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Preface

Most of the mathematical work underlying this paper was done when GAE
visited AK in Sapporo in the spring of 1993, and when O. B., G.A.E. and
AK visited DEE in Swansea in the summer of 1993. The visit of GAE to the
University of Hokkaido was supported by a Canada-Japan Bilateral Scien-
tific Exchange Fellowship awarded by the Natural Sciences and Engineering
Research Council of Canada and the Japan Society for the Promotion of
Science.

The visits to the University of Wales, Swansea of OB and AK were sup-
ported by Science and Engineering Research Council Senior Visiting Fellow-
ships, when GAE held a Royal Society Guest Professorship. One of us, O.B.
was meant to prepare the manuscript, but due to other distractions, the writ-
ing went rather slowly. As a result, original results of the work have gradually
been subsumed by subsequent developments [LP], [EIR], [Kir], [Phi]. We have
already now separated out from this work the technical homotopy tools in
[BEEK] (which were also used in [EIR]). Since some of the techniques and ob-
servations of this sequel may also have independent interest (especially those




of Section 5 regarding a standard form of unitaries in Cuntz-circle algebras).
We now publish this second part of the work as a review paper.

The final preparation of the manuscript took place when DEE visited AK
in Sapporo in the spring of 95, supported by the Japan Society for the Promo-
tion of Science and the Royal Society under the Bilateral Programme between
the Isaac Newton Research Institute for Mathematical Sciences, Cambridge
and the Research Institute for Mathematical Sciences, Kyoto University.

1. Statement of the Theorem

Recently, in [BKRS], a remarkable non-commutative Rokhlin property was
established for the quasifree shift on the Fermion algebra. This led to the
result that the Cuntz algebra O, is isomorphic to its tensor product with
the Fermion algebra (i.e., the UHF C*-algebra Mje). Going substantially
beyond this, Rgrdam gave in [Rgrl] a K-theoretical classification of inductive
limits of arbitrary sequences of finite direct sums of matrix algebras over the
Cuntz algebras O, n finite and even. The invariant used was, in the stable
case, exactly the invariant used in [Ell1] to classify AF algebras—namely,
the set of Murray-von Neumann equivalence classes of projections, together
with addition, in general only partially defined. (In [Elll], this invariant
was referred to as the (abstract) dimension range. It is of course also the
invariant used by Murray and von Neumann in their classification of factors
into types.)

The C*-algebras considered by Rgrdam are of real rank zero, (by [Zhal),
and have K; equal to zero (by [Cun2]). In this paper we shall extend
Rgrdam’s classification to a class of algebras of real rank zero for which
the K;-group may be non-zero. (This step is analogous to the generalization
in [El12] from matrix algebras over C to matrix algebras over C(T), i.e., from
AF algebras to real rank zero inductive limits of finite direct sums of matrix
algebras over C(T).)

We will only consider simple inductive limits which may be unital or not,
and the invariant we shall use is simply K,, together with the Kj-class of 1
if the algebra has a unit 1.

Theorem 1.1 Let A and B be simple C*-algebras obtained as the inductive
limits of sequences of direct sums of matriz algebras over algebras of the form




O, ® C(T) with n = 2,4,6,.... Assume that A and B are either both unital
or both nonunital and that all the maps between the summands O, ® C(T)
are either injective or zero. Let

¢ : K,A — K,(B)
be an isomorphism of graded groups, and assume that

?«([14l0) = [1B]o

if A and B are unital.
It follows that ¢, arises from an isomorphism of C*-algebras

¢p:A— B

Remark 1.2 The hypotheses immediately imply that A and B are simple,
o-unital, infinite C*-algebras, and therefore of real rank zero, [Zha).

Remark 1.3

The restriction of n to even integers stems from the fact that the Rokhlin
property only has been proved for the shift on M- when n is even. Enlarging
the class of building blocks can be achieved by other means [Rgr2|, and very
recently the Rokhling property has been established for general n, [Kisl],
[Kis2].

Remark 1.4

It would be desirable to extend Theorem 1.1 to nonsimple inductive limits
of this type, but even when A, B still are of real rank zero, we must then at
least throw the ideal structure into the invariant, for example by using K, (A)
together with the graded dimension range D,(A) of equivalence classes of
partial unitaries as an invariant. But a recent result of Gong, [Gon], shows
that this is not a complete invariant for C*-algebras of real rank zero and
stable rank one which are inductive limits of finite direct sums of algebras
of the form M, ® C(X) where X are 2-dimensional finite CW-complexes.
His methods also show that K,(A), D.(A) is not a complete invariant in our
context, when A, B are of real rank zero.

In the hope that D,(A) will be part of the invariant in a more general
situation, we describe it in more detail. We will also describe the elemen-
tary theory of our algebras for general real rank zero non-simple inductive
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limits in sections 2-3. D,(A) is the set of partial unitaries (the normal par-
tial isometries) in the C*-algebra' A modulo the relation of homotopy, with
addition defined on classes with orthogonal representatives:

du(uy + u2) = du(u1) + di(u2)

where u; and u, are partial unitaries with u;us = 0 and d.(u) denotes the
equivalence class of u (which we may perhaps call the graded dimension of

D,(A) is a local abelian semigroup with unit the class of 0. If u is a
partial unitary in A, then the Murray-von Neumann equivalence class of the
projection u*u depends only on d,(u); let us denote it by dp(u). Similarly,
the K;-class of u depends only on d,(u); let us denote it by d;(u). Note that
the set of classes do(u), with addition defined as for d,, is what was called
the (abstract) dimension range of A, DA, in [Elll]. Let us denote this now
by DyA, and refer to it also as the even part of the graded dimension range.
In a somewhat similar way, let us denote the set of Kj-classes di(u) by D; A.
The map

D,A — DyA® DA

du — (dou, dyu)

is additive. For the algebras that we shall consider, this map is injective.

Remark 1.5

It follows from Theorem 1.1 that if A, denotes the irrational rotation
C*-algebras associated to the rotation a, then O, ® Ay = O, ® Ag, if nis an
even integer and a, § are any irrational numbers. This follows since A,, Ag
are inductive limits of sequences of direct sums of matrix algebras on C(T)
by [EE], and both tensor products have the same K-theory by the reasoning
in Section 3.

In Sections 7 and 8 these techniques are extended to include O, ® O,, as
building blocks. Consequently :

Theorem 1.6 If n,m are positive even integers, and k — 1 is the greatest
common divisor of n — 1 and m — 1, then

0n® 0 =2 O, ® O 2 O @ (C(T) % Gy)




where Gy, is the subgroup of T generated by {1/k";r € N}, acting on T by
translations. Thus if n — 1, m — 1 are relatively prime, then

On®0m202

and
0, A= 0,

for any simple unital C*-algebra A in the class covered by Theorem 1.1.

Remark 1.7

A version of Theorem 1.1, with some more restrictions on the embeddings,
has been proved in [GP]. The very recent complete classification of simple
purely infinite separable o-unital, nuclear C*-algebras satisfying the universal
coefficient theorem by Kirchberg and Phillips, [Kir], [Phi], has Theorems 1.1
and 1.6 as immediate corollaries.

2. Elementary Theory of the Inductive Lim-
its

In this section we will characterize general inductive limits of finite direct
sums of algebras of the form M, ® Oy ® C(T), with n = 1,2,3,... and k =
0,2,3,4,... with Oy = C. The results will be more general than those which
are needed in the context of the simple C*-algebras in Theorem 1.1.

We will characterize the inductive limits which are real rank zero by
a property of small spectral variation, and we will characterize the ideal
structure of these inductive limits. As usual, if p is a projection and u is
a partial unitary in a C*-algebra A, then [p]o, [u]; denote their canonical
images in Ko(A), K1(A), respectively.

Recall from [Cun2] that a simple C*-algebra is called purely infinite if all
nonzero hereditary sub-C*-algebras contain an infinite projection. If A is a
unital purely infinite C*-algebra, we will in the next lemmas make use of the
following known properties of A:

1. A has real rank zero, [Zha],

2. Ky(A) = {[plo|p is a nonzero projection in A}, [Cun2],
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2. a. Any two nonzero projections in A has the same K class if and only
if they are Murray-von Neumann equivalent [Cun2],

3. Ky(A) = U(A)/Us(A), [Cun2),

4. Any element in Uy(A) can be approximated by a unitary with finite
spectrum, [Lin1],

5. Any nonzero projection in A contains a subprojection which is Murray-
von Neumann equivalent to 1. [Consequence of 2 and 2a]
5 will be used in the following forms:

5. a. For any ko € Ko(A) and any nonzero projection p € A, there exists
a nonzero projection ¢ € A such that ¢ < p and [g]o = ko,

5. b. For any k; € K;1(A) and any nonzero projection p € A, there exists
a unitary u € A such that (1 — p)u=u(l—p)=1-p and [u]; = k;.

A useful consequence is

6. Given any ¢ > 0 and any two unitaries u,v € U(A) with [u]; = [v];
and Spec u, Spec v both e-dense in T, then there exists a w € Up(A)

such that
llu — wow*|| < 2e

(of course, when [u]; # [1]1, then Spec u = Spec v = T and the condition
on the e-density of Spec u and Spec v is automatic)[E13].

We are going to apply these results to the algebras My ® O,, where
k=1,2,...and n = 2,3,4,.... In the rest of this section we will consider
C*-inductive limits A = li_r)n A, where the C*-algebras A, has the form

An = An,
i=1
and
Anj = Mip ;) ® Ofn,jy ® C(T)

where [n, j] € Nand {n,j} € {0,2,3,4,...}. Let v = u, ; denote the canonical
unitary 1®1®(z — z) in A, ;. If z is any element in A,, let ¢, j.n(z) denote




its image in A, ; by the mapping A, — A, — An,;, when m > n. The
notation ¢,(z) = @oo;n(z) will be used to denote the image of z in A. The
morphisms A, — A,, are not assumed to be injective nor unital throughout
this section. Let 1, ; denote the central projection in A, corresponding to
the summand A, ;.

Lemma 2.1 If p is a nonzero projection in B = M ® O, ® C(T), then
pBp 2 M; ® 0, ® C(T)

where i 1s the class of p(t) in Ko(My @ O,) for any t € T.
(Thus i € {1,...,n — 1} whenn > 2.)

Proof:

Let ¢ € My ® O, be a fixed projection such that [g]o = [p(t)]o for all
t € T = R/Z. For definiteness let ¢ = p(0). We may construct a norm
continuous family u; of unitaries such that uo =1 and

UpQuy = P(t)

[BEEK]. Since p(1) = g it follows that u; € {q}. Since K;(0,) = 0 and
q(Mr® Op)q ~ M; ® O, [Cun2], it follows from property 3, above, that qu;q
may be deformed in the unitary group of ¢(M; ® O,)q to the identity ¢ of
this algebra. It follows easily that we may modify ¢ — u; so that u; = 1.
But then u € B, and

pBp = u*pBpu = u*puv*Buu*pu
= ¢Bg=M;® 0, ® C(T)

where ¢ also denotes the constant function T > ¢ — q.

Let u = u, . By a slight abuse of language we will use the term spectrum
of ¢(©) = Pm,jin(Unk) in Ay, ; to mean the spectrum of ¢(u) inside the unital
algebra ¢(1, ) Am,j¢(1nk). By Lemma 2.1 this algebra, if nonzero, has the
form M; ® O} ® C(T), and the term spectrum of ¢(u)(t) will refer to the
spectrum of the unitary operator valued function ¢(u) at ¢ € T. (The total
spectrum of @(u), respectively ¢(u)(t), will be the spectrum as just defined,
a closed subset of T, in addition to 0 if ¢(1,%) is not the unit of A,,;.) We
use the notation Spg(u) and Sp(¢(u)(t)) for the spectra, defined as above.
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If U,V are subsets of a metric space, dist (U, V) denotes the usual Haus-
dorff distance of U and V:

dist(U, V) = max{sup inf dist(z,y),sup inf dist(y,z)}
zeU YEV yev zeU
In our present setting, the property that A has real rank zero is charac-
terized by a property of small spectral variation, just as in the case where the
fibre of A, ; is M, ) rather than M}, 5 ® Ofn,k}s [BBEK], [BDK], [DNNP],
[BE], [Su]. Before stating this property in Lemma 2.3 we need a well known
general Lemma.

Lemma 2.2 Let (Ap, ¢mn : An — Ap) be an inductive system of C*-
algebras with inductive limit A. Let ¢, = ¢oon : An — A be the canonical
morphism.

1. Ifz,y € A, then
Jim [|¢mn(2) = dmn ()|l = [|6n(z) — ¢n()]]

2. Ifp € A is a projection and € > 0, there ezxists an € N and a projection
q € A, with
||¢n(Q) _pH < 67

3. If p1,....,pr € A are mutually orthogonal projections and € > 0, there
exists an n € N and mutually orthogonal projections q, ..., ¢, € A, such
that

|lpn(@) — mill <, i=1,..r
Proof:

1. is an immediate consequence of the definition the inductive limit A by
means of equivalence classes of sequences.

2. The projection p can be approximated arbitrarily well by an element
of the form ¢,,(z), where z = z* € A,,. Replacing z by ¢, »(z) for a
suitable large m, we may make ||z% — z|| small, by (1). Modifying = by
applying a function which is constant equal to 0 near 0, and constant
equal to 1 near 1, we obtain gq.




3. By the same reasoning as in (2) we may find elements z; = 2} € A, for
some n such that ¢, (z;) approximates p;, and such that ||z? — z;|| are
small and ||z;z,|| are small for ¢ # j. Using standard spectral-theoretic
techniques as in [Gli],[Bra] one modifies the z;’s to obtain the g;’s.

