ra(z,y) a8,

taking the expectation with respect to p x p, which is invariant under
Rg, we have

By [ \TF(Ro(w,9)Pd8 = By [ ITF(2,y)Pd
= ZB(TFP)
< oF [ |P(B(z,y)Pdp

= 7, E[|F7]. QED

We have

Theorem 1: Vo (I + £)~Y? : LP(4) — LP(u, H) is continuous for
any p > 1.

Proof: With the notations of Lemma 3, we have

Vil + L)% = [ 8h(y) T(e @ 1)(w,y)u(dy)

From Schwarz inequality:

VI + L)l < [ 1T 1)(z,y) Puldy)
w
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hence, for p > 2,
Rv et < E[( [ e e fua)”
< B J T(p ® 1)(a,v)"w(dy)

< [[ e @ Dia)Puldy)utde) = ¢l -

For the case 1 < ¢ < 2, let ¢ and % be smooth (i.e., cylindrical),
since § o V = L, we have, for p7' 4+ ¢~! =1 (hence p > 2!):

Elpy] =
E[(VI(+L£) ™20, V(I + L) ?)]
+ E[I+ L) Y2%p.(I+ L) Y%,

hence
E[(V(I+ L) 20, V(I + L)7*)5] = Elep] — E[(I + L) ¢.9].
Since (I + £)™! is continuous on LP(u) (it is a contraction), we have

sup |E[(V(I+ L), V(I +L£)7$)u]| < clllly,

llellp<1

hence ”V(I+ ﬁ)_l/%/’”q < éq||¢”q' QED

Corollary 1: We have

(T +£)7%6€]l, < cpllélls
for any ¢ € LP(u; H) for p €]1, 00].

Proof: Just take the adjoint of V(I + £)~'/2. QED

Corollary 2: We have
D) Vel < cll(+£)?¢ll,

i) [I(Z+£)¢l, < &(llells + Vell,)-
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Proof:

D) (IVell, = IV(I + L)V + £)ell, < (1 +£)2¢]l,.
i) [I(7+£)?¢ll, = (1 + £)72(I + L)l
= |I(7 +£)72(1 + 6Vl

<N+ L)l + (I + £)7 %6V e,
<Jlell, + l||IVell, (from Corollary 1).

QED
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Hypercontractivity

Hypercontractivity

We know that the semi-group of Ornstein-Uhlenbeck is a bounded op-
erator on LP(u), for any p € [1,00]. In fact for p €]1, 00}, it is more
than bounded. It increases the degree of integrability, this property is
called hypercontractivity. It has been first discovered by E. Nelson, here
we follow the proof given by [6].

In the sequel we shall show that this result can be proved using the
Ito formula. Let (92,4, P) be a probability space with (Bt € Ry)
being a filtration. We take two Brownian motions (Xt > 0) and
(Y;;t > 0) which are not necessarily independent, i.e., X and Y are
two continuous, real martingales such that (X? —¢) and (Y2 — ¢) are
again ma;rtingales (with respect to (B;)) and that X; — X and ¥; — Y}
are independent of B, for t > s. Moreover there exists (p;¢t € Ry),
progressively measurable with values in [—1, 1] such that

t
(XYi = [ pods,t > 0)
0

is again a (B:)-martingale. Let us denote by
Xe=0(Xs;8<t), Vi=0(Ys;8<1)

i. e., the correponding filtrations of X and Y and by X and by Y their
respective supremum.
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Lemma 1: 1) For any p € L}(Q, X, P),t > 0, we have
Elp|B;] = E[p|X] as.

2) For any ¢ € L'(Q, Y, P), t > 0, we have
E[|B.] = E[¢|Vy] a.s.

Proof: 1) From Lévy’s theorem, we have also that (X;) is an (X})-
Brownian motion. Hence

¢ = Elp] + /Hsts
0

where H is (X;)-adapted process. Hence

Elp|B) = Bly] + [ H,dX, = Elpl).
0 QED

Let us look at the operator 7' : L'(Q, X, P) — L'(Q, Y, P) which
is the restriction of E[-|))] to the space L'(Q, X, P). We know that
T : LP(X) — LP(Y) is a contraction for any p > 1. In fact, if we
impose some conditions to p, then we have more:

Proposition 1: If |p;(w)| < r (dt X dP a.s.) for some r € [0, 1], then
T:LP(X)— Li(Y) is a bounded operator, where

p—1>r*g—1).

Proof: p = 1 is already known. So suppose p,q €]1,00[. Since
L>(X) is dense in LP(X), it is enough to prove that |TF|, < |[F|l,
for any F' € L*(X). Moreover, since T' is a positive operator, we have
|T(F)| <T(|F]), hence we can work as well with F' € L?(X).

From the duality between LP-spaces, we have to show that

EX(F)G < PG, (5+7=1),
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for any F' € LY(X), G € LY(Y). Moreover, we can suppose without
loss of generality that F,G € [a,b] a.s. where 0 < a < b < oo (since
such random variables are total in all L% -spaces, i.e., they separate L%
for any p > 1).
Let
M, = E[FP|X}]

N; = E[G"|)].

Then, from the Ito representation theorem we have

t
Mpﬂ@+/@&;
0

t
M=%+/%ﬂ;
0

where ¢ is X-adapted, 1 is YV-adapted, My = E[F?], N, = E[GY].

From the Ito formula, we have

MNP = MENE  +

o

1
oM NJAM, + B [ MENJT1aN, +
0

w
+ = M:NfAsds
20/
where
2 2
a=ala—1) (1) 4208520 4 g5 1) (%)

and a = %, g = i
[To see this we have

t t
~1
Mp = Mg +a [ MET6,dX, + —a(“2 ) [ Mz~
0

0

Ny =
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hence

MN{ — MENy

i t 1
- / M*dN? + / NPAM® + of / ME N ob. . ds
0 0

= / M2 (BNE 1y, + D) (5 R 1)N£-2¢§d5)

t
+ [ N2 (oMo gudx, L= pramagag gy
0

2

t
taf [ Mz NI bty puds
0

then put together all terms with “ds”.]
As everything is square integrable, we have

E[M2N?] = E[E[XPIXOO]“ : E[Yq’|yoo]ﬁ]
= E[X-Y]

1 ()
= 5 / E[NFM2AJdt + EMENE
0

— E[X?PE[Y"]) % / E[M*NP Adt .
0
Hence
1 (e 9)
BIXY] = XLl = 5 [ Bl N Addt
0

Now look at A; as a polynomial of second degree with respect to
£ . Then ¢ = o28%? — a(a — 1)B( — 1). If § < 0, then the sign
of A; is same as the sign of a(a — 1) < 0, i.e., if p} < go‘—_lm—lz

(1 - é) (1 - %) =(p—1)(¢'—1) a.s., then we obtain

E[XY] = ET(X)Y] < || X|l[Y]|¢ - QED
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Lemma Let (w,z) = W x W be independent Brownian paths. For
p € [0,1], define z = pw + /1 — p? z, X the o-algebra associated to
the paths z. Then we have

E[F(0)|X.] = / F(pz + 1 — 72 2)p(dz).
w

Proof: For any G € L*(X), we have

E[F(w)-G()] = E[F(w)G(pw+/1—p?2)
= E[F(pw+/1 - 2)G(w)]
= [[Flow+ 1 - p22)G(w) - p(dw)u(dz)

= BlG() [ Floo +/1 =2 2) - p(d2)]

where w0, Z represent the dummy variables of integration. QED

Corollary 1: Under the hypothesis of the above lemma, we have

< [1Flze
La(dup)

” / F(pz + /1 — p? 2)p(dz)

for any (p—1) 2 p*(¢—1).




