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Abstract

In this paper we will prove existence and uniqueness theorems for the stochastic differential
equations (both smooth and singular case)

Vi - {ExpWyloViul=g(x) x€D
u(x) =f(x) xe€oD

where D is a smooth domain, f, g are stochastic functions and Exp{W?} is a positive white noise
matrix. We will show that these equations have solutions in the space (S)~! of generalized white
noise distributions in a strong differentiation sense. The connection between the smooth and sin-
gular solution will also be studied.

Keywords: Generalized white noise distributions, Wick product, Hermite Transform.

§1 Introduction

We will in this paper apply white noise analysis to obtain existence and uniqueness theorems for some
stochastic partial differential equations. Within the white noise analysis, there are several choices of
possible solutions spaces, but we will only work in the space of generalized white noise distributions,
known as the Kondratiev distribution space. This space is used in [V] to obtain Hilbert space methods
for solving several classes of stochastic partial differential equations, including one-dimensional weak
solutions of the equations we are going to solve. The one-dimensional pressure equation for fluid flow
in a stochastic medium was first solved by Holden et al. ((HL@UZ3]). Note that this solution is actu-
ally given by an explicit formula, a task which seems impossible in the multi-dimensional case. Other
interesting stochastic partial differential equations, all which are possible to solve explicitly, are

e The transport equation in a stochastic medium ([GjHQUZ)).
e The Dirichlet equation ([Gj2]).
o The Burgers equation ((HLOUZ2]).




The Schrédinger equation ((HLGUZ]).

We will use the following scheme to solve our equations:

Take the Hermite transform as developed in [L@U]. This transforms our original equation into
a complex valued function on an infinite-dimensional ellipsoid. :

Instead of developing, if possible at all, complex existence and uniqueness theorems suitable for
this theory, we will solve the transformed equation only for those elements in the ellipsoid which
have real components. This can be done by modifying the well known method of continuity (as
used in [F] to solve elliptic differential equation).

This method will show that if the coefficients and input data are smooth in the parameter, then
this is so also for the parameter in the solution.

It is now possible to use well known maximum principles to obtain that the solution is real an-
alytic in the parameter.

From this, we may obtain that the solution is bounded analytic on the infinite-dimensional el-
lipsoid, and then conclude, by using the inverse Hermite transform, that our solution exists as a
unique generalized white noise distribution.

Note that this scheme is a slight generalization from that used in [Gj3] to solve several parabolic stochas-
tic differential equations.

For a physical interpretation of our equation, please read [HLAUZ3] and [@4].

§2 Preliminaries on multidimensional white noise

We will now give a short introduction of definitions and results from multidimensional Wick calculus,
taken mostly from [Gj], [HLGUZ3], [HKPS] and [KLS].

In the following we will fix the parameter dimension n and space dimension m.

Let

N=]]s®")

i=1

where S(R™) is the Schwartz space of rapidly decreasing C*°-functions on R™, and

N =[]s@® ) ~]]s'®Y)

i=1 i=1

where S’(R™) is the space of tempered distributions.

Let B := B(N™*) denote the Borel o-algebra on A* equipped with the weak star topology and set

H:= é L3(R™)

i=1
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where @ denotes orthogonal sum.

Since N is a countably Hilbert nuclear space (cf. eg. [Gj]) we get, using Minlos’ theorem, a unique
probability measure v on (N*, B) such that

J @) gy (w) = ezl YV eN

where [|6l13, = 1% 41l122gny-
Note that if m = 1 then - is usually denoted by p.

THEOREM 2.1 [Gj] We have the following

1. T

i=1

B(S'(R")) = B(ITiL; S'(R™))
2. v=xTp

DEFINITION 2.2 [Gj] The triple
m
IIs'®),8,v)

i=1

is called the (m-dimensional) (n-parameter) white noise probability space.

Fork=0,1,2,... and x € Rlet
dk

2

hy(x) = (=1)ke

be the Hermite polynomials and

Eel) = mH (k= ) Fe i (V) 5 k21
the Hermite functions.
It is well known that the family {&,} C S(R™) of tensor products

€ =&x; @ " Q&g

forms an orthonormal basis for £2(R").
Give the family of all multi-indecies { = ({3,... ,{n) a fixed ordering

€M@ ... ™ . ..) where (¥ = (cﬁ“), cer) ﬂc))
and define & := &;(i).

