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Introduction

In the paper [La] I have introduced a non-commutative deformation functor
Def for a family V = {V;}_; of right A-modules, where A is a k-algebra, k a
field. When dimy, Ext, (V;, V;) <ooforalli,j=1,...,r, there is a hull — or
a formal moduli H for V in the procategory of the category a, of r-prointed
finite dimensional k-algebras, on which this deformation functor is defined.

For r = 1 this is an obvious generalization, to the non commutative case,
of the classical deformation theory of a module, see e.g. [La3]|. It turns out,
however, that for 7 > 2, the theory contains more sophisticated ingredients.
First of all the category of extensions of extensions of the V;’s is “represented”
by the category of finite representations of H. }

Secondly there is a corresponding versal family of H ® A°P-modules V.
Let A(V) be Endg)V). Then there is a canonical homomorphism

n:A— AV).

If V is the family of all simple A-modules A an artinian k-algebra, and k

algebraically closed, then:
n: Az AlV)

generalizing the Burnside theorem for semisimple algebras.

§1. A generalized Burnside theorem and the
closure operation A

In [La], §(2.3) we proved the following result

Corollary (2.3) Suppose the k-algebra A is of finite dimension and assume
the family V. = {V;}I_, contains all simple A-modules, then the natural k-
algebra homomorphism

n: A — HREndy(V) := (Hi; ® Homg(V;, V;))
1$ injective.

Recall the classical Burnside-Wedderburn-Malcev theorems




Theorem (Burnside) LetV be a finite dimensional k-vectorspace. As-
sume k is algebraically closed and let A be a subalgebra of Endg(V). IfV is
a simple A-module, then A = End(V).

Theorem (Wedderburn) Let A be a ring, and let V' be a simple faithfull
A-module. Put D = End4(V) and assume V is a finite dimensional D-vector
space. Then A ~ Endp(V).

Theorem (Wedderburn-Malcev) Let A be a finite dimensional k-algebra,

k-any field. Let r be the radical of A, and suppose the residue class algebra
A/r is separable. Then there exists a semi-simple subalgebra S of A such
that A is the semidirect sum of S and r. If S and Sy are subalgebras such
that A = S; ®r, i = 1,2, then there exists an element n € r, such that
Sy =(1—-n)-Sy-(1—n)""

See e.g. [Lang] chap. XVIIL

In this § we shall prove a generalization of the theorem of Burnside. In
fact, assuming the field & is algebraically closed and that V' = {V;}_; is the
famlly of all simple A-modules we shall prove that the homomorphism 7 of
the above Corollary (2.3), is an isomorphism.

When A is semi-simple we know that Ext A(M,V) = 0 for all 4,7 =
1,...,r, therefore the formal moduli H of V is isomorphic to ¥". This implies
that

H®End,(V) = P End(V;

which is the classical extension of Burnsides theorem.
We shall need the following elementary lemma

Lemma (1.1) Let the k-algebra A be a direct sum of the right-A-modules
Vi,i=1,...,d of the family V. = {V}I_,. Then left multiplication with an
element a € A induces A-module homomorphisms

aijEHOHlA(W,V}‘), Z,]=].,,d

Moreover, any k-linear map x : A — A expressed as z = (z;;) € Endy(V) :=
(Homy(V;, V;)), commuting with all ¢ = (¢y) € Enda(V) := (Homa(V;, V})
is necessarily a right multiplication by some element T € A.

Proof. Trivial, since  commuting with all ¢ € (Homy4(V;,V;)) commutes
with all left-multiplications by a € A, and therefore z(a) = a - z(1), and we
may put Z = z(1). QED




Corollary (1.2) Assume that the family of right A-modules V- = {V;}i_;
is such that

() A~ @V
i=1
(ii) Homu4(V;i,V;) =0 fori # j.

Then the canonical morphism of k-algebras

n:A— GéEndk(V})

i=1

is injective. Moreover, n induces an isomorphism

A~ @ Endp, (V)

i=1
where D; = End4(V;).

This, in particular, proves the Wedderburn theorem for semisimple k-algebras

A.

Theorem (1.3) (A generalized Burnside theorem) Let A be a finite
dimensional k-algebra, k an algebraically closed field. Consider the family
V = {V;}I_, of simple A-modules, then

A~ Endg(V) = H®End,(V)

Proof. From [La], (2,3), we know that the canonical map
n:A— H®Endy(V)

is injective. Since r(A)™ = 0 for some n, we know that A = A. The theorem
therefore follows from the following lemmas.