38

Hypercontractivity




Chapter 1V

LP-Multipliers Theorem,
Meyer Inequalities and
Distributions

1 LP-Multipliers Theorem

First let us give some applications of the hypercontractivity:

Theorem 1: Let F € LP(u) and F = Y, I.(F,) its Wiener chaos
development. Then the map F' — I,,(F},) is continuous on L?(u).

Proof: Suppose first p > 2. Let ¢ be such that p = ¢* + 1, then we
have

[P E Nl < 1]z -

Moreover

| BeLn(Fo)llp < [[Ln(Fn)ll2 < 1FNl2 < |F]l,
but P, (F,) = e ™I,(F,), hence
[ 1n(Fo)|lp < ent”F“p-
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For 1 < p < 2 we use the duality: let F' — I,(F,) = J,(F). Then

Hn(F)ll, = sup [(G, Jn(F))] = sup [(Ju(G), F)]
e
= sup [(JnG, JuF)| < sup ™| G|, [| Fl,
= €"|IF],.

QED

Proposition Let h(z) = 33° axz® be an analytic function around

the origin with Y~ |ak| (;ﬂ—) < 400 for n > ng, for some nyg € N. Let
#(z) = h(z~*) and define T on LP(p) as

T,F = 3 d(m)u(Fr).

n=0

Then the operator to Ty is bounded on LP(y) for any p > 1.

Proof: Suppose first o = 1. Let Ty = Ty + T3 where

no—1

T\F =) ¢(n),(F,), TLF=I-T)F.

From the hypercontractivity, F' — Ty F is continuous on LP(p). Let
bno P =202 In(Fy). Since (1—6n,)(F) = St [(F,), 8y 2 LP — LP
is continuous, hence P;é,, : LP — LP is also continuous. Apply Riesz-
Thorin interpolation theorem, which says that if P;6,, is L? — L? and
L? — L? then it is L? — LP for any p such that :—) is in the interval

[l, 1], in fact we have
q?2

1P:6 llpp < 11 Pe6g N0 | Pebinollz 5" < 11Pe6g 2 160 157"

9 — 9,9

where :—) =2+ 15-9-, 6 €]0,1[. Choose ¢ large enough such that § ~ 1
(if necessary). Hence we have

||Pt5n0 ”ZM? < e—not91{7 K= I{(no’ 0) :

Similar argument holds for p €]1,2[ by duality.
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We have
L(F) = Y ¢(n)a(Fn) =

n>ng

-5 (Sl

n>no k

- Ya ¥ (%)kzn(Fn)

n>ng

= Y ar Y LTFL(F,)
k

n>ng

= Y aL7F6,,F.
k

We also have

(e o}

L7260 Fll, = ”/Pténoth g[(/e‘”"etHFﬂpdth-w
2 P 2 n00
1226 Fly = | [ [ PasbuFdts| <k I,
20 P (nof)
1

“ks. Fll, < K|F|,——-.
1E75 80Pl < KNl

Therefore
; 1 ; 1
| T(F)|l, <YK ||F||pW =3 K ||F||pn';;
k 0 0

by the hypothesis (take ng + 1 instead of ng if necessary).
For the case a €]0,1], let 0§a)(d3) be the measure on R, defined
by
/ e_)‘s(‘)t(a)(ds) = e ",
Ry
Define

oF =3 e (F,) = / P PO (ds).
0
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Then
19260 Flly < 1Fl, [ €76 (ds) = [|Fllpe™",
0
the rest of the proof goes as in the case o = 1. QED

Examples of application:

1) Let

o) = (L) aq-

1 1+z

(D), - ()

Then Ty : L? — L? is bounded. Moreover ¢~'(n) = ﬁ =Rt (ﬁ),

R (z) = % is also analytic near the origin, hence Ty-1 : LP — LP is

also a bounded operator.

2) Let ¢(n) = % then h(z) = \/524 satisfies also the above hy-
pothesis.

3) As an application of (2), look at

I(T+L)*%el, = [IVEI+L) 0],

< T+ 072+ L)),
121 + £)2(1 + £) ¢l
1T (1 + £)2(1 + £) ¢l
< oll(I+L)ellp-

Continuing this way we can show that

collllpi(= 17+ L))

Hvk‘P”LP(u,H@k) <
< Gpn(llelly + IVFol o mor))
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and this completes the proof of the Meyer inequalities for the scalar-
valued Wiener functionals. If X is a separable Hilbert space, we denote
with D, x(X) the completion of the X-valued polynomials with respect
to the norm

lellp, vy = (T + L)¥?|| o) -

We define as in the case X = R, the Sobolev derivative V, the diver-
gence 6, etc. All we have said for the real case extend trivially to the
vector case, including the Meyer inequalities. In fact, in the proof of
these inequalities the main step is the Riesz inequality for the Hilbert
transform. However this inequality is also true for any Hilbert space
(in fact it holds also for a class of Banach spaces which contains Hilbert
spaces, called UMD spaces). The rest is almost the transcription of the
real case combined with the Khintchine inequalities. We leave hence
this passage to the reader. QED

Corollary: For every p > 1, £ € R, V has a continuous extension as
amap Dy — Dy (H).

Proof: We have

IVellos = II(I+L)* Ve,

= V(21 +£)*|,
cll(1 + £)1/2(2I + E)k/290||p
(1 + £EFD 20,

||80||p,k+1-

VAN

Il

QED

Corollary: 6 = V*: D,x(H) — D, is continuous Vp > 1 and
ke R.

Proof: The proof follows from the duality. QED
In particular:

Corollary:
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1) V:NDyr =D — D(H) = Dyx(H) is continuous and extends
P,k p,k
continuously as a map

V:D' = Dy — D'(H) = U D, 4(H).
P,k p,k

i) 6 : N Dpr(H) = D(H) — D is continuous and has a continuous
extension ¢ : D'(H) — D’

Proof: Everything follows from the dualities
(D) = D', (D(H)) = D'(H).
QED

Definition: For n > 1, we define 6" as (V™)* with respect to p.

Proposition: For ¢ € L?(u), we have

v = Ele] + 2—5’"‘ (E[V™]).

n>l

Proof: First suppose that A — ¢(w + k) is analytic for almost all w.
Then we have

p(w + k) = p(w) + 3

n>1

(Ve ( ), he" ) gen

Take the expectations:

Elp(w+h)] = Elp-E(6h)]

= Elel+ 3
(E[V™y])

= Elp|+ > E [”Té’(éh)] .

n>1

(E[V" so] h®")

Since the finite linear combinations of the elements of the set {E(6h); h €

H} is dense in any LP(p), we obtain the identity

olw) = Blg) + 3 2D

|
e~ n!
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Let ¢ € D, then we have (with E[¢] = 0),

() = X Elln(pn)ln(¥n)] =

_ ZE L(E[V"¢]) ()| =

n!
= BV, ) =
= ¥ (Bl BIVY)

n

-y %E[(E[V“SD], V)]

= Y BBV ¥

n

hence we obtain that
1 n n
Y= Z 56 E[v 90]7
in particular §"E[V™p] = I,(E[V™y]). QED

Appendix: Passing from the classical Wiener space
to the AWS (or vice-versa):

Let (W, H, 1) be an abstract Wiener space. Since, a priori, there is no
notion of time, it seems that we can not define the notion of anticipa-
tion, non-anticipation, etc.

This difficulty can be overcome in the following way:

Let (py; A € X), ¥ C R, be a resolution of identity on the separable
Hilbert space H, i.e., each p) is an orthogonal projection, increasing
to Ip, in the sense that A — (pah, k) is an increasing function. Let us

denote by H) = p\(H)

Definition 1: We will denote by F) the o-algebra generated by the
real polynomials ¢ on W such that Vo € H) p-almost surely.
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Lemma 1: We have

V Fa=B(W)

AEX

up to p-negligeable sets.