Let {ex}32 ; be the orthonormal basis of H we get from the collection

i-1 m—i

——
{0,...,0,8,0,...,00eH 1<i<m,1<j< oo}
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and lety : N — N be a function such that

ek =(0,...,0,&~w,0,...,0).

Finally, let (31, @, ... ,3®),...) with g™ = (8, ... , B'¥)) be a sequence
such that B(¥) = ¢tv(k)), ,
If « = («1,...,0x) is a multi-index of non-negative integers we put

k
Ha(w) i= [ [ hou ((w, &)

i=1
From theorem 2.1 in [HL@UZ] we know that the collection
Ho();x e N§;k=0,1,...}
forms an orthogonal basis for L2(A*, B,v) with |[Ha|z2(y) = ! where ol = [T¥_; o .

This implies that any f € £2(v) has the unique representation

f(w) =) coHa(w)
[
where c,, € R for each multi-index « and
IflZ2y = D &lcs.
24
DEFINITION 2.3 [Gj] The m-dimensional white noise map is a map

wW:]s®RY) x ﬁS’(R“) - R™

i=1 i=1

given by _
WO, w) = wi(¢s) 1<i<m

PROPOSITION 2.4 [Gj] The m-dimensional white noise map W satisfies the following

1. {(wli(¢,) T, is a family of independent normal random variables.

2. Wi(4,.) € L2(v) for1 <i<m.
DEFINITION 2.5 [HLOUZ3] Let0 <p < 1.
e Let (ST')P, the space of generalized white noise test functions, consist of all

f=) caHa€ L2(V)
(29

such that
125 := Y~ c2(a)*P(2N)* < 00 Vk €N
[+ 4




e Let (S')P, the space of generalized white noise distributions, consist of all formal expan-
sions
F=) boHy
[+ 4

such that
Z b2 () 7P(2N)~*4 < oo for some q € N
x

where
k

@N)* = J@"8P - B if a = (o, .. , o).

i=1

We know that (S*)~F is the dual of (Sy+)P (when the later space has the topology given by the semi-
norms || - [|px) and if F =} bgHy € (S7) 7P and f = }_ cqHy € (S7Y)P then

(Rf) = Z bacax!.
[+

It is obvious that we have the inclusions
(S (STP (S (M) pelo,
and in the remaining of this paper we will consider the larger space (ST*)'.

DEFINITION 2.6 [HL@UZ3] The Wick product of two elements in (S™)~" given by

F=) asHs, G=) bgHg
o B -

is defined by
FoG=) c,Hy
Y
where
Cy= Z aabp
otB=y

LEMMA 2.7 [HL@UZ3] We have the following
1. FGe (S 3 FoGe (s
2. f,ge (™M) = foge (SM!

DEFINITION 2.8 [HL@UZ3] LetF = }_ byH be given. Then the Hermite transform of F,denoted
by HF, is defined to be (whenever convergent)

HF := Z byz®
o

where z = (21,22, -+ ) and 2* = 2{"25? - - - zp* if &« = (o1, ... , k).
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LEMMA 2.9 [HL@UZ3]IfF,G € (S™)~! then
H(Fo G)(z) = HF(z) - HG(2)
for all z such that HF(z) and HG(z) exists.

LEMMA 2.10 [HL@UZ3] Suppose g(z1, 22, -+ ) is a bounded analytic function on B4(8) for some
6 > 0,q < co where

By(8) :={C=(L1,G2,-++) € CH; ) IC*P(2N)™ < &),
o#0

Then there exists X € (SM™)~! such that HX = g.

LEMMA 2.11 [HL@UZ3] Suppose X € (SM™)~! and that f is an analytic function in a neighborhood
of HX(0) in C. Then there exists Y € (S™)~! such that HY = f o HX.

LEMMA 2.12 [HL@UZ3] Let {X»}32;, X be given elements in (™1,
Then the following are equivalent
1. Xq = Xin (S™)71.

2. 3(6 > 0,q € N,M > 0) such that HX;,(z) = HX(z) asn — oo and [HX;(z)| < M for all
z € B4(9).

