A Generalized Burnside theorem

by O. A. Laudal

Introduction

In the paper [La] I have introduced a non-commutative deformation functor Def for a family $V = \{V_i\}_{i=1}^r$ of right A-modules, where A is a k-algebra, k a field. When $\dim_k \operatorname{Ext}_A^1(V_i, V_j) < \infty$ for all $i, j = 1, \ldots, r$, there is a hull – or a formal moduli H for V in the procategory of the category a_r of r-prointed finite dimensional k-algebras, on which this deformation functor is defined.

For r=1 this is an obvious generalization, to the non commutative case, of the classical deformation theory of a module, see e.g. [La3]. It turns out, however, that for $r \geq 2$, the theory contains more sophisticated ingredients. First of all the category of extensions of extensions of the V_i 's is "represented" by the category of finite representations of H.

Secondly there is a corresponding versal family of $H \otimes A^{op}$ -modules \mathcal{V} . Let $\mathcal{A}(V)$ be $\operatorname{End}_H)\mathcal{V}$. Then there is a canonical homomorphism

$$\eta: A \to \mathcal{A}(V)$$
.

If V is the family of all simple A-modules A an artinian k-algebra, and k algebraically closed, then:

$$\eta: A \xrightarrow{\sim} \mathcal{A}(V)$$

generalizing the Burnside theorem for semisimple algebras.

$\S 1.$ A generalized Burnside theorem and the closure operation $\mathcal A$

In [La], $\S(2.3)$ we proved the following result

Corollary (2.3) Suppose the k-algebra A is of finite dimension and assume the family $V = \{V_i\}_{i=1}^r$ contains all simple A-modules, then the natural k-algebra homomorphism

$$\eta: A \to H \overline{\otimes} \operatorname{End}_k(V) := (H_{ij} \otimes_k \operatorname{Hom}_k(V_i, V_j))$$

is injective.

Recall the classical Burnside-Wedderburn-Malcev theorems

Theorem (Burnside) Let V be a finite dimensional k-vectorspace. Assume k is algebraically closed and let A be a subalgebra of $\operatorname{End}_k(V)$. If V is a simple A-module, then $A = \operatorname{End}_k(V)$.

Theorem (Wedderburn) Let A be a ring, and let V be a simple faithfull A-module. Put $D = \operatorname{End}_A(V)$ and assume V is a finite dimensional D-vector space. Then $A \simeq \operatorname{End}_D(V)$.

Theorem (Wedderburn-Malcev) Let A be a finite dimensional k-algebra, k-any field. Let \underline{r} be the radical of A, and suppose the residue class algebra A/\underline{r} is separable. Then there exists a semi-simple subalgebra S of A such that A is the semidirect sum of S and \underline{r} . If S_1 and S_2 are subalgebras such that $A = S_i \oplus \underline{r}$, i = 1, 2, then there exists an element $n \in \underline{r}$, such that $S_1 = (1-n) \cdot S_2 \cdot (1-n)^{-1}$.

See e.g. [Lang] chap. XVII.

In this \S we shall prove a generalization of the theorem of Burnside. In fact, assuming the field k is algebraically closed and that $V = \{V_i\}_{i=1}^r$ is the family of all simple A-modules we shall prove that the homomorphism η of the above Corollary (2.3), is an isomorphism.

When A is semi-simple we know that $\operatorname{Ext}_A^1(V_i, V_j) = 0$ for all $i, j = 1, \ldots, r$, therefore the formal moduli H of V is isomorphic to k^r . This implies that

$$H \overline{\otimes} \operatorname{End}_k(V) = \bigoplus_{i=1}^r \operatorname{End}_k(V_i),$$

which is the classical extension of Burnsides theorem.

We shall need the following elementary lemma

Lemma (1.1) Let the k-algebra A be a direct sum of the right-A-modules V_i , i = 1, ..., d of the family $V = \{V\}_{i=1}^r$. Then left multiplication with an element $a \in A$ induces A-module homomorphisms

$$a_{ij} \in \operatorname{Hom}_A(V_i, V_j), \qquad i, j = 1, \dots, d.$$

Moreover, any k-linear map $x: A \to A$ expressed as $x = (x_{ij}) \in \operatorname{End}_k(V) := (\operatorname{Hom}_k(V_i, V_j))$, commuting with all $\varphi = (\varphi_{ij}) \in \operatorname{End}_A(V) := (\operatorname{Hom}_A(V_i, V_j))$ is necessarily a right multiplication by some element $\tilde{x} \in A$.

