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Introduction

Anderson’s construction [2] of Brownian motion as the standard part of a |
random walk with infinitesimal increments is one of the success stories of
nonstandard analysis. Almost every subsequenct development in nonstan-
dard probability theory is inspired — directly or indirectly — by Anderson’s
work. The purpose of this paper is to point out how another extremely
important process in stochastic analysis — the infinite dimensional Ornstein-
Uhlenbeck process — can be derived very easily from Anderson’s construc-
tion.

To explain the basic idea, let us first recall what Anderson did. Choose
an infinitely large integer N € *N and let At = 1/N. Think of

T = {0,At,2At,...,1 — At}

as a hyperfinite timeline. Let © be the set of all internal functions w : 7" —
{1, -1} and denote the internal, uniform probability measure on § by P
(i.e. P(A) = |A|/|9| for all internal sets A). By L(P) we shall mean the
Loeb measure of P. Anderson’s hyperfinite random walk B: @ x T — *R
is defined by

' B(w,t) = Y_w(s)VAt.

s<t

- Anderson showed that for L(P)-a.a. w, the internal function B(w,-) is S-
continuous, and hence defines a continuous standard function b(w,-) (=
°B(w, -)) from [0,1] to R. Moreover, the standard process b(w, t) is a Brown-
ian motion on (R, L(P)) (see, e.g- [1], [2], [4], [5], [6], or [10] for the details).

The infinite dimensional Ornstein-Uhlenbeck process u is a stochastic
process taking values in the space C([0,1]) of continuous functions. Intu-
itively, it looks like a continuous, random modification of Brownian paths
which keeps the Wiener measure invariant. Using Anderson’s construction
we can make this intuition rigorous in the following way.

Pick an initial element wp in 2 (and do it in such a way that B(wo, -) is S-
" continuous). At time 0, toss an unfair coin for each s € T to decide whether
you want to reverse the sign of s-th component wo(s) or not; the probability
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drop the superscript and write © for 6“°. We now define the hyperfinite
Ornstein-Uhlenbeck process U (= U“?) by

U(f: t)(') = B(e(f) t)) ')

In this section we shall study the basic properties of U as a nonstandard
object. We begin with a simple observation.

1.1 Lemma. Foralls,t €T and wg € N

Q¢ € Z18(&,1)(s) =wo(s)} = [(1 — A2 +1)/2 = (e7* +1)/2

Proof: Let
Pt = Q{€ € E|6“°(&,t)(s) = wo(s)}

Since the probability of switching the s-th coordinate between time ¢ and
time t + At is At/2, we have

prrac = pi(l — At/2) + (1 — p)At/2

and hence
Dirar = pe(l — At) + At/2

Solving this difference equation with initial condition py = 1, we get
pe=[(1- A2 4+ 1)/2 ~ (et +1)/2

For each s € T, let F, be the internal algebra on Z generated by the ran-
dom variables {£(t)(r)|t,r € T,r < s}. Whenever we say that something is
* a martingale in the s-variable, we shall mean an internal martingale adapted
~to the filtration {F,}.

1.2 Lemma. Fixt and wo. Then

EQlU(&,1)(s + At) — U(£,)(s)|Fe] = wo(s) VAL (1 — At)/4¢
= wo(s)VAte™ + o(VAL)

where o(v/At ) denotes a quantity which is infinitesimal compared to VAt.

Proof: With p; as in the preceding lemma, we have

EQU(&,t)(s + At) — U(£,)(s)|Fs] = wo(s)VAE - p; —wo(s)VAL - (1 —pr) =
wo(8)VAL(2p; — 1) = wo(s)VAL (1 — At)YAt = wo(s)VAte™ + o(VAL)




1.3 Lemma. Fix wp and t. Then
U(E,t)(s) = (1 — A)Y/AYU(E,0)(s) + K“o(g, 5))

where K“ot) is an S-continuous martingale such that the standard part of
Kwot)/\/e® _1 is a Brownian motion. Moreover, for all 5,5’ € T