EXAMPLE 2.13 Define the x-shift of ¢, denoted by b, by dx(y) := d(y — x).Then
ExpW} e (SM7 1<i<mVx e R
which is an immediate consequence of proposition 2.4 and lemma 2.11.

EXAMPLE 2.14 Let a symmetric u X u-matrix W3(¢, -) be given by

w(u+1)

Wo)i5(d,-) := W () e (S T )7

where
i—1

65) == o(j —u+i(u—%")) when i<j
V= 166,4) when i>j

elements. We are now able, using
u(u+1)
lemma 2.11, to construct the white noise exponential matrix, with components in (S, 2 )™}, as the

matrix

and o is an arbitrary element in the permutation group of M

o]
ExpOV) =) V)
k=0

where the Wick-exponents are in ordinary matrix multiplication sense.




§3 Existence and uniqueness of the pressure equation with smooth noise

We will in this section apply a generalized version of the method of continuity as used in [F, GT] to
solve deterministic elliptic differential equations of second order.

Suppose that D € R™ is an open bounded set. We then use the notation (0 <y < 1)

— v(x) —v(y)l
Hy A x,syuepD Ix —y[Y
x#y

and define the space CY(D) of Holder continuous functions on D (exponent ) as all functions
u: D — R with finite norm

llully = lelleeo oy + HY (u) < 0o

(L*°(D) being the space of bounded measurable functions on D with essential supremum norm). Sim-
ilarly, we define C2*Y (D) as all functions u € C2(D) (the twice continuously differentiable functions
on D) with finite norm

o%u

D o%u
0XiX;j

0x;0%;

+
L®D) 1<ij<n

2

D) 1<ij<n

Ihtlzy = oy + 3 |13

1<ikn x”

Letnow @09 = B4(8) N Rx.

We then define C3 (D) as all functions u: D x @p% — Rwith D 3 x = u(x,") € C'(€)") and
k

finite norm

< (e 9]

”u“&qk._ sup [l 7\)||Y+ sup Z

Ae@29 1<i<k a}“

Finaly, we define ng;ﬁ (D) as all functions u : D x @i,q — RwithD 3 x - u(x,) € C! (@i’q),

@i’q 5 A~ u(,A) € C3(D), @i’q SA %u(-,?\) € C%(D) (1 <1< k) and finite norm

S,ak . ou
”u”zfy,] = sup (-, A)ll24y +  sup a—}\_('ﬂ\) <o
Aeedd Ae@% % 1<i<k T 24y
LEMMA 3.1 C¥} _, C25%1 are Banach spaces Vk € N,5 > 0,q € N.

®6q’ eéq

PROOF:

We will show the lemma for C’Q5 a» CHY follows similarly. Let {um}$_; be a Cauchy sequence in

e
8qk

ie., given € > O there ex1sts N > 0 such that [[un —um[[;)7" < € whenevern,m > N. In

maxthun (6,1) — w0 M), [ 1, 3) - B A < ¢ VeeDAEEET ()




and

un(x,A) + um (Y, A) —un(y,A) —um(x,A)| <e V(x#y)€D,A €@ @)
Ix =yl - ’

and

Qun (x,A) + G (y,A) — Lo (y,A) — B (x, A
15 (%, A) + 532 (y, A) — 352 (y, A) — (. )ISe Vix£y) €DAEEPY 1 <1<k

Ix —ylr 3)

whenever n, m > N. From (1) it follows that there exists functions u and v; such that u, — u and
%L—)t? — v; pointwise inx € D,A € @i’q. By passing to the limit in (1), the convergence is seen

to be uniformly in A € @i‘q and x € D. A classical result then says that u is A;-differentiable with
537% = v;. By passing to the limit in (2) and (3) also, we obtain, that u € C’é‘g,q and u,, — uin the

|- 129*

v1 -horm. ]

The following theorem is well known and will be used frequently:

THEOREM 3.2 [F, Theorem 18, page 86] Suppose that L is an elliptic operator with Holder contin-
uous coefficients (exponent ) in D, where D is an open bounded set with 90D € CZ+Y(as defined
in [GT, page 94]). If f € C2tY(D), g € CY(D), then there exists a unique solution u € C**Y(D) of
the problem