Lemma (1.4) Let A and B be finite type k-algebras and let ¢ : A — B be
a homomorphism of k-algebras such that the induced morphism

¢2: A— B/r(B)?
is surjective, then X X
p:A— B

1s surjective.

Proof. Well-known.




Lemma (1.5) Let A be a finite dimensional k-algebra, k an algebraically
closed field. Let Vi, i =1,...,r be the different simple A-modules. Then

r(A)/r(A)? = (Exty (V;, V;)" ® Hom(Vi, V),
and, moreover, the homomorphism
n:A— HQ Endg(V)
induces an isomorphism

(A4)/z(A)* = (Bxty(Vi, Vi) @k Homy(V;, V;)) = r(H)/r(H)* ® Endy (V)

t,’;:

I3

Proof. We obviously have a homomorphism of k-algebras

T
A — @ Endi(V;)
i=1
which by the classical Burnside theorem is surjective. According to the
Wedderburn-Malcev theorem we may assume that

A~ (Aij)ijzl,...,r
where, for each i, A;; is a k-algebra such that
Ayi/r(As) ~ Endi (Vi)

is a simple k-algebra.
Obviously A/r(A) ~ @ Endg(V;) and
i=1

r(A)/r(A)? = (Ey)

each F;; being an Endg(V;)® ®; End(V;)-module. This, however, means
that

Bij = Vi@ V; @K™
as a right Endg(V;)? ® Endg(V;)-module.

Now applying Hochschild cohomology as in [La] §2.1, we find: Ext) (V;,V;) =
HH'(A,Homy(V;, V;)) = Dery(A, Homg(V;, V;))/im d°, where d° is the differ-
ential Homy(V;, V;) — Derg(A, Homy(V;, V;)). Clearly any derivation
¢ € Dery(A, Homg(V;, V;)) which is zero on r(A) induces a derivation
& € Dery(A/r(A), Homg(V;, V;)) which, since A/r(A) is semisimple, obvi-
ously is a coboundary, i.e. an element of im d°.

Moreover, any derivation £ € Dery(A, Homg(V;, V;)) induces the zero map
on r(A)? since £(ry - r2) = 1ié(ra) + &(r1)re = 0 for ri,m € r(A), any
coboundary v € im d° must vanish on r(A) since v(r) = ¢r — ry for some
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@ € Homy(V;,V;), and every AP ® A-linear map r(A)/r(A) — Endi(V;, V)
extends to a derivation of Dery(A/r(A)? Homy(V;, V;)). In fact, let ¢ be an
A? ®; A-linear map

r(A)/r(A)* — Endy(V;, V)
and define the map
o : Afr(A)? = Ajr(A) D E(A)/r(A)* — Endy(V;, 1))

by
P(s,m) = o(r) +(p(r))

where p is the 1-Hochschild cochain on A/r(A) with values in r/r? that,
according to the Wedderburn-Malcev theorem, exists. Then

P((s1,71) - (52,72)) = ¥((81 - 82, 81p(82) — p(s1 - 82) + p(81)82 + s1r9 +7152))
= (8172 + 7182 + 510(52) — p(s1+ 82) + p(s1) - 82) + p(p(s1 - 82))
= (s1,71)1((82,72)) + ¥((51,71))(52, 2)

Therefore

Ext}(Vi, V;) = Homuerga (r(A)/r(A)?, Homy(V, V5))
= {p:1(A)/r(A)? — Homg(V;, V)| for all a € A, 7 € r(A), s.t.
p(a-r)=a-p(r) and p(ra) = o(r) - a}

Since r(A)/r(A)? ~ (E;;) with
By ~ (V@ Vy)™
it is clear that

Homorga (r(A) /r(A)?, Homy(V;, V5))
~ HomEndk(%)o%kEndkm)((Vi* ® ‘/j)”'ij’ (‘/z* ® V})) ~ [Tii

which means that
Eij ~ Ext}y(Vi, V;)* @& Homy(V;, V), g.e.d.