[KoD)(€,5) = [K“I)(E, 8') < de®|s - o'
where [K“o?)] denotes the quadratic variation of K (wost),
Proof: The process defined by

KoD(g, ) i= (1 — A~ (£,0)(s) — X wn(r)VAE =

r<s

= (1 - A0)"/24U (&, 1)(s) - U(£,0)(s)
is a martingale by Lemma 1.2. Observe that since
|AK®@) (g, 5)| < 2VAL(1 — At)~YAt < 2¢V/At

we have
[K(wo’t)](f, s) — [K(wo.t)](g’ é) < 462|8 — 4|

where [K(“o®)] is the quadratic variation of K“ot. Thus [K(“0] is S-
continuous, and so is K(“o:) according to Theorem 4.4.16 in [1].
Observe next that
Eq(AK“et)(s)?|F,) = [wo(s)VAL((1 — At)™2* — 1)]p, +
 Hoo(s)VAL((A - ATV + 1)1 - )
= At{[(1 - A)~At —1P(1 4+ (1 - M)A /2 +
H(1 - Ar)~A 4 1P(1 - (1 - Ar)YAY) 2}

= At((1 — At)~2/At _ 1) = At(e? — 1) + o(At)

Hence the compensator process (K(“!)) satisfies
(K@ (s)) : = Y E(AK“N(r)2|F,) ~ s((1-At)~#/4F — 1) ~ (e 1)

and since (K@) (s)/veX —1) =~ s, we see from (the proof of) Theo-
rem 4.4.18 in [1] that the standard part of K (wort) /1/e? —1 is a Brownian
motion.

So far we have let s vary for fixed t. If we reverse the situation, we first

obtain the following result.




1.4 Lemma. Fix wy and s. Then
EQ(U(¢,t+ At)(s) — U, t)()|U (&, t)(s) = z) = —zAt

Proof: Let w = 6+°(¢,t). Since B(w, s) = U(£,t)(s) = z, we must have
l{r € T|r < s and Q(T)=1}=é+—2\/iA_z

s z
|{r € T|r < s and w(r)——l}—E—m

When we move from t to t + At, the expected number of switches among
components belonging to the first set is (s/At + z/2VAL) - At/2 = s/2+
a:\/A_t/ 4, and the expected number of switches among components belonging
to the second set is (s/At — z/2VAL) - At/2 = s/2 — zV/At/4. Since each
switch of the first kind changes U by —2v/At and each switch of the second
kind changes it by 2v/At, the expected change is —2VAL (s/2 +zv/At/4) +
2VAt (s/2 — zv/At/4) = —zAt.

1.5 Lemma. Fix wp and s, and assume that wg is nearstandard. Then

U, t)(s) = (1 — A)YAHU(E,0)(s) + t—ft(l — At)~CHAV/AAW (€, 7))

r=0

where W is an S-continuous martingale whose standard part is v/2s times
a Brownian motion. Moreover, if we let

N(“’O:’)(f, t)) = Z(l - At)-(r+At)/AtAW(£’ 7‘),
r<t
then
[N@o) (g, )] — [N©@o2)(£, 1)) < 9e?|t — ¢

forall t,t' e T.

Proof: By Lemma 1.4, the process
W(£,t) = U(&,t)(s) —U(£,0)(s) + D_U(&r)(s)At
r<t

is a martingale (by which we mean an internal martingale with respect to
the obvious filtration G;). Rewriting this definition as

U(E,t)(s) = U(€,0)(s) = Y_ U r)(s)At + W(4,1)
r<t
we get a difference equation for U. Solving it, we see that
U, 8)(s) = (1 — AYAU(E,0)(s) + D_(1 — A2/ %AW (€, 7)

r<t

— (1 _ At)t/At(U(f, 0)(3) + Z(l - At)—(r+At)/AtAW(f, T))

r<t
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Returning to W, we first observe that since the maximal value of U (¢, r)(s)
is s/v/At < 1/V/At, we always have '