Lu=g(x) x€D
u(x) =~f(x) xe€oD

Moreover, there exists a constant K > 0, only dependent on L, D and y such that

lullz+y < K(lIfllz4y + llglly)

We are now ready to state the main result of this section:

THEOREM 3.3 Let D be an open, bounded domain in R™ with 0D € CtY (0 <y < 1). As-
sume further that we are given functions g € CY(D) and f € CZ*Y(D). Then the stochastic pressure
equation in anisotropic medium with smooth noise

Vi - {Exp{W3 Yo Viu} = g(x) x€D (4
u(x) =f(x) x€9D 5)

n(n+1)
has a unique solution D 3 x — u(x) € (S, 2 )~

REMARK 3.4 (Strong differentiation)

n(n+1)
The derivatives in (4) are taken with respect to x in (S, 2 )~'. By this we mean that the limit in
n(n+1)
(Sn 2 )-]9
u — Tim u(x + eex) — u(x)
0xXy €e—0 €




where ey is the k’th unit vector in R™, exists together with the other derivatives. This is, because of
lemma 2.12, equivalent with the existence of 4 > 0, q € N such that

lim Hu(x + eex, z) — Hu(x, z) = %’Hu(x, z)
k

€—0 €

pointwise, uniformly bounded, whenever z € B4(6).

PROOF:

We will find q € N,$ > 0 and a function D 3 x — 1i(x,-) = {Hu(x)}(-) € Ap(Bq(8)), the space of
all bounded analytic functions on Bg(5), which solves the equation

Vi (Y« V i} =g(x) xeD " ©6)
{i(x,z) =f(x) x€oD @)

when B4(8). The proof consists of several lemmas:
LEMMA 3.5 Let g € N and & > 0 be arbitrary. Then
1. Ing(A)I < 6||¢||3 whenever A € Bq(8) N RY.

2. W = (6, i) pagmy i A = (A1, , M) with L< k.

PROOF:
We have
Q (D) 00
k=1
which gives the second result and
o0 oo
WP |Z D el <Y (0, e)? Y i
k=1 k=1
< ||¢||ﬂ > PN < 8791
«#0

which gives the first result. n

LEMMA 3.6 Letd > 0,q € Nandy € (0, 1) be given. Then there exists a constant C > 0 such that

0 .~
Wis E MW lly, I W | Iy} <

PROOF:




We know from lemma 3.5 that
Wl () — We) ()] < 251 bll
< 25| laghx — O
whenever [x —x°| > 1. Assume now that [x — x°| < 1. By the mean-value theorem we get

WA WP 1< (3 supWhy, WDk =
¥ ;x{’ (221

Z sup | W(t) Ak —x°Y

1=1 % A 8y1
and the first term is now estimated by using the boundedness of lemma 3.5.

The second and third terms are estimated similarly using lemma 3.5. u
LEMMA 3.7 Let > 0 and q € N be given. Then there exists a constant py > 0 such that
Z (e™ox 58185 > polEf?

1<ij<n

whenever £ € R*,x € D and A € Bq(8) N RY.

PROOF:
We have - 3
Y ()it = [EPeVern
1Li,j<n
where

|£'|2 Z E»‘l.a)ll)l,) )

1<ij<n

and ; ; is given in [Gj, page 27] with [P ;(x)|l2x < [|||l%. It then follows that we may choose
Po:=¢ ~ll¢lin® which concludes the proof. m

LEMMA 3.8 Letb > 0,y € (0,1) and q € N be given. Then there exists constants A1 > 0,A; >0
such that

1. sup, ; |(0%e ¢x)1)|.y < Alll\l"‘I
2. Sllpuhl(a“ € 4”‘)1)"}' < AIAM(] + o)
forall A € B4(8) NRY.

PROOF:

We claim, because of lemma 3.6, that

1K)
A= sup max{||W( 20, Iy 1}e“"w¢x v < max{C, 1}e™C
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and

k
A=t sup maxll Wl I Wikk ) I} < nC
g (B2

are valid choices. We will in this proof use the consistent matrix-norm || - || := nmaxi<ij<n || (- )il
Note that

- oo

bx = Z W ¢x

k=

where the convergence is in the || - ||-norm.
Claim 1:

Using the fact that 9*W¢, = 0 when || > 1, we obtain that (3%(W3_)*);; consists of n*~Tk(k —
1)--+ (k—|ex| + 1) terms of type

- times 0 (o) -times
.