Proof. Trivial, since x commuting with all $\varphi \in (\text{Hom}_A(V_i, V_j))$ commutes with all left-multiplications by $a \in A$, and therefore $x(a) = a \cdot x(1)$, and we may put $\tilde{x} = x(1)$. QED

Corollary (1.2) Assume that the family of right A-modules $V = \{V_i\}_{i=1}^r$ is such that

(i)
$$A \simeq \bigoplus_{i=1}^{m} V_i^{n_i}$$

(ii)
$$\operatorname{Hom}_A(V_i, V_j) = 0$$
 for $i \neq j$.

Then the canonical morphism of k-algebras

$$\eta: A \to \bigoplus_{i=1}^{n_i} \operatorname{End}_k(V_i)$$

is injective. Moreover, η induces an isomorphism

$$A \simeq \bigoplus_{i=1}^{n_i} \operatorname{End}_{D_i}(V_i)$$

where $D_i = \operatorname{End}_A(V_i)$.

This, in particular, proves the Wedderburn theorem for semisimple k-algebras A.

Theorem (1.3) (A generalized Burnside theorem) Let A be a finite dimensional k-algebra, k an algebraically closed field. Consider the family $V = \{V_i\}_{i=1}^r$ of simple A-modules, then

$$A \simeq \operatorname{End}_H(\mathcal{V}) = H \overline{\otimes} \operatorname{End}_k(V)$$

Proof. From [La], (2,3), we know that the canonical map

$$\eta: A \to H \overline{\otimes} \operatorname{End}_k(V)$$

is injective. Since $\underline{r}(A)^n = 0$ for some n, we know that $\hat{A} = A$. The theorem therefore follows from the following lemmas.

Lemma (1.4) Let A and B be finite type k-algebras and let $\varphi : A \to B$ be a homomorphism of k-algebras such that the induced morphism

$$\varphi_2: A \to B/r(B)^2$$

is surjective, then

$$\hat{\varphi}: \hat{A} \to \hat{B}$$

is surjective.

Proof. Well-known.

Lemma (1.5) Let A be a finite dimensional k-algebra, k an algebraically closed field. Let V_i , i = 1, ..., r be the different simple A-modules. Then

$$\underline{r}(A)/\underline{r}(A)^2 \simeq (\operatorname{Ext}_A^1(V_i, V_j)^* \otimes_k \operatorname{Hom}_k(V_i, V_j)),$$

and, moreover, the homomorphism

$$\eta: A \to H \overline{\otimes} \operatorname{End}_k(V)$$

induces an isomorphism

$$t_n^* : \underline{r}(A)/\underline{r}(A)^2 \xrightarrow{\sim} (\operatorname{Ext}_A^1(V_i, V_j)^* \otimes_k \operatorname{Hom}_k(V_i, V_j)) = \underline{r}(H)/\underline{r}(H)^2 \overline{\otimes}_k \operatorname{End}_k(V)$$

Proof. We obviously have a homomorphism of k-algebras

$$A \longrightarrow \bigoplus_{i=1}^r \operatorname{End}_k(V_i)$$

which by the classical Burnside theorem is surjective. According to the Wedderburn-Malcev theorem we may assume that

$$A \simeq (A_{ij})_{ij=1,\dots,r}$$

where, for each i, A_{ii} is a k-algebra such that

$$A_{ii}/r(A_{ii}) \simeq \operatorname{End}_k(V_i)$$

is a simple k-algebra.

Obviously $A/\underline{r}(A) \simeq \bigoplus_{i=1}^r \operatorname{End}_k(V_i)$ and

$$\underline{r}(A)/\underline{r}(A)^2 = (E_{ij})$$

each E_{ij} being an $\operatorname{End}_k(V_i)^{op} \otimes_k \operatorname{End}_k(V_j)$ -module. This, however, means that

$$E_{ij} \simeq V_i^* \otimes V_j \otimes k^{r_{ij}}$$

as a right $\operatorname{End}_k(V_i)^{op} \otimes_k \operatorname{End}_k(V_j)$ -module.