AW (£, )] < |AU(E, t)(s)| + [U(€, t)(s)At| < 2VAL + VAL = 3VAL
and hence
[W(E» t)] - [W(£1 t’)] S 9|t - tII

for all t,t’ € T. By Theorem 4.2.16 and Proposition 4.4.3 in [1], this means
that W is S-continuous and S-square integrable. It follows that if U (£, 0)(s)
is finite, then with probability one, U(¢,t)(s) remains finite for all ¢. From
this we see that

EQ(AW(1)*|G:) < Eq(lAU(2)(s) — U(t)(s)At*|G:) =
(4At + o(At))s/2 = 2sAt + o(At)

and hence
(W(t)) =~ 2st

almost everywhere. By Theorem 4.4.18 in [1], the standard part of W+/2s
is a Brownian motion.

Defining N“09)(¢, 1) = ¥, (1 — At)~(F+AO/AL AW (€, r), we finally ob-
serve that

[NWosd (g, )] — [NWod (g, ¢)] < 2([W(£,1)] — [W(E, 1)) < 9|t — |

Combining Lemmas 1.3 and 1.5, we get:

1.6 Proposition. For any nearstandard wp
ULD(g,1)(s) = (1 — ADYEKU(E,0) + M“(¢, ¢, 5))

where M“0)(¢,¢,5) is an S-continuous martingale in each of the variables
s and t when the other is kept fixed. For each ¢, the standard part of
(&,8) — M@)(¢,t,5) is of the form ve** — 1 w(¢,s) where w is a Brownian
motion. For fixed s, the standard part of (£,8) — M) (¢,t,s) is of the
form v/2s [ e"db(¢,r) where b is a Brownian motion.

Proof: Just observe that in the notation of Lemma 1.3, we have M{“0)(¢,¢, 5) =
Kot (¢ s), and in the notation of Lemma 1.5, M(“0)(¢,t,5) = N@os)(¢,1).

Remark. It may be helpful to rephrase the results of this section in stan-
dard terms. If we keep ¢ fixed and vary s, then Lemma 1.3 tells us that the
standard part u(&,t)(s) of U(§,t)(s) can be expressed as

u(£, t)(s) = e~*(u(£, 0)(s) + Ve* — 1w(s))

where w(-) is a Brownian motion (depending on t).
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Proof: By the Burkholder-Davis-Gundy inequalities (see, e.g., page 126 of
(1])

EQ(IM(fa t, 3) - M(f, t, sl)IP) <
< pVI2 Eq([M)(&,t,8) — [MI(£,t,8))P/? < PePpV12|s — §'|P/2

where the last step uses that [M](¢,t, 8) — [M](&,t,5") < 4e?|s — s'| (recall
Lemma 1.3 and that M(¢,t,s) = K“oB(¢, s)).

We then do the same with s and ¢ interchanged.

2.2 Lemma. Fix wp and s. For each p > 1,
EQ(IM(§1 t, 8) - M(f: t,, 3) Ip) < Kplt - t’lpﬂ
where K, is a constant depending only on p.

Proof: Just as above, but replacing Lemma 1.3 by Lemma 1.5.

2.3 Proposition. Assume that wp is nearstandard. Then for almost all &,
the process (s,t) — U(&,t)(s) is (jointly) S-continuous.

Proof: As already observed, it suffices to show that M(¢,¢,s) is jointly
S-continuous. Choose p > 4, and note that by Lemmas 2.1 and 2.2

EQ“M(§’ t, 3) - M(&a tI: s')lp] <
< 2P(Eq[IM(§,t,5) — M(&,t', )] + EqlIM(&,t',5) — M(£, ¥, 8)]) <
< Kl|(s,t) = (5, )P

for some constant K. The proposition follows from Kolmogorov’s theorem.

* We can now define the standard part of U as the process u : £ x [0,1] —
C([0,1]) given by
u(€,t)(s) = V(& t)(s)

where t' ~t and s’ ~ s. It follows immediately from Proposition 2.1 that u
is continuous (L(Q)-a.e.).