/(B v/ (Br—ta)) _iw(ﬁk—mwﬂ . .r 0 W(B")‘
W¢x W‘bx aA bx aAl(“) bx

where 0 < B; < - ntl ) and () is the length of «. From this we get the estimate

le¥és < Z —Ila“ Wi, ¥l
k—O

< ];) o — lod + 1)[W5, |14 AL

< Al
which finishes claim 1.
Claim 2:
As before, we obtain that (6“5%-‘-()5/3,,‘ )¥);; consists of n*Tk(k — 1) - -+ (k — |«) terms of type

o - times “1(“£ﬁmes
%/ (B1) W (Bk—lal ,___a_W(Bk—IaIH) __r 0 W(ﬁk;
W( dur, 22, W oA O M) bx

and un*Tk(k—1)-- (k—|a| + 1) (1 <1< a)) terms of type

o - ﬁmes (o¢y—1)-times o ()-times
o Brojaar) O o (Brciaed) | O i (Brciwered O 2By
_ W (B1) W BZ) W(Bk |oc]+1) R k—|ac|+2 LY k—lo|+1+i . Bk
67\ avn } bx oA W¢x a)\iwcbx M) Wq;x
Claim 2 now follows as in the proof of claim 1 above. u

LEMMA 3.9 The equation given by (6) has a unique solution 1i(x,A) for each A € Bg(5) N RY.
Moreover, the function A — €i(x, A) is in C“(@i’q) (Vk € N,d > 0,q € N) for each fixed x € D.
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PROOF:

Let
Li=tL+(1—-t)A tel0,1]

where L is the elliptic operator

n

non W d 3
£=ZZ *) uax1 +ZZ'07 1’E)xl

i=1 j=1 i=1 j=1 )

we get from equation (6). Denote by Zi’q the set of all values t € [0, 1] for which the problem

Liu=g x€D,Ae@dd
u(x,A)=0 x€3D,A€ 6"

has a unique solution u in C2+Y’ (D) for any g in CY} _ (D). We will show that 1 € Zi’q.

@b
Casel: (0 € Zi’q)
We know from [KS, theorem 5.7.2] that

u(xA) = =52 [ glos,2)ds]

0

where (bs, P¥) is a standard Brownian motion in R™, £* denotes expectation with respect to P* and
Tp = inf{s > 0;bs ¢ D} solves '

foreach A € @i’q . In particular,
k
Il Mllz4y < KllglMlly < Kllglly$

for some constant K > 0 independent of A € @29, We see that

D
ou 1 [ 99
0

i.e, T solves

ou 0g ou
A—=2 —
oA AL’ di|yp 0
and 3 3
30N 2y < Kllge (0 < Kllgly3*

From this we obtain that u € Cg?;’ (D).

Case2: (0 € L2 = 1€ 19
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2+,

@s,ql (D) into itself given by Au = v
k

Assume now that to € £29, We then define a mapping .A from C

where v is the solution of

Liyv=L,u—Liu+g x€ED
v(x,A) =0 x € 0D

Note that the mapping A is well defined because of our assumption since

5,q,k W d%u s ko .k W3 5,a.k
||£3s“||~y,c1I < Z s||(e™ex) ua 0%, Il ¥ ||Au|| T +s Z || ax, * )i ax || 7
ij=1 i,j=1

5,q,k
< Rlul3®k, < oo

where K is some constant, and we have used lemma 3.8 together with the fact that there exists a constant
H > 0 ([GT, lemma 6.35]) such that

~ 2
X 5,0, Jak ak .0 4, 8,0,k
||f9l|5’q < Il ’kuIQII q I| || T <H|lu||zfy,1 o uII P < Hllull3®
0% 0%;
We have
[Awr — Auz|l24y < K|l(to — t)L(uy —uz) + (t —to)A(wy —u2)|ly ®)

< Kilt = tolllur — uzfl24y
where K; is independent of A, tp, t, 11, uy and g. Similarly, we obtain using (8) and lemma 3.8 that

