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Abstract

We show how lower bounds on the generalization ability of feedforward neural
nets with real ouputs can be derived within a formalism based directly on the
concept of VC dimension and Vapnik’s theorem on uniform convergence of esti-
mated probabilities. The formalism can be considered as an alternative to the
metric dimension based approach used by D. Haussler in connection to his work
on generalizing the PAC model.

1. Introduction

Concerning historical background on the PAC (Probably Approximately Correct)
learning model and related issues, I refer to Haussler (1992) and the references
therein. The results we obtain in this paper are of the following format, roughly
described:

Let a neural net architecture and a learning algorithm be given. Suppose that
you choose a training set = consisting of m examples at random, give it as input
to the learning algorithm, and observe that the learned function f; has (mean)
error < «ye on the training set z. Then the probability that f; has global mean
error larger than e is less than B, where B is a bound.

The bound B will depend on m, and also on some other quantities. Note that the
probability we want to bound is a conditional probability; it is the probability that
fi1 has global error larger than € given that it has been observed to have error < e
on the training set.

Comparing the results of this paper to the results on feedforward neural net-
works given in Haussler (1992), the main difference lies in the domain of applicabil-
ity. The “sharp” learning criterions considered in the first part of this paper is not
covered by Haussler’s feedforward network results. On the other hand, Haussler’s
treatment is far more flexible than the formalism presented here, and it covers a
vast number of situations where the results of this paper does not apply. However,
concerning learning with respect to continuous “loss functions” (which is treated
in the second part of this paper), some comparisions of results can be made. The
bounds we obtain in section 11 for the special classes of network models considered
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there, are stronger than the bounds obtained for such networks in Haussler’s paper
(and related works). But then again, the domain of applicability for our results are
much more limited. Among other things, we rely on special properties of sigmoid-
shaped activation functions. Also, we treat only the case of one hidden layer and
one output node. In contrast, Haussler’s results are valid for almost any kind of
activation functions and node types, and for any number of layers.

On notation: The set of real numbers is denoted R. If A is a set, then card(h)
means the cardinality of h, and p(h) is the power set of h. The composition of
two maps ¢ and ¢ is denoted ¥ o @, ie. P 0 ¢(€) = Y(¢(£)). If A and B are sets,
the set of functions f : A — B from A to B is denoted Map(A, B). The notation
A™ means the m-fold cartesian product of A with itself, for each integer m > 1.
Ifa=(as,...,am) € A™ and b = (b1,...,bm) € B™, then by (a;b) we mean the
element in (A x B)™ given by (a;b); = (a;,b;) for 1 <i¢ < m. If & and S are events
in some probability model with probability measure P, we write the conditional
probability of 8 given o as P(8 | a). Thus P(8 | a) = P(a N B)/P(a).

Concerning the organization of the article, I have chosen to treat learning with
and without noise as two different cases, starting with the noiseless case. The paper
is self-contained with respect to definitions and formalism. All the proofs given are
“local”, ie. they can be skipped without losing the thread of the paper.

2. VC dimension and related concepts

Let h be an arbitrary set, let m > 1 be an integer, and let s = (s1,...,5m) be an
arbitrary ordered sequence of m objects. We define

sNh={i|1<i<mands; €h}

If H is a family of sets, we define sN H = {sNh | h € H}, and put Ag(s) =
card(s N H). Note that sN H C p({1,...,m}). If Ag(s) = 2™, then H is said to
shatter the sequence s. For each integer m > 1, define

Ag(m) = max{Ag(s) | s is a sequence of m objects}.

Let VCdim(H) be the greatest integer m such that Agx(m) = 2™, if such an m
exists. Otherwise, let VCdim(H) = +oo. It is known (see eg. Vapnik 1982) that if
d = VCdim(H) is finite, then

Ap(m) < Ed: (T) <(%) (1)

1=0

for all m > d.
Let A, B be sets, and let F' C Map(A, B). We assume B C R. For each f € F,
let

‘f+={(p,t)€A><BIt>f(p)}
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Put F* = {ft | f € F}. Note that F* C p(A x B). The quantities Ap+(m)
and VCdim(F*) will play an important part in the following. It is easily seen that
VCdim(F7) is equal to the so-called pseudo dimension of F, as defined in Haussler
(1992). The result below is shown, among other places, in that paper.

Observation. Let 1 : R — R be increasing (ie. ¢ >y = ¥(z) > ¥(y)). Let A be
a set and G C Map(A,R). Define F C Map(A,R) by F = {og| g € G}. Then
for all m we have Ap+(m) < Ag+(m).