Proof: We have already \/ F\ C B(W). Conversely, if h € H, then

Véh = h. Since |J H) is dense in H, there exists (h,) C |JH) such
AES X
that h, — hin H. Hence 8h, — 8hin LP(u), Vp > 1. Since each 6h,, is

V F-measurable, so does 6h. Since B(W) is generated by {éh;h € H}
the proof is completed. QED

Definition 2: A random variable ¢ : W — H is called a simple,
adapted vector field if it can be written as

£= Z E(p)\i+1h’i — pahi)

1<+oco

where h; € H, F; are Fy,-measurable (and smooth for the time being!)
random variables.

Proposition 1: For each adapted simple vector field we have

1) 55 = E Eé‘(p/\,‘.'.lhi_p/\ihi)

i<Foo
i) E[(6¢)*] = E[I¢[%].

Proof: i) We have
S[Fi(Prcys — Pai)hil = Fib[(paiyy — Pri)hal = (VEiy (Pag — Pa)hi)-

Since VF; € H), the second term is null.
(ii) is well-known. QED
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Remark: If we note XF; 1)y, x;,,1(A)Rs by £(X), we have the following

notations:

56 = 5/{;:(A)dpA with ||6¢2 = E/d(&,pxéx) = 1€l 22y >
h

D)

which are significantly analogous to the things that we have seen before
as the Ito stochastic integral.

Now the Ito representation theorem holds in this setting also: sup-
pose (px; A € X) is continuous, then:

Theorem: Let us denote with Dgo(H) the completion of adapted
simple vector fields with respect to the L?(u, H)-norm. Then we have

La(p) = R+ {6¢: £ € D3 o(H)},
i.e., any ¢ € Ly(p) can be written as
v = Elp] +6¢

for some ¢ € Djo(H). Moreover such ¢ is unique up to L*(u, H)-
equivalence classes.

The following result explains the reason of the existence of the Brow-
nian motion:

Theorem: Suppose that there exists some Q¢ € H such that the set
{p>Q0; A € X} has a dense span in H (i.e. the linear combinations from
it is a dense set). Then the real-valued (F))-martingale defined by

by = 5PAQO

is a Brownian motion with a deterministic time change and (Fy; A € X)
is its canonical filtration completed with the negligeable sets.
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Example: Let H = H;([0,1]), define A as the operator defined by

t .
Ah(t) = [sh(s)ds. Then A is a self-adjoint operator on H with a
0

continuous spectrum which is equal to [0, 1]. Moreover we have
t
Brh)(0) = [ Lpw(s)h(s)ds
0

1
and Q(t) = [ 10 11(s)ds satisfies the hypothesis of the above theorem.
] [0,1]

Qo is called the vacuum vector (in physics).

This is the main example, since all the (separable) Hilbert spaces are
isomorphic, we can carry this time structure to any abstract Hilbert-
Wiener space as long as we do not need any particular structure of
time.




Chapter V

Some applications of the
distributions

Some applications of the distributions

In this chapter we give some applications of the extended versions of
the derivative and the divergence operators. First we give an extension
of the Ito-Clark formula to the space of the scalar distributions. In
fact, although, we know from the Ito representation theorem, that each
square integrable Wiener functional can be represented as the stochastic
integral of an adapted process, without the use of the distributions,
we can not calculate this process, since any square integrable random
variable is not neccessarily in D 1, hence it is not Sobolev differentiable
in the ordinary sense. As it will explained, this problem is completely
solved using the differentiation in the sense of distributions. Afterwards
we give a straightforward application of this result to prove a 0 — 1
law for the Wiener measure. At the second section we construct the
composition of the tempered distributions with nondegenerate Wiener
functionals as Meyer-Watanabe distributions. This construction carries
also the information that the probability density of a nondegenerate
random variable is not only infinitely differentiable but also it is rapidly
decreasing. The same idea is then applied to prove the regularity of the
solutions of the Zakai equation for the filtering of non-linear diffusions.
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1 Extension of the Ito-Clark formula

Let F' be any integrable random variable. Then we know that F' can
be represented as

1
F = E[F] +/Hdes,
0
where (Hy;s € [0,1]) is an adapted process such that, it is unique and
1
/Hfds < 400 a.s.
0
Moreover, if F' € L? (p > 1), then we also have

o[( [ ipas)"] < +co.

One question is how to calculate the process H. In fact, below we
will extend the Ito representation and answer to the above question for
any F' € D' (i.e., the Meyer-Watanabe distributions).

We begin with:

¢

Lemma 1 Let £ € D(H), then 7¢ defined by wé(t) = [ E[&|Fslds
0

belongs again to D(H), i.e. 7 : D(H) — D(H) is continuous.

Proof: We have L7 = w L, hence
inélhs = B[( [ 10+ 0m m pa) ] -
= ([ Eepeegmas)]

 osl(Juseriral] e

where the last inequality follows from the convexity inequalities of the
dual predictable projections (c.f. Dellacherie-Meyer, Vol. 2). QED
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Lemma 2: 7 : D(H) — D(H) extends as a continuous mapping to
D'(H) — D'(H).

Proof: Let £ € D(H), then we have, for k > 0,

IwEllp—r = I+ L)~ 2xé]l,
|7 (I + £)_k/2€”p < cpl](I+£)_k/2§||p
< cllllp—k s

then the proof follows since D(H) is dense in D'(H). QED

Lemma 3: Let ¢ € D, then we have

1
0 = Elgl+ [ EID.plFJaW,
0
= FElp]+érVep.

Moreover 7V € D(H).
¢

Proof: Let U be an element of L?(u, H) such that u(t) = [ @,ds with
0

(d;t € [0,1]) being an adapted and bounded process. Then we have,
from the Girsanov theorem,

1 1

22
Elp(w + Mu(w)). exp(—A / i dW, — 5 / ids)] = E[).

0 0
Differentiating both sides at A = 0, we obtain:
1
Bl(Vi(w),u) = ¢ [ ,dW,) =0,
. 0

le.,

Bl(Ve,u)] = Elp [ i.dWW,]
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Furthermore

E[ /1 Ds¢usds] - E[ /1 E[Dssolfs]usds]
|

1

(
- o] Ecimian) (o))

0

1

Since the set {fu,dW,, @ as above} is dense in L(p) = L*(u) —
0

(L*(p),1), we see that

1
¢ — Elp] = /E[Dsgol}'s]dWs = 6rVep.
0

The rest is obvious from the Lemma 1. QED

Theorem 1: For any T' € D', we have
| T = (T,1) + 6xVT.

Proof: Let (¢,) C D such that ¢, — 7T in D’. The we have
T = lign On

= Lm[E[pn] 4 67V,]

= lim Efp,] + lim 67V,

= lim(1, Pn) + limér Ve,

= (1, T) +6sVT
since V:D — D'(H), w:D'(H) — D'(H) and 6§ : D'(H) — D' are
all linear, continuous mappings. QED

Here is a nontrivial application of the Theorem 1:

Theorem 2: (0-1 law) Let A € B(W) such that A+ H = A. Then
pw(A)=0or 1.
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Proof: A+ H = A implies that
La(w+ Ah) = 14(w) a.s.

hence V14 = 0. Consequently, Theorem 1 implies that
La = (L, 1) = p(A) = w(A)? = (A). QED

2 Lifting of S’(R?) with random variables

Let f : R — R be a C}l-function, F' € D. Then we know that
V(f(F))=f(F)VF.
Now suppose that |VF |5 € N LP(u), then

: (VU(F), VE)u
M =
T =""vrg
Even if f is not C!, the right hand side of this equality has a sense if we
look at V(f(F)) as an element of D'. In the following we will develop
this idea:

Definition: Let F: W — R?be a random variable such that F; € D,
Vi = 1,...,d, and that [det(VF;, VF;)]™* € N LP(p). Then we say
p>1

that F'is a non-degenerate random variable.