Now, we return to our more specific inductive limits again. First note
that the cases {n,j} > 2 and the cases {n,j} = 0 have to be treated slightly
differently. The case where {n, j} = 0 for all (n, j) has been treated in detail
in [BDK],[BE],[Su]. One way of summarizing the result in [Su|, for the case
that

Anj = M3 ® C(T)

is as follows: Let
Pm,jinsi * Min) ® C(T) = M, ® C(T)

be the partial morphisms arising from ¢,.,. Each point w in the right T (let
us call it T,, ;) corresponds to an irreducible representation  of C(T, Mm ;)
(by evaluation at w), and 7 o @y, j;n: decomposes into a finite number & of
irreducible representations of C(T, M[,;) corresponding to (not necessarily
distinct) points ¢;(w), ..., Px(w) in Tp;. Here 0 < k < [m, j]/[n,1]. Since T is
connected, the number k is independent of w € €, j [DNNP]. Let S*T denote
the k-fold symmetric product of T; that is, S*T is the Cartesian product T*
modulo the canonical action of the symmetric group S* on this product,
equipped with the quotient topology. Then ¢;(w), ..., ¢x(w) defines a unique
point Ly ;.m j(w) in S*T. The map Ly im,; : Tm,j — STy is well defined and
continuous [DNNP]. If d is the usual metric on T, the topology on S*T is
defined from the metric
dl(Sk(wla ooy wk)’ Sk(¢1’ ooy ¢k)) = inf (max d(wl, ¢tr(l)))

oeSk "1<I<k

Define the spectral variation of ¢y, j.n; as
SV((ZvaJ;nvz) = SEI'GI’)I d(Lnﬂ;m’](S), anz;m’J (t))’
Sy
and the spectral variation of ¢, as

SV(¢mn) = mg,x SV (bm,jm,i)-
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One may now prove that A has real rank zero if and only if
nlglgo SV (¢mn) =0 (2.1)

for each n € N, [Su].

Note that Ly ;.m ;(s) is nothing but the set of eigenvalues of @ jin,i(Un,i),
counted with multiplicity (divided by [n,i]). In the case that {m,j} > 2
we will now establish a very similar criterion to the one above, but simpler
since we do not need to consider the multiplicity of the eigenvalues (roughly
because this is infinite anyhow, due to the infiniteness of the fibers Om,j3).
The following Lemma 2.3 can be amalmagated with Su’s criterion above to
obtain that A has real rank zero if and only if any of the canonical unitaries
uy,,; has small spectral variation over the circles when mapped far out, where
small spectral variation means (2.1) over the summands where the fibres are
matrix algebras and condition 2 of the lemma over the other summands. The
following lemma applies to the ideal generated by A, ; with {n,i} > 2.

Lemma 2.3 Let A= lim A,. Assume that {n,i} > 2 for all (n,1), but the

connecting morphisms ¢m » do not need to be unital. The following conditions
are equivalent

1. A has real rank zero.

2. For any (n,k) and any € > 0, there exists an m > n such that, with
U = Unk,

max Sup dist{(SP(Grmin(u)(£)), SP(Grmin(u)(5))) < .

v s,teT

3. For anyn, any x = z* € A, and any € > 0, there exists an m > n such
that

maxsup dist(Sp(min()(8), SP(Bmin(2)(3)) < €.

Proof:

We prove 1 & 3 & 2.

1 = 3: If A has real rank zero, and z = z* € A,, then ¢,(z) may be
approximated arbitrarily well by a finite linear combination Y ;_; Axpx, where
Ar € R and py, ..., px is a family of mutually orthogonal projections in A. By
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Lemma 2.2 (3) we may find a m > n and mutually orthogonal projections
qi, ..., ¢ in A,, such that ¢,,(g) is close to pi, for k =1, ...,r. But by 2.2 (1),

Jim || ¢in(z) — Z/\mm(qz || = {|gn(z) — Zx\fbm(qz)ll

so the element ¢, ,(z) can be approximated arbitrarily well by a self-adjoint
element of finite spectrum in some A,,. Since the projections in A4,, =
@, Am,; are direct sums of projections, and a projection in

Amj = Mpp 51 ® Ofm,jy ® C(T)

is a continuous function from T into projections of Mjn, ;;® Ofm,j}, and there-
fore either nonzero over all points of T or zero over all points, it follows that
the spectrum of ¢y, j:n(2)(t) is approximately constant in ¢, which is 3.

3 = 1. Assume 3. To show that A has real rank zero it suffices to show
that for all n and all z = z* € A, there is an m > n such that ¢, jn () can
approximated by an element of finite spectrum in A, ; for all j. But using
condition 3 it thus suffices to show that for any € > 0 there is a § > 0 such
that for any self-adjoint valued continuous function x from T into M; ® O,
if norm less than 1 such that Sp(z(t)) is approximately constant in ¢ within
6 there is a finite set pi, ..., p, of projections in My ® O, ® C(T) and real
numbers Ay, ..., A\, € [—1,1] such that

,
HIB — Z )\kpk|| <e.
k=1
This follows from the properties 1-6 listed in the beginning of Section 2. In
fact it is only the implication 1 = 3 which will be used later as A will be
simple, and thus real rank zero is an overall assumption.
2 & 3. Note that the kernel of the map

¢m,i;n,k : A'n,k - A’m,i(t)

consists of exactly those functions from T into M, ® Oy x} Which are zero
on Sp(dmimk(u)(t)) C T. Thus, if z = z* € Ank, SP(Pm,im,k(z)(t)), is the
closure of the union of the spectra of z(s) over s € Sp(@m,i:nk(u)(t)). Since
Sp(z(s)) is a continuous function of s, it is then clear that 2 = 3, and
the converse implication follows by letting x run through a sufficiently fine
partition of the identity of T.

We will now summarize Lemma 2.3 and Su’s result.
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Definition 2.4 Let A= li_r)nAn, where

An =D An; and Ani = M7 ® Ofnjy ® C(T)

=1

where [n,j] € N and {n,j} € {0,2,3,4,...} and the connecting homomor-
phims are unital. We say that A has small spectral variation if for any (n, k)
and any € > 0, there exists an m > n such that, with u = U, ,

SUp dist(Sp(Bmisms(2) (1)), SB(Brmims(u)(s))) < € if {m, i} > 2,

s,teT

and
SV (bmink) <€, if {m,i} =0.

Corollary 2.5 Let A be as in Definition 2.4. Then A has real rank zero if
and only if A has small spectral variation.

Proof:

This follows from Lemma 2.3 and [Su], together with the fact that there
exists no nonzero homomorphism from M; ® O, ® C(T) into M,, ® C(T); see
the following remark.

Remark 2.6
Let A = lim A, be as before, and assume that A has real rank zero. It

—)
follows that the ideals in A have real rank zero, and hence has approximative
identities consisting of projections, [BP]. On the other hand, if I is an ideal in

A,and I, = {z € A,|¢n(z) € I}, then I, is an idealin A,,, and I = U,, ¢n(In).

(In fact, I identifies with the inductive limit of I, 225 I, 3 I, —s ..)

Since I is generated by its projections, each I, is a subsum of the direct sum
@D Ank, because if p € A, is a projection, and p(t) # 0 for some ¢t € T,
then p(t) # 0 for all t € T. Thus we may associate to A a Bratteli diagram
D(A) where the vertices are the indices (n, k), and there is an edge between
(n,k) and (n + 1,3) if and only if ¢pi14nk # 0. There is then the same
1 —1 correspondence between ideals in A and certain subsets of D(A) as for
AF-algebras, [Bra]. This will be useful in identifying D, with (K, & ideal
structure) in the next section.
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One particular ideal in A = li_gn A, has special interest. This is the

maximal infinite ideal I,. To define this, note that the only homomorphism
from M; ® O, ® C(T) into My ® Op ® C(T) = My ® C(T) when n > 2 is zero
since 1 is infinite in the first algebra, while the latter algebra has no infinite
projections. Thus the ideals

In,oo = @ An,j

Ji{n.j}>2

in A, are mapped into each other by ¢,11.n, and their inductive limit is I.
I, has real rank zero, and all its projections are infinite. On the other hand
A/l is a unital real rank zero inductive limit of circle algebras, and has
been completely analyzed in [ElI2].

The subset D,(I,) of D.(A) corresponding to I consists of all those
z € D,(A) such that nz is defined for all n € N and nzx = z for some n € N.

We end this section with some remarks on simple inductive limits, which
is what the statement of Theorem 1.1 is about. In this case the maximal
infinite ideal I, has to be equal to A ( unless I, = 0 which is the case
already analyzed in [Ell2]), and hence we may throw away all the summands
A, j where {n,j} = 0 without changing A. Thus we assume from now that
{n,j} > 2 for all n, j. We may also throw away all summands A, ; such that
#n(An;) = 0 without changing A, even when A is non-simple. When A is
simple, we may (assuming A; is chosen such that ¢;(A4;) # 0) throw away
all summands A, ; when n > 2 and ¢, j;,—1 = 0 without changing A. In the
AF-diagram this corresponds to throwing away all vertices from the second
row onwards which are not hit by an edge from above. Starting from the
second row and going down this results in that ¢y, j;,—1 7# 0 for all n > 2 for
the diagram consisting of the remaining vertices. The simplicity of A then
manifests itself in the fact that for any (n,:) there is a m > n such that
¢m,j;n,i 75 0 for any .7

We will say that an algebra of our type is AF-simple if the correspond-
ing AF-diagram is that of a simple C*-algebra, i.e. if after throwing away
all summands A, ; which are mapped into zero in A, the diagram has the
property that if A is a set of vertices such that any descendant of any point
in A is in A, and if all the decscendants of a vertex is in A, then the vertex
itself is in A, then A is either the empty set or consists of all vertices. The
simple C*-algebras of our type is then characterized as follows:
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Proposition 2.7 Consider C*-inductive limits A = lii)n A, where
An =D Mpn,;) ® Opn,jy ® C(T)
J=1

where [n,j] € N and {n,j} € {2,3,4,..}. The following conditions are
equivalent:

1. A is simple.

2. A is AF-simple and has small spectral variation.

Proof:
1= 2: If A is simple, it is clear from the fact that

I= (TN gu(4n))

n=1

that A is AF simple [Bra]. That A has small spectral variation can be

deduced from the fact that A is infinite and simple, and thus of real rank

zero, and Lemma, 2.3. One could also deduce this directly from the fact that

an ideal in A is described by a certain sequence of open sets in the spectrum
1 T of A,. We leave the details to the reader.

2 = 1: Since A has real rank zero, any non-zeroclosed ideal I of A is
generated by its projections. This implies that for any sufficiently large n
there is a j such that ¢,(A,;) C I. Then we obtain that /=A by using
AF-simplicity in the same way as in the AF case [Bra).

3. Discussion of the Invariants

The graded dimension range D,(A) was introduced in section 1. In this
section we will discuss this invariant in more detail in the context of section
2, and its relation with the more familiar invariant K, (A), [Bla].

We will first compute K,. It is known that

K*(OO) = K*((C) = (Z,O)
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while
K.(0,) =(z/(n—1)z,0)

for n =2,3, ..., [Cun2]. Also
K.(C(T)) = (z,2).

The graded group K.(O, ® C(T)) can then be computed from the Kiinneth
short exact sequence

0 — K.(A) ® K.(B) = K.(A® B) — Tor}(K.(A4),K.(B)) — 0
[RS]. In our case, when n = 2,3,...,
K*(O-n) ® K*(C(T)) = (Zn—la 0) ® (Z7 Z) = (Zn—-l, Zn—l)

and
Tor{(K+(On), K+(C(T))) = Tor{((Zs-1,0), (2, 2)) = (0,0)
as one can see by using the standard free resolution

-1
0—>Z(n—>)xZ—>Zn_1—>0

of Z,,_;. Hence, by the Kiinneth short exact sequence, K,(M;®0,QC(T)) &
(Zn-1,Zpn—1) for n = 2,3, .... Suitable generators are

K(lo1el)=1 K(181®(z—2)=1,

[Cun2]. Of course,
K.(My ® Oy ® C(T)) & (2,2)

with generators

Ki(p®1® (2 — 2)) =1,

where p is a one-dimensional projection in M.
Now, using the properties 1-5 of M ® O, listed near the beginning of
Section 2, it is not hard to prove that (see [Rerl)):

D, (M ® O0,) =0U K,(M}, ® O,,) = 0U (Zy-—1,0)
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for n = 2,3,..., where 0 is the Murray-von Neumann equivalence class of
0 € My ® O,, and addition in the semigroup D.(M; ® O,) is given by the
requirement that 0 is the zero element, and addition on the subset K, (M) ®
O,) is as earlier. Furthermore

D, (M ® 0, ® C(T)) =0U K. (M}, ® O, ® C(T)) =0U (Zp—1, Zn—1)

for n = 2,3,... with addition defined analogously with the previous case.
Suitable generators are

D,(0)=0, D.(1®1Q (z— 2™)) = (1,m),m € Zn_.
In the case n = 0:
D.(M;, ® O, ® C(T)) =0U ({1,--+,k},2).

This is a local abelian semigroup (with addition only locally defined). Suit-
able generators are

D,(0)=0, D.(p®1®(z—2™))=(1,m),mEeEZ

where p is a one-dimensional projection in M.
Put

6 U (Zn—-b Zn—l) when n = 2, 3,

Dyn = D.(M;, ® O, ® C(T)) = { ou({1,--+,k},z) when n=0.

It is clear by the usual spectral-theory argument that D,(A) is the induc-
tive limits of the local semigroups

Dy(An) = @ Du(An;) = D Dpnjji,in.iy-
j:l j=1

The maps
(émking) : Dul(An;j) = Du(Amyi)

are as follows: For ® = ¢y, 1:n j, certainly
,(0) =0

and if @ = 0, then
®,(d)=0
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for all d € Di, jj,{nj}- If @ # 0 then @,|K, (A, ;) is the element in
Hom(K.(Anj), Ki(Amx)) induced by ®. (If {n,j} = 0, replace K.(A, ;) by
({1,...,1},2) for some I. Note that ®, = 0 if {n,j} # 0 but {m, k} = 0).

Note that the AF-diagram of A, and thus (by Remark 2.) the ideal struc-
ture of A can be read off the inductive system

D*(Al) — ey

i.e. the vertices are the points (n, k) and there is an edge between (n, k) and
(m+ 1,1) if and only if (@nt1,nk), # 0. If we now define an ideal in D,(A)
as a sub-semigroup I with the property that if x +y € I, then z,y € I, then
it is easy to see that there is a canonical 1-1 correspondence between ideals
in D,(A) and those subsets of D,(A) that corresponds to ideals in A.

