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1 Introduction

There is now an extensive literature on Gaussian bounds for heat kernels associated with
subelliptic or strongly elliptic operators (see [Dav1] [Rob) [VSC] and references therein).
The best upper bounds have been derived by a technique introduced by Davies [Dav?]
and they appeared to be essentially optimal. But Davies [Dav3] has recently suggested
that the bounds should be determined by two scales, the first determining the initial, or
small time distribution, and the second the asymptotic, or large time distribution. In this
picture the currently known bounds would give an accurate assessment of the initial heat
flow but not the asymptotic flow. Davies justified his ideas by demonstrating that one-
dimensional systems with periodic coefficients do exhibit this multi-scale behaviour and
conjectured that it is characteristic of general periodic systems. In this paper we examine
the asymptotic behaviour of heat flow on stratified Lie groups with coefficients invariant
under a lattice subgroup and establish that Davies’ conjecture is indeed valid. But first, to
fix ideas, we outline the main results of our analysis in the simple case of periodic operators
acting on R4,

Let C' = (ci;) be a real symmetric d x d-matrix with components ¢;; € Lo (R?;dz)
satisfying bounds $;] < C < B,I with 8, > 0 and let H be the positive self-adjoint
operator associated with the closed quadratic form

d
@ € Loy — h(p) = > (8ip, ¢i0;)
t,5=1

where L denotes the once-differentiable functions in Lay(= L2(R¥;dz)). Then H gener-
ates a positive self-adjoint contraction semigroup S on L, which extends from L, N L, to
a contraction semigroup on L,, also denoted by S, for each p € [1,00]. The action of S is
determined by a positive semigroup kernel ¢ > 0 — K, € Cop(R? x RY),

(Se0)(@) = [ dyKi(zin)ely) |
and K satisfies the Gaussian upper bound [Dav2]
0 < Ki(z;y) < at™42ede(z)?/40+0) (1)

for all §,¢ > 0 where d, denotes the geodesic distance

d
de(z;y) = sup{th(z) —9h(y) : ¥ € CP(RY), 3. c;dpd;p < 1)

1,j=1

associated with the Riemannian metric C-1. If the ¢i; are constant one readily establishes
that do(z;y)? = ((z —y),C Y (z — y)). Then explicit calculation shows that

Ki(z;y) = (4nt)~2| det C|" /2= delaiv)? /4t

and for this reason the upper bounds (1) seem essentially optimal. But if the cij are
periodic the behaviour of S for large ¢ is related to the limit as € — 0 of the semigroup
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5S¢ generated by the operator H, obtained by replacing C with C* in the definition of H
where cf;(z) = ¢;;(z/e) (see, for example, [BLP] or [ZKON]). It follows, however, from
(BLP] Chapter I, that H, converges in the strong resolvent sense on L, to an operator H
with constant coefficients ¢ = (Gi;). We will establish that if S is the semigroup generated
by H then on each of the L,-spaces, p € [1,00], one has the uniform convergence

lim 1S, = Sillpmy = 0

Therefore S describes the asymptotic heat flow and the Gaussian distribution s determined
by the distance d; and not the original geodesic distance, which in principle could be
smaller. We will also establish uniform convergence properties of K, and identify the
limits in terms of the constant coeflicient kernel I?t and hence lend further justification to
the two-scale picture of the heat flow.

2 Stratified Lie groups and nilmanifolds

We begin by recalling some elementary definitions and facts about stratified Lie groups
from [FoS]. A real Lie algebra g is called stratified if it has a vector space decomposition

g=aR,g® |
where all but a finite number of the subspaces g*) are nonzero,
[g(k), g(l)] g g(k+l)

for all k,1 € N, and g generates g as a Lie algebra. Thus a stratified Lie algebra is
automatically nilpotent and if r is the largest integer such that g = 0 then g is said to
be nilpotent of step r. A Lie group is defined to be stratified if it is connected and simply
connected and its Lie algebra g is stratified.