3. Sharp, noiseless learning

By a noiseless learning situation (abbreviated “QL situation”, Q for “quiet”) we
will mean a 9-tuple

A= (X7P,YaF’f0aS’m7)‘aV)
where

X is a set (called the input space)

P is a probability measure on X

Y is a set (called the output space)

F C Map(X,Y) is a function class

fo:X =Y isafunction (called the target function)

S is a set

m > 1 is an integer

A:X™x S — F is amap (called the learning algorithm)

v is a probability measure on X™ x S such that the
marginal of v on X™ is P™

We will usually write A(z,s) as AZ, for each z € X™ and o € S. By a criterion
map (or simply a criterion) for the QL situation (X, P,Y, F, fo,S,m,\,v) will be
meant a map

0: Map(X,Y) — p(X)

For each f € Map(X,Y), the set 6(f) C X will be interpreted as the region of
the input space where f “behaves well” relative to the target fo. We assume in
the following that all combinations of criterion maps with QL situations considered
are such that the standard measurability condition assumed in connection with
Vapnik’s theorem (theorem 1 below) is satified. This is a mild condition that one
need not worry about in practice. Consult Pollard (1984).

Given a QL situation A = (X, P,Y, F, f;,S,m, \,v) and a criterion map 6 for
it, for each f € Map(X,Y) and ¢ € X™ we define the error E(f,0,z) of f with
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respect to § on = by
E(f,G,:c)=%-ca,rd{i 11<i<m andz; ¢ 6(F)}.

For each f € Map(X,Y) we define the (global) error E(f,8) of f with respect to 6

by
E(f,6) =1—-P(6(f))
Finally, for each t € [0,1] let

Qa(t,0) = v{E(A7,9, z) <t}

In the context of the formalism we will develop in section 10, it is natural to refer
to the error measures defined above as “sharp”. Hence we may refer to learning
with respect to criterions 8 as defined in this section as “sharp” learning. We will
use the following version of Vapnik’s theorem.

Theorem 1 (Vapnik). Let A = (X, P,Y, F, fo,S,m, \,v) be a QL situation, and
let 8 be a criterion for it. Let v € [0,1), € € (0,1) and m > 4/((1 — v)%¢). Then

2A9(F)(2m)
Qa (e, §)ecm1-1?/4

V{E(,\g,e) >e| E(A,0,z) < ’)’6} <

The above version of the theorem is shown in Hole (1995). The proof follows the
original one given in Vapnik (1982) closely. Translating theorem 1 into the usual
form, it gives an improvement on the bound given in Anthony and Shawe-Taylor
(1993) by a factor of two, and on the bound given in Vapnik (1982) by a factor of
four. It may be remarked that if the additional assumption is made that em is an
integer, then the bound of theorem 1 can (Hole 1995) be improved by an additional
factor of two.

4. Interpretation

In this section I will discuss how the formalism of the preceeding section can be
interpreted in terms of neural networks. Let A = (X, P,Y, F, fo, S,m, \,v) be a QL
situation. Then X and Y can be taken as the input space and output space of
a network architecture, respectively. The class F' C Map(X,Y) can be viewed as
the set of functions defined by the architecture (by varying weights and tresholds).
The target fo : X — Y is the (possibly unknown) function we want the network
to learn. It is not nescessary that fo € F. The elements of z € X™ are training
sequences of length m. The learning algorithm A associates a function in F' to each
element (z,0), where £ € X™ is a training sequence and ¢ € S. The set S is

4




included to model cases where the learning process used is not deterministic. In
the deterministic case, we can take S = {0}. Then the probability measure v on
X™ x S reduces to the product measure P™ of P on X™.

Now let us consider criterion maps #. As hinted in the previous section, for
each f € Map(X,Y) the set 6(f) will be interpreted as the set of p € X such that
f(p) is “acceptable” when compared to fo(p). If Y = {—1,1} (the boolean case)
the obvious choice for 8 is the map 6, given by

0s(f) = {p € X | f(p) = fo(p)}

for all f € Map(X,Y). However, in the general case Y C R corresponding to
networks with real outputs, the criterion 6 is too restrictive. Let x > 0 be fixed.
A natural criterion 6 to consider in this context is the map 6, defined by

0x(f) ={pe X | If(p) — fo(p)| < £}

for all functions f € Map(X,Y).