Lemma 1 Lety us denote by o;; = (VF,, VF;) and by y = 07! (as a
matrix). Then v € D(R¢® R9).

Proof: Formally, we have, using the relation o - v = Id,
Vi = D vkt V o -
k,l
To justify this we define first of; = oi; + €é;5, € > 0. Then we can
write 7§ = fij(0°), where f : R?®@ R* — R*® R? is a smooth function
of polynomial growth. Hence 7f; € D. Then from the dominated

convergence theorem we have v; — 7;; in L? as well as kayfj 1, AV
(this follows again from +° - 0 = Id). QED
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Lemma 2 Let G € D. Then we have, Vf € S(R?)
i) E[0if(F).G] = E[f(F).L(G)]

where G — [;(G) is linear and for any 1 < r < g < oo,

sup [|Li(G)]; < +oo.
[IGllg,1 <1

ii) Similarly
E[0;..,f o F.G] = E[f(F) - li;..,(G)]

and

sup ”lnzk(G)”'r < 0.
IG]lg1 <1

Proof: We have
V(f 0 F) = E&f(F)VFz = (V(f o F),VFJ) = Edmazf(F) .
Since o is invertible, we obtain:

Z% (foF),VF).

Then
E[0;f(F).G] = ZE 7;(V(f o F),VF;).G]

= ZE[fOF-5{VFj’mG}],
;
hence we see that [;(G) = Zj 6{V F;~;;G}. We have
L(@) = —Z (7%:;G), V) — i, GLF}]
= - Z 7;(VG, VF;) — %:%k%‘l(vakh VF)G =~ GLEF].
; ,
Hence
(@) < X[ Sl Voul EIG] + sl VB V6] +

+ |yl |GILEF;]]
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Choose p such that % = 11—) + % and apply Holder’s inequality:

d
1@l < 3 [ S IC bl Voulal 7 Flal, +
=1 Lk
il VE VG, + I £l G|

d
< G llas| Il VElIV E ] +

7=1
+ IV Ell + I Fill|
ii) For ¢ > 1 we iterate this procedure. QED

Now remember that S(R¢) can be written as the intersection
(i.e., projective limit) of the following Banach spaces:

Let A =1-64+|z|% ||fllze = ||A*f|leo (the uniform norm) and
Sar, = completion of S(R?) with respect to the norm || - ||z -

Theorem 1 Let F' € D(R?) be a non-degenerate random variable.
Then we have for f € S(RY):

[1F 0 Fllp,—2r < cppll fll-2x -

Proof: Let v = A7*f € S(R?Y). For G € D, we know that there
exists some 791(G) € D (G — n2k(G) is linear) from the Lemma 2,
such that

E[A*) 0 F.G] = Bl o Fiu(G),

- E[f o F.G] = B[(A™ [)(F)ai(G)] .
Hence

|E[f o F.G)| < |A™* Flloo1m26(G) | 22
and

sup |E[fo F.G]| < A flleo sup  [In2x(G)lh

[|Gllg2x<1 [1Gllg,2x <1

= K| fl|-a.
Hence ||f o F|—or < K||f]|-2- QED




56 Lifting of S'(R%)
Corollary 1: The map f — fo F from S(R?) — D has a continuous
extension to S'(R?) — D'.

Some applications

If F: W — R%is a non-degenerate random variable, then we have seen
that the map f +— fo F from S(R%) — D has a continuous extension
to §'(R%) — D', denoted by T'+— T o F.

For f € S(R?), let us look at the following Pettis integral:

/ f(2)&,dz,
R4

where &, denotes the Dirac measure at = € R% We have, for any
g € S(RY),

([f@ude,g) = [U@)Emg)da= [ f@)(Eng)da
[ f@g(@)de = (£,9).

Hence we have proven:

Lemma 1: The following representation holds in S(R%):

f= s f(z)Ede.

From Lemma 1 we have

Lemma 2: We have

for any ¢ € D.




57

Proof: Let p. be a mollifier. Then &, * p. — &, in S’ on the other

hand
JE s pdE) )y = [pelF+9).Fw)dy =
= [0+ F)dy = f(F).
Hence
lim [ (&, % p)(F)f()dy = ggg(e ) (F)f(v)dy
_ / &,(F)f(y)dy inD’

QED

Corollary: We have (£,(F),1) = 428 () = pp(z), moreover pp €
S(RY) (i.e., the probability density of F' is not only C* but it is also a
rapidly decreasing function).

Proof: We know that the map T — E[T(F).¢] is continuous on
S'(R?) hence there exists some pr, € ((R?) such that

E[T(F).¢] = s(T, Prg)s -

Let pr1 = pr, then it follows from the Lemma 2 that

BI(F)] = [(€,(F),1)f(y)dy. os

Remark: From the disintegration of measures, we have

[ BlelF = alf(a)da = EIf(F)]

[ F@)&(F),0)do

hence E[p|F = z] = (E;(F), p)dz-a.s. In fact the right hand side is an
everywhere defined version of this conditional probability.
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Remark: Let (z;) be the solution of the following stochastic differ-
ential equation:

dzi(w) = b (z4(w))dt + o5(ze(w))dwy
o = T given,

where b : R — R% and o; : R — R? are smooth vector fields with
bounded derivatives. Let us denote by

X, :Zdjif' 0 X-:Za?i
0 =~ 00$i7 J 18:@

where bi(z) = bi(z) — 1 Y 0kot(z)ok(z). Then, if the Lie algebra of
ko

vector fields generated b}; {Xo, X1,...,Xq} has dimension equal to d
at any ¢ € R¢, then x;(w) is non-degenerate cf. [20]. In fact it is also
uniformly non-degenerate in the following sense:

y .
E/ |Det(Vzt, Vai)|Pdr < oo, Vo<s<t, Vp>1.

As a corollary of this result, combined with the lifting of S’ to D',
we can show the following:
For any T € S'(R?), one has the following:

T(e) = T(zs) = [ AT(z)ds + [ os(e) - 0,7 (w)dW,

where the Lebesgue integral is a Bochner integral, the stochastic inte-
gral is as defined at the first section of this chapter and we have used
the following notation:

7 1 82 * _
A = Zba‘+§za7«7(x)amzaw] ) a(w) - (UU )1]7 0= [Ula"‘ 7ad]'
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Applications to the filtering of the diffusions

t
Suppose that y; = [ h(z,)ds+ B; where h € C°(R%) @ R%, B is another
0

Brownian motion independent of w above. (y:;t € [0,1]) is called an
(noisy) observation of (z:). Let Y; = o{ys;s € [0,%]} be the observed
data till ¢. The filtering problem consists of calculating the random
measure f — E[f(z;)|):]. Let P° be the probability defined by

dP° = 7;1dp

1 t
where Z; = exp [ h(=z;).dys — 3 [ |h(z;)|*ds. Then for any bounded,
0 0

Y;-measurable random variable Y;, we have:

E[f(z)Y] = E:%f(xm = E°1Z,f(2)Y)

= EO-[E[th(aft)lyt] Y] =

1 0
= 8| oz P40 Y
hence
Elf(z)|0] = L2 (@A
PN

If we want to study the smoothness of the measure f +— E[f(z:)|)}],
then from the above formula, we see that it is sufficient to study the
smoothness of f — E°[Z,f(z:)|V:]. The reason for the use of P° is that
w and (y:;t € [0,1]) are two independent Brownian motions under P°
(this follows directly from Paul Lévy’s theorem of the characterization
of the Brownian motion).

After this preliminaries, we can prove the following

Theorem Suppose that the map f — f(z;) from S(R?) into D has a
continuous extension as a map from S’(R?) into D’. Then the measure

f +— E[f(z:)|):] has a density in S(R?).
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Proof: As explained above, it is sufficient to prove that the (random)
measure f +— E°[Z;f(z;)|):] has a density in S(R9).