_ ) 0
[ It T Kn——wto (w1 = w2)) = - (Lol —u2))ly

+ K|| ﬁto)(Aw Auy)lly

< Kalt —tolllwr — uzll24y + Kalt — to|||T||2+y

where K; also is independent of A, to, t,u;, u, and g. It follows that

) k ’)k
| Aug — AUZ”zfy] (K1 + kK2)[t — tolllur — u2||gfy,1

By choosmg [t — to| small enough and using Banach’s fixpoint theorem, we obtain a element u €

Cg‘;’;’ (D) such that Au = u or equivalent £yu = g with u(x) = 0 on 9D. We may now cover the
interval [0, 1] by small intervals, since 0 € Zf;q, to obtain that 1 € Zi’q. ' -

LEMMA 3.10 Letq € N,6 > 0 andy € (0,1) be given. Then there exists a constant K > 0 such
that

sup  [[%G(, )24y < NERAJ((3n2RA; + 3)A2) ! ©)
AeBg(5)NRY

for all multi-indecies o.

PROOF:
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Put K := max{1,K,H,K ||g||5 k4 Ilfllgfyk1 )B. It then follows from the definition of K and theo-
rem 3.2 that )

90, Mll24y < Klllglly + [Ifll244) <K
from which it follows that formula (9) holds for |x| = 0. By applying the operator 5—% (ie N)on
equation (6), we obtain the equation

@)} =~V - (- (M) V1)

- ?
V- {ew“”‘ Vilz o
i

oA;
which gives us the estimate
[0, A)l|24y < Kn?(A1A2 + A1A2(1 + 1)HK(||glly + [[fll24y) < 3n?KA1A;
as wanted. Let now o be given and assume formula (9) holds for all § with |B| < |«x].

By applying the differential operator 0* on equation (6), we obtain

0 = 0%(Vy - {eVox V1)) = V, - {ewéxvxa“a} (10)
.- {08 (eMVéx )V, 0% P11 11
+l;x[3'( V {0"(e""ex) i} (11)

From our induction hypothesis, we obtain

ol _ _
10%il[24y < ng " n2A; AP (2 4+ 1B HRZRA; (BA1n?K + 3)A2) % Pllo — B!
[+ 4
B#0
1] ol 2 . "
<K; B;“W A1AY(2 +5)n*RA (BAM?R + 3)A2) 7 (ja] —5)!
[Bl=j

Z(w) n2A1A}(2 +3)nZRA; ((3A2K + 3)A2)/% (Jo — j)!

x|

(2+3) n2KA;
—n2K 2 led]
KA1 ((3A1m“K + 3)A;2) ! = -
l(( MK+ ) 2 |OC| ; j! (3A]TLZK+3)’
and since
led . Y, oo
(2+j)  n*RA 2% 1
- - < 3n“KA —_—
; ' (BAMZK+3) — " ! ; (3A1m?K + 3)i
1
=3n’KAj—————— <1
TMIIAR T2 T
this concludes the proof. ]
LEMMA 3.11 The function {i* given by
1
~ % o - ~ .
{i*(x,z) == Z o [0%i(x, 0)]z* (12)

o
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solves (6) and D 5 x — 1i*(x, ) € Ap(Bq(5)).

PROOF:
Suppose now that z = (z;,--+ ,z) (L€ N) with s := Y }_; |zi| < r:= ((3n?KA; +3)A2)”". Then

W< Y 0%l < Y T nRA ol

aEZy acZl
o0
_ il .
=n2KA; Z Z %r"lz"‘l
=0 lod=j
a€Z}
o0 2'
_ _s s nKAgT
= ZKAIZT Ig) = " LI
j=0 s

where the last constant is independent of | € N. Note now that if z € Bé (8) then

1
Y <) k<8 (2N)F

i=1 [ 4

where the last sum is finite by [V] when q > 2(1 + Inn). We may now choose & > 0 so small that the
last sum is less than .

It only remain to show that ii* solves (6) for all z € B4 (5). Note that we may differentiate termwise in
both expressions because of the estimates of lemma 3.10. The claim now follows since we may write

(o)=Y %a“[(ew‘?”‘)ij(o)]za

and insert this expression and equation (12) into equation (6). By comparing terms, whenz = A €
Bq(8) N RY, we see that ii* solves (6). Both sides have analytic expansions, so the equality follows
for all z € B4(5). ) |

LEMMA 3.12 The strong derivatives in equation (4) exist.