Given 6, the quantity E(f,6,z) naturally plays the role as the (mean) error of
f on the sequence z of m points in X, and E(f,6) represents the global (mean)
error of f. The quantity Q4 (,6) is the probability that the learned function A(z, o)
has error less than or equal to t on the training sequence z when (z,0) is drawn
at random according to v. Since the marginal of v on X™ is assumed to be P™,
taking a random draw according to v can be interpreted as taking a random draw of
¢ € X™ according to P™ and giving z as input to the (possibly stochastic) learning
process. So whether or not the learning process is stochastic, we may conclude that

The quantity Q4(¢,6) is the probability that the function resulting from the
learning process has error < ¢ on the training set, when the training set z € X™
is drawn at random according to X™.

Note that we are considering noiseless learning here; we assume that we have access
to the function values fo(z;) for all elements 1, ...,z in the training sequence. On
the other hand, function values of fy on training sequences is the only information
about f; we need. Theorem 1 now says the following:

Suppose that you choose a training sequence z € X™ at random according to
P™ give it as input to the learning process, and observe that the resulting
learned function f; has error less than or equal to ye on the training sequence
z, ie. E(fi,0,z) < ve. Then the probability (with respect to choice of z) that
E(f1,6) > e is less than

QA(’)’G, e)efm(1—7)2/4

If 4 is the boolean criterion 8; defined above and F is the function class implemented
by a feedforward neural network architecture with linear treshold units, the quantity
Ag(r)(2m) appearing in theorem 1 can be estimated as in Baum and Haussler
(1989). We will see in the following sections how bounds on Ag,(py(m) can be
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obtained. However, in order to apply theorem 1 we also need an estimate of the
probability Q4 (ve,6) of “success” on the training set. In some practical cases, it
will be possible to estimate this in advance by trying out a number of training sets
¢ and observing for how many of them we get training error < ve. In other cases,
one may be able to prove (or feel reasonably sure) that the probability is close to
one, or at least not smaller than 1/2.

In the following sections we will derive several results having essentially the
same form as theorem 1. The above remarks on interpretation are relevant for
these results as well.

5. Reduction to the VC dimension of F+

To obtain generalization bounds valid for the 6, criterions defined in the previous
section, we need the following lemma.

Lemma 1. Let « > 0, and let F C Map(X,Y') be a function class, where Y C R.
Then Agy(r)(m) < [Ap+(m))?.

Proof. Define the maps 61,05 : F — p(X) by

6:1(f)={pe X | f(p) < folp) + £}
82(f) ={p€ X | f(p) 2 fo(p) — &}
Then 0,(f) = 0:(f) N 62(f) for each f € F, and therefore for each z € X™
Aoury(®) = card{z N 6:(F) N 6:(f) | £ € F)

<card{z N6;(f)| f € F}-card{z N62(f) | f € F}
= Dgy(r)(2) - Doy () (2) ’

To complete the proof, it is now sufficient to show that Ag, (my(m) < Ap+(m) for
j =1,2. We wil first show that Ag, (r)(m) < Ap+(m).
Let € X™ be fixed, and choose a finite set £ C F such that Ay, (¢ (z) =
Agl(F)(:L'). Let
do = min{f(z;) — fo(z:) =k | f €&, 1 < i <mand f(z:) — fo(zi) — £ > 0}
Define the injection ¢ : X™ — (X x R)™ by é(z); = (@i, fo(z:i) + £+ do). For each
feéand1l<1:<m, we then have

z; € 01(f) <= f(z:i) < fo(zi) + &
= f(z;) < fo(zi) + k+dy <= ¢(z); € ft

It follows that card{d(z) N f | f € €} = Ag,(¢e)(z). So Ap+(d(z)) = Ag,(r)(2).
Since £ € X™ was arbitrary, it follows immediately that Ag, (my)(m) < Ap+(m).
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The proof that Ag,(ry(m) < Ap+(m) is similar. Let z € X™ be fixed, and
choose a finite set ¢ C F such that Ag,)(z) = Ag,r)(z). This time, define
¢:X™ — (X x R)™ by é(z); = (zi, fo(z;i) — k). Then for each f € { and z € X™

z; € 05(f) <= f(zi) > folzi) — Kk <= ¢(z)i ¢ fF

Thus ¢(x) N fT is the complement of {i | z; € 62(f)} in {1,...,m}. Again it
follows that card{¢(z) N f* | f € F} = Ag,(r)(z). The rest is similar to the case
of Aol(F)(m) |

To use lemma 2, we need bounds of Ap+(m). The simplest case is when F' is a
vector space of dimension d. Then VCdim(F*t) < d + 1, as is essentially shown in
Cover (1965). A proof is also given in Haussler (1992).

6. First example

In this section, I will derive an upper bound of Ag+(m) in the case where F' repre-
sents the function class defined by a network architecture with the following prop-
erties:

(i) The architecture has a single input node, one hidden layer with n nodes and a
single output node.