Let £, be the Ornstein-Uhlenbeck operator on the space of the
Brownian motion (y;¢ € [0,1]). Then we have

t t
1
£,%0= 2 - [ Wedye+ 5 [ In(e)ds) € (17
0 0 P

It is also easy to see that

£z, e (N LP.
p

e Hence Z;(w,y) € D(w,y), where D(w,y) denotes the space of
test functions defined on the product Wiener space with respect
to the laws of w and y.

e The second point is that the operator E°[e])}] is a continuous
mapping from D;f’k(w,y) into Dp,(y) since £, commutes with
E°[e|Y,] (for any p > 1,k € Z).

e Hence the map T +— E°[T(x;)Z;|).] is continuous from S'(R%) —
D'(y). In particular, for fixed T' € &', 3p > 1 and k£ € N such that
T(z:) € Dp_i(w). Since Z; € D(w,y), Z;T(z1) € Dp_i(w,y)
and T(x).(I + L£L,)*?Z; € D, _(w,y). Hence E°[T(z;) - (I +
L) 2 Zi| Vi) € Dy i(y)-

o Hence (I + L) 2E°[T(z:)(I + L,)*?Z:|Y:] = E°[T (21)Z:| Y] be-
longs to LP(y). Therefore we see that:

T — E°[T(z4) Z:| V4]

defines a linear, continuous (use the closed graph theorem for
instance) map from S'(R?) into LP(y). Since S'(R?) is a nuclear

space, the map T A E°[T(z;)Z:|Y:] is a nuclear operator, hence
by definition it has a representation:

0= Z Aifi ® ay
1=1
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where (X;) € 1Y, (f;)) € S(RY) and (o;) C LP(y) are bounded

sequences. Define

ke, y) = 32 Nifi(@)ai(y) € SRI)EL(y)

where ®; denotes the projective tensor product topology. It is
easy now to see that, for ¢ € S(R?)

[ (@)l y)do = E°lg(ar) - /2
. QED
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Lifting of S'(R%)




Chapter VI

Positive distributions and
applications

Positive Meyer-Watanabe distributions

If 0 is a positive distribution on R? then a well-known theorem says
that 8 is a positive measure, finite on the compact sets. We will prove an
analogous result for the Meyer-Watanabe distributions in this section,
show that they are absolutely continuous with respect to the capacities
defined with respect to the scale of the Sobolev spaces on the Wiener
space and give an application to the construction of the local time of the
Wiener process. We end the chapter by making some remarks about
the Sobolev spaces constructed by the second quantization of an elliptic
operator on the Cameron-Martin space.

We will work on the classical Wiener space Cy([0,1]) = W. First
we have the following:

Proposition: Suppose (T,,) C D' and each T, is also a probability
on W. If T, - T in D', then T is also a probability and T,, — 7' in
the weak topology of measures (on W).

Proof: It is sufficient to prove that the set of probability measures
(vn) associated to (7)), is tight. In fact, let S = D N Cy(W). If the
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tightness holds, then we will have, for v = w — limv,,

v(e) =T(p) ons.

Since S is weakly dense in Cy(W) the proof will be completed (remem-
ber e w* € W*, belongs to S!).
Let G(w) be defined as

11
:/ [o(t) |t-—3|3 dsdt:>GeD

Then, it is not difficult to show that Ay = {G(w) < A} is'a compact
subset of W (cf.[1]).

Moreover, we have |J Ay, = W almost surely. Let ¢ € C*°(R) such
230

that 0 < ¢ < 1; p(z) = 1 for z > 0, p(z) = 0 for ¢ < —1. Let
oa(z) = p(z = A).
We have
(A9 < [ oa(Glw)) va(dw).

We claim that [y oA(G)dv, = (oA(G), T,):
For € > 0, write

_ () —w(s)f
G (w) _[042 md sdt.

Then ¢\(G:) € S (but not ¢,(G), since G is not continuous on W)
Since v (G.) € S = Gy(W) N D, we have

/SOA an - (Gs)aTn>
But ¢x(G:) — ¢a(G) in D, hence

13{%1<90)\(G5»Tn> = (pa(G), Tn) -
From the dominated convergence theorem, we have also

lim / o (Go)dvn = / or(G)dv.
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This proves our claim. Now, since T, — T in D', exists some k > 0
and p > 1 such that 7, — T in D, _x. Therefore

(NG, Ta) = ((I+L)eA(G), (I + L))
S U+ L (Gl sup (1 + £)T T
From the Meyer inequalities, we see that
lim [|(1+ £)"202 (@), = 0,
in fact, it is sufficient to see that V(¢ (G)) — 0in L? for all 1 < [k]+1,

but this is obvious from the choice of ¢,.
Therefore we have proven that

lm sup jia(A5) < sup (T 4+ £) ¥ Tolly Jim 7+ £)%e(@)llp =0,
which is the definition of tightness. QED

Corollary: Let T € D’ such that (T, ) > 0, for all positive ¢ € D.
Then T is a Radon measure on W.

Proof: Let (h;) C H be a complete, orthonormal basis of H. Let
Vi = 0{6h1,...,6h,}. Define T, as T,, = E[Py;,T|V,] where Py, is
the Ornstein-Uhlenbeck semi-group on W. Then T,, > 0 and it is a
random variable in some L?(u). Therefore it defines a measure on W
(even absolutely continuous with respect to u!). Moreover T,, — T' in
D', hence the proof follows from the proposition. QED

1 Capacities and positive Wiener functio-
nals

If pe[l,00[, 0 C W is an open set and k > 0, we define
o Cpr(O) =inf{||¢|l? 1 : ¢ € Dpg, ¢ > 1 p-a.e. on O}.
oo If A C W is any subset, define
Cpi(A) = inf{C, x(0); O is open O D A}.




66 Positive Distributions

e We say that some property takes place (p, k)-quasi everywhere if the
set on which it does not hold has (p, k)-capacity zero.

o Wesay N is aslim set if Cpx(N)=0,Yp>1, k> 0.

e A function is called (p, k)-quast continuous if Ve > 0, 3 open set
O. such that C,x(O,.) < ¢ and the function is continuous on O¢.

e It is called co-quasi continuous if it is (p, k)-qﬁa,si continuous Y(p, k).
The following results are proved by Fukushima & Kanako:

Lemma 1:

i) If ¢ € Dy, then there exists a (p, k)-quasi continuous function F
such that F' = F' y-a.e. and F' is (p, k)-quasi everywhere defined,
i.e. if G is another such function, then C, x({F # G})) = 0.

i) If A C W is arbitrary, then

Coi(A) = inf{lellui s @ € Dy, & 21 (p,r) — g.c. on A}

iii) There exists a unique element Uy € D, ) such that [NZA > 1 (p, k)-
quasi everywhere on A with C, x(A) = ||U4||p,k, and Ua > 0 (p, k)-
quasi everywhere. Uy is called the (p, k)-equilibrium potential of

A.

Theorem 1: Let T' € D’ be a positive distribution and suppose that
T € D, i for some ¢ > 1, k > 0. Then, if we denote by vr the measure
associated to T, we have

51(A) < T llg-#(Coe(A))'7,

for any set A C W, where vy denotes the outer measure with respect
to vr. In particular v7 does not charge the slim sets.
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Proof: Let V be an open set in W and let Uy be its equilibrium
potential of order (p, k). We have

(Pl UV) = [P Uvdu = [ Py Uy
14
Z /Pl/an,u = VPl/nT(V) .
|4

Since V' is open, we have, from the fact that vp,, .7 — vr weakly,
llﬂglf VP]/nT(V) Z Z/T(V) .
On the other hand

Iim (P T, Uv) = (T,Uv) < |[T]|gklUv llp

= ||T|s_rCy i (V).
T ||g,-xCpi(V) QED

An application

1) Let f:R?— R be a function from &’(R?) and suppose that (X;) is
a hypoelliptic (i.e., non-degenerate) diffusion on R%. We have the Ito
formula

FX) — f(X,) = /Lf(Xs)dS-l-/O'ij(Xs)aif(XS)dWsj7

with the obvious notations. Note that, since we did not make any
differentiability hypothesis about f, the above integrals are to be inter-
preted as the elements of D’. Suppose that Lf is a bounded measure
on R from our result about the positive distributions, we see that
JYLf(X,)ds is a measure on W which does not charge the slim sets.
By difference, so does the term [* 0 (X)) 0 f (X, )dW3.