Equivalently, we could define a pre-order on the local semi-group D,(A)
by z < z if there is a y with z + y = 2, and then the ideals in D,(A) are the
hereditary sub-semigroups of D, (A).

In order to formulate and prove a K K-intertwining argument, we need
some information about

KK*(An, Am) = KK*(@ An,j7 @ Am,k) = @ KK*(Anyj’ Amrk)’
J k

ak

Put temporarily A = M;®0,,®C(T), B = M;®0,,®C(T). By the universal
coefficent theorem, [RS], we have a short exact sequence

0 — Eztl(K.(A),K.(B)) > KK.(A,B)
X Hom(K,(A),K.(B)) — 0

where 6 is of degree 1 and + is of degree 0 as mappings of graded groups, and
Hom means graded homomorphisms. If n,m > 2, then

K*(A) = (Zn-l, Zn—1)7 K*(B) = (Zm-hzm-l)’

SO one computes
Exty(K.(A), Ku(B)) = (Zx, Zx)

where k = ged(n — 1,m — 1) = the greatest common divisor of n — 1 and
m — 1, and, furthermore

Hom(K.(A), K.(B)) = (Z, Zy).
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It follows from UCT that both K K(A, B) and K K;(A, B) are extensions of
Zy by Zy, with k = ged(n — 1,m — 1), when n,m > 2. When n =0, m > 2,
then

K.(A) = (z,z), K.(B) = (Zm-1,Zm-1).

Now
Ext¥(Z,Zm-1) =0

since Z is free, and
HO’ITL(Z, Zm—l) = Zm-1,

" KK*(Aa B) = HO’ITL(K*(A),K*(B)) = (Z‘m—l’zm—l)

when n = 0, m > 2. Similarly
Ext}(Zn-1,2) =Z/(n— 1)Z = Zp_4,
Hom(Zy-1,2) =0,

SO
KK.(A, B) = (Zn_1, Zn_1)

when n > 2, m = 0. Finally
Ext¥(z,2)=0, Hom%(z,z)=1,

” KK.(4, B) = Hom(K.(A), K.(B)) = (Z,2)

when n=m = 0.

4. The K K-intertwining Argument

In order to prove Theorem 1, we will adapt the K K-intertwining argument
from [Ell2]. For this we need a uniqueness and a existence theorem. These
are as follows.

Theorem 4.1 (Uniqueness) For any sufficiently small € > 0 there ezists a
0 > 0 with the following property:
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If ¢,% are unital morphims from A = M; ® O, ® C(T) into B = M; ®
Oy, ® C(T) where i,k €N, n € 2N, m € 2N, such that

Sp(¢(v)(t)) and Sp((uw)(s)) are b-dense in T

for allt, s, € T, where u is the canonical unitary in A, the following conditions
are equivalent

1. KK(9) = KK(¢)
2. There exists a unitary U € B such that
|l¢(s;) — AdU o 9(s))|| < €
for j =1,...,n, where s; are the generators of Oy,
l|¢(u) — AdU o p(u)]| <,

and
|l¢(z) — AdU o ¢(z)|| < |||

for x € M;.

Theorem 4.2 (Ezistence) Let A = M;®0,®C(T) and B = M;®0,,®C(T)
where i,k € N, n € 0U 2N, m € 2N. Assume that

k(n—1)
ged(i,n —1)

m-—1
ifn>2. Let g € KK(A, B) be an element which induces the map
1le Ko(A) =Zp_1— S E Ko(B) =Zm-1
where s s such that

(n—1)s =0 mod(m — 1), is = k mod(m — 1).

It follows that there is a unital homomorphism ¢ of A into B such that
KK(¢) =g and Sp(¢(u)(t)) =T for any t € T.
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Note that the number theoretic assumptions in Theorem 4.2 are there just
to assume that there exists homomorphisms in Hom(Ky(A), Ko(B)) taking
the class of the unit in Kj(A) into the class of the unit in Ko(B). These
theorems will be proved, along with more concrete characterizations of the
elements in KK (A, B), in Section 6, see Theorem 6.8 and 6.9. It will be
enough to consider the case i = 1 (cf. [Rgrl], proof of Theorem 5.2).

For the KK-intertwining we will also need the fact, proved in [RS],
that if D = lim D, and K,(C) is finitely generated, then KK,(C,D) =
li_)m KK,(C,D,). Finally we will need that if A,, By, are finite direct sums

of algebras of the form M; ® O; ® C(T), then K K,(A,, By,) is a finite abelian
group. This was established in Section 3.

Proof of Theorem 1.1: We follow closely the K K-intertwining argument
in [Ell2], Section 7. So assume that each of A and B is the inductive limit
of a sequence of finite direct sums of basic building blocks

where 1 € N, n € 2N.

We first assume that A and B are unital. We may then assume that
the unit in A, B is the image of the unit in A,, By, respectively, and since
A, B are simple it follows from Theorem 2 that we may choose the inductive

sequences
A —m Ay — ..o A

Bi—-By—..— B

so that the connecting maps @n41 i are all nonzero and the spectral vari-
ation is arbitrarily small. These properties are preserved when going to
subsequences.

Now, assume that there exists an isomorphism ¢, : K,A — K,B such
that @«([Lalo) = [18]o.

By Theorem 1.17 of [RS] (the universal coefficient theorem for K K) to-
gether with Proposition 7.3 of [RS], the isomorphism ¢, arises from an in-
vertible element ¢(A, B) of KK (A, B), and so ¢;! arises from the inverse
element ¢(B, A) in KK(B, A).

The canonical element ¢(A;, A) € KK(A, A) coming from the morphism
A; — A, gives rise to an element ¢(A4;, B) = ¢(A1, A)$(4, B) in KK (A, B).
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But each K,A, or K,B, is of the form

D@ ns1-1Zns)-1)
J

(the class of the identity being @;([n, j],0)) and hence, since these groups
are finitely generated (even finite)

KK (A1, B) = imKK(4,B,)

in the sense that if 3 € KK(A;, B) there is a n and a v € KK(A;, By)
such that B = y¢(By,, B). Pick such an n, relabel B, to B;, and name vy
®(A;, B;). We have obtained a commutative diagram of K K-elements which
gives rise to a commutative diagram of K,-maps:

K.(4) K.(A)
K.(B) Kl*(L)

Switching the role of the A’s and B’s in the above argument, we obtain for
a sufficiently large n a commutative diagram of K K-elements

K. (A,) K.(4)
g |
K.(B1) K.(B)

Using commutativity of both diagrams we have

¢(A1’An)¢(AmA) = ¢(A1’ A) = ¢(A1’ Bl)¢(B1’A) = ¢(A1’ B1)7n¢(An’ A)’

and so
(¢(A1, An) — (A1, Bi)1m)9(An, A) = 0.

But again using KK (A, A) = lim K K (A1, Ar) we see that

(6(A1, An) — $(A1, B1)n)$(An, Am) = 0
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for some m > n. Renaming A,, as A, and defining ¢(Bi, A3) = Ynd(An, Am)
we obtain a commutative diagram of K K-elements

K.(4) — K.(4) TT)
K*(Bl) K*(B)

Proceeding inductively in this manner, we obtain a commutative diagram of
K K-elements

K.(A1)) — K.(4,) K,(A;3) — .=  K,(A)

e

K.(B)) K.(B,) K.B;) —..— K.(B)

The argument proceeds as in [El12] using Existence Theorem 4.2 to lift the
new KK-maps to the algebra level and then using the Uniqueness Theorem
4.1 to obtain approximate unitary equivalence at the algebra level of the
triangles in the above diagram. In order to apply Theorem 4.1, one needs
that the image of the canonical unitary u under a connecting map ¢ is such
that Sp ¢(u)(t) is 6-dense for all t € T (for arbitrarily small §, by telescoping
enough connecting maps if necessary). By injectivity the union of Sp ¢(u)(¢),
as t varies over T is dense in T. Hence if the spectral variation of ¢(u) is small
with tolerance 6 (which will follow by telescoping from the real rank-zero
property) then Sp ¢(u)(t) itself must be §-dense for each ¢ € T.

5. Unitaries in M; ® O, ® C(T)

Here we show how to approximate unitaries with a spectral condition in a
matrix algebra over O,, ® C(T), where O,, is a Cuntz algebra, by unitaries
in a standard form. Consequently such unitaries with the same K-theory are
approximately unitarily equivalent (cf. Lin’s result [Linl] for approximate
unitary equivalence of unitaries in a simple purely infinite C*-algebra, as
mentioned in property 6 of Section 2).
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Theorem 5.1 There exists a constant C > 0 satisfying the following con-
ditions: If § > 0, M is a positive integer, and U is a unitary in B =
M;®0,,8C(T) such that Mgy = k modm—1, 6 > 1/M, [U] = lgomod m—1,
and Sp(U(t)) is 6-dense in T for all t € T, then there is a unitary Uy € B
such that

|U = Uoll < C6
M ..
UO — ulpl + Z 62m‘1/M.Pj
Jj=2
where {P; : j =1,--+, M} are mutually orthogonal non-zero projections such

that [P;] = go. Here u is the standard unitary t — 1 ® 1 ® €*™, and gy is
an arbitrary element in Z/(m — 1)z = {0,1,---,m — 2}, viewed both as an
element in Ko(B) and in K;(B). We say that U, is of standard form of rank
M.

Proof:

For a sufficiently small € > 0 there exists 6; > 0 such that if |t — s| < 61,
then |U(s) — U(t)|| < e. Choose a positive integer M such that 1/M < 6y,
and then by [Linl] for each k =0,1,2,--, M — 1, choose a unitary Ui with
finite spectrum such that ||[U(k/M) — Uy|| is so small that ||Ug+1 — Uk|| < €
for k=0,1,2,:--, M — 1 with Ups = U,.

Now § is a measure of the length of the gaps (if present) in the spectra of
U(t), hence of Uy. Choose an integer N so that 1/(2N+2) < § < 1/2N; hence
the spectral projections of U corresponding to spectral intervals of length
greater than or equal to 1/2N are non-zero. With this N, we take € > 0
so small that homotopy arguments of [BEEK] can be applied, in particular
those of Lemmata 2.2 and 2.9 (see also Proposition 3.1). More precisely, first
define

2N-1
1 _ wil/N
k= Z e/ Dk,
=0
20—1 2041 _
A1 2AH) ] -

where py; is the spectral projection of Uy for the interval (43, £%
0,1,2,---,2N — 1. We will connect U; with U, with a path of unitaries
vk(t), t € [k/M, (k+1)/M], so that we always stay within a C//N neighbour-
hood of U;, (or Ux) where C is a constant and the eigenvalues of vg(t) are as
indicated in Figure 1.
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Step 1. First move along the interval [k/M, k/M + 1/5M] changing
the eigenvalues e™"/N and e™*+Y/N (on py o, and pgar+1 respectively) to
emUr+tD/2N (on pg 9 + Pror1 = Pry) for 1 =0,1,2,---, N — 1. So at k/M +
1/5M we have

N-1
’Uk(k/M + 1/5M) — Z evri(4r+1)/2NPk,r

r=0

Step 2. Next move back along the interval [k/M + 4/5M, (k + 1)/M]
changing the eigenvalues e™(®+1)/N and e™2"+1/N (on pgig 9,41 and

Dk+1,2(r+1) Tespectively) to e Ur+3)/2N (on prigorit + Prt1ar1) = Qryr) for
r=0,1,2,---,N—1. So at k/M +4/5M we have

N-1
’Uk(k/M+ 4/5M) — E e7ri(4r+3)/2NQk,r )

r=0
Step 3. With this N and e sufficiently small, we use the method of
Proposition 3.1 of [BEEK] to bifurcate Py, and Qg into

Pk,r = pllc,r +pi,ra Qk,r = QI}:,r + ql?:,r
with a unitary U = e¢'* (depending on k), with h small so that

Ug,U* = pi,
UQI%,TU* = pllc,r+1 .
Then along the interval [k/M + k/5M, k/M + 2/5M] change the eigenvalue

e1ri(4r+1)/2N (on Pk,r — pl%:,r +p%,r) to em’2r/N and evri(2r+1)/N (on pI{:,r and pi,r
respectively) for r =0,1,2,---, N — 1 so that at k/M + 2/5M we have

N-1
ve(k/M +2/5M) = > (em2r/Npi’r + em(27~+1)/sz’r)_

r=0
Similary working back on the interval [k/M + 3/5M, k/M + 4/5M] change
the eigenvalue e™*+3/2N (on Qi, =g} . + ¢} ,) to €™ TUN gand emi2(r+D/N
(on g, and g7 . respectively), for r =0,1,2,---,N — 1. So at k/M + 3/5M
we have

N-1
vi(k/M +3/5M) = 3 (e"CrtNgy 4 em2 DN G ).

r=0
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Figure 1:

Step 4. Finally by applying Ad(e**"), we can connect vix(k/M + 2/5M)
and v (k/M +3/5M) across the fifth and final interval [k/M +2/5M, k/M +
3/5M].

Putting the unitaries constructed on the intervals [k/M, (k + 1)/M] to-
gether we obtain a continuous path v(t) of unitaries on the circle so that
|lv(t) = U(t)|| < C/N. In each interval [k/M, (k + 1)/M], Figure 1 describes
the eigenvalue functions where w = e™/V, and we have periodic boundary
conditions in the vertical direction so that the two points labelled a (respec-
tively b) are identified.