(ii) The activation function in each computation node is h(t) = erf(t), where erf
denotes the error function (ie. the integral of the normal distribution N(0,1),

with ~(0) = 0). The hidden nodes have no tresholds.

To be precise, we let F' C Map(R,R) be the class of all functions f on the form

f(p) = erf (a + Xn: b; erf(c,-p)),

=1
where a, by,c1,...,bn, ¢y € R. Thus the elements in F' are analytic functions from
X=RtoY=R.
Lemma 2. The function class F' defined in this section satisfies

em

are(m) < (T) "

This lemma is proved in Appendix 1. Note that the total number of parameters in
the architecture defining F'is W = 2n 4 1.
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7. Second example

In this section, I will estimate Ap+(m) in the case where F is the function class
defined by another special kind of network with one hidden layer.

Let n, k > 1 be integers, let ¢ : R — R be increasing, and let hy,...,hy : R —
R be piecewise linear funcions with s knots each. For fixed n,k, ¢ and hy,...,hq,
let F C Map(R¥,R) be the class of all functions f : R¥ — R on the form

n k
f(p) = ¢(w20 + Z woihi(wii + Z quJ))
Jj=1

=1

where w,, € R for all yv. The class F' can be interpreted as the function class
defined by a layered network architecture with the following characteristics:

(i) The architecture has k input nodes, one hidden layer with n nodes, and a single
output node.

(ii) The activation function in hidden node number ¢ is h;, for 1 <¢ < n.

(iii) The activation function in the output node is ¢.

Lemma 3. The function class F described in this section satisfies

s (3 ()< ()

where W = nk + 2n + 1 is the number of parameters in F.

This lemma is proved in Appendix 2. It may be remarked that the proof of lemma
3 quite easily can be generalized to the case where the activation functions h; of
the hidden nodes are piecewise polynomial functions of degree < d, where d > 1.
The details are omitted.

8. VCs-dimension

Note that the method used to prove lemma 2 in Appendix 1 depends strongly on the
properties of the particular “sigmoid” activation function h(t) = erf(¢) considered.
There exist other sigmoid-looking functions for which the bound of the lemma is
utterly false. In Sontag (1992), there is even constructed an analytic, sigmoid-
shaped, strictly increasing function A : R — R such that the class F C Map(R,R)
of functions f on the form

f(t) = h(wt) + h(—wt)

where w € R is the only parameter, satifies VCdim(F*1) = co. Examples of this
type indicate that in order to obtain VC generalization bounds valid for real valued
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networks using (say) general “sigmoid-shaped” activation functions, we must change
our setup somewhat. To this end, we will now define a more “rigid” version of the

VC dimension concept for function classes.
Let F,H C Map(X,Y) where Y C R, and let § > 0. The class H is said to be

§-dense in F if for every f € F there is a f' € H such that

sup [f(p) — f'(p)| < &
PeEX
Define
A% (m) = inf{Ag+(m) | H is 6-dense in F}

Note that A%, (m) = Ap+(m). We define VCsdim(F*) to be the largest integer
m such that A%, (m) = 2™. If no such m exists, VCsdim(F+) = co.

Theorem 2 (Sharp, noiseless learning). Let A = (X, P,Y, F, f;,S,m, \,v) be a QL
situation. Let v € [0,1), € € (0,1), K >0, § > 0 and m > 4/((1 — v)?¢). Then

2(A%+ (2m)]?
QA (7€, Br—zs)ecmA—1?/4

v{E(,80) > €| E(AS,85-26,2) < ve} <

Proof. Choose H such that H is 6-dense in F and Ag+(2m) = A%, (2m). Define
B:X™x S — H such that |8Z(p) — A2(p)| < 6 for all z,0,p. Then for all z,0,p

we have

p ¢ 6es(B7) < 18;(p) — fo(p)| > k=6
= |67 (p) = Az (D) + 1A () — fo(p)| > & — &
= [A2(p) — fo(p)| > Kk — 26
= p ¢ br25(27)

Hence E(B2,0.—s,z) < E(AZ,0c—26,2) < 7e. In the same manner as above, one can
show that E(\2,0,) < E(B7,0c—5). So if E(AZ,0c_z5,2) < ve and E(AZ,0,) > e,
then E(B7,0.—s,2) < ve and E(B7,6,—s) > €. The result now follows by applying
theorem 1 to the QL situation A’ obtained from A by replacing F' by H and A by
B, under the criterion 6,_s. ™

9. Third example

To estimate A%_,_ (m) for a given function class F, a natural strategy is to find a
class H such that (i) H is §-dense in F', and (ii) we are able to bound Ag+(m).
In this section, we will estimate A%, (m) in the case where F is the function class
defined by a quite general network architecture with one hidden layer, using a class
covered by lemma 3 as H.