Let G be a stratified Lie group and exp: g — G the exponential map. The Campbell-
Baker-Hausdorff formula establishes that

exp(X)exp(Y) = exp(H(X, Y))

where H(X,Y) = X + Y + [X,Y]/2 + a finite linear combination of higher order com-
mutators in X and Y. Thus X,Y — H(X,Y) defines a group multiplication law on
the underlying vector space V' of g which makes V a Lie group whose Lie algebra is g
and the exponential map exp: g — V is simply the identity. Then V with the group
law is diffeomorphic to G. Next let d) denote the dimension of g® and d the dimen-

sion of ¢ and for each k choose a vector space basis ¢(*) = (agk) ,...,ag:) ) of g® such
that a1,... a4 = agl),... ,a,(ic) is a basis of g. If €1,...,&a is the dual basis for g*, ie., if
€e(ar) = 6y, define M = €k oexp™'. Then ny,... 174 are a system of global coordinates for

G and the product rule on @ becomes
M(2y) = ne(2) + mu(y) + Pi(z, y)
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where Pi(z,y) is a finite sum of monomials in ni(z),m(y) for ¢ < k with degree between
9 and m. It follows that both left and right Haar measure on G can be identified with
Lebesgue measure d7; . . . d7a.

If 1 <j < d; we will need the functions y; on G defined by

d
yj(exp(:; Mak)) = N;

These functions satisfy the equations
— APy; = APly; = & (2)

for 1 < 1,7 <d; where AD and AM denote the left and right derivatives in the direction
a € g. In fact these equations together with the initial conditions yr(e) = 0 determine
the y; uniquely since all higher order commutators in the first d; derivatives applied to
y; must necessarily vanish. The differential equations for the y; are a consequence of the
Campbell-Baker-Hausdorff formula. One has

d d
expl(—cas) exp(Y muaw) = exp(—ai + 3 meax + B)
k=1 k=1

where R is an e-dependent element in [g, g]. Thus

d
y;(exp(—ea) exp(D_ meax)) = n; — €6ij
k=1
and the differential equations follow immediately. Note that at this point it is important
that as,...,aq, is a basis of g() and g() generates ¢ as a Lie algebra; the system (2) does
not have a solution when ¢ > d;.

Next let T' be a subgroup of G which is a lattice, i.e., I' is closed and discrete and G/T
is compact. (Since G is nilpotent this is equivalent to the requirement that G/I' has a
G-invariant probability measure [Hel].) Then there exists a compact subset ¥ of G such
that

].. U’YGF Y'Y == G
2. p(YriNYy)=0forall 4y #y2 in T

where & denotes Haar measure (see, for example, [Leh] pages 28-32). It is then clear that
Y contains at least one element from each residue class in G/T and generically, i.e., on a
set of full measure, only one. (One may, for example, define ¥ by choosing a Riemannian
metric |- | and then setting Y to be the set of points z € G such that |z| is smaller or equal
to |z+| for all ¥ € I'. It follows that Y is closed and contains at least one representative
from each residue class in G/T. In fact Y = N,erH,, where H, is the half space

Hy={z€G: |z|< |y}
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measure m on G/T,
fodes@)= [ dm(e) > f(=)
which is valid for all f € Ly(G;dy).
One can define a one-parameter group of automorphisms of ¢ by first introducing the

automorphisms
r o dg

B = (%)
ZZ’MG, — ZZ& Nk,1q

k=11=1 k=11I=1
of the Lie algebra g for € > 0. These automorphisms then define automorphisms of
which we denote by ¢ € G — ez Clearly &(g,2) = (e162)z and if D = k=1 kdy. it follows
from the identification of Haar measure with Lebesgue measure that #(el) = ePu(U) for
all measurable sets [/ C G. Themap 7 — ¢z is referred to as a scaling by e. Now note
that if f is a continuous function with compact support then