2) Apply thistod =1, L = 1A (i.e. ¢ = 1), f(z) = |z|. Then we have

t t
1 d
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As %|m| = sign(z), we have
t t
/ (W), = / sign(W,)dW, = M

is a measure absolutely continuous with respect to p. Since lir% M} =
U—

N; exists in all L?, so does

i
lim / Alz|(W,)ds

¢ .
in L? for any p > 1. Consequently [ Al|z|(Ws)ds is absolutely contin-
0

uous with respect to u, i.e., it is a random variable. It is easy to see
that
Alal(Wy) = 26(W,)

i.e., we obtain
t t
/ 265(W,)ds = / Alz|(W,)ds = 21°
0 0

which is the local time of Tanaka. Note that, although &(Wj) is singu-
lar with respect to u, its Pettis integral is absolutely continuous with
respect to p.

2) If F: W — R%is a non-degenerate random variable, then for any
S € 8'(R?) with S > 0 on Sy (R?), S(F) € D' is a positive distribution,
hence it is a positive Radon measure on W. In particular &;(F) is a
positive Radon measure.

Distributions associated to I'(A)

For a “tentative” generality we suppose that (W, H,p) is an abstract
Wiener space. Let A be a selfadjoint operator on H, we suppose that
its spectrum lies in |1, 0o[, hence A™! is bounded and ||A™}|| < 1. Let

Ho = () Dom(A"),
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hence H,, is dense in H and a — (A%h,h) is increasing. Denote by
H, the completion of H,, with respect to the norm |h|2 = (A%h, h);
a € R. Evidently H! = H_, (isomorphism). If ¢ : W — R is a nice

Wiener functional with ¢ = ioj I.(¢n), define
n=0
T(A)p = E[p] + 3 I(A®"¢n) -
n=1

Definition: Forp > 1,k € Z,a € R, we define D3, as the completion
of polynomials (based on H,) with respect to the norm:

llokia = (I + LT (Ao || 1oy »

where @(w) = polynomial(6hy,...,0h,), hi € Hy .
If X is a separable Hilbert space, D (&) is defined likewise.

Remark: i) If ¢ = exp(§h — 7|h|*) then we have
I'(A)p = exp §(Ah) — 2| AR|*.

ii) Dy} is decreasing with respect to a, p and k.

Theorem 1: Let (W, H,,us) be the abstract Wiener space corre-

sponding to the Cameron-Martin space H,. Let us denote by Dz(fk) the
Sobolev space on W< defined by

el ey = (7 + L)l o o)
Then D;?[k) and Dy are isomorphic.

Remark: Thisisomorphism is not algebraic, i.e., it does not commute
with the pointwise multiplication.

Proof: We have
i6(A2/2h) 1| gc/27|2 |h|§
Ele ] =exp3|A h|* = exp 5

which is the characteristic function of y, on W<e. QED
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Theorem 2: i) For p > 2, a € R, k € Z, there exists some 8 > §
such that

lello, < liele,

consequently (| D§, = N Dy .
a,k k

P,

ii) Moreover, for some 8 > a we have
leling, < llellpg, -
Proof: i) We have
lelog, = I+ m) (A s

— H Z(l + n)k/Zente—ntIn((Aaﬂ)@nson)”
r

From the hypercontractivity of P;, we can choose ¢ such that p = e*+1
then

” ST+ )k emte™ (.. .)

, < ” > 1+ n)¥2e™ I (...)

2

Choose 3 > 0 such that ||[A="|| < e~*, hence

H S+ )2 )

< ” ST(1 4 n) T (AP)D(AP)e™ I, ((A%7?)®",)

2

< A ) (AT ),

= llellpasta-

2

ii) If we choose ||[A7?|| < e~ then the difference suffices to absorb the
action of the multiplicator (14 n)*? which is of polynomial growth and
the former gives an exponential decrease. QED

Corollary 1: We have similar relations for the any separable Hilbert
space valued functionals.
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Proof: Use the Khintchine inequality.

As another corollary we have

Corollary 2: i) V:® — ®(Hy) =NP(H,) and 6 : ®(Hy) — @
are continuous. Consequently V and 6 have continuous extensions as
linear operators ®' — ®'(H_ ) and ®'(H_) — ®'.

ii) @ is an algebra.

iii) For any T € @', there exists some ( € ®'(H_.) such that T' =
(T,1) + 8¢

Proof: i) Follows from Theorem 1 and 2.

ii) Tt is sufficient to show that ¢? € @ if ¢ € ®. This follows from the
multiplication formula of the multiple Wiener integrals. (left to the
reader).

iii) If 7' € @', then there exists some o > 0 such that T' € D35, i.e., T
under the isomorphism of Theorem 1 is in L?(ya, W) on which we
have Ito representation (cf. Appendix).

Proposition: Suppose that A~! is p-nuclear, i.e., Ip > 1 such that
A7P is nuclear. Then ® is a nuclear Fréchet space.

Proof: This goes as in the white noise case, except that the eigen-

vectors of I'(A™!) are of the form Hgz(6hq,y,- .. ,0H,) with ks, are the
eigenvectors of A. QED

Applications to positive distributions

Let 7' € @' be a positive distribution. Then there exists some D, %,
such that T € D%, and (T,¢) > 0 for any ¢ € DSy, ¢ > 0. Hence
io(T) is a positive functional on nyk) (i.e., the Sobolev space on W?).
Therefore 1,(T') is a Radon measure on W™, Hence we find that, in
fact the support of 7" is W~* which is much smaller than H_.
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Open question: Find the smallest W~%7




Chapter VII

Characterization of
independence of some
Wiener functionals

1 Independence of Wiener functionals

In probability theory, one of the most important and difficult properties
is the independence of random variables. In fact, even in the elementary
probability, the tests required to verify the independence of three or
more random variables get very quickly quite difficult. Hence it is very
tempting to try to characterize the independence of random variables
via the local operators that we have seen in the preceeding chapters.

Let us begin with two random variables: let F,G € D, for some
p > 1. They are independent if and only if

E[eiaFeiﬁG] — E[eiAF]E[eiﬁG]
for any a, # € R, which is equivalent to
E[a(F)b(G)] = Ela(F)]E[b(G)]

for any a,b € Cy(R).
Let us denote by a(F') = a(F) — E[a(F)], then we have:
F and G are independent if and only if

E[a(F)-b(G)] =0, Va,be Cy(R).
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Since e'* can be approximated pointwise with smooth functions, we

can suppose as well that a,b € C}(R) (or C§°(R)). Since £ is invertible
on the centered random variables, we have

E[a(F)b(G)] = E[LLTG(F) - b(G)]
— E[§VLa(F)- b
= E[(VL™a(F),V
— E[((I+L)"'Va(F

E[((I + £) (' (F)VF),b(G
= E(G)- (I + L) (a(F)VEF), VG)x]
— E(G)- Bl((I +£)7(d(F)VE,VG)ulo(@)]].

VG)H]

In particular choosing ¢ = €'**, we find that

Proposition 1: F and G (in D, ;) are independent if and only if
E[((I4 L) ('VF),VG)g|o(G)] =0 as.