Let F be defined as in section 7, except that now (i) we allow the activation
functions k; in the hidden nodes to be arbitrary functions, (ii) we assume that there
is a real constant M such that

n

Z|w2i| <M

i=1

for all f € F, and (iii) we assume that the activation function ¢ of the output node
satisfies the Lipschitz bound |¢(t1) — ¢(t2)| < |t1 — to] for all t1,t2 € R. Note that
as in section 7, the total number W of parameters in F' is given by W = nk+2n+1.
Combined with theorem 2, the following lemma yields a generalization bound valid
for the class F.

Lemma 4. Let F a function class of the type described above. Suppose that
for each 1 < i < n there is a piecewise linear function g; with s knots such that
|gi(t) — hi(t)] < §/M for all t € R. Then

ASp(m) < (-’,’f)(sﬂ)w

Proof. Define 1 : F — Map(X,R) by letting 1 (f) be the function obtained from
f by replacing h; with g; for all 5. Put H = ¢(F'). Let f € F have parameter values
w, and put :

k
A(p) = wii + Z wi;p’
i=1
By utilizing the Lipschitz bound on ¢, we see that for all p € X

(@) = £ < D wa [Qi(A(P)) - hi(A(P))] ’

- 6
< Z |w2i|ﬁ <é
=1

Hence H is é-dense in F. By lemma 3, Ag+(m) < (m/k)*TDW . The result follows
by the definition of A%, (m).

10. Noise and general loss functions

In this section I will describe how the preceeding results can be adapted to situations
where a fixed, noiseless target function fy is not given, or where one works with a
“non-sharp” learning criterion which cannot be expressed in terms of a map 6 of
the type we have been considering.
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By a noisy learning situation (NL situation) we will mean a 8-tuple
A=(X,Y,P,F,S,m,\,v)

where

X is a set (called the input space)

Y is a set (called the output space)

P is a probability measure on X XY

F C Map(X,Y) is a function class

S is a set

m > 1 is an integer

A: (X xY)™ xS — F isamap (called the learning algorithm)

v is a probability measure on (X x ¥Y)™ x S such that the
marginal of v on (X x Y)™ is P™

We use the letter Z to denote the product X XY, and we denote the image A(Z™ x S)
by F). Note that F)\ C F. As before, we write A(z,0) as AJ.

A map L:R xR — [0,00) will be called a loss function provided there is an
increasing map pr, : [0,00) — [0, 00) such that

L(a,b) = pp(la— b))

Typical examples are L(a,b) = (a — b)? (quadratic loss) and L(a,b) = |a — b|
(standard distance loss). We assume in the following that all combinations of loss
functions L with NL situations considered are such that for all f € F' the function
(p,t) = L(t, f(p)) defined on X x Y is measurable, and such that the standard
measurability condition needed for the use of Vapnik’s theorem below is satisfied
(cf. the comments in section 3). Again, these are mild conditions that can be ignored
in practice.

Given a NL situation A = (X,Y, P, F, S,m, \,v) and a loss function L, for each
f € Map(X,Y) and z = (z;y) € Z™ we define the error E(f, L, z) of f with respect
to L on z by

E(f,L,z) = % ZL(yi, f(=i))

For each f € Map(X,Y) we define the (global) error E(f, L) of f with respect to
L by

B(f,)= [

X%

Lt £(p)) dP(p,t)
Finally, for each ¢ € [0,1] let
QA(t)L) = V{E()\Z,L,Z) < t}
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The main difference between a QL situation and an NL situation is that in the latter
case the probability distribution P is defined on X x Y instead of on X only. We
do not have access to any particular target function fo, and instead we are trying
to learn an input-output relation on X x Y. Thus the probability distribution p
itself plays the role as “target” in an NL situation. The “sharp” loss function L,
defined by
1 if|la—b]>«

Li(a,8) = {0 if Ia—b|| <k

where x > 0 is fixed, corresponds to the 6, learning criterion considered in the
previous sections. The only difference between the previous setup and the present
one is that now the model is designed to treat noisy situations. However, our main
result goes through exactly as before:

Theorem 3 (Sharp, noisy learning). Let A = (X,Y,P,F,S,m,\,v) be an NL
situation. Let v € [0,1), e € (0,1), K > 0 and § > 0. Then