Now applying Hochschild cohomology as in [La] §2.1, we find: $\operatorname{Ext}_A^1(V_i, V_j) = HH^1(A, \operatorname{Hom}_k(V_i, V_j)) = \operatorname{Der}_k(A, \operatorname{Hom}_k(V_i, V_j))/im d^\circ$, where d° is the differential $\operatorname{Hom}_k(V_i, V_j) \to \operatorname{Der}_k(A, \operatorname{Hom}_k(V_i, V_j))$. Clearly any derivation $\xi \in \operatorname{Der}_k(A, \operatorname{Hom}_k(V_i, V_j))$ which is zero on r(A) induces a derivation $\xi_0 \in \operatorname{Der}_k(A/\underline{r}(A), \operatorname{Hom}_k(V_i, V_j))$ which, since A/r(A) is semisimple, obviously is a coboundary, i.e. an element of $im d^\circ$.

Moreover, any derivation $\xi \in \operatorname{Der}_k(A, \operatorname{Hom}_k(V_i, V_j))$ induces the zero map on $\underline{r}(A)^2$ since $\xi(r_1 \cdot r_2) = r_i \xi(r_2) + \xi(r_1) r_2 = 0$ for $r_1, r_2 \in \underline{r}(A)$, any coboundary $\nu \in \operatorname{im} d^{\circ}$ must vanish on $\underline{r}(A)$ since $\nu(r) = \varphi r - r \varphi$ for some $\varphi \in \operatorname{Hom}_k(V_i, V_j)$, and every $A^{op} \otimes_k A$ -linear map $\underline{r}(A)/\underline{r}(A) \to \operatorname{End}_k(V_i, V_j)$ extends to a derivation of $\operatorname{Der}_k(A/\underline{r}(A)^2, \operatorname{Hom}_k(V_i, V_j))$. In fact, let φ be an $A^{op} \otimes_k A$ -linear map

$$\underline{r}(A)/\underline{r}(A)^2 \to \operatorname{End}_k(V_i, V_j)$$

and define the map

$$\psi: A/\underline{r}(A)^2 = A/\underline{r}(A) \bigoplus \underline{k}(A)/\underline{r}(A)^2 \to \operatorname{End}_k(V_i, V_j)$$

by

$$\psi(s,r) = \varphi(r) + \varphi(\rho(r))$$

where ρ is the 1-Hochschild cochain on $A/\underline{r}(A)$ with values in $\underline{r}/\underline{r}^2$ that, according to the Wedderburn-Malcev theorem, exists. Then

$$\psi((s_1, r_1) \cdot (s_2, r_2)) = \psi((s_1 \cdot s_2, s_1 \rho(s_2) - \rho(s_1 \cdot s_2) + \rho(s_1)s_2 + s_1r_2 + r_1s_2))$$

$$= \varphi(s_1r_2 + r_1s_2 + s_1\rho(s_2) - \rho(s_1 \cdot s_2) + \rho(s_1) \cdot s_2) + \varphi(\rho(s_1 \cdot s_2))$$

$$= (s_1, r_1)\psi((s_2, r_2)) + \psi((s_1, r_1))(s_2, r_2)$$

Therefore

$$\operatorname{Ext}_{A}^{1}(V_{i}, V_{j}) = \operatorname{Hom}_{A^{op} \otimes A}(\underline{r}(A)/\underline{r}(A)^{2}, \operatorname{Hom}_{k}(V_{i}, V_{j}))$$

$$= \{\varphi : \underline{r}(A)/\underline{r}(A)^{2} \to \operatorname{Hom}_{k}(V_{i}, V_{j}) | \text{ for all } a \in A, \ r \in \underline{r}(A), \ s.t.$$

$$\varphi(a \cdot r) = a \cdot \varphi(r) \text{ and } \varphi(ra) = \varphi(r) \cdot a\}$$