[ 4z f(z) = m(c/r) lme 3 flye(y))

~er

where the limit is uniform in y € G. This follows from the computation

[ defz) = ¥ Loy 256

~ver
the fact that #e(Yy)) = p(eY) = ePu(y) = 5Dm(G'/F) and the uniform continuity of f.
As a corollary we deduce that if ¢ is an Leo-function on G' which s periodic with periods
in [, ie., c(zy) = c(z) for all z € G and 7€l and if f € L, then

Iirn/G dzc(z/e)f(z) = m(G/T)™! /G/de(:v) c(z) /C;dzf(:z) .

e—0

In the last expression we have identified ¢ with a, function on G/T and the relation is
established by making a change of variables,

/c; dz c(z/e) f(z) = eD/(;dx c(z)flez) = f:—;gD/)lq dz c(z) f(ez)

If f is continuous with compact support then f(ez) is close to the constant value fev)
over Yy and therefore

limy /. da e(a/e)f(z) = lim 2 | doe(a)f(ey)
= umgel’ /y dz o(z) f ()

e—0
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= /Y dz () m(G/T)™* /G dz f(z)
= m(G/T)" /G L dm(@) e(z) /G dz f(z)

by the previous observation. If f is only an L;-function the result follows by approximating
f in the Ly-norm with continuous functions of compact support.

3 Operator theory

In this section G is a stratified group with Lie algebra g and we adopt the notation of the
previous section. Now for each a € g and f € C®(G) we define the left derivative

(Af)(z) = 5 f(exp(~ta)z)

for all z € G. Thus if L denotes the left regular representation of G one has 4 = dL(a).
Since dL(a) commutes with right translations it passes to the quotient M = G/T, i.e., if f
is I'-periodic then Af is also I'-periodic. But since M carries an invariant measure m the
representation L induces a unitary representation V of G on Ly(M ;m) given by

(V(9)f)(aT) = f(g™"al)
for all z,9 € G and f € Ly(M;m). It is convenient to denote the Lie isomorphism
a — dV(a) by a — B to distinguish it from a — A = dL(a).

Let C = (ci;) be a dy x dy-matrix with coeflicients ¢;; € Lo (G ; dz) satisfying ellipticity
bounds §;1 < C < 8,1, with 8; > 0, uniformly over G. Then there is a unique self-adjoint
operator on L3(G';dz) canonically associated with the closed quadratic form

d;
h(f) = 30 (Aif ciiAf) (3)

1,7=1

with domain D(h) = L}, where

L4(Gsdz) = [ D(4)

i=1
and it is conventional to write
dy
H=-3" Aic;A; . (4)
1,j=1
The self-adjoint contraction semigroup S generated by H leaves L, N L, invariant for each

p € [1,00] and extends to a contraction semigroup, also denoted by S on each of the
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spaces L, = L,(G;dz). Recall that the a; in (4) are a vector space basis of g™ and hence
an algebraic basis of g by the stratification assumption. Thus H is a subelliptic operator
in the usual sense. If the coefficients ¢ij are I'-periodic then H can also be viewed as an
operator on Ly(M ;m) and the semigroup S interpolates between the spaces L,(M ;m).

We adopt the methods used in the theory of asymptotic analysis for periodic structures
as described in [BLP] and consider the operators

H =- i (Ai + 7 Bi)ei;(y)(4; +e71B;) | (5)

ij=1
where € > 0 and B; = dV(a;), acting on functions u on G x M, i.e., functions uon G x GG
which satisfy u(z,yy) = u(z,y) for all z,y € G and 7 € I'. Next consider the equation
| Mo + Houy = f (6)
where A € C with Re ) 2 0, and where u, has the formal expansion
Uy =uo+su1+e2u2+...

and f € L,. Note that if H, is the operator obtained by replacing the coefficients cij of
H by the rescaled coefficients ¢f; where ¢f;(z) = cij(e™'z) then (6) is equivalent to the
equation

Hcve + Avs = f
with v, (z) = ue(z,e1z). It is this observation which motivates the introduction of H..