2[A%+(2m)]
Qa (7€, Lyg—gs)ec™1—7?/4

V{E(A?,Ln) >e| E(\,Lg—26,2) < 'ye} <

Proof. Assume first § = 0. Define 8, : F — p(Z) by 8.(f) = {(p,t) | Lx(p,t) = 0}.
Then a variant of theorem 1 yields the formula of theorem 3 with Ag, (r)(2m) instead
of [Ap+(2m)]? (consult Hole (1995) for details). The proof that Age(ry(2m) <
[Ap+(2m)]? in this situation is analogous to the proof of lemma 1. Define maps
01a02 : F — g"(Z) by OI(F) = {(pat) EXXY | t 2 f(p) - K‘} and 02(F) = {(p7t) €
X xY |t< f(p)+ «}. Then

Age(r) (5 y) < Dgy () (239) - Doy (25 Y)

for all (z;y) € (X xY)™. To show that Ag,(py(m) < Ap+(m), let (z;y) € (X XY)™
be fixed, and choose a finite set ¢ C F such that A, (¢)(z;y) = Ag,(r)(2;y)- Let

do = min{f(z;) -k —yi | f €& 1< i<mand f(zi) — & —yi > 0}

Define the injection ¢ : (X x Y)™ — (X x Y)™ by ¢(z;y)i = (2i,yi + £+ do). For
each f € € and 1 <7 < m, we then have

2 €0:(f) < yi 2 f(zi) — &
= yi> f(zi)— K —do <= ¢(z;y)i € fT
So card{¢(z;y) N f+ | f € €} = Ag,e)(z;y). Thus since (z;y) was arbitrary,
Ag, (ry(m) < Ap+(m). To show Ag,(py(m) < Ap+(m), let again (z;y) € (X xY)™
be fixed, and choose a finite set £ C F such that Ag,(¢)(z;y) = Agy(r)(z;y). Define
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the injection ¢ : (X X Y)™ — (X x Y)™ by ¢(z;y)i = (zi,yi — k). For each f € £
and 1 <2 < m, we then have

z€0y(f) <= yi < flei)+r <= d(z;9)i ¢ fF

The conclusion Ag,(ry(m) < Ap+(m) follows.

Then consider the case § > 0. Expressing things in terms of the map 6,
introduced above, this follows from the case § = 0 of the theorem by an argument
very similar to the proof of theorem 2. The details are omitted. ®

Now let f : X — Y be a function, where Y C R. Let L be an arbitrary loss
function. For each 7 € [0,00), let fL' = {(p,t) € X x Y | L(t, f(p)) > 7}. Also, let

my () = \/ /X ><Y[L(t,f(p))]2dP(10,t)

if this moment exists. If FF C Map(X,Y) is a function class, let us define F, =
{fL|f € F and 7 € [0,00)}.

We say that a loss function L is c-Lipschitz if there is a ¢ € R such that
lpr(a) — pr(d)| < cla — b for all a,b € [0,00). If the map py, is continuous and
strictly increasing, then we call L continuous and strictly increasing (abbreviated

CASI) as well.

Lemma 5. Let F C Map(X,Y), where Y C R. Assume that F is closed under
addition of constant functions, and that L is CASI. Then

Ap(m) < [Ap+(m)]?

Proof. We use our standard trick once again. Let z = (z;y) € Z™ be arbitrary,
and choose a finite set { C F such that A, (2) = Ap,(2). Let 7 be a point in the

range of uz (clearly it is enough to consider such 7). Let a = pu7*(7), and put

b=min {|yi - f(z)l —a | f €€, 1<i <mand (ai,:) € £}
Let v- = a + b/2. For each f € £, let

fP={p,t)€Z|t>fP)+v}=(F+v)F
fdown={(p)t)ez |tSf(p)_7T}=Z\(f—7r)+

where f + v, and f — 7, denote the functions obtained from f by adding the
constants v, and —7,, respectively. Observe that z N fZ = (2N f*P) U (2 N féovn),

o)
card(z N F) < card{zN f*? | f € F} - card{z N fdaw” | f € F}

S Ap+(z) - Ap+(z). =
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Let A = (X,Y, P, F,S,m,\,v) be an NL situation, let L be a loss function, and let
§>0,7>1. Amapy: F — Map(X,Y) will be called a (6, L)-balancer for A
with bound 7 if (i) [¥(f)(p) — f(p)| < é for all f € F and p € X, and (ii) we have
mZ(p(A\2)) < TE(P(A?)) for all (z,0) € Z™ x S.