Since $\underline{r}(A)/\underline{r}(A)^2 \simeq (E_{ij})$ with

$$E_{ij} \simeq (V_i^* \otimes V_j)^{r_{ij}}$$

it is clear that

$$\operatorname{Hom}_{A^{op} \otimes A}(\underline{r}(A)/\underline{r}(A)^{2}, \operatorname{Hom}_{k}(V_{i}, V_{j})) \\ \simeq \operatorname{Hom}_{\operatorname{End}_{k}(V_{i})^{op} \otimes_{k} \operatorname{End}_{k}(V_{j})}((V_{i}^{*} \otimes V_{j})^{r_{ij}}, (V_{i}^{*} \otimes V_{j})) \simeq k^{r_{ij}}$$

which means that

$$E_{ij} \simeq \operatorname{Ext}_A^1(V_i, V_j)^* \otimes_k \operatorname{Hom}_k(V_i, V_j), \qquad q.e.d.$$

Since η is an embedding it is clear that η induces an isomorphism on the tangent level,

$$t_n: \underline{r}(A)/\underline{r}(A)^2 \to \underline{r}(H)/\underline{r}(H)^2 \overline{\otimes} \operatorname{End}_k(V),$$

proving the theorem.

QED

Now suppose, as above, that A is a finite dimensional k-algebra, and let $V = \{V_i\}_{i=1}^r$ be any family of finite dimensional A-modules. Obviously

 $\dim_k \operatorname{Ext}_A^p(V_i, V_j) < \infty$ for all $p = 0, 1, 2, \ldots$ and therefore the endomorphism ring

$$\mathcal{A}(V) := \operatorname{End}_H(\mathcal{V}_A)$$

is a k-algebra such that

$$\mathcal{A}(V)/\underline{r} = \bigoplus_{i=1}^r \operatorname{End}_k(V_i)$$

 \underline{r} being the radical.

This implies that $V = \{V_i\}_{i=1}^r$ is the family of all simple $\mathcal{A}(V)$ -modules, provided the k-algebra $\mathcal{A}(V)$ is known to be of finite k-dimension. In this case the generalized Burnside theorem implies that the operation

$$(A, V) \mapsto (\mathcal{A}_A(V_A), V) =: (\mathcal{A}(V), V)$$

is a closure operation, i.e.

$$(\mathcal{A}_{\mathcal{A}(V)}(V_{\mathcal{A}(V)}), V) = (\mathcal{A}(V), V).$$

Moreover, we have the following,

Proposition (1.6) Let $\tau: A \to B$ be any homomorphism of finite dimensional k-algebras. Consider a family $V_B = \{V_i\}_{i=1}^r$ of finite dimensional B-modules and let V_A be the corresponding family of A-modules.

Suppose moreover that V_B is the family of all simple B-modules. Then there exists an, up to isomorphisms, unique homomorphism of k-algebras

$$\mathcal{A}(\tau): \mathcal{A}(V_A) \to \mathcal{A}(V_B) \simeq B$$

extending τ .

Proof. There is an obvious forgetful functor defining a morphism of functors on \underline{a}_r ,

$$\tau^* : \mathrm{Def}_{B,V} \to \mathrm{Def}_{A,V}$$

which in its turn induces a k-algebra homomorphism

$$\eta: H_{A,V} \to H_{B,V}$$

unique up to isomorphisms, and therefore a k-algebra homomorphism

$$\mathcal{A}(V_A) := H_{A,V} \overline{\otimes} \operatorname{End}_k(V_A) \to H_{B,V} \overline{\otimes} \operatorname{End}_k(V_B) =: \mathcal{A}(V_B)$$

obviously extending τ . By the generalized Burnside theorem, $\mathcal{A}(V_B) \simeq B$, and the Proposition follows. QED

Remark (1.7) Up to now we have only considered finite families of A-modules such that

$$\dim_k \operatorname{Ext}_A^p(V_i, V_j) < \infty, \qquad p = 1, 2.$$

Neither of these conditions are essential. Introducing natural topologies we may, as in [La2], treat general families of finite type A-modules.

Notice also that if $r_1 \leq r_2$, there is an obvious canonical faithfull morphism

$$\underline{a}_{r_1} \to \underline{a}_{r_2}$$

inducing a morphism of functors

$$\mathrm{Def}_{A,V(1)} \to \mathrm{Def}_{A,V(2)}$$

where $V(1) = \{V_i\}_{i=1}^{r_1}, V(2) = \{V_i\}_{i=1}^{r_2}$. Therefore we obtain an up to isomorphisms unique k-algebra homomorphism

$$r_{2,1}: H_{A,V(2)} \to H_{A,V(1)}.$$

However, this "restriction" morphism is not in general unique. The resulting problems will be dealt with in a forthcoming paper.