However this result is not very useful, this is because of the non-
localness property of the operator £~!. Let us however look at the case
of multiple Wiener integrals:

First recall the following multiplication formula of the multiple
Wiener integrals:

Lemma 1: Let f € L*([0,1]?), g € L2([0,1]?). Then we have

PAg

plq!
IP(f) ) IQ(Q) = ;0 m'(p — m)'(q — m)!IP+q—2m(f ®m g)a

where f ®,, ¢ denotes the contraction of order m of the tensor f ® ¢
(i.e., the partial scalar product of f and ¢ in L?[0,1]™).
By the help of this lemma we will prove:

Theorem 1: I,(f) and [,(g) are independent if and only if

f®g=0 as. on[0,1]PT?72,
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Proof: (=) : By independence, we have

E[I212) = p|| fII*a!llg]1? = p'g!||f @ g]*.

On the other hand.

PAg

I(F)1q(g Zm'cmcm pta-2m(f Om 9)

hence

E[(L,(f)1,(9))’]

pAg

= > (mICICI)(p+ g —2m)!|| fQmygl

0
> (p+9)||f®g||* (dropping the terms with m > 1).

We have, by definition:

2

”f®g||2 = Z f(ta(l)a cee 7ta(P))g(ta(p+1)a v 7ta(p+q))

H (p+ Q)! e

R

0, TESp+q

where S,1, denotes the group of permutations of order p + ¢ and

/ f(ta(l)a s 7ta(p))g(ta(p+1)7 s ;ta(p+q)) :

[0,1]7+
f(tqr(l), e ,t,r(p))g(tﬂ.(p_l_l), ... ,tr(p+q))dt1 - dtp_|_q .
Without loss of generality, we may suppose that p < ¢. Suppose

now that (o(1),...,0(p)) and (7 (1),...,n(p)) has k£ > 0 elements in
common. If we use the block notations, then

(to(a)s - - - ,ta(p)) = (A, A)
( o(p+1)s - - - ata(p+q)) =B
(tr(ays- - » w(p))= (Ax, C)
( n(p+1)s - 7r(p+q)) =D
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where Ay, is the subblock containing elements common to (tx(1, ... ; tr(p))
and (t,@1),. .- ,ts(p)). Then we have
Ao = / F(Ap, A)g(B) - f(Ay, C)g(D)dty ... dtysq -

[0,1]ptq

Note that AkUAUB AkUC’UD {t1,... ,tprq}, ANC = 0. Hence
we have AUB = CUD. Since ANC = 0, we  have CcBand ACD.
From the fact that (A B) and (C, D) are the partitions of the same set,
we have D\A = B\C. Hence we can write, with the obvious notations:

/\0‘,71':
= [ f(4,A)9(C,B\O)- f(Ar, O)g(A, D\A)dt ... dty,
[0,1]pt4
= [ £k A)g(C, B\C)f(Ar, O)g(A, B\C)dAdAdCd(B\C)
[0,1]p*4
= [ (F 9k 9)(A B\C) @5k 9)(Ar, B\C) - dAd(B\C)
[0,1]a—P+2k

= [|f ®p-s g”%z([o,l]q—pwk)

where we have used the relation D\A = B\C in the second line of the
above equalities. Note that for k& = p we have A\, = ||f ® g||%.. Hence
we have

E[IX(f)I2(9)]
= plIfI*- ¢!llgl?

> (p+9)! [((er—q

[ donll =+ S k#?)”

The number of A, with (k = p) is exactly <p+q>( 12(q!)?, hence we
have '

p—1
P IPIgI? = plalllf @ gll* + > crllf @p—r gllT2 (0 170-p42)
k=0
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with ¢; > 0. For this relation to hold we should have
If @p-kgll =0, k=0,...,p—1
in particular for £k = p — 1, we have

If @19 =0.

(<): From the Proposition 1, we see that it is sufficient to prove
(I+ L) e ™FVF,VI,(9) =0 as.

with F' = I,(f), under the hypothesis f ® ¢ = 0 a.s.: Let us write
e () = S Ii(hy), then
2

6iaIp(f)VIp(f) = p- ZIk(hk) . Ip_1(f)
k

kA(p—1)
= p- E Z O‘p,k,rIp—1+k—2'r(hk Xy f) .
k r=0
Hence
] kA(p—1)
(I+L)7efVE=p-3 > (L+p+k—1-2r) " Lorpp—ar(he @, f) .
k  r=0

When we take the scalar product with VI,(g), we will have terms of
the type: ‘

(Tp—14k—2r(hi @y f), I3-1(9))m =
= Iish-ar(br @ f(ei))Ig-1(g(es)) -

=1

If we use the multiplication formula to calculate each term, we find the
terms as

i /(hk Qr f(ez))(tla s ,tp+k—2r—l)g(6i)(t17 s 7tq—1)dt1dt2 cee
=1

- // (hie @1 FO)(trs -+ s tpsieare1)g (0, by tgor)dO dty ..

8=0
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From the hypothesis we have

1
/f(@,tl...)g((‘),sl... )do=0 as.,
0

hence the Fubini theorem completes the proof. QED

Corollary 1: Let f and g be symmetric L2-kernels respectively on
[0,1]7 and [0,1]9. Let

Sy = span{f ®—1 h: h € L*([0,1])""}

and

Sy = span{g ®g-1 k; k € L*(]0,1]°"")}.
Then the following are equivalent:
i) I,(f) and I,(g) are independent
i) S, LS, inH
iii) The Gaussian-generated o-fields o{I1(k); k € Sy} and o{I;(I);1 €

Sy} are independent.

Proof: (i=-ii): (i) implies thatf ®, g =0 a.s. If a € Sy, b € S, then
a = f ®p-1h and b = g ®,_1 k (rather finite sums of these kind of
vectors). Then

(a, b) = (f Rp-1 b, g Ry—1 k) = (f ®19,h® k)(L2)®p+q—2 (Fubini)
= 0.
(ii=i) I (f®1¢,h®k) = 0Vh € L*([0,1]7Y),k € L3([0,1]771),
then f ®1 g = 0 a.s. since finite combinations of A~ ® k are dense in

L2([0, 117+72),

(iiexiii) Is obvious. QED

Proposition: Suppose that I,(f) is independent of I,(g) and I,(f)
is independent of I.(h). Then I,(f) is independent of {I,(g), I.(h)}.
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Proof: We have f ®; g = f ® h = 0 a.s. This implies the indepen-
dence of I,(f) and {I,(g),I,(h)} from the calculations similar to those
of the proof of sufficiency of the theorem. QED

In a similar way we have

Proposition: Let {I,,(fs);a € J} and I,(gs); 8 € K} be two ar-
bitrary families of multiple Wiener integrals. The two families are
independent if and only if I,,(fs) is independent of I,(gs) for all
(e, p) € J x K.

Corollary: If I,(f) and I,(g) are independent, so are also L(f)(w+h)
and I,(g)(w + k) for any h, k € H.

Proof: Let us denote, respectively, by h and k the Lebesgue densities
of h and k. We have then

B+ B) = 3 (1) (s,
Let us define f[h®] € L?[0,1]P~% by L—:(f[h®]) = (L—i(f), h®). If
f ®; g =0 then it is easy to see that

FIh®]) @1 g[k®] =0,

hence the corollary follows from Theorem 1.
QED

From the corollary it follows

Corollary: I,(f) and I,(g) are independent if and only if the germ
o-fields

oAL(£), VI, (f), .-, VI ()}

and
o{l,(9),- ’Vq—qu(g)}

are independent.
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Corollary: Let X,Y € L*(p), Y = f]n(gn). If
0

VX ®¢,=0 as. Vn,

then X and Y are independent.
Proof: This follows from Prop. 1 QED

Corollary: In particular, if b € H, then Vie =0 a.s. implies that ¢
and I;(h) = 6h are independent.