Theorem 4 (Smooth, noisy learning). Let A = (X,Y,P,F,S,m,\,v) be an NL
situation, let L be a CASI loss function, and let ¢ be a (6, L)-balancer for A with
bound 7 > 1, where § > 0. Assume that F is closed under addition of constants. Let

v €1[0,1), € € (0,1) and m > 47*/(1 — 4)*. If § > 0, assume that L is c-Lipschitz.

Then
2[Ay(ry+(2m)]?
Qp (ve — 2¢6, L)emI—n*/(47%)

V{E(/\‘:,L) >e| E(A,L,z) < ve— 2c6} <

This theorem is proved in Appendix 3. The bound of theorem 4 has the advantage
over our previous bounds that the expression in the exponent does not depend on
e. What gives theorem 4 its extra strength, is the assumption

There exists a (8, L)-balancer for A with bound 7 (2)

It is easy to see that if L is a “sharp” loss function L, of the type considered in
theorem 3, then (2) does not hold under any reasonably general conditions. For
CASI loss functions such as L(a,b) = (a — b)? or L(a,b) = |a — b| however, the
assumption is not so unreasonable. For example, if we assume that we have a map

¢ : F — Map(X,Y) such that |(f)(p) — f(p)| < 6 forall f € F and p € X, and

The random variable X¢(p,t) =t — ¢(f)(p) is normally 3)
distributed under P on X x Y for all f € F

then easy calculations show that for the loss functions L(a,b) = (a — b)? and
L(a,b) = |a — b|, the condition (2) holds with 7 = v/3 and 7 = /7/2, respec-
tively. The condition (3) may often be a good approximation in practice. Some
additional comments on these matters can be found in Vapnik (1982) and Bottou
and Vapnik (1993).

11. Fourth example

Consider an NL situation A = (X,Y, P, F,S,m,\,v) where Z =X xY = R* x R,
and where F C Map(R*,R) is defined as in section 7, except for the following: (i)
the activation functions h; of the hidden nodes are allowed to be arbitrary functions,
(ii) the activation function ¢ of the output node is the identity, and (iii) there is a
constant M such that

n

Z|w2i| <M

=1
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for all f € F. Let L(a,b) = |a — b| be the standard distance loss function, and let
the integer s be such that for each 1 < i < n thereis a piecewise linear function
gi : R — R having s knots with |gi(t) — hi(t)| < 6/M for all t € R, where 6 > 0.
Define ¢ : F — Map(X,Y) by letting 1(f) be the function obtained from f by
replacing h; by its approximation g; for 1 <1 < n. Then we have the following
result:

Corollary. Consider the setup described in this section, and assume that the
normality condition (3) holds. Let ¢ € (0,1),6 20, m > 47%/(1 — )%, and let
W = nk + 2n + 1 be the total number of parameters in F. Then

2(m/k)2(s+1)W
Qa(ye — 26, L)em™/ (167

V{E(A;,L) >e| B\, L,z) < (¢/2) —25} <

Proof. Reasoning as in the proof of lemma 4 and using the normality assumption
(3), we see that 1 is a (6, L)-balancer for A with bound 7 = 4/7/2. Note that L is
CASI and 1-Lipschitz, and that F' is closed under addition of constants. Combine
theorem 4 with the bound on Ay(p)+(m) given by lemma 3, taking y=1/2. m

Let us consider the following three special cases. In all three cases we take hy; =
hy = ... = hy, ie. the hidden nodes have a common activation function. This
function will be denoted by h.

Case 1: h is piecewise linear. In this case, we can take § as zero and s as the
number of knots in h. An easy calculation shows that if

m > (64(3 + 1)7r2W) In (64(3 + 1)7r2W)

then the bound of the corollary is less than 20 (¢/2, L) "e~8¢+DW . As a particular
example, we may take the popular activation function h defined by h(t) = —1 for
t>—1, h(t) =t for t € [-1,1] and h(t) = 1 for ¢ > 1. In this case s = 2.

Case 2: h is the truncated sigmoid given by h(t) = tanh(—a) for t < a,
h(t) = tanht for t € [—a,a] and h(t) = tanha for t > a, where a > 0 is fixed.
To simplify some estimates, assume € < M /2. Choose 6 = €/8. Let t1,t2 € R with
ty > t1, and let ¢ : R — R be the linear function passing through the two points
pi = (ti,tanht;) for i = 1,2. Assume that the length of the straight line segment of
¢ between p; and p; is less than or equal to 3/6/M. It is easy to check that the
graph of tanht (considered as a curve in R?) has curvature less than 1/2 for all ¢.
Then by comparing to a circular arc of radius 2 (which has constant curvature 1/2)
and remembering that d/dt(tanht) <1 for all ¢, it follows that