For each segment I between two crossings, there is a continuous function
P of projections on I. (We consider 2N segments from each interval [k/M +
1/5M, k/M +4/5M) and 2N segments form each interval [k/M +4/5M, (k+
1)/M + 1/5M].) To each segment I assign an integer oy so that [Pf] =
armod (m—1). At each crossing we have the weak conservation law oy +ay =
a3 + agmod(m — 1) as in Figure 2

We can take a choice of integer assigments to the segments so that we
have a strict conservation law a; + oy = a3 + a4 (but at this stage ar
may not necessarily be positive). We work through the crossings in the
intervals [k/2M, (k + 1)/2M] in the order k¥ =0,1,2,---,2M — 1. The only
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Bo op

15} >< n o o
,32 >< T2 e — Q9
fy X _a

Pan—2 Y2N=2 _qyn_s

Ban-1 0oN—1

Figure 3:

problem may be that we may not necessarily have matched up the integers
Bo, -+, Pan—1 and ay, - - -, agy—; from the last interval [(2M — 1)/2M, 1] and
the first [0,1/2M], but at least §; = a;mod(m — 1). To ensure periodic
boundary conditions (in the horizontal direction) we introduce a further set
of crossings as in Figure 3.

Here the eigen-projections remain the same; we are merely coalesing
eigenvalues according to the procedure in Step 1 already used above. With
our previous choices of a; and f;, we now solve for 7y, -, yon—2 from

Y+ Biy1 = +%4 i=0,---,2N—-1 (5.1)

with Yo = ﬂo. At the final crossing, YoN-2 + ,BZN—I = Q9nN-2 + QaN—-1 will

2N-1 2N-1
automatically follow from (5.1) and ¥ o; = Y. f;. By adding the same
=0 i=0
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(a) (b)
Figure 4:

large multiple of m — 1 to each segment, we can ensure that each of oy is
positive with [P;] = aymod(m — 1) and we still have the strict conservation
law at each crossing. We now subdivide each projection Pr into oy projections
each of class 1, so that replacing each segment I by «; lines, each crossing
now looks as in Figure 4(a).

In order to remove the crossing and make the eigenvalues (for fixed ¢t)
distinct as in Figure 4(b) we need the following Lemma 5.2 to continuously
match the incoming projections from the left with the outgoing projections
on the right, and obtain a perturbation v’ of v such that the estimate ||v'(t) —
U(t)|| < C/N persists.

Lemma 5.2 Let {e:} and {f:;} be orthogonal families of projections such
that Z e = E fi, and [&] = [fi], ¢ = 1,2,---,L. Then there exists an

orthogonal famzly {g:(®)} of proyectzon valued contznuous functions on [0,1]
such that gi(0) = e;, gi(1) = fi and 2 gi(t) = Z 9:(0).
1=1 =1

We omit the easy proof of this.
We now write




Where for each t, {ei(t),---,em(t)} is an orthogonal family of projections,
Z ei(t) = 1, [ei(t)] = 1, and the eigenvalues (A;(t), A2(2),- -, Am(t)) are

dlstmct and lie in the same order on T for any t. Note that this M is
different from the previous one and satisfies M > 2N and M = kmod (m—1).
Actually we can make M as large as we wish just by making oy large. As
easily seen, by using this fact we can make {\;(2),---, Ax(t)} arbitrarily
dense in T for any ¢ € T keeping the estimate ||v'(¢t) — U(t)|| < C/N. (Just
imagine the eigenvalues as functions on T form a graph on the 2-torus T? as in
Figure 1; the graph divides T? into 2M N cells of size 1/M x1/N’; each cell can
be handled just by the surrounding border lines.) Since {A\;(0),- -, Ax(0)} =
{M1(1),- -+, A (1)}, there exists some b such that A;(1) = Ai4(0) (where
the indices are taken mod M). Then it follows that e;(1) = e;+5(0) and
b=1lgo = [u] mod (m — 1). (But this fact will not be used later.)

Let Ny be an integer such that Ny > 1/6 and Nygo = kmod(m — 1).
Having separated the M eigenvalues, we now group them back into Ny sub-
sets, where each subset will have many eigenvalues, all close to j/Ny, j =
0,---,Ny — 1. We choose € > 0 so that ¢ < 1/N, and an open interval of
length e still contains at least m values in {\;(¢), -+, Ap(t)} for any ¢.

Lemma 5.3 There exist a subdivision of the unit interval, 0 = £, < t; <
tg < +++ < te_1 < t, = 1 such that for each interval (t;,t;11) there is a
partition {I§, I1, I§, - -+ Iy 1, Iy, = I} of {1,---,M} such that I} is an
interval of the cyclically ordered set {1,2,---, M},

i1 1
|N0 5 918 A(t)] < 2N, +e (5.2)

fora € I, t € (i, tiy1), and # (I}) = gomod(m —1) fori=0,1,2,---,s—1.

Proof:
The (exponentials of the) intervals

. 1
(/Mo = (g + 9 5/Mo+ (33 + ©) (53)
j = 0,--+,Ng_1 cover the circle and overlap by 2¢. Since there must be

at least 2m points of {argA.(¢) : a = 1,2,--+, M} in each overlap, we
can find a partition Ip,---,Iy,—; so that (5.2) holds for a € I; and #
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(I;) = gomod(m — 1). Indeed if we begin with I, and then proceed with
L, Iny—g, then # (Iy,—1) = go mod(m — 1) will automatically follow from
M = kmod(n — 1) and Nygo = kmod(m — 1). Since the estimates persist in
a neigbourhood of ¢t we can apply a compactness argument.

Note that the segments of the intervals which do not overlap are of length
2(%5 — €), s0 that here we unambiguously can decide which interval I} to

assign to such A, and we have # (Ii) > 1. Also since the basic intervals
(5.3) only overlap with their nearest neighbours, we must have

i~ ikl ikl ritl
LCcZzjuL= vl
We next arrange matters so that
HEUE NI VL) = gomod(m—1)  (5.4)

fori=0,1,2,---,5s — 1. We leave {IJ‘-’} as they are and proceed inductively
to modify {I;*'} if necessary so that (5.4) holds, having already settled
on {If},--- {Ii}. Ifr=#(IENnI)n (g UIG,))mod(m — 1), where
0 <7 < m—1we mover — gy elements cyclically from I;*' to I'{] for
j =0,---,Ny — 1. The cyclic rotation ensures that # (IJ’:'”) remains the
same (i.e. go mod(m — 1)). To find at most another m elements to rotate
(since |r — go| < m), we have to increase the overlap of the intervals (5.3) by
another € on either side, so that we now have the modified estimates:

. 1 1
|7/No — 2—7;arg(/\a(t))| < A + 2¢
fora€ L, t € (titiy1), i=0,1,2,--+,s — L.
Next we define projections P} on (tr,t,41) by
p;(t) = Z em(t) ] te (tratr+1)1

mGIJ’-'

forr=0,1,2,---,5—1,7=0,1,2,---, Ng — 1.
We define unitaries v, on (t,,t.41) as follows. If [ = 0, we put

No—1 ..
u(t) = Y €mIMNop(t).
2
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ti1 t; i; lit1
Figure 5:

If [ # 0, we subdivide the partition 0 =, < ¢; < -+ < t; = 1 so that each
{it;t € (tr, tr+1)}(C R/Z) is contained in one of the intervals [j/(No—1), (j+
1)/(No—1)], =0,-+-,n9 — 2 and if {l¢t : ¢ € (¢, t,4+1)} lies in the interval
[io/(No — 1), (4o +1)/(No — 1)], we put

Jo . No—1 .
v, (t) — z 627‘-1'7/(1\’0—1)]); (t) + eZmltp;O-i_l (t) + Z e27m(]—1)/(No—1)p; (t)
i=0 Jj=jo+2

Then for ¢t € (¢, tr41):

1/2No +2¢ if1=0
Iv® - @ < {3/ane 4 2¢ if120
< 36.

So on each interval (¢;,t;11) we have the eigenvalue diagram of Figure 5,
(drawn in this case for £ negative).

We next have to connect the two unitaries wy = u;—;(¢;) and wy = v;(t;)
(obtained from neighbouring intervals (¢;_1,¢;) and (¢;,t;41) fori=1,---,s—
1) with a path of unitaries w; whose eigenprojections move continuously
from those of wg to those of w;, with constant spectrum Sp(w;) = Sp(wp).
More precisely, we have to match up the eigenprojections with the same
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Figure 6:

constant eigenvalue or with the winding eigenvalue t — €™, i.e., all of
pi(t;) are matched with pi(t;), possibly except that pf '(t;) is matched

with P41 (t:) and pi 1 (t;) with pé (t;) for some jo. First we use the fact that
{571 (%), Pi(t:); 5 =0, -, No—1} is commutative and pj~ (t;)pi (t:;) # 0 and
connect wp and w; by finding a continuous path of projections from pj-‘l(ti)
to pj- (t;) for each j in such a way that the resulting path of unitaries remains
in a small neighbourhood (of order 1/Ny). Indeed to find such a path we can
use Steps 1 to 4 and Figure 1 where the lines represent (singular) paths of
projections rather than eigenvalues. (See Figure 6.)

However condition (5.4) ensures that the class of the projection on each
segment is go (and incidentally that # ((I:*ULZH)N(IUIE_,)) = go mod(m—
1) holds for each r = 0,1, - ). This means we are in the situation described
by Figure 4 and can separate the paths of projections to get Figure 7. Then,
if this is not yet what we wanted, we rotate two projections pf (t;) and
Pk 41(t:) into the other keeping the sum constant (so that the resulting path
of unitaries is close to constant). Finally we insert this path in the gap
between wy and wy.
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Figure 7:

Modifying the parameter ¢ we will obtain a unitary valued continuous
function v on [0, 1] such that if [ = 0,

No_l ..
o(t) = 3 €"MNop,(t)
L

orif Il #0,

No—2
’U(t) — Z e21rij/(No—1)pj (t) + eZm‘ltpNo_l (t)
. J=0
and ||U(t) — v(t)|| is of order §.

We still have to connect v,—;(1) and vo(0), which again we will do accord-
ing to Figure 6 (except for the rotation required). Note that by our condition
(5.4) the class of each segment when we connected v;_; (¢;) with v;(¢;) in Fig-
ure 6 was go, and the contribution to K; from v in the construction on [0, 1]
is lgo (when a closed path is made by connecting v,_;(1) and vp(0) in the
way the eigenvalues are constant). However in connecting vs—1(1) to vp(0)
as in Figure 6 we do not a priori know the class of the projections of the
internal segments, although it is clear from the conservation law that there
is some 6(€ Ky(O,,)) so that the classes of the projections on the segments
are as labelled in Figure 8. The contribution to K; of this part is computed
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to be @ (see [BEEK]). Having connected v,_1(1) to vo(0) according to Figure
8, we have the unitary v close to U, with [v] = lgo + 6, but also [v] = [U]. So
having chosen [U] = lgo, we are forced to conclude that § = 0. Thus the class
of each internal segment in Figure 8 is go and we can proceed to separate
the paths of projections as in Figure 7, and insert this connection between
v,—1(1) and vp(0). Since v is close to Uy of standard form with M = Ny, this
completes the proof of Theorem 5.1.

6. 0,9C(T)— M;®0,8C(T): Existence and
uniqueness

Here we prove the basic existence and uniqueness results (Theorem 4.1 and
Theorem 4.2) for lifting KK-maps between building blocks of the form a
matrix algebra over O, ® C(T), where O, is a Cuntz algebra.

We recall from [BEEK], Theorem 4.1, the isospectral obstruction F'(A, u)
of a unitary operator u with respect to a unital endomorphism A of a simple,
purely infinite C*-algebra A. Here [u] = 0, A(u) = u and F(),u) is an
element of Ko(A)/(1 — A\)Ko(A). If v is a unitary in A, vu ~ uv, and X is
the inner automorphism Adwv, then A\, = 1, and the isospectral obstruction
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of u with respect to v is defined as:
Isospec(v, u) = F(Ad(v),u) € Ko(A).

(The isospectral obstruction Isospec(u,v) can also be identified by [BEEK,
Theorem 9.1] with the Bott element B(v,u) of [Lor].)

The basic homotopy lemma of [BEEK, Theorem 8.1] shows that if vu ~
wv, (and [u] = 0 of course) and the isospectral obstruction Isospec(v,u)
vanishes, then there is a rectifiable path u; of universally bounded length
of unitaries of A, connecting 1 to u and vu; & uw (uniformly in ¢). In
Lemma 6.1 we deduce a version of this homotopy lemma for the building
block Mj, ® O,,, ® C(T).

If A is a purely infinite simple C*-algebra and B = A ® C(T), let m; =
B — A denote the evaluation map. If A is an endomorphism of B given by a
continuous family of endomorphisms )\; of A, we write F/(\, u) for F'(\, u(t))
if w is a unitary of B, with [u(t)] = 0, A(u) = u. Note that F(\,u(t)) is
independent of ¢ by homotopy invariance [BEEK, Theorem 4.1 (1)]. If visa
unitary of B, we define Isospec(v,u) = Isospec(v(t), u(t))(= F(Adv,w)), as
long as vu ~ wv.