PROOF:
Let 6 > 0 and q € N be chosen as in lemma 3.11 and put

Uu(x + eey,z) —1i(x, z
5(c,2) o= St e007) = G2

where ey is the k’th unit vector in R™, then

. 1 0%{i(x + eex,0) — 0%*ii(x,0
_l‘l"lec(,x‘,z):Za ( ke) ( )
P :

)z%.

Now, by using the mean-value theorem and lemma 3.10, we obtain the inequality

0%{i(x + eeyx, 0) — 0%*i(x,0)
€

< n2KA;((3n%KA; +3)A2)¥|af! Ve >0
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so by using the dominated convergence theorem

ol
lim 1ig(x,z) = —(x,z
lim 8 (x,2) = 7~ (x,2)
which is, because of remark 3.4, what we wanted to prove. The other derivatives are proven to exist
in a similar manner. ]
The proof of theorem 3.3 is now completed. u

84 Existence and uniqueness of the pressure equation with singular noise

The m-dimensional singular white noise is defined as
Wiw) = (WD (w), -, Wi ()

where o
W w) =Y e (Heg(w) (1<i<m)
k=1

and
k-1

——
e(k):=(0,---,0,1) is amulti-index.
We now from [HP, Chap. 21] that there exists a constant B such that ||£x|lcc < B Vk € N. From this
it follows that

oo o0
WM =1 e?Md <BY Ml <Bm8 ) (2N)"F
k=1 k=1 o520

which is finite when q > 2(1 + Inn), proving that W,(:') € (8™~ (1 £1i < m). Note that it is
also possible to define the symmetric singular exponential matrix Exp{W5} as an obvious analoge to
example 2.14.

THEOREM 4.1 Let D be an open, bounded domain in R™ with 9D € C#*Y (0 < v < 1). As-
sume further that we are given functions g € CY(D) and f € C2+Y(D). Then the stochastic pressure
equation in anisotropic medium with singular noise '

Vi - {ExpWi}o Viul =g(x) x €D (13)
u(x) =f(x) x€9D (14

n(n+1)
has a unique solution D 3 x — u(x) € (S, 2

PROOF:
We will find g € N,6 > 0 and a function D 5 x - {i(x,z) € Ap(Bg(5)) which solves the equation

V,-{eMV, i) =g(x) xeD (15)
{i(x,z) =f(x) x € 0D . (16)
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when B (8). The proof consist of several lemmas and is organized similar to the proof of theorem 3.3.
The lemmas which only need minor changes will be omitted.

LEMMA 4.2 Lety € (0,1) be given. Then there exists 6 > 0,q € N, C > 0 such that

1. supyep maxy [WH, < €
~ (k
2. Sup,ep Max;k ||a%iW>(c lly<c

(k k
3. sup,p max; k{“TW )”% ”axjaxiwv(c )”y} < CNe®

for all A € Bq(8) NRY.

PROOF:

Note that (see [HP], [HKPS]) the Hermite functions satisfy sup, cg{|&; (x)], [€4 (x)[} < Bk for some
constant B > 0. Since

Iai_ (k)(}\ |Z = k) )7\ | < BnZNe(h)Mhl < Bnéz ZN oc(2 q)
X h=1 a#0

and similary results hold for the other terms involved, the result follows as in the proof of lemma 3.6.

|
LEMMA 4.3 There exists a constant pgp > 0 and 6 > 0, q € N such that
D (M)yEiE; > polel
1<i,jign
whenever £ € R*,x € D and A € B4(8) NRY.
PROOF:
We have
xS JARY 7N
Y (@M)yE = [gPeVTE
1<i,j<n
and we may now choose py = e~® where C, § > 0, q € Nis as in lemma 4.2. n

LEMMA 4.4 Lety € (0, 1) be given. Then there exists constants A; > 0,A; >0and $ >0,q € N
such that

1. sup;[(2%e”3) 5y < AALIN®
2. sup; ;, [(0%52-eM) 5y < AJARY (1 + o) N*
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forall A € Bq(5) NRY.