Proposition (1.8) Let A be any k-algebra, $V = \{V_i\}_{i=1}^r$ any family of A-modules such that

$$\dim_k \operatorname{Ext}_A^1(V_i, V_j) < \infty \quad \text{for all } i, j = 1, \dots, r.$$

Then the category (of isomorphism classes) of extensions of extensions of the V_i 's is isomorphic to the category (of isomorphism classes) of finite dimensional representations of H_V .

Proof. Clearly any morphism $\varphi: H \to R$ in \underline{a}_r correspond to an extension of extensions of the V_i 's. Conversely, we prove by induction on the length of the extension that any extension corresponds to an object R of \underline{a}_r and a morphism $\varphi: H \to R$.

Example (1.9) Consider the extension E_{ijk} of length 3 given as the composite extension of $\xi_{ij}: 0 \leftarrow V_i \leftarrow E_{ij} \leftarrow V_j \leftarrow 0$ and $\xi: 0 \leftarrow E_{ij} \leftarrow E_{ijk} \leftarrow V_k \leftarrow 0$.

Take the pullback ξ_{ik} of ξ via $V_i \to E_{ij}$ and consider the diagram

Obviously the cup-product $\xi_{ij} \cup \xi_{jk}$ is 0 in $\operatorname{Ext}_A^2(V_i, V_k)$. This is also the criterion for the existence of ξ . Moreover if ξ and ξ' are two extension $0 \leftarrow E_{ij} \leftarrow E_{ijk} \leftarrow V_k \leftarrow 0$ with the same pullback ξ_{jk} , then there is an extension $\xi_{ik}: 0 \leftarrow V_i \leftarrow E_{ik} \leftarrow V_k \leftarrow 0$, the pullback via $E_{ij} \to V_i$ of which is the difference $\xi - \xi'$.

Consider for the extension of extensions E_{ijk} , the diagram,

corresponding to the k^r -algebra R

$$R = j \begin{pmatrix} k & 0 & 0 & 0 & 0 \\ \ddots & \ddots & \ddots & \ddots & \vdots \\ k & k & k & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ k & k & 0 \\ & & \ddots & \ddots & \vdots \\ k & 0 \\ & & & k \end{pmatrix}$$

Notice that E_{ijk} then corresponds to a morphism

$$\varphi: H \to R$$
,

unique modulo the radical $\underline{r}(R)$ squared, where

$$\underline{r}(R)^{2} = j \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & k & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0
\end{cases}$$

References

- [G] Gabriel, P. "Unzerlegbare Darstellungen I, II. Manuscripta Math. **6** (1972), 71–103: Symposia Math. Inst. Naz. Alta. Mat. **11** (1973), 81–104.
- [La] Laudal, O. A.: Non commutative deformations of modules. Preprint Series No 2, Jan. 1995, Inst. of Math., University of Oslo.
- [La1] Laudal, O. A.: Sur les limites projectives et inductives. Ann. Sci. Ecole Normale Sup. Paris, t. 82, (1965).
- [La2] Laudal, O. A.: Formal Moduli of Algebraic Structures. Lecture Notes in Mathematics. Springer Verlag No. 754 (1979).
- [La3] Laudal, O. A.: Matric Massey products and formal moduli I: Algebra, Algebraic Topology and their interactions, Jan Erik Roos ed. Lecture Notes in Mathematics. Springer Verlag. No. 1183, pp. 218–240, (1986).
- [Lang] Lang, Serge: Algebra, Addison-Wesley Pub. Co. (1965).
- [La-Pf] Laudal, O. A. and Pfister, G.: Local Moduli and Singularities. Lecture Notes in Mathematics. Springer Verlag No. 1310 (1988).
- [R] Reiten, Idun. An introduction to representation theory of Artin algebras. Bull. London Math. Soc. 17 (1985), 209–233.
- [S] Schlessinger, M.: Functors of Artin Rings. Trans. Amer. Math. Soc. Vol. 130, pp. 208–222, (1966).
- [Serre] Serre, J. P.: Cours d'arithmétique. Presses Universitaires de France (1970).