Lemma 6.1 For any e > 0, there exists a § > 0 with the following properties:
If A is a simple unital purely infinite C*-algebra, and U and V' are unitaries
in A® C(T) with

(i) Vi =0, [U®)h =0,
(i) ||[VU =UV| <6,
(iii) Isospec(U,V) =0,
(iv) Sp(U(t)) is 6-dense in T for allt € T,
then there exzists a rectifiable path V; of unitaries in A ® C(T) with
(¢ o=1, V1=V,
(b) |V:U = UV;|| <,
(c) Length (V;) < L,

where L is a universal constant (which can be estimated as 4(5 +1)).
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Proof:

We denote by ¢ the embedding of B = A ® C(T) into A ® C[0,1]. Then
since Sp(¢(U)(t)) is 6-dense in T for any ¢ € [0, 1], ¢(U) can be approximated
by a unitary U of A ® C[0, 1] with finite spectrum as in Theorem 5.1. Then
as in [BEEK] Theorem 8.1, there is a path {V;} of unitaries such that

Vo=1, i=V, V), Vil =0,
Length ({Vi}) < L'

where L' is a constant depending only on the algebra A ® C[0,1]. (By a
similar calculation as in the proof of [BEEK] Theorem 8.1 we can estimate
L' as 57 + 1). By changing the parametrization and the path itself slightly
if necessary we can assume that for any s,t € [0,1]

V,=1 0<s<1/2, and ||V, - Vi|| < 2L'|s — |
Define a path v by

Vit12(0) 0<t<1/2
u(t) = {V;_t/(l()) 1/251&3/1

Then since v(0) = 1 = v(1) and v is continuous, v can regarded as a unitary
of B, and satisfies [v, u] ~ 0 where u is a unitary of B with u(t) = U(1). Since
[v] = 0 (as v is the boundary of V,(t), (s,t) € [0,1] x[0,1] and [V;] = 0 = [V
in K;(B)), F(Adv,u) = F(Adv(0), u(0)) = 0, and u is constant, there is a
path {v;} of unitaries of B such that

vw=1 wv=v, [v,u]~0, and Length({v:})<L"

where L” is a constant. (The same estimate as for L' applies for L"). We
can assume here for any s,t € [0,1] that ||v, — v]| < L"|s — ¢|, and, by the
construction, that v,(0) = 1, s € [0,1] (We may just replace vs by v, - v5(0)*
and L” by 2L"). Define

Vet 0<s5<1/2
vt =il L ey, Datsen

Then w is continuous on [0,1] X [0,1] and satisfies w(0,t) = 1, w(1,t) =
v1(1/2) = V(0), and for any s1, s3 € [0, 1]

l[w(s, ) — w(sz, )| < 2max(L, L) [s1 — 55
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where w(s, -) is regarded as an element of A ® C|[0,1]. Note that

v195(0) =1=V,(0) 0<s<1/2
w("”’o):{v(s(—) 1/2)=vs((0)) 1/25ss/1

and so w(s,0) = V,(0), and that

w(s, 1) = {vzs(l) =1=V,(1) 0<s<1/2
’ v(3/2—-s)=V,(1) 1/2<s<1
and so w(s,1) = V,(1). Since w(s,0) = V,(0) and w(s,1) = V,(1), we can
connect V;(0) and V(1) by using w(s, -). By squeezing the part of w into
a small neighbourhood of 0 = 1 and combining with V;(t) we will obtain a
path V] of unitaries of B such that

Vo=1, V=V, |[V{,U]ll~0, and Length ({V;'}) < 2max(L’, L").
This completes the proof.

We say that a homomorphism 7 of the free product O, *c C(T) into a
C*-algebra B is of class § > 0 if

A (#(w) — Y(u)|| < 6

where u is the canonical unitary of C(T) and ), is the endomorphism of
¥(1)By(1) defined by

My(z) = lew(samb(si)*.

Lemma 6.2 If a unital homomorphism ¢ of O, * C(T) into B is of class 1,
then (n — 1)[¢(u)] = 0, where u is the canonical unitary of C(T).

Proof:
One knows that forany i =1,---,n

B(s:)p(w)(s:)* + 1 — p(si)d(si)"
is equivalent to ¢(u) (cf. [Rerl, Proposition 3.4], [Cun2, Lemma 1.1]). Hence
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[z 8()8(W)é(s9)"] = nld(w).

Since ||Ag(d(w)) — ¢(u)|| < 1, one has [As(é(u))] = [#(u)], where Ay(z) =
> &(si)xd(s;)*. Thus (n — 1)[¢(u)] = 0. This completes the proof.

Let B = My ® O, @ C(T). Let G = {g € Ki(B)|(n — 1)g = 0}. Since
G is a subgroup of the cyclic group K;(B) = Z/(m—1)Z, G has a generator
go- We may sometimes identify K;(B) with {0,1,---,m — 1}.

If ¢ is a unital homomorphism of O, *C(T) into B = M; @0, ®C(T), then
As € End(B) satisfies that m; 0 Ay = Ar,o 0T, Where Ay o0p € End(Mi ® Oy).
For a unitary w in B with Ay(w) = w we have already defined F'(\y,w) =
F(Arop, m(w)), (note [w(t)] =0 as K1(Mj ® Op) = 0).

Lemma 6.3 For any € > 0, there exists 6 > 0 satisfying the following con-
ditions: If ¢, are unital homomorphisms of O, xC(T) into B = M ® 0, ®
C(T) of class § and satisfy

(i) For anyt € T, the spectra of ¢(u)(t) and ¥(u)(t) are 6-dense in T,
(ii) [$(u)] = [ (w)] in K1(B),
(iii) F(Ag, 6(u)) = F(Ay,9(u)) in Ko(B)/(n — 1)Ko(B),

(iv) [ (s:)0(s)'] € (n— DEL(B),

then there is a unitary U of B such that
(a) 16(5) = AdU@(S)) < i =1,2,--,m
(b) lg(w) ~ AdUG@)]| <e.

Proof:

Let 6 < ¢/C and M > 1/6 where C is in Theorem 5.1. We approximate
#(u) (resp. ¥(u)) by a unitary U, (resp. Uy) of standard form of rank M.
Then there is a unitary w of B such that wUyw* = Uy, and we define ¢' and

Y’ by
¢,(Si) = ¢(S,),
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¢'(u) = Uy,
¥(Si) = wy(Si)w*,
¥ (u) = Us.
Note that 9'(s;) = Adw o 9(s;) and

[%'(u) — Adw o p(u)|| < [|9h(u) — Uyl <€

and also that ¢'(s;) = ¢(s:), ||¢'(u) — #(u)|| < e. Hence it suffices to replace
é,% by ¢',9¢'. (The condition (iii) holds for ¢’, 1’ for sufficiently small € > 0
because F' is continuous.)

Now suppose that

M
d(u) = P(u) = u'p; + Y e2™/Mp,,
7j=2

where [p;] = go. Since (n — 1)gp = 0, there is a canonical set {T/} of n
isometries of p; Bp;:

ST = p;.

=1
By summing up over j, we obtain a canonical set {T;} of n isometries of B
in the commutant of ¢(u). Let

Wo =2 ¢(s)T;", and Wy =3 4(s:)T5.
i=1 i=1

If [Wy] = h # 0, choose a subprojection ¢ of p; such that [q] = 1 (where
we identify Ky(B) with K;(B)). Then replace T; by T;(u"q + 1 — q), which
is still in the commutant of ¢(u), and the resulting Wy is trivial in K;(B).
Since

WeWy =3 ¢(si)ip(si) =V
it follows that
[We] = [V] € (n — 1)K1(B).

Let g € K;(B) be such that [Wy] = (n — 1)g.
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Let U be a unitary of B such that U commutes with ¢(u) and [U] = g (the
existence of such a unitary has been already demonstrated with u"q+1— q)
and let

¢ =AdU o ¢.

Then
Wy =Y U(si)U*T; = Y UW,LUT; = UWA(U)

where A(z) = ¥ T;zT}. Since [A(U*)] = n[U*], it follows that
Wyl =[Wy] - (n—1)g=0.

Thus, since F(Ar,op, T 0 @' (1)) = F'(Arsop, T 0 ¢(w)), by replacing ¢ by ¢’ we
may assume that [W,] = 0.
Since A fixes ¢(u) which has finite spectrum one obtains that

F(Ariop: e 0 $(u)) = F(AAW,y(1), 6(u)(?)) + (n — 1)Ko(B),
and a similar formula for ¥. Thus it follows that
F(AdW,(t), (u)(®)) — F(AdWy(8), $(u)(®) € (n — 1)Ka(B).
Let U be a unitary such that Ug(u)U* ~ ¢(u) and define ¢’ by
¢'(si) = U(s)U" = UWA(U)T;
¢'u) = ¢(u).
Then ¢' ~ AdU o ¢ and

F(AAUWAU)(®), ¢'(u) (1))
= F(AdU(®), (u)(1)) + F(AdWy(2), 6(u) (1)) + F(ADA(U™)(2), $(u)(2))-

Since there is a continuous path from A(U*) to U*" which almost commute
with ¢(u), it follows that

F(AAA(U)(2), 6(u)(t)) = nF(AAU(2), $(u)(t)).
Hence

F(AAUWA(UM)(®), /() (1)) = F(AdWy(2), $(u)(t)
+ (n=1F(AdU*(2), 6(u)(t))-
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Choosing U suitably (e.g., U can be a unitary which cyclically permutes
subprojections of ps, - -+, py as in [BEEK, Lemma 9.2]), and replacing ¢ by
¢' we may assume that

F(AdW,(2), (u)(2)) = F(AdWy (1), 9(w)(2))-

We are now reduced to the following case: unital homomorphisms ¢ and
1 of class § satisfying

#(u) = ¢(u) is of standard form of rank M
[Wel = [Wy] =0
F(AdW,(t), ¢(u)(t)) = F(AdWy(2), ¥(u)(2))
(From the last condition it follows that F(Ad Wy (t)Wy(t)*, #(u)(t)) = 0.
Since [WyW,] = 0, applying Lemma 6.1 one obtains that there is a path
{V4} in B from 1 to W,W; such that V; nearly commutes with ¢(u) and

the length of {V;} is bounded by a universal constant depending only on B.
Since F(Ad AL ., (Wy(t)Wy(t)*), ¢(u)(t)) = 0 for any [ if well-defined, the

TE0P

same is true for A},(WyWy) in place of WyW;;. Then one finds a unitary W
of B which nearly commutes with ¢(u) such that

&(si) = Wip(s) W™

because by [Rgrl], W is obtained by using such a path and a Rohlin tower
for \,, which is in the algebra generated by ¥(s;,) - - - ¥(si,)9(s;)* - - - ¥(s5,)*
for a certain I.

Lemma 6.4 If B=M;®0,C(T) and € G={g € K1(B) : (n—1)g =
0} = Zgo, there ezists a homomorphism v of O, @ C(T) into B such that

(a) [b(w)] =0,
(b) F(Ay,9(u)) =0,
(c) Sp(¥(u)(®)) =T,

for any t € T.
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Proof:

Since k € G there is a positive integer [ such that k = lgo.

There is a unitary U € M~ such that SpU = T. Using a unital homo-
morphism ¥y of O, into M, ® Op,, define a homomorphism 9 of O, ® C(T)
into My, ® My, ® O @ Mmoo @ C(T) by

¢|0n ®1 =1
Y(u) =eUz+ (1 —e)U

where e is a projection of My, (embedded in the bigger algebra), and z is
the canonical unitary of C(T). Since [¢(u)] = (dime) - go and § € Zgo, one
can choose e so that [1)(u)] = 8. Since U € My, can be approximated by a
unitary with finite spectrum in M, which is invariant under Ay, it follows
that F(Ay,%(u)) = 0. Since Op @ Mpeo = Op, 9 can be regarded as a
homomorphism of O, ® C(T) into B. This completes the proof.

Lemma 6.5 If B = My ® O, ® C(T), let 6 € Ko(B)/(n — 1)Ko(B),
6, € Ki(B), and ¢ be a homomorphism of O, ® C(T) into B such that
F(Ay, ¥(w)) =0, Sp(y(u)(t)) =T for any t € T. Then there is a homomor-
phism ¢ of O, ® C(T) into B such that

(@) [¢(w)] = [p(w)),
(b) Sp((u)(t)) =T  foranyt €T,
(©) F(Ag, d(w)) = bo,
(d) [; ¢(s:)¥(s:)"] — 61 € (n — 1) K1(B).
Proof:
We regard 9 as a homomorphism (of class § with any 6 > 0) of O, * C(T

)
into B and will find, for any § > 0, a homomorphism ¢ of class é of O, *xC(T)
into B such that

[6(w)] = ()], F(Ag, d(w)) = b0, [3_ d(si)ib(s:)"] = 01, Sp(u)(t) =

First fix a set {T1,- -, T,} of isometries of My, ® Oy, such that Z TTr=1
and fix a unitary U of M,,~ with Sp(U) = T. For a positive 1nteger N with

41




21 /N < 6, let uy, vy be unitaries of My such that vyuy = e*/Nuyvy and

embed uy,vy into M, by

uy = UN © Lini_ny, UN = UN D@ lmi-n),
where L is the smallest positive integer with N < m”. Let e be a projection
of d™ C M, with dim(e)go = [¥(u)] and let p;, i = 1,2 be a projection
in d™ ® C*® C My, ® M,,. Define a homomorphism ¢ of O, * C(T) into
Mim ® My @ O @ Mz ® Mo ® C(T) & B by

#(s1) = (mov+1—p1)Ti(pez+1—p2),

¢(s:) = (mov+1-p)T, 2<i<n,

d(u) = (puy+1—p)(eUz+ (1—e)).
Then since z € 1 ® My, ® O ® Mypz @ My ® C(T),

[¢(w)] = dim(e) - [2] = [ (u)].
Since '
Mo(d(w)) = (€N pruy +1 = p1)(eUz + (1 = e)U),

which is close to ¢(u) in norm within 27 /N, one obtains that

F(A, () = dim(py) + (n — 1) Ko(B).

Since
Y- B(s:)v(s0)* = O ¢(s)TH Q] Tep(s))
and
[>° ¢(s:)T7] = [p2z + 1 — po] = dim(py),
it follows that

[D_ ¢(sa)(s:)"] = dim(ps) + [3_ Tuah(s7)]-
Thus, by choosing p;, and p, suitably, one obtains a homomorphism ¢ of
class § with the desired properties.
Now we use an intertwining argument as follows: For € = ¢; = 277, choose
6 = 6; > 0 as in Lemma 6.3. Choose a homomorphism ¢; of class 6, such
that

[65(w)] = (W),
Fh 85(w) = b, [ 65(s(s1)] = 61
Sp(¢;(w)(t)) = T.
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Then applying Lemma 6.3 to the pair ¢;, ¢2, we obtain a unitary U, of B
such that

é1 gAd U 0 ¢
ie.,
ll¢1(s:) — AdUz 0 §o(si)ll < €1,  [|$1(u) — AdU; 0 ho(u)|| < €.