IC(t) — tanht| < 6/M
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for all t € [t1,ts]. Using line segments of this type, we can construct a piecewise
linear ¢ such that |g(t) — h(t)| < §/M for all t. We take g continuous, place all the
s knots of ¢ on the graph of &, and put g(t) = tanha for ¢ > a, ¢(t) = tanh(—a) for
¢ < —a. The arc length along the graph of A from (—a, tanh(—a))) to (a,tanh a) is
clearly less than 2a + 2. So

2a +2 < (2/3)(a+2)vV8M
3/8/M Ve

is sufficient. The inequality of the corollary can now be written
2(m/k)(4/3)(a+2)W(SM/e)” 2
Qu(e/4, L)em/(167%)

s+1=2+

B0 L) > ¢ ’ B, L2) < ¢/4) <

So in this case, if

m > (12—87{'2(0, + 2)W,4/ —8—1\—4> In (1.?7(2(61 + 2)W4/ §e£)

then the bound of the corollary is less than 2Q(e/4, L)"te™%.

Case $: his the standard sigmoid given by h(t) = tanht for all {. Again assume
e < M/2, and choose § = €/8. As before, we choose g constant on each side of an
interval of the type [—a,a]. The only difference between this case and the previous
one, is that now we need 1 — tanha = §/M, ie. a = 1In(2M/6 —1). Thus
In(2M/6§ —1)+2 < 8M . 8M

In
3./6/M € €
is sufficient. (Remember §/M < 1/16.) The inequality of the corollary can now be
written

s+1=2+

2(1,”,/1‘:)2W(8M/e)1/2 In(8M/¢)
Q4 (¢/4, L)em/ (167

V{E(A;,L) > € ‘ E(\I,L,z) < 6/4} <

So in this case, if

O e )

then the bound of the corollary is less than 20, (e/4, L) *e %W,

To sum up, the length m of the training sequence z needed to have “high”
probability of global error E(\Z, L) < € given that E(\], L,z) < €/4, scales as least
as good as follows in the three cases considered above:

Case 1:  m ~ (KW)In(KW)
cue s m~ (") ()

KW _ K’ KW kK K'
Case §: m ~ (W In —e_) In (7 In _e_)
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where K, K' are constants estimated above in each case. (Note that in fact we
worked with €/2 instead of €/4 in case 1.) Thus the scaling laws obtained in the
three cases above are all better than the corresponding ones obtained in Haussler
(1992).

Appendix 1: Proof of lemma 2

By (1) of section 2, it is enough to show that VCdim(F*) < 4n. Since erf is strictly
increasing, by the observation of section 2 it is enough to consider the class G of all
functions f : R — R of the form

flp)=a+ Zn: b; erf(cip)

where a,by,c1,...,bn,cn € R. Assume that VCdim(Gt) = N. Then there exists
a sequence (z;y) € (R x R)N with z; < z2 < ... < zy and functions fi,f2 € G
such that for all 1 < i < N we have fi(z;) > y; for i odd, fi(z;) < y; for ¢ even,
while fa(z;) < yi for i odd, fa(z;) > yi for i even. Let g = f — fo. Then g(zi) <0
for i odd, and g(z;) > 0 for ¢ even. It follows that g has at least N — 1 zeros in the
interval (z1,zx5) C R. But then the derivative g’ must have at least N — 2 zeros in
the same interval. Further, g can be written in the form

9(p) = a+ Y b ert(cip)

=1

SO
1 & 22
"(p) = — bicie P /2
g'(p) Ton ,~§=1:

It is known (see Braess (1986), chapter IV, for instance) that exponential sums of
the type
T
Z aieﬂ i
=1

(with @;,B; € R for all ¢) has at most r — 1 zeros for u € R. Since the map
p — p? is at most two to one, it follows that N —2 < 2(2n — 1), or N < 4n. Thus
VCdim(Ft)<4n. m

Appendix 2: Proof of lemma 3

By the observation of section 2, we may take ¢ to be the identity. Let (z;y) €
(X x R)™ be given. Let B;1,...,Bis be the knots of h; for each i. For each f € F,
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consider the sn associated half spaces Hy ir in RF consisting of those p € RF
satisfying

k
wii + Y wijp’ > fir
i=1
for 1 <i<nand 1 <r < s, where the parameters w correspond to f. Let

Ofir ={u| 2y € Hyir}
©ir ={Oy,ir | f € F}
Of={0sir|1<i<nand1<r < s}

Define an equivalence relation ~ on F by f ~ g < ©Of = 0