The lowest order terms in ¢ of the equation (6) give the system of equations
H. 2Ug =0 s

Hyuy + Hiug =0 )
Hyuz + Hyuy + Hyug = f,
where ;
Ho = - _}_1_:1 cii(y)Aid; + A1,
ij=

d;
Hl — E (B,C,J(y)A] + Atctj(y)BJ) ’

’|J=l

di
Hg = - Z B,-c,-j(y)Bj

$,)=1




where the constant coefficients ¢;; are given by

G = /M dm (Cij = ;‘;cz-kkaJ (8)

and the functions f; are weak solutions of the differential equations

dy
H2fj = ——Z B;C{j . (9)

i=1
Noting that H, is the self-adjoint operator associated with the form A restricted to the
domain

zl—ﬂD(B

=1

one has D(B;) C D(H, }/2) ¢ D(H,). Hence the differential equations (9) are soluble if and
only if there exist f; € Ly(M ;m) such that

H2f,f,1 Z(B f CtJ)

for all f € D(H;). But Ly(M ;m) has a V-invariant direct sum decomposition Hg & Hg
where ‘HR is the one-dimensional subspace spanned by the constant functions and Hg its
orthogonal complement. Now the value of f; restricted to Hg is arbitrary and we choose
it to be zero. Then the problem of constructing the f; reduces to finding f] € Hg such

that
dy

(Haf, f;) = S (Bif, &)

=1

for all f € D(H,) N'Hg where

Cij = Cij — /M dm(y) ci;(y)
Next remark that the ellipticity condition on the ¢;; gives
p1A < Hy < B,A
where A is the positive self-adjoint sublaplacian
dy
A=-> B}
=1
But on ‘Hg the sublaplacian is strictly positive. Thus one has bounds
H; > BiA > pwl

with w > 0. Hence H;' is bounded on Hg and in particular ||H2_1/2|| < (Bw)12,
Moreover,

BIB:if |13 < | Hy P )2
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for all f € Ly,(M;m) = D(HM?). Hence IBHT < B7Y2 for all § = 1,...,d,.
Combining these estimates one concludes that the operators X; = B;H;" are bounded on
Hg and || X;|| < B-1w-12, Therefore the f; are uniquely determined by

dy
fi=)X:é;
=1

and f; = 0@ f; and it follows from this construction that fi e Ly, (M ;m).

The coefficients of the homogenized operator can also be computed with the aid of the
coordinates y;, s = 1, ... yd1, introduced in Section 2. One has the representation

di
% = [ dy 3 M) - v)euln) A ) - )

= ho(fi —ui, fi — y;) (10)-

where h, denotes the sesquilinear form associated with H,. This can be verified from (8)
and (9) by repetition of the argument of [BLP], pages 17-18. Note that this representation
establishes that C is positive-definite. One can in fact strengthen this conclusion. The
homogenized matrix satisfies the bounds

Bl <C < Byl

where the f; are the ellipticity constants of C. These bounds follow by the reasoning on
pages 31-35 of [BLP] which again involves the coordinates Yi- In this proof and at various
later stages of the argument compactness arguments are used. The basic observation is
that if Q and Q' are open, precompact, sets in G with ) C ' then the restriction map
Ly, (V;dz) — Ly(Q;dx) is compact. This is established by first noting that if ¢ is ip
the subset of L5y, (V5 dz) with lell2,0° < 1, then lell: < 1, ie., the set is bounded in
Ly(Q; dz). Furthermore, one has bounds

1(2)e ~¢llon < clo] , |R(2)p - g|lpa < clz]

forz € G sufficiently close to the identity e that z~17) C ¥ and Qz C . Here L and
R denote left and right translations and |z| = d.(z;e). The compactness then follows
from the Fréchet-Kolmogorov criterion (see, for example, [Rob] Appendix D). If one re-
stricts attention to ) with smooth boundaries then one can establish somewhat more; the
restriction map Ly, (9 dz) — L2(2; dz) is compact. The first compactness statement is
equivalent to the observation that the Dirichlet sublaplacian on Ly, (% ; dz) has compact
resolvent and the second is equivalent to compactness of the resolvent of the Neumann
sublaplacian on Ly, (Q;dz).