Applying Lemma 6.3 inductively, we obtain a unitary U, of B for the pair
Ad Un—l o ¢n—1) ¢n;

AdU,_10¢,1 K AdU, o ¢,
Then the limit ¢ of AdUj o ¢; exist on si,--+,s,,u and hence on O, *
C(T). Since ¢ is a homomorphism of class § with any 6§ > 0, ¢ induces a

homomorphism of O,, ® C(T) into B.
Since

[AdTj o ¢;(u)] = [¢;(w)],

F(Aadujop;, AdUj o ¢;(u)) = F(AdUj o Ay; 0 AdU;, AdUj o ¢;(u))
= F(’\tﬁj’ ¢J(u’))

D" AdU; 0 ¢i(si)(s)] = [U; Y #5(sa)9(s:)* A (U7)]

=[D_ ¢i(sa)y(s7)] — (n = VU],

it follows that ¢ has the desired properties.

Lemma 6.6 There exists a 6 > 0 satisfying the following condition: If ¢
and v are unital homomorphism of O, ® C(T) into B = M ® O, ® C(T)
and U is a unitary in B such that

(i) 16(si) — AdU o y(s))| < 8,5 =1,...,n
(ii) l6(w) - AdU o p(w)]| < 5,
then it follows that
(a) [¢(u)] = [¥(v)] (€ K1(B)),
(b) F(Ag, ¢(w)) = F(Ay, ¥(v)) (€ Ko(B)/(n — 1)Ko(B)),
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(c) [Z b(si)¥(si)"] € (n — )K1(B).

Proof:
Since

< no,

ilcﬁ(si)wp(si)*v* 1

Mg and Aadyoy are homotopic in a small neighbourhood of A4 if § is sufficiently
small. Since the same is true for #(u) and 9(u), one obtains that

F()\¢, ¢(’U;)) = F()\Adqub, AdU (e} ¢(u))
Since F(Aadvoy, AdU o Y(uw)) = F(Ay, ¥(u)), it follows that
F(Ag, ¢(u)) = F(Ay, Y(u)).

The rest is clear.

Let ¢ and 9 be unital homomorphisms on O, ® C(T) into My ® Op, and
let E be the C*-subalgebra of (C([0,1]) ® My ® Op,) & (O,, ® C(T)) defined

b
' E ={(f,a)|£(0) = ¢(a), f(1) = %(a)}-
Then one has a short exact sequence;
0— S(M;®0Op,) = E—0,0C(T) -0
where S(My, ® O,) = C((0,1)) ® My Q@ Op,. From this it follows that
0 — KoMy ® 0,,) = K1(E) = K1(0, ® C(T)) — 0 (1)
is exact, where we have used that
Ki1(S(My, ® Op)) = Ko(Mi ® O,).

Since K1(0, ® C(T)) & z/(n— 1)z, and Ext(Z/(n — 1)z, Q) is isomorphic
to G/(n — 1)@ for any abelian group G, we can represent (1) as an element
of Ko(My, ® Op)/(n — 1)Ko(My, @ Or); let g € Ki(E) be a preimage of
1 € z/(n—1)z, and then (n—1)g is the image of an element h € Ko(Mp®Oy,).
It follows that h + (n — 1) Ko(My ® O,,) is independent of the choice of g.
We denote this element by (4, V).
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Lemma 6.7 Let ¢ and ¢ be unital homomorphisms of O, ® C(T) into My ®
O and let v(¢,¢) € Ko(Mi @ Op)/(n — 1) Ko(Mi @ Op,) be as above. It
follows that 7(¢7 ¢) = F(’\WIM ’(,D(’ll/)) - F()‘(ﬁ’ ¢(u))

Proof:

Let U = {U;} be a continuous path of unitaries of M} ® O,, such that
Up = ¢(u) and U; = 9(u), where u is the canonical unitary of 1 ® C(T) C
O, ® C(T). (Such exists since K;(My ® O,,) = 0 and My ® O,, is purely
infinite.) We have to compute [U"!] in K;(E).

Let W = Y 9(s;)é(si)* and let {W;} be a path of unitaries such that
Wo = ]., W1 =W. Let

Ve = AdW, (3 ¢(s:)Urd(s:)*) Uy

Then one can show that [V] = [U""] (cf. [(Cun2]). There is a con-
tinuous path of unitaries from ¥ ¢(s;)Uy¢(s;)*Us to UP~* which depends
continuously only on ¢(s;) and Uj, and thus one can use the same function
for W;¢(s;) and U; to obtain a path from V; to Uy~ simultaneously in .

Suppose that

U, =1, 1/3<t<2/3
W, =1 0<t<1/3
W, =W 2/3<t<1.

Then [V] = [UM] - [U®)] where U® is the unitary of E defined by
U = N(Uys)Uis
U = MpUgoe/3)U—1/)-
If Sp(¢(u)) # T, one can conclude [UM] = 0 for some choice of U;. Otherwise

we approximate ¢(u) by a unitary Uy with finite spectrum of the form

N
U¢ — Z 621rij/N.Pj
Jj=1

for sufficiently large IV, where { P;} is a partition of 1 into projections of class
go- (Recall that go is a generator of G = {g € K(M ® Op,); (n—1)g =0}.)
One chooses a set {T;} of isometries such that

PT;=TF, Y TT =1

=1
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and let
Vo= ¢(s:)T;.
Then for a suitable choice of U; one can conclude that U™ is equivalent to

a path of unitaries:
1~ VyUgVyUy 1

where the first part lies in a small neighbourhood of 1 and the second part is
N N
V¢ Z e21rij(1—t)/NPjV£= z C_ZWij(l_t)/N.Pj
=1 =1

from ¢ = 0 to 1.
Let = F(AdVy,Ug) € F(Ay, Ug). Let g; be a subprojection of P; with
[¢j] = 0 and let V' be a unitary such that V'(1 - X ¢;) =1 — X ¢; and

AdV'(g;) = gjn1

where gy41 = ¢1. Then F(AdV’,Uy) = 6 and hence V,, is connected to V' by
a path which nearly commutes with Us. Since V'U,V*Uj = e=2"/N ¥ ¢; +
1 — ¥ ¢;, one can conclude that [U™)] = —@ (for this particular choice of
Uy, t € [0,1/3]). By computing [U®)] in a similar way one obtains that

[U"] + (n = 1)Ko(Mi ® Om) = F(Ay, $(u)) — F(Ag, 6(w)),
where [U™!] is regarded as an element of Ko(M; ® Op,).

Theorem 4.1 easily follows from the following result which has more in-
formation on K K invariant:

Theorem 6.8 (Uniqueness) For any sufficently small € > 0 there ezists a
6 > 0 satisfying the following condition: For unital homomorphisms ¢ and
¥ of A= 0, QC(T) into B= My ® On ® C(T) such that Sp(¢(u)(t))
and Sp(y(u)(t)) are 6-dense in T for any t € T, the following conditions are
equivalent:

(1) KK(¢) = KK(¢)
(1i) There exists a unitary U of B such that
|6(si) — AdU o 9(s;)|| <€, and [|¢(u) — AdU o p(u)]| <e
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(i) [p(uw) = [¢(u)]
[Zo(s:)1(s:)*] € (n — 1) K1(B).

Proof:

By choosing a sufficently small ¢ > 0 one obtains (ii)=>(iii) by Lemma
6.6. By choosing § > 0 as in Lemma 6.3 one obtains (iii)=>(ii). Thus (ii) and
(iii) are equivalent.

Suppose that KK (¢) = KK (1). Then since ¢, = . on K;(0, ® C(T))
one has that [#(u)] = [¢(u)]. If we denote by ¢ the embedding of O, into
O, ® C(T), one has that KK (¢ot) = KK (1 ou). It follows from [Rgrl] that

13 (si)(s:)*] € (n— 1)K1(B).

Let 7; be the evaluation map of B onto My ® O,,. Then since KK (m; 0 ¢) =
KK(m; 0 1), one has that y(m; o ¢, 7 0 ) = 0, which says

F(Aniop: 0 () = F(An,op, s 0 P(u))

by Lemma 6.7. Since F(\4, ¢(u)) denotes F'(Ar,op, Tt © ¢(u)), we have ob-
" tained all the conditions in (iii).
Suppose (iii). Then by the reasons given above one obtains that

¢« =% on Ki(0,®C(T))
KK(po)=KK(you),
KK(m;0v) = KK(m01).

Since ¢ and 9 are unital, one has ¢, = ¢, on Ko(O, ® C(T)). Thus by the
universal coefficient theorem, K K (¢) — KK (%) is regarded as an element of

Ext(K1(On ® C(T)), Ko(B)) @ Ext(Ko(O, ® C(T)), K1(B))

Since the embedding ¢ singles out the second component and 7, does the first
component, one can conclude that KK (¢) — KK () = 0.

Theorem 4.2 can be obtained from the following:
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Theorem 6.9 (Ezistence) Let A = O, @ C(T) and B = My, ® O ® C(T),
where m and n are even positive integers and k is a positive integer such that
(m —1)|k(n —1). For any g € KK(A, B) which induces the map

1€ Ky(A)=2/(n—1)Z— k€ Ky(B)=2/(m—1)Z

there is a unital homomorphism ¢ of A into B such that KK(¢) = g and
Sp(é(u)(t)) =T for any t € T.

Proof:
This follows from Lemmas 6.4 and 6.5 and the uniqueness theorem.

7. 0OyC(T) = 0,80,: Existence and unique-
ness

Let m and n be even positive integers. Let k be an even positive integer such
that k — 1 is the greatest common divisor of m — 1 and n — 1. Note that by
the Kiinneth formula as in Section 3 :

K (0n®0,) 2K, (0,0C(T)~2z/(k-1)z0Z/(k—1)Z.
A unital homomorphism 9 of Oy * C(T) into O,, ® O, is said to be of class
6 if
[Ap(¥(w) — p(w)]| < 6

where v is the canonical unitary of C(T) and )\, is the endomorphism of
O ® O,, defined by

k
Ap(x) = D (si)zp(si)” -
=1
Lemma 7.1 For any € > 0 there exists a § > 0 satisfying the following

condition : If {T; : i = 1,...,k} is a set of isometries of Op @ Oy, and U
and V are unitaries of O,, ® O, such that

k
@) XTI =1, [AU)-Ul<é, [IMV)-V]<s
=1

() [U]=1[V], F\UV*) =0,
(143) SpU and SpV are §—dense in T,
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where )\ is the endomorphism of O, ® O,, defined by
A@) = Y TaTy,
then there ezists a unitary W of O, @ O,, such that
U—-WVW*| <e, |IA(W) = W] <.

Proof:

Suppose that [U] = [V] = 0. Since O,, ® O, is purely infinite, it follows
by [Linl] that there exists a unitary W of O, ® O, such that U ~ WVW*.
Applying ) to this estimate and using A(U) ~ U and A(V) & V one obtains
that U ~ A\(W)VA(W)*. Thus W*A(W) nearly commutes with V' and

FAAW*A(W),V) = F(AdW* oo AdW,V) - F(\,V)
= F(\AdW(V)) - F(\,V)
= F(\,U)-F(\V)=0.

(since (k — 1)K1(Om ® O,) = {0}). Hence it also follows that
FAD (W A(W)),V) =0
and that
FAAW*N(W),V) =0,

for I =1,2,..., as far as this is well-defined. Since [W*\(W)] = 0, there is
by [BEEK Theorem 8.1] a continuous path of unitaries from W*\(W) to 1
in a set of elements almost commuting with V' such that the length of the
path is bounded by a universal constant. Hence by [Rgrl] there is a unitary
W, such that
W*A(W) = Wi A(WY).

Since W) is constructed by using the above-mentioned paths and a Rohlin
tower for A which almost commutes with V', we can assume that W; almost
commutes with V. Hence

WWLV (WW1)* ~ WYVW* = U

and
AWWy) = WW;.
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This completes the proof when [U] = [V] = 0.

Since O,, (resp. O,) contains a central sequence of canonical sets of m
(resp. n) isometries, O,, ® O, also contains a central sequence of canonical
sets of k isometries. We choose k such isometries Si,..., Sy which nearly
commute with T;, U, V. By perturbing T;, U, V slightly we assume that E; =
S;Si exactly commutes with T3, U, V. Then it follows that

F(/\, UV*EJ' + (1 - EJ)) = F()\, SJUV*S; +1- E])
= FO\,UVY)
=0

since S;UV*S; + 1 — Ej is homotopic to UV* by a path which is almost
invariant under A. Let

U,=UE, +V(1 —El).
Since [V(1 — Ey) + Ey] = (k — 1)[V] = 0, applying the first part to A|(1 —
E1)(0»®0,)(1—FE) and the unitaries U(1—E;), V(1—Ey) of (1—E1)(On®

0,)(1— E}), we have that there is a unitary W; € (1—E;)(0n® 0,)(1 — E)
such that A(W;) ~ W; and

Ul - By) ~ WiV (1 — B)Wr.
Thus denoting W; + E; again by W; we obtain
Un WiUWE, A(Wi)~ Wi
Next apply the first part to A|(1 — Ey)(Om ® O,)(1 — E;) and the unitaries
Ui(1 — E,), V(1 — E;) of (1 — E3)(Op ® Op)(1 — Ep). Thus we obtain a
unitary W of (1 — E2)(On, @ O,)(1 — E») such that
Ui(1 - Ep) ® WoV(1 — E)Wy, A(W) = W,.
Denoting W5 + E, again by W, we have
U (WiW,)V(IWiWy)*, AW W,) = WiW,.

This completes the proof.
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Lemma 7.2 For any € > 0 there exists a § > 0 satisfying the following
condition : If unital homomorphisms ¢ and ¢ of O x C(T) into Op, @ O,
are of class 6 and satisfy

(i) Sp¢(u) and Spe(u) are 6-dense in T,
(ii) [@(uw)] = [¥(u)], where u is the canonical unitary of C(T),

(iii) There ezists a central sequence {U;} of unitaries of Om ® O, such that
[Uj] = [¢(w)] and

(iv) [T (s:)(s)] =0
then there exists a unitary U of Op, ® O, such that
(@) [I¢(s)) —AdUod(si)|| <€, i=1,...,k
(®) ll¢(w) — AdU o p(u)]| <.