Chapter VIII

Moment inequalities for
Waiener functionals

In several applications, as limit theorems, large deviations, etc., it is
important to control the (exponential) moments of Wiener functionals
by those of their derivatives. In this chapter we will give some results
on this subject.

1 Exponential tightness

First we will show the following result which is a consequence of the
Doob inequality:

Theorem 1: Let ¢ € D,; for some p > 1. Suppose that Vp €
L>(p,H). Then we have

(c— E[p])?

for any ¢ > 0.
2|IV90||%°°(/1.,H)

p{lel > ¢} < 2exp—

Proof: Suppose that F[p] = 0. Let (e;) C H be a complete, orthonor-
mal basis of H. Define V,, = o{bey, ... ,0e,} and let @, = E[Py/,0|V4],
where P; denotes the Ornstein- Uhlenbeck semigroup on W. Then, from
Doob’s Lemma,

©n = fa(be1,. .., bep).
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Note that, since f, € ﬂ W r(R™ i) = fr is C° on R” from the

Sobolev injection theorem Let (Bt € [0,1]) be an R™valued Brown-
ian motion. Then

p{lenl > c} = P{|fu(B1)| > c}
< P{tsél[tg |E[fn(B1)|Bd]| > ¢}
= P{tsel[lp |Q1-¢fn(Bt)| > ¢},

where PP is the canonical Wiener measure on C([0,1],R") and @) is the
heat kernel associated to (B:), i.e

Qu(z, A) = P{B,+ 2 € A}.

From the Ito formula, we have

Qi-1fa(B) = Qufa(Bo) + [ (DQi-.fu(B.), dB.).

By definition

Qun(B)) = Qufal0) = [ £2(4)- Q:(0,dy) =

Moreover we have DQ:f = Q:Df, hence

Qu-tfulB) = [(Qu-iDfa(B.),dB,) = M},
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The Doob-Meyer process (M™, M™); of the martingale M™ can be con-
trolled as

(M7 = [ 1DQu-ofu(B) s <

0
t J
< [UDSlEds = tIVLallE, =tV fallzesgun) <
0

< HIVelieo(um -

Hence from the exponential Doob inequality, we obtain

2

C
P{sup [Quesfo(B)] > o} < 2exp —

tefo,1
Hence
{lgnl > } < 2exp o C
w{lon| > ¢} < 2exp ———F——.
" 2||V90||?:°°(#,H)
Since @, — @ in probability the proof is completed. QED

Corollary: Under the hypothesis of the theorem, for any A < 2”V¢“ ,
we have
Elexp Algl?] < oo.

In particular, for any A < £, we have

Elexp Mwl||}] < oo (Fernique’s lemma).
Proof: The first part follows from the fact that, for F' > 0 a.s.,
E[F] = / P{F > t}dt.
0

The second part follows from the fact that |V||w]|||z < 1. QED

We will see another application of this result later.




84 Moment Inequalities

2 Coupling inequalities
We begin with the following elementary lemma (cf. [8]):

Lemma: Let X be a Gaussian r.v. on R% Then for any convex func-
tion U on R and C'-function V : R? — R, we have the following

inequality:

BUV(X0) = VY] < B[U (0700, Vs |,

where Y is an independent copy of X and E is the expectation with
respect to the product measure.

Proof: Let Xy = Xsinf + Y cosf. Then
/2

V(X) - V(Y) = /de (Xo)d

7r/2

_ / (V'(Xg), X})pado

/2
/ V'(Xg), X})ga di
0

t\9|=]

where df = 40

=3 Since U is convex, we have

/2
U X) = V) < [ U(F000), X)) di.
0
Moreover Xy and Xj are two independent Gaussian random variables

with the same law as the one of X. Hence
/2

BU(vx) -vy) < | E[U(%(V’(X),Y))]dé

B E[U(%(V/(X ) Y)>]' QED

Now we will extend this result to the Wiener space:
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Theorem 2: Suppose that ¢ € D, 1, for some p > 1 and U is a
lower bounded, convex function (hence lower semi-continuous) on R.

We have
BlU(p(w) — ¢(=)] < B[V (S h(Ve()2))]

where F is taken with respect to yu(dw) x p(dz) on W x W and on the
classical Wiener space, we have

| &

Vo(w,t)dz; .

U

t

h(Ve(w))() = |

Proof: Suppose first that

¢ = f(6hi(w),. .., 8hy(w))

with f smooth on R™, h; € H, (hs, hj) = é;;. We have
L(Ve(w)(z) = I (2 8, f (8ha(w), ... ,5hn(w))hi>
=1

= an@'f(rfhl(w), ooy Shn(w)) 11 (Rs)(2)

=1

= (f(X),Y)gn

where X = (§h1(w),... ,8h,(w)) and Y = (6h1(2),...,6hs(2)). Hence
the inequality is trivially true in this case.

For general ¢, let (h;) be a complete, orthonormal basis in H, V,, =
o{6h1,...,0h,} and let

Pn = E[Pl/n90|vn] )

where P/, is the Ornstein-Uhlenbeck semigroup on W.
We have then

B[U(ga(w) — on()] < B[U(S0(Ton()())]
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Let 7, be the orthogonal projection from H onto span {hAi,...,h,}.

We have

L(Ven(w))(z) = h(VwEulPinp|Va])(2)

= Il(Ew[e_l/nPI/nﬂnV(p|Vn])(Z)
= Il(ﬂ-nEw [6_1/nP1/nV(p|V:ﬂ])(Z)
= EL(Bule™" P, Vo V)| Vil

where V,, is the copy of V,, on the second Wiener space. Then

E[(3a(Venw)(2)]

< B[u(ZnEle P eV )]
= B[u(Ge Bl bR ()W) |
< o (S h(P o))
= B[u(Ge Py (Vo))
< Blu(Zen(Tet)() )]
= B[ (5PORVe )]
< o (3nTet)E)].
Now Fatou’s lemma completes the proof. - QED

Let us give some consequences of this result:

Theorem 3: The following Poincaré inequalities are valid:
i) Blexp(o — Blel)] < B|exp 5 Velh),

ii) Elle — Ele]l] < SE[|Velu].

2kk!

i) Bllp - Blel] < (3) GBIV, ke N
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Remark: Let us note that the result of (ii) can not be obtained with
the classical methods, such as the Ito-Clark representation theorem,
since the optional projection is not a continuous map in L!-setting.
Moreover, using the Holder inequality and the Stirling formula, we
deduce the following set of inequalities:

v
le — Elelll, <p §||V(fo||LP(M1H)7

for any p > 1 . To compare this result with those already known, let
us recall that using first the Ito-Clark formula, then the Burkholder-
Davis-Gundy inequality combined with the convexity inequalities for
the dual projections and some duality techniques, we obtain, only for
p > 1 the inequality

e — El@]ll, < Kp*?| Vel 1e(um),

where K is some positive constant.

Proof: Replacing the function U of Theorem 2 by the exponential
function, we have

IN

Ey, x B [exp(p(w) — ¢(2))] <
< B, [B [l S0(Vo())2)|

B exp Z|Vi(w)l}.

Elexp(y — E[¢])]

(ii) and (iii) are similar with U(z) = |z|¥, k € N. QED

Theorem 4: Let ¢ € D,, for some p > 1 and that V|Vo|g €
L**(u, H) (in particular, this is satisfied if VZp € L*(u, H®2H)). Then
there exists some A > 0 such that

Elexp A|o|] < oo
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Proof: From Theorem 3, (i), we know that Elexp Ao — E[p]|] <
2E[exp %|ch|2]. Hence it is sufficient to prove that

Elexp A% Vp|*] < o0

for some A > 0. However Theorem 1 applies since V|V| € L=(u, H).
QED
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