The identification (10) can also be expressed as a variational principle. Let gy, ... 194, €

L3, (M ;m) and consider the associated positive-definite matrix C(g) with components
defined by

¢ii(9) = ha(gi — i, g; — Y5)

e

T




Then C = C(f). More generally one has C(g) > C with equality if and only if g; = f;, up
to the addition of a constant, for all { = 1,...,d;.
If G = R then there is only one coefficient ¢ and the corresponding constant & can be

computed as .
c= (p‘l /o‘p dz c(:z:)'l) (11)

where p now denotes the period of ¢. This is discussed on pages 8-9 of [BLP] and is used
by Davies [Dav3] in his analysis of one-dimensional systems.

The significance of the homogenized operator H is explained by the following proposi-
tion.

Proposition 3.1 Let H,, ¢ > 0, denote the subelliptic operators obtained by replacing the
coefficients c;; of H by cf; where cii(z) = cij(e7'z). For X € C with Re A > 0 consider the
equations
' Au, + Hou, = f

where f € Ly(G;dz).

It follows that these equations have unique solutions u, € Ly(G;dz). Ase — 0 the
Ue converge strongly in Lqyo. and their derivatives A, i=1,...,4, converge weakly in
Lajoc. The limit ug of the u, is the unique solution of the equation

Mg + Hug = f
where H is the homogenized operator given by (7).

The proposition is very similar to Theorem 3.1 in [BLP] and its proof is almost identical.
The theorem of [BLP] concerns Dirichlet operators on bounded regions in R? but the
proof is based on general reasoning which extends to the Lie group setting. The fact that
L5,(€; dz) is compactly embedded in L3(€2; dz) for each bounded open subset Q) of (7 is
again important and the coordinates yi introduced in Section 2 are also essential for the
argument. These coordinates replace the polynomial P used in the [BLP] proof. A minor
new element is the introduction of the term A in the differential equation but this alone
does not significantly alter the reasoning in [BLP].

The local convergence u, — Yo give’rl by Proposition 3.1 can be reexpressed in terms of
the resolvents (Al + H,)~! and (M + H)™!. Observing that v, = (\] + H.)™'f one has

lim(e, (M +H)™ — (M +H) ™) f) =0

for all f € Ly(G;dz), ¢ € Ce(G) and all A € C with Re ) 2 0. Approximating elements
of L, by ¢ € C, and using uniform norm bounds on the resolvents it is evident that one

has weak resolvent convergence, i.e.,

lim(g, (M + H)™ =M+ H)™)f) = 0




for all f,g ¢ Ly(G;dz) and all A € C with Red > 0. But this implies strong resolvent
convergence by use of the resolvent identity

(N + H,) (AL + H,)~! = (2EIm A)H (X + Ho)™ — (AL + 1,)~1)
and a similar identity for the resolvent of I .

Corollary 3.2 Adopt the assumptions of Proposition 3.1 and let S¢ and S denote the
self-adjoint contraction semigroups on Ly(G;dz) generated by H, and H, respectively.

1t follows that ~
lm (57 = 8072 = 0

forall f e Ly(G;dz) and t > 0.