Proof:
JFrom condition (iv) one finds that a unitary V of O, ® O, such that

¢(s:;) = AdV o 9(si) .
Since AdV o ¢(u)U; ~ AdV(¢(u)U;) for sufficiently large j, it follows that
F(Anavoy, AdV op(u)U;) = F(AdV o)y o0AdV*, AdV (¥ (u)U5))
= F(Ayp, ¢(u)05).
Hence letting
¥'(s:) = 4(s:)
¥'(u) = AdV o Y(u),
it follows that 9’ ~ AdV o ¢ and
F(Xg, d(u)d' (w)*) = F(Ag, d(w)U;) — F(Ag, ¥'(w)U7) = 0.

By applying Lemma 7.1 we obtain a unitary U of O,,® O, such that A\y(U) ~
U and AdU o ¢'(u) = ¢(u). Hence we get the conclusion :

6~ AdUV o9.
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Lemma 7.3 For any § > 0 and any 0 € K1(O,, ® Oy,) there ezists a unital
homomorphism v of O * C(T) into O, @ O, of class § such that

[W(w)] =0, Spy(u)=T.

Proof: This follows from the following facts: There is a unital homomor-
phism of Oy into O,, ® O,,, and each equivalence class of unitaries of O0,, ® O,,
contains a central sequence of unitaries.

Lemma 7.4 Let § > 0 and 9 a unital homomorphism of O x C(T) into
O ® O, of class §. For any 0y € Ko(Opr ® O,,) and 6; € K1(0r, ® Oy,) there
erists a unital homomorphism ¢ of Ok x C(T) into Op, ® O, such that

(i) Sp¢(u) =T, where u is the canonical unitary of C(T),
(if) [#(w)] = [¥(u)],
(iii) There ezists a central sequence {U;} of unitaries of O, ® O, such that
Uil = [(w)]
F(Ag, 6(w)U;) = F(Ay, ¥(w)U5) = b,
(iv) [X¢(s:)d(si)"] = 01

Proof:

Let W be a unitary in O,, ® O, such that [W]; = 6; and W almost
commutes with 9(s;), ¥ (u). Since Op, ® Op =~ Op, ® Op ® M(mmn), there are
paths Uy, V; of unitaries such that

Up=1=Vp, [Us,Vi]m0

and U; and V; almost commute with (s;), ¥(u) and W. Define a unital
homomorphism ¢ by

B(s:) = ViWeh(ss)
¢(u) = U19(u).
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Then [$(u)] = [¥(w))],

F(Xg, 9(w)U5) = F(y, Y(w)T5)
= F(AAVIW o Ay, Uigp(w)U5) = F(y, Y(u)U;)
F(AAViW, Uy) + F(AdViW, $(u)U7)
= F(AdV3,Uy) + F(AAW, $(u)US)

where U; is sufficiently central, and

[ dswis] = 91,

Since ¢ can still be of class § and condition (i) can be easily handled (in case
[¥(u)] = 0), this completes the proof by choosing appropriate Ui, V1.

Let ¢ and 9 be unital homomorphisms of O ® C(T) into Op, @ On.
When [¢(u)] = [¢(u)], we define v(4,) to be the equivalence class of the
short exact sequence

in Ext (K1(Of ® C(T)), Ko(Op ® O,)), where E is the C*-subalgebra of
C([0,1]) ® (O @ O,) ® O ® C(T) defined by

{(f,a)1£(0) = ¢(a), f(1) = ¥(a)}.
We identify this extension group with Ko(O,, ® O,).

Lemma 7.5 Let ¢ and 1 be unital homomorphisms of O, ® C(T) into O,, @

O,. such that

[pw)] = @), [3d(s:)¥(s:)]=0.
Then there is a central sequence {U;} of unitaries of O @ O, such that
[U;] = [6(u)], and

(%) = F(Ay, »(w)U;) — F(Ag, ¢(w)U7) .
Proof:
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The proof is about the same as that of Lemma 6.7 in the case O, ®C(T) —
M; ® O, ® C(T). Adding the path V' there the trivial path

1~ M)
~  Ay(U;)U; (by the path Ad W; 0 A4(U;)Uj)

~ 1

all in a neighbourhood of 1, one sees (for a suitable choice of U;) that
[V] = [UW] — [U®)] where UW is the path of 1 to Ay(¢(u)U})(d(u)Us)*
in a neighbourhood of 1 and then to 1 as ¢(u) tends to Uj;, and U® is
obtained similarly with % in place of ¢. Thus we obtain the conclusion.

Theorem 7.6 (Uniqueness) For any sufficiently small € > 0 there erists a
6 > 0 satisfying the following condition : If unital homomorphisms ¢ and v
of O ® C(T) into O, @ O, satisfy that Sp #(u) and Spy(u) are §-dense in
T, then the following conditions are equivalent :

() KK(¢) = KK(¥)
(ii) There ezists a unitary U of Op ® O, such that

ll6(s:) — AdU o 9h(si)]| <€
[6(u) — AdU o P(u)]| <€

(iii) [p(u)] = [¢(u)], there exzists a central sequence {U;} of unitaries of
O ® O, such that [U;] = [¢(u)] and
F()‘¢7 ¢(u')U;) = F()‘¢a ¢(U)U;) )
and [¥ ¢(si)¢(si)*] = 0.
Proof:
By Lemma 7.2 one has the implication (iii)=>(ii).
Suppose (ii). Then for a sufficiently small € > 0 one has condition (iii)
for ¢ and AdU o4 (in place of 9), and then condition (iii) for ¢ and .

Suppose (i). Then one has [¢p(u)] = [¢(u)]. Denoting by ¢ the embedding
of Oy into O ® C(T) one obtains KK (¢ o) = KK (¢ o) which implies by

[Rerl]
Do d(s)v(sH =0 (= (k- 1)K1(Om ® On)).
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By Lemma 7.5 we obtain the other condition in (iii), concluding (i)=>(iii).
Suppose (iii). Since ¢, = ¥, on K,(O ® C(T)), KK(¢) — KK(¢) is
represented as an element of

Ext(K1(O% ® C(T)), Ko(Om ® On)) ® Ext(Ko(Ok ® C(T)), K1(Om ® Oy)).

By the reasoning given in the proof of (i)=(iii) we obtain that KK(¢) =
KK().

Theorem 7.7 (Ezistence) Let A= Or ® C(T) and let B = O, ® O,,, where
m and n are even positive integers and k — 1 is the greatest common divisor
of m—1andn—1. For any g € KK(A, B) which induces the map

1€ Ky(A)=12z/(k—1)z—1€ Ko(B)=2z/(k - 1)z,

there is a unital homomorphism ¢ of A into B such that KK(¢) = g and
Spé(u) =T.

Proof: This follows from Lemmas 7.3 and 7.4 and the uniqueness theorem
by using the intertwining arguments.

8. 0UOn,®0,— 0,80, ocr O, C(T): Existence
and uniqueness

Let m and n be even positive integers and let k be an (even) positive integer
such that k£ — 1 is the greatest common divisor of m — 1 and » — 1. Let
B = 0r ® C(T) or O, @ O,; in either case Ko(B) = z/(k — 1)Z = K;(B)
and the unit of B corresponds to 1 € Ky(B). We say that a homomorphism
¥ of O, x O, into B is of class § if

max{||[¥(s;), ¥(s)l;i=1,...,m, i =1,...,n} < 6.

Lemma 8.1 For any € > 0 there exists a 6 > 0 satisfying the following
condition: If unital homomorphisms ¢ and 9 of O,, x O,, into B is of class
0 and satisfy
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(i) ¢(s)) =%(si), i=1,...,m
(ii) [W] =0 in Ky(B)
(iii) F(AL, W) =0 in Ko(B)

where W = Y7_; ¢(s2)y(s3)* and Ay is the endomorphism of B defined by
My (@) = T, ¢(s})zd(s})*, then there eists a unitary U of B such that

lp(s;) — AdU o (sl <€, [l¢(s3) — AdU o 9h(s3)|| < e
fori=1,...,m,j=1,...,n.

Proof: ;From (ii) and (iii), it follows by the following lemma 8.2 that there
exists a continuous path {Wj;s € [0,1]} of unitaries of bounded length such
that Wy = 1, W7 = W and /\(},(W,) ~ W,. Then by a similar fact for
WAL(W) ... 5(W) one obtains a unitary U of B such that A\3(U) ~ U and
¢(s?) = Utp(s?)U*, which implies that ¢ ~ AdU o 9.

Lemma 8.2 For B = Oy ® C(T) or Op, @ Oy, there exists an L > 0 sat-
isfying the following conditions: If W is a unitary of B and {T1,...,Tm}
is a canonical set of isometries of B such that [W] = 0, A(W) =~ W and
F(\,W) = 0 where XN(z) = X T;zT;, then there is a continuous path W,
of unitaries of B such that Wy = 1, Wy, = W, \(W,) =~ W, and length
{W,} <L.

Proof:

Suppose that B = O ® C(T). Since Ok = Ok ® M-, there is a sequence
{v,'} of paths of unitaries in O such that v’ =1, Spv;! =T, and {v, } are
central uniformly in s € [0,1] as | — oo. By taking V = v,'®1 for sufficiently
large [, one obtains an unitary V in O ® C(T) such that [V] =0, A(V) = V,
F(\,V)=0,SpV(t) =T, SpV(¢t)W(t) is almost dense in T (for any ¢ € T).
Then there exists a unitary v € O ® C(T) such that vVv* ~ VW. Since
A(V) = V and A(VW) =~ VW, one obtains that A(v)VA(v)* = vVv*. Thus
Adv*A(v)(V) = V and

F(Adv*A@),V) = F(Adv*A(@w),V)+FQ\,V)
F(Adv* o Ao Adw,V)
FO, Adw(V))
= FA\V)+F\W)=0.
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Hence there is a continuous path of unitaries of bounded length from v*A(v)
to 1 in a set of unitaries which almost commute with V. Then one obtains
a unitary w by [Rerl] such that [w,V] ~ 0 and v*A(v) = wA(w*). Thus
AMvw) = vw and vwV (vw)* =~ vVv* ~ VW. Taking vw instead of v one can
assume that A(v) = v besides vVv* = VW.

By using a set {e;;} of matrix units of order k' > 3 which almost commute
with v, V, W, T; one finds a continuous path in a set of elements which are
close to unitaries :

VWeiy1+1—enn ~ VWey +vey + v¥ess + (1 — €11 — €9 — 633)
o ’U*VWCH + veg + (1 — €11 — 622)
~ v'VWuep +1—en
~ Ven+1l—en

where we use only appropriate rotations and a straight line. Thus there is a
continuous path of length about 37/2 from Wej; +1—eq; to 1l = e;3+1—eyy,
and so there is a continuous path of unitaries of length about (37/2) - k' from
W to 1. From the construction, the path almost commutes with 7;, or almost
invariant under .

Suppose that B = O,, ® O,,. We only have to check the following :

(1) There exists a unitary V of O,, ® O, such that [V] =0, A(V) = V,
F(\,V)=0,SpV ~T,SpVW = T.

(2) With V above there exists a unitary v € Op, ® O, such that vVv* ~
VW.

(3) Om ® O, has a central sequence of matrix algebras of order at least
three.

One can show (1) and (3) as before since O, ® Op = O, ® On @ Mmn)es -
(2) follows from Lin’s result [Linl], since O, ® O, is purely infinite.

Lemma 8.3 For any € > 0 there ezists 6 > 0 satisfying the following condi-
tions : If unital homomorphisms ¢ and i of O,, x O, into B are of class 6
and satisfy :

(1) [W1] € (k— 1)K1(B) = 0 where Wy = ", ¢(si)v(s})*.

57




(i) [Wa] = 0 where Wy = ¥7_; ¢(s2)(s3)* .

(iii) there is a central sequence {T;'} of canonical sets of n isometries in B
such that

S 6T
j=1

F(Ag, 2 ¢(sHT; ™) = F(Ay, 2o 9(s))T; ™)
then there is a unitary U of B such that
[6(sh) — AdU o g(sh)| <€, |6(s]) — AdU 0 9(s])] < e
fori=1,....m,j=1,...,n
Proof: By (i) there is a unitary V' of B such that
16(s%) — AdV o (sD)]| < 6.

Define ¥, by
Pi(si) = ¢(si)
1&1(3?) = Vw(s?)V*
Then 9, is a homomorphism of class 26 and satisfies ¢(s}) = 91 (s}),
> 8(s3)en (s3]
= [(Zen") (ETvE") (ET()) V]
= [ZeGHT"] + [ T ] + (n—1)V]
= [Cathuspr] =0

and

CEIICHACY

(M2 (s) ’*) +F (0, (C 5V (X Thw(s)T) v7)
(Ao X #(sHT;™)
(AdV* oo Ad v,V (X TV (T () ))
(
(

Ny Do ¢(sHT;™) + F (AdV* 0 Xy 0 AdV, S T, (s2)")
X D BT + F (M, YTy (s3)) =0
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for sufficiently large I, where we have used
V' (CTVT) ~1,  AdV*edjoAdV ~ ).

Applying Lemma 8.1 we obtain a unitary U of B such that ¢ ~ AdU o ;.
Since 1; ~ AdV o 1, this concludes the proof.

Lemma 8.4 There exists a unital homomorphism ¢ of O, ® O,, into B.