PROOF:

Let & > 0,q € N be as in lemma 4.2. The proof now follows as in the proof of lemma 3.8 together
with lemma 4.2. In particular,

A :=max{C,1}e"® A;:=nC
are valid choices. u
LEMMA 4.5 Lety € (0, 1) be given. Then there exists a constant K > 0 and § > 0, q € N such that

sup  J[0%E(, )24y < MPRA((3n2RAT + 3)A) M Nt 17)
AeBq (8)nRY

for all multi-indecies «.

PROOF: This goes exactly as in the proof of lemma 3.10 if we use 8 > 0, q € N from lemma 4.2. g

LEMMA 4.6 There exist 8 > 0, q € N such that the function {i* given by

W(x,z) =) %[6“&(7(, 0)1z* (18)

x

solves (15) and D 3 x — 1i*(x, ) € Ap(Bg(5)).

PROOF: Let § > 0, § € N be as in lemma 4.2. We will from now on assume that 0 < b < 5,q> 1.
Suppose now that z = (z1,-+ ,2;) (L € N) withs := Y}, |zi] < 7 := ((3n?KA; + 3)A2)~". Then

- 1 - 1 ,- _
[0 2) < ) —l0%06 012 < J~ — KAl I*Nz"]
x€ZY x€Z}

= 21'(A1i 5 %r‘jl(Nz)“l

i=0 ||=j
LA

where (Nz)* = (N€(Nz;, ... N¢(Uz)*, Note now that if z € B4 (5) then

1
SN2kl < Y 5EN)E0-9 <5 Y (2M)<0-8) < oo
24

i=1 o

when q > 4 4+ 2Inn, from which we may choose & > 0 so small that the last sum is less than .

The proof of theorem 4.1 is now completed. u
We will now show that there is a nice connection between the solutions of theorem 3.3 and 4.1.
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EXAMPLE 4.7 (Connection beween smooth and singular white noise)

Lety € [T, S(R™) with [vp@ dx = 1 and [[Yp®)]|z1gn) < K (1 < i < m) be given. Define
P (x) := k™P(kx), then tl)(l)( ) = 80 in S'(R™) by [R, proposition 2.2.3]. We have
Wi, @ =Y (WP el) 2@z = ) aza=Wiz) (1<i<m)
1=1 1=1

and

8 (z)|< |wk)§:’,e1 )2@m izl
(P

< KB“& Z (2N)~ (19)
so it follows from lemma 2.12 that W((:g b = W,(:) (™~ (1<i<m).
THEOREM 4.8 Let uy be the smooth solutions given from theorem 3.3 with ¢ = Py and u the
n(n+1)

singular solution given from theorem 4.1. Thenuy, — win (S, 2 ).

PROOF:

Note that we are able to show a version of lemma 4.2 (x replaced by {x) which holds uniformly in k..
We then obtain, as in the proof of lemma 4.5, that there exist constants By, B such that

18%6ix (-, 024y < BiBY'N[ad! (Vk € N) (20)

Note that iy (x,0) = 1i(x,0). Let now a"‘uki (x,0) be an arbitrary subsequence of d%*ix(x,0). Then,
because of inequality (20), we may use the Ascoli-Arzela theorem to obtain a function ¥(x,x) €
CZ+Y(D) and a subsequence a“ﬁ,qj (x,0) which converges to ¥(e,x) in || - ||24y-norm. By using
induction and uniqueness we may go to the limit in (10) (with A = 0) to obtain that 9%{iy(x,0) —
Y(e¢, x) = 9%{i(x,0). The conclusion now follows as in the proof of lemma 3.12. m

REMARK 4.9 With only minor changes, we may show that both theorem 3.3 and theorem 4.1 are
- n(n+1 n(n
valid when D 5 x = f(x) € (S 5 ))_‘ andD>x— g(x) € (S 5

sup  [8%G(-, A)lly < MiMP (N9 ¥l Ve € N3k =0,1, ...
AeBg(6)nRY

)“ are functions such that

and
sup  [J0%F(-, A) |24y < MIMB (Nl Vo € Ns;k =0,1,...
AeBq (8)NRY

for some constants M1 > 0,M3 > 0and q > 0.
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