(S)e) = [ dy Kifa;y)£1y)
which now satisfies Gaussian bounds
0 < Ki(z;y) < at=Dl2g=bde(z )2t (12)

for all 6,¢ > 0 where the dimension D is defined in Section 2 and d, denotes the geodesic
distance

dy
e(23y) = sup{pp(z) —9h(y) : v € C(G), 37 cijAmpAp <1}
. i,7=1
The value of the parameters a, b in (12) only depend on the coefficients ¢ij of H through the
ellipticity constants B1, B2. Thus if K¢ denotes the kernels associated with the semigroups

S*¢ obtained by rescaling then these satisfy the same Gaussian bounds, L.e., the bounds are
uniform in ¢, Moreover, the K satisfy the scaling relations

Ki(z;y) = s‘DI(,-:t(e‘lz ;e7ly) (13)

Ky(z;y) = O ) (14)
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forall e,¢ >0 and z,y € G.

Although there is an extensive literature on Gaussian bounds the bounds we have cited
for operators with measurable coefficients do not seem to appear in the literature. They
follow, however, by the refinement of Nash’s arguments [Nas] given by Fabes and Stroock
[FaS] and one can in fact show that one may choose b = 1/4(1 4 8) for any § > 0 but the
value of a then depends upon the choice of §. The important point is that all the estimates
used by Nash are quadratic form estimates. (A detailed exposition of the Nash-Fabes—
Stroock method for the case of constant coefficients can be found in [Rob], Chapter IV.)
Saloff-Coste and Stroock [SCS] have given Gaussian bounds for smooth coeficients but
they observe that the smoothness hypothesis is not essential.

In the following statement of the asymptotic results we use || X |,—, to denote the norm
of an operator X from L, to L, and in addition we define

l”f”lp = eS:esélp (/G dy lf(l';y)lp)llp

for p € [1, 00) and
1/ lllc = esssup | f(z;y)]
z,y€G

for each measurable f:G x G — R.

Theorem 4.1 Let S denote the semigroup generated by the subelliptic operator H with
F-piriodic,/\lloo-coeﬁ‘icients C = (cij) and let K denote the corresponding kernel. Further
let S and K denote the semigroup and kernel corresponding to the homogenized operator
H defined by (7) and (8).

Then for1 <p<r<oo

Jim P75, = 8]lpmy =0
where § = 1./p —1/r. Moreover,

Jim t2/%|| K, — K|}, = 0
where 1/p+1/q = 1.

Proof The proof is based on first establishing convergence properties of the kernels and
then converting these into convergence properties of the semigroups by observing that

1S = Stllp~oo = [l1: = Kol
with 1/p +1/¢ = 1. Initially we obtain a local convergence of the kernels.
Proposition 4.2 Adopt the assumptions of Theorem 4.1. Then

lim esssup th(:v;y)—f(\t(m;y)l

E= 0 g2 4 |y[2<at

for each a > 0 where |z| = d,(z, e).
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Proof In the case G = R? this follows immediately from Corollary 3.2 together with
Theorem 4 of [ZKON]. For a general stratified Lie group G the arguments of [ZKON] are
still applicable since G is a polynomial group and Saloff-Coste and Stroock [SCS] have
extended Nash’s [Nas] Hélder regularity estimates to this case. It then follows that the
family of kernels {K?: ¢ > 0} is equicontinuous and bounded so Ascoli’s theorem shows
that the family is relatively compact in the topology of uniform convergence on compacts.
(In [SCS] the coefficients are assumed to be smooth but the estimates do not depend upon
the derivatives and it is observed that smoothness is not essential. The regularity follows
from upper and lower Gaussian bounds and Nash’s method of deriving these, as elaborated
in [FaS] relies only on quadratic form techniques.)

Since the scaling relations (13) and (14) are valid the remaining arguments of [ZKON]
are unchanged.