3 The Brownian sheet representation
If m is the standard part of M, then clearly

u(§,t)(s) = e (u(¢, 0)(s) + m(£, 1, 5))

If we fix ¢, then according to Proposition 1.6, the process (£, s) — m(¢,t, s)
is of the form ve% — 1w(¢, s) for some Brownian motion w. Another way of
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expressing this relationship is to say that the process w’ defined implicitly
by m(¢,t,3) = w'(¢, s(e® — 1)) is a Brownian motion. If we instead fix s,
we know that (£,t) — m(£,t,s) is of the form +/2s [ e"db(r), which means
that it is a continuous martingale with quadratic variation

t
2s / e dr = s(e* — 1)
0

Hence the process ¥ defined implicitly by m(¢,¢,s) = ¥(¢,s(e® — 1)), is a
Brownian motion. '
With this observation in mind, it is natural to introduce a new random
field v(¢,t,s) by A
v(¢, e* — 1,8) = m(¢,t, s)

or, put more explicitly,
v(¢,t,8) = m(§,In(t +1)/2, )

3.1 Proposition. v is a Brownian sheet with v(0, s) = v(¢,0) = 0.
Proof: We have to show that v is a continuous, Gaussian field with covari-
ance
E(v(t,s)v(t', s")) = min(t,t’) - min(s, s').
It is obvious that v is Gaussian, and the continuity was proved in the previous
section. To compute the covariance, we may clearly assume that ¢t < t'.
There are two cases to consider; s < s’ and s > §'. Since they are easy and

quite similar, we only treat the second one.
Observe that

E(‘U(t, S)U(t,, sl)) =
= E(u(t, s') + (v(t, 8) — v(t, 8)] - [u(t, 8") + (v(t', 8') —v(t, 8))) =
| = E(v(t, )%

since v is a martingale in each variable, and time evolution in the ¢- and the
s-direction are independent. But then

E(v(t, s)u(t,s")) = E(v(t,)%) = E(in(ln(t +1)/2,¢)%) =
=t-s' = min(t,t) - min(s, s')

3.2 Corollary. We have

(£, )(s) = e (u(§, 0)(s) + (£, €* — 1,9))

where v is a Brownian sheet with v(0, s) = v(t,0) = 0.




4 Infinite dimensional Ornstein-Uhlenbeck pro-
cesses |

Infinite dimensional Ornstein-Uhlenbeck processes were introduced by Malli-
avin (7] and plays a fundamental role in the Malliavin calculus. Put briefly,
one might say that these processes and their infinitesimal generator — the
Ormnstein-Uhlenbeck operator — play the same part in infinite dimensional
calculus as Brownian motion and the Laplace operator do in finite dimen-
sions. _

There are many ways of describing infinite dimensional Ornstein-Uhlen-
beck processes. We could have taken the description in Corollary 3.2 as our
definition (see Meyer [8]), but it is more conventional to use a character-
ization which says that an Ornstein-Uhlenbeck process u is a continuous,
strong Markov process with values in C([0, 1]) generating the semigroup

L) = [z +VI=e® -1)aw() ®

where W is the Wiener measure on C([0, 1]) (see, e.g., Watanabe [11]). We
shall show that our process u satisfies these criteria. '

4.1 Lemma. Assume that wy is nearstandard with standard part z. If
f : C([0,1]) — R is square integrable with respect to the Wiener measure
W, then

ELglf (€ 00] = [ fe'2() + VI= & -y()dW ()

Proof: Observe that if f is bounded and continuous, then

Eygf (™ (&, 1) ()] = Eql* F(U“ (¢, 8)()] =
= OEQ[ .f((l - At)t/At(B(wo, ') + M(f; t) '))] =

- / fe™*2() +VI= e Fy())dW()

by nonstandard measure theory and Propositions 1.6 and 2.3. Using the
Monotone Convergence Theorem, the result is easily extended to nonneg-
ative, square integrable functions, and the general case follows by treating
positive and negative parts separately.