Proof:

If B=0,,®O0,, this is obvious. Suppose B = O ® C(T). For any
8 > 0 one can show that there is a unital homomorphism of O,, * O, into
O, ® C(T) of class § because Oy has a central sequence of subalgebras which
are isomorphic to itself. Given ¢ and ¥ of O,, x O, into Oy ® C(T) of class
6, by replacing ¢ by ¢; defined by

$1(sh) = u¢(s;)
$1(s5) = u*2¢(s7)

with u the canonical unitary of 1 ® C(T) C Ok ® C(T), one can assume that
the conditions (i) and (ii) in Lemma 8.3 are satisfied. There are unitaries
V,WE1Q Mo @1 C O ® My ® C(T) ~ O ® C(T) such that ||[v,w]|| = 0
and v and w almost commute with ¢;(s}) and ¢;(s?). Replacing ¢1 by ¢2
defined by

d2(s7) = vo(s})
¢2(52) = w1 (s3)

with suitable v, w, one can also assume the condition (iii) is satisfied. Since
[v] = [w] = 0, conditions (i) and (ii) are still satisfied as well as (iii). By
this change of ¢, one can still assume that the new ¢ is of class 6. Thus
for each ¢ = 27, choose §; > 0 as in Lemma 8.3 and construct a unital
homomorphism % of Oy, x O, into O ® C(T) of class § inductively such that
the pair 9;_1, 9 satisfies the conditions in Lemma 8.3. Hence we assume that
li—1(s}) — i(s})]] < €—1 and ”1&1_1(3?) - lbz(S?)H < €-1. Thus the limit of
7, exists and defines a unital homomorphism of O,, ® O, into O ® C(T).
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Lemma 8.5 Let ¥ be a unital homomorphism of O,, ® O, into B and let
61,05 € K1(B). Then there is a unital homomorphism ¢ of O, @ O, into B
such that

Wil =61, W] =06

where Wy = ¥ ¢(s7)¥(s)* and Wy = T d(s3)(s3)*.

Proof:
Suppose that B = O ® C(T). Then one can define ¢ by

¢(s7) = u9(s})
¢(s3) = u®(s]),

where u is the canonical unitary of 1 ® C(T) C O ® C(T).

Suppose that B = O,, ® O,,. Since O,, ® O,, contains a central sequence
of subalgebras which are isomorphic to itself, it contains a central sequence
{w:} of unitaries of B which each generate K;(B). We define ¢; by

di(s}) = ul'y(s})
éi(s?) = u*y(s?)

as a homomorphism of O,, * O,, into O,, ® O,. Then applying Lemma 8.3
to a subsequence of {¢;} inductively, and taking the limit one obtains a
homomorphism with the desired properties.

Lemma 8.6 Let ¢ be a unital homomorphism of O,, ® O, into B and let
6o € Ko(B). Then there is a unital homomorphism ¢ of Op, @ O, into B
such that

W] =0, [Wy]=0.

where W1 = ¥ ¢(s})1(si)* and Wy = ¥ ¢(s2)¢(s3)* and such that there is a

central sequence {T;'} of canonical sets of n isometries in B with

=0,

[Z $(sHT;"
F (0 Y ¢(sHT™) = F (A, S o(sHT; ™) + 6.
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Proof: Similar to the proof of Lemma 8.5. We use that Oy £ O ® Mg~ and
0,90,20,0,8 M(mn)oo.

Lemma 8.7 There exists a § > 0 such that if unital homomorphisms ¢ and
¥ of Op, ® O, into B satisfy

[6(s2) - w(sh)
then KK(¢) = KK(¢).

Proof:

Let U be a unitary of O,, ® O,, such that [U] generates K;(0,, ® O0,,). We
choose § > 0 so that ||¢(U) — ¥(U)|| < 1 follows. Thus we assume ¢, = 1,
as a map of K,(O, ® Oy,) into K, (B).

Define

E={(fa): f€C[0,1]® B,a € O ® Oy, f(0) = ¢(a), (1) = ¢(a)} .
We have to show that the following two exact sequences split :
0 — Ky(SB) — Ky(E) % Ko(0r, ® O,) = 0 (8.1)
0 — Ki(SB) — K1(E) % K1(0,, ® 0,,) = 0. (8.2)
Sequence (8.1): We have to show that there is a g € Ko(F) such that ¢(g) =1,
and (k—1)g=0o0r (m—1)g=0=(n—1)g.
Define e} to be the projection of E obtained from
(1= t)(sisi") + ty(sisi™), te€[0,1]
by functional calculus, and let e;‘f be the projection similarly defined from

(1 —t)p(s5s3*) + tp(s3s7") .

This is possible if we assume, say, § < 1/2(m + n). One sees that these
projections are equivalent to 1 and we take these to be the g above. Then it
easily follows that

<6, |o(s)—w(sh)] <s

mg=>Y leil=g
=1

n
ng=y [}l =g
j=1
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if we take 6 to be so small that {e}} (resp. {e?}) are almost mutually or-
thogonal. This completes the proof.

Sequence (8.2): Let U be the unitary of O,, ® O, as above. Let U be the
unitary of F obtained from

(1-t)¢(U) +ty(U), telo,1]
by functional calculus. Then we have to show that
(m-1)[0]=0=(n—-1)[0].

Let V; be a continuous path of unitaries in B such that V; =1, V; =
A (U)U*. Then U™ is equivalent to the path in B defined by

1 A s O)U) = Me))e(U)”
~  ¢(U)" ! (by the path W, depending on ¢(s;), (U))
T oy
~ )\}ﬁ(w(U))dJ(U)* (by Wi_; depending on ¥(s}),¥(U))
1!’(}(1;0 1.

Let W = S 4(s})¢(s})* and let W; be the path of unitaries in B obtained
from (1 —t)1 +tW. (Note that W = 1.) Let

F(s,t) = W(W,(s}); U(s))
where W, is the function used in the above path. Since F'(s,t) is continuous,
one sees that the above path is equivalent to

1~ A (@) (U)* Q7O M () p(U)* ~ 1

where \; = AdW, o )\;. Since W; ~ 1, the middle part of the path is almost
constant. Hence one can easily check that the path is trivial in the unitaries
of E. This shows that (n — 1)[U] = 0. Similarly (m — 1)[0/] = 0. This
completes the proof.

Theorem 8.8 (Uniqueness) For any unital homomorphisms ¢ and ¢ of
Om ® O, into B, the following conditions are equivalent :

62




(1) KK(¢) = KK(¥).
(i) ¢ and ¢ are approzimately unitarily equivalent.

(iii) [Wh] = [Ws] = 0, where W, = ¥ ¢(s7)(s7)* for o = 1,2 and there
is a central sequence {T;'} of canonical sets of n isometries such that
[ ¢(sHT;*] =0 and

F(Ng, 22 0(s)T;™) = F(Ay, 2o v(s) T3 ™).

Proof: (iii)=>(ii). This follows from Lemma 8.3.

(i))=(i). If ¢ is close to AdU o 9 for some unitary U of B, we may suppose
that [U] = 0 since B = O @ C(T) or Op, @ Op,. Thus AdU o ¢ is homotopic
to 9 and so KK(AdU o 9) = KK(v). Thus we may suppose that ¢ and ¢
are close to each other. We can then apply Lemma 8.7.

(ii)=>(iii). Suppose that ¢ ~ AdU o 9 with some unitary U of B. Then

1 Y d(sT)UP(s7) U™ = W, Y (s?)Un(s7) U* = WAL (U)U™* .
Hence
W] = -\ (U] = —(m - 1)[U] =0,
Wyl = -3 U)V*] = —(n — DU] = 0.
If {T;*} is a central sequence of canonical sets of n isometries of B with
[E d(s2)T; ’*] = 0, one has for sufficiently large I,
F (M, ¢(DT™) = F(AdUo N, 0 AdU*, Y Uy(sHUT;™)
= F((AdUo X, 0 AdU*, AdU (3 9(s)T;™))
= F(N, X957,

which concludes the proof.
(i)=(ii) or (iii). Let ¢ (resp. t2) be the natural embedding of O, (resp. Oy)
into Oy, ® O,,. Since KK (¢) = KK(v), one has

KK(¢oun) = KK(pou),
KK(¢0L2) = KK(’(,L'OIQ)
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which imply [W;] = 0 and [W;] = 0 respectively (See [Rorl]).
Define a C*-subalgebra E of C[0,1]® B & O,, ® O, by

{(£,0)| £(0) = 8(a), F(1) = ¥(a)} .
Since ¢, = ¥, on K,(Op, ® O,), one obtains an exact sequence :

from the exact sequence 0 - SB — E — O,, ® O, — 0. Since KK(¢) =
KK (%), this sequence splits. Since K1(SB) = 2/(k — 1)z = K1(On ® Oy),
this implies that any g € K (F) satisfies (k — 1)g = 0.

Let u be a unitary of O,,, ® O, such that \!(u) = u. Since [¢(u)] = [ (u)],
there is a unitary @ € F such that

a(0) = ¢(u), A1) =P(w).

We now want to compute 4"~! as in the proof of Lemma 8.7. It follows that
@™! is equivalent to the path of unitaries in B defined by

1 ~ (A (u)u*) = Ay(¢(u))(u)* (in a neighbourhood of 1)

Ae(a(t)a(t)* *
TR N @W)Pw)
~ 1 (in a neighbourhood of 1)

where A\, = AdW, o )\é and W, is a path of unitaries such that Wo =1 and
Wi =Y o(si)e(si)" = Wy .
=1

Let U be a unitary of B such that [U] = [¢(u)] and \(U) = U. (If B =
O ® C(T), U can be taken from the center and if B = O,, ® O,, U can be
taken from some central sequence of unitaries.) By adding the trivial path

A(U)U
t(N_))

one obtains that 4"! is equivalent to
1~ o(3(w)U*)($(w)U*)* ~ M (h(w)U)(P(u)U*)* ~ 1.
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Suppose that

Wl 0<t<1/3
Tl Wy 2/3<t<1

a(t)=U 1/3<t<2/3.
Then [4"!] is the difference of the equivalence classes of
Lo AU S@)T)" ~ 1 (83)
1~ Ay (Y(w)U*) (3 (u)U*)* ~ 1. (8.4)

By perturbing @¢(u)U* slightly, one assumes that ¢(u)U* is, for sufficiently
large M,

M-1 B
UO — Z 627er/ij
=0

where {p;} are mutually orthogonal projections with [p;] = 1. Then we
choose, for the path from Uj to 1,

M-1 B
U, = Z e2m_7(1—t)/ij )
Jj=0

Let {T;} be a canonical set of m isometries in the relative commutant of {p;}
and let

V=3 p(T;.
=1
Since \}(U;) = VU,V*, the path (8.3) is equivalent to

1~ VU VU 5 1

If F(AL,Up) =0 # 0, let g; be a subprojection of p; such that [g;] = 6, and
define V; to be a unitary such that

Wl-Xg¢g)=1-Xg;
Vog; = ¢;+1 Vo
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with gy = go. Then F(Ad Vo, Up) = 6, F(AdV,Up) = F(A},Up) =0, and Vp
can be connected to V in a set of elements which nearly commute with U.
Thus the above path is equivalent to

M x> *
1~ VoV Uy = e /M (Z Qj) +1-Y g WOISUE
=0

Note that this is essentially a path in the matrix algebra M;;. By computing
the winding number we conclude that the equivalence class is

—0 € Ko(B) =& K1(SB) C K1(E).
By computing the path (8.4) similarly, one obtains that
F(Og, ¢(w)U*) = F(Ay, $(w)U) (8.5)

where U is a unitary of class [¢(u)] such that U is sufficiently central.
Suppose that m = n = k. Using the fact [W;] = 0 we can assume that

#(s}) ~ 1(s?). Take

n
=) s?s}*w*
i=1

where w is a unitary of O, such that {ws}} nearly commute with s} in Oy
Since w can be chosen first, we can assume that ¢(w) = ¥(w) too. From
equation (8.5) it follows that

F(N, $(upb(w)?) = 0

F (A;,érﬁ(s?w(sﬁ)*) =0

since ¢(ws}) ~ 9(wsj}). (From this one obtains the last condition of (iii).
In general let a and b be positive integers such that

m—1=alk—-1), n—-1=bk-1).

Note that there are unital homomorphisms « of @, into M, ® O,, and § of
O, into M, ® O, since (n — 1)a = (m — 1)b.
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Let us consider the unital homomorphisms

P =iR¢: M, 0, 0, > M,®B
PV =i®Y: M, 0, 0, - M,®B

where i is the identity map of M,. Since KK (¢) = KK (%), one obtains that
KK(¢') = KK(¢'). From the previous arguments one obtains that for any
unitary u of M, ® O, ® O, such that A\ (u) = u,

F()‘iﬁ ¢'(u)U*) = F(’\11/:” ¢'(U)U*)

where U is a sufficiently central unitary of M, ® B with [U] = [¢'(u)]. By
assuming {a(s?)} nearly commutes with {s}} (which is possible because Op,
contains a central sequence of subalgebras which is isomorphic to O,,), we
take

n
u=>Y a(s})* ®s;.
Jj=1

Thus assuming ¢(s}) = 1(s}) one obtains that

F (A;,, 3 ¢'<s;>¢'(s§>*) —o
j=1

which, as before, implies that the original ¢, as maps of O,, ® O, into
M, ® B are approximately unitarily equivalent. Similarly one obtains that
o,%: O ® 0, - M, ® B are approximately unitarily equivalent.

Since a and b are relatively prime with each other, there are positive
integers o/, b’ and I such that aa’+bd' = k!. By regarding My ® M, ® My @ M,
as a subalgebra of M} one concludes that

¢,¢:Om®on_’1®BCMkl®B

are approximately unitarily equivalent, That is, there exists a unitary U of
M ® B such that ¢ & AdU oyp. Whether B = O, ® C(T) or B = O,, ® O,,,
B contains a central sequence of subalgebras which are isomorphic to M.
Then one takes a subalgebra C of B such that C =2 My and ¢(s?),(s?),
and U almost commute with any element of C. Then we take a unitary V
of Myt ® C such that V(M ® 1)V* =1 ® C. Then one obtains

pxAdVogpr AdVUoyp ® AdVUV* 0.
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Since VUV™ nearly commutes with My ® 1, one obtains a unitary U, of B
such that ¢ ~ Ad Uy o 9, which concludes the proof.

Theorem 8.9 (Ezistence) For any g € KK(Op, ® O,, B) which maps 1 €
Ko(0, ® 0,) =2/(k—1)Z to 1 € Ko(B) = z/(k — 1)z, there is a unital
homomorphism v of O, ® O, into B such that KK (¢) = g.

Proof: ;From the Universal Coefficient Theorem [RS] the cardinality of the
set of such g € KK(O,, ® O,,B) is (k — 1)3. By Lemmas 8.4-6 and the
uniqueness theorem there exist exactly (k — 1)® unital homomorphisms of
O, ® O, into B up to approximate unitary equivalence. This concludes the
proof.
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