Next the local convergence is extended to global convergence of the kernels.
Proposition 4.3 Adopt the assumptions of Theorem 4.1. Then
] D/2 —_ K = 1 —_ K =
Sim PP = Rl =0, Jim I, - Ry = 0

Proof Since K satisfies the Gaussian bounds (12) and K satisfies similar bounds one
can choose for each 6§ > 0 an a > 0 such that

sup tD/2|Kt(x;y)-f(\t(x;y)l <6 (15)
e~y >at
and
/ dy |Ki(z;y) - Ri(z;9)) < § (16)
lz=1y|?>at

for all z € G. The second estimate follows from the fact that the ball of radius ) in G is
proportional to AP by scaling. But it follows from Proposition 4.2 that

sup P12\ K(z;y) — Ki(z;y)| —0 an
Iz <t |z=1y <at
and
dy [Ki(z;y) — Ky(z :
I:II:IS)t /lz_?ylzsat y [ Ke(z;y) Ki(z;y)| -0 (18)

as t — oo. It follows from (15) and (17) that

sup tD/le,(w;y) — Ki(z y)| =0 (19)
l=<t.yeG
and from (16) and (18) that
dy |Ki(z;y) — Ky(x;
I:'gzs)t/G ylKi(ziy) - Ki(z;9)] — 0 (20)

ast — oo,




Since the coeflicients ¢;; of H are F-éeriodic it follows that
Ki(zv;y7) = Ki(z;y) (21)
for all z,y € G, all ¥ € T and all ¢ > 0. Moreover,
- Rieziye) = RKilaiy) (22)

for all z,y,2 € G and t > 0. But as I''is a lattice there exists 7 > 0 such that each coset
in G/T contains a point = such that |z|> < 7. It then follows from (19), (21) and (22) that

PR||Ky — Kelllo=  sup  tP2|Ki(zy;y) — Ke(z7;9)]
|zl <rv€T,yeG
=  sup tPP|K(z;y77Y) - Ki(z;y77h)| = 0
lo <rr7€T G

as t — oo. Similarly it follows from (20), (21) and (22) that

WK, — K= sup [ dy|Ki(zv;y) — Ki(zv;)|
G

Jof# <rrvel

= sup [ dy|Ki(zv;y7) — Ki(zv;97)|
lof? <rrver /G

= sup | dy|Ki(z;y) — Ki(z;y)] =0
lefp<r /G

ast — oco.

Now we can complete the proof of Theorem 4.1.

The convergence statement for the kernels follows for p = 1 and p = oo from Proposition
4.2 and then for p € (1, co) by interpolation. Then

tD/zp”St - gt”p—'oo = tD/2pH|Kt - ft”lq
and so the statement on semigroup convergence follows for r = co. But
15 = Sillim = 1St = Selloomeo = NIl — Killlz

and so the case p = r =1 is also established. The general result then follows by interpo-
lation.

5 Conclusion

The conclusion
lim P21 — Kil||oo = 0

given by Theorem 4.1 demonstrates clearly that the Gaussian spread of the distribution
K is asymptotically described by the Gaussian associated with the constant coefficient
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operator H. In the simplest case G = R this result was obtained by Davies [Dav3] who
also proved that K, — Killlo < ct=1. It appears reasonable to conjecture that in the

general case one should have estimates
| PPNK, - Rl < ct-1/2
at least for large values of ¢. This would correspond to estimates
NEF ~Kifllo < ce

for fixed ¢ and smaj] €, on the rescaled kernels and these estimates are indicated by the
results of [BLP).

li—{% dee(7;y) = 11_{% szdc(s‘lx;s"ly)

with equality if and only if the coefficient ¢ is constant. Thjs inequality then allows one to
conclude that the asymptotic bounds on the heat kernel which follow from the bounds on
K » Which are given in termsg of dz, improve the earlier bounds in terms of d.. Davies proof
relies upon the explicit identification (11) of the constant coefficient ¢ of the homogenized
operator. In higher dimensions, or for more general G, it is more difficult to exploit the
form of € but it is again reasonable to expect that

lirré dee(z; y) < ds(z;y)

with equality only in the case of constant coefficients. Thig corresponds to anp upper
semicontinuity of the distance as a function of the coeflicients.
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