4.2 Theorem. Assume wy is nearstandard with standard part z € C([0,1)).

Then u®0) is an Omstem-Uhlenbeck process starting at .

Proof: 'We know from Proposition 2.3 that u is continuous, and the lemma
takes care of (1). It only remains to check that u is a strong Markov pro-
cess. Observe that for any two initial conditions wo and wp, U“0(£,1)(s) —
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U“o(£,t)(s) = U (¢,0)(s) — U%0(£,0)(s) for all ¢ and s. Thus if the initial
conditions are infinitely close, one process is just an infinitesimal translation
of the other. From this the Markov property follows easily (for instance by
an appeal to Theorem 5.4.17 in [1] or Theorem 6.8 in [5], but this is certainly
an overkill).

5 The hyperfinite Ornstein-Uhlenbeck operator

Having completed our serious work, we may amuse ourselves by taking a
look at some nonstandard consequences. Define the hyperfinite Ornstein-
Uhlenbeck operator L to be the infinitesimal generator

LF(w) = Eq(F(U®(¢,0) — F(UW (¢, At)))/ At

of U. Observe that L acts on the space L?(2,Q) of all internal functions
F : Q — R with the inner product (F,G) = LF(w)G(w)Q(w). For each
subset A of £, let X4 € L?(f2) be the function

_[TIw(s) ifA#o
XA(M)—{I fA=2

Since the set {X4} is orthonormal and has the right cardinality, it must be a

basis for L?(£2), and hence any element F' € L2(2) can be written uniquely _

asasum F = Y F(A)Xa where F(A) €*R (this is often called the Walsh
ACQ

expansion of F).
5.1 Lemma. For all subsets A of Q
LX, = ’\l AlXA

where

Am= 3 (’:) (At/2)F1(1 — At/2)™*

k<m
k odd

When A is finite, A4 is infinitely close to |A|, and when A is infinite, A4
is infinitesimal.

Proof:
Lix,(w) = BqlXa(U“)(¢,0)) — Xa(UW(¢, At)))/ At =

= (the probability that an odd number of components in A is switched) x

X 2Xp(w)/At =Y ('A') (At/2)F1 — At/2)MI=F . 2x 4 (w) /At

k<|A| k
k odd
= /\IAIXA (u))
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as finite dimensional Brownian motion is the standard part of a finite di-
mensional, nearest neighbor random walk), it adds some extra force to the
idea that the Ornstein-Uhlenbeck process is really the infinite dimensional
counterpart of finite dimensional Brownian motion.

Let us now turn to the second alternative construction. We still keep
the discrete timeline 7', but this time the state space Q2 will be the space of
all internal maps w : T — R, and the internal probability measure P on 2
will be the one making all increments Aw(t) = w(t+ At) —w(t) independent
- with distribution N(0,vAt). Now let all the increments Aw(t) perform
independent, one-dimensional Ornstein-Uhlenbeck processes (scaled to keep
the initial measure invariant). The standard part of this random motion
will be an infinite dimensional Ornstein-Uhlenbeck process.

Again this alternative construction has some advantages and some dis-
advantages compared to the original one. It is less elementary, but it sup-
ports the intuitive idea that an infinite dimensional Ornstein-Uhlenbeck
process is one where the infinitesimal increments perform independent, one-
dimensional Ornstein-Uhlenbeck processes. It also lends itself more easily
to the translation of finite dimensional calculus to an infinite dimensional
setting. Finally, if one wants to study flows on Wiener space, the discrete
setting is very restrictive and unnatural, while the continuous model offered
by our alternative construction works quite nicely.

In my opinion, the three slightly different constructions above all deserve
further study. Although none of them can claim to be the simplest approach
to the infinite dimensional Ornstein-Uhlenbeck process (the one suggested by
Corollary 3.2 is hard to beat), they all offer additional insight into the nature
and structure of one of the most important processes in today’s stochastic
analysis.
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