Since 7 is an embedding it is clear that 1 induces an isomorphism on the
tangent level,

ty : v(A)/r(A)? — r(H)/r(H)*® Endy(V),
proving the theorem. QED

Now suppose, as above, that A is a finite dimensional k-algebra, and
let V = {V;};_; be any family of finite dimensional A-modules. Obviously

5




dimy, Exth(V;,V;) < oo forall p =0,1,2,... and therefore the endomorphism
ring

A(V) := Endg(Va)
is a k-algebra such that

(V)2 = €D Bnc(V)

r being the radical.

This implies that V' = {V;}!_; is the family of all simple A(V')-modules,
provided the k-algebra A(V) is known to be of finite k-dimension. In this
case the generalized Burnside theorem implies that the operation

(Aa V) = ('AA(VA)a V) = ('A(V)’ V)
is a closure operation, i.e.
(Aaw)yVaw)), V) = (A(V), V).

Moreover, we have the following,

Proposition (1.6) Let T : A — B be any homomorphism of finite di-
mensional k-algebras. Consider a family Vg = {V;}i_; of finite dimensional
B-modules and let V4 be the corresponding family of A-modules.

Suppose moreover that Vi is the family of all simple B-modules. Then
there exists an, up to isomorphisms, unique homomorphism of k-algebras

A1) : A(V4) = A(VE) ~ B

extending T.

Proof. There is an obvious forgetful functor defining a morphism of func-
tors on 4,,
T DefB,V — DefA,V

which in its turn induces a k-algebra homomorphism
n:Hyyv — Hpy
unique up to isomorphisms, and therefore a k-algebra homomorphism
A(Vy4) := Hay ® Endi(V4) — Hpy ® Endg(Vp) =: A(Vp)

obviously extending 7. By the generalized Burnside theorem, A(Vg) ~ B,
and the Proposition follows. QED




Remark (1.7) Up to now we have only considered finite families of A-
modules such that

dimy, Exth (Vi, V;) < o0, p=12.

Neither of these conditions are essential. Introducing natural topologies we
may, as in [La2], treat general families of finite type A-modules.

Notice also that if r; < 79, there is an obvious canonical faithfull mor-
phism

a,, — Gy,

inducing a morphism of functors
Def 4vq) — Defav (o)

where V(1) = {Vi}i1,,V(2) = {V;}i2;. Therefore we obtain an up to isomor-
phisms unique k-algebra homomorphism

To1: HA,V(Q) - HA,V(l)-

However, this “restriction” morphism is not in general unique. The resulting
problems will be dealt with in a forthcoming paper.

Proposition (1.8) Let A be any k-algebra, V. = {V;}i_, any family of
A-modules such that

dimy Exty(Vi,V;) < oo foralli,j=1,...,r.

Then the category (of isomorphism classes) of extensions of extensions of the
Vi’s is isomorphic to the category (of isomorphism classes) of finite dimen-
sional representations of Hy .

Proof. Clearly any morphism ¢ : H — R in a, correspond to an extension
of extensions of the V;’s. Conversely, we prove by induction on the length
of the extension that any extension corresponds to an object R of g, and a
morphism ¢ : H — R. QED

Example (1.9) Consider the extension Fj;; of length 3 given as the com-
posite extension of &;: 0« Vj «+ Ej «+ V; « 0 and
£O<—E,,]<—Ewk<——‘/k<—0

Take the pullback & of ¢ via V; — E;; and consider the diagram




(T) 0 (T)
0 V; Eij Vi 0
A |
| T |
| Y
Eg<--Eijp<—Ej

A
| |
|
Vi Vi Vi
0 0 0

Obviously the cup-product &; U &y, is 0 in Ext?(V;, Vi). This is also
the criterion for the existence of £. Moreover if £ and &' are two extension
0 « E;;j < E;j «— Vi < 0 with the same pullback &g, then there is an
extension &y, : 0 «— V; «— By « Vi « 0, the pullback via E;; — V; of which
is the difference & — ¢£’.

Consider for the extension of extensions E;j;;, the diagram,

corresponding to the k"-algebra R

i j k
k 0 0 0 0
i k k k 0
R=7 k k 0
. Tk o

Notice that E;jj then corresponds to a morphism

wo:H—-R,




unique modulo the radical r(R) squared, where

i J k
0 0 0 0 0
7 0 0 k 0
r(R)? = j 0 0 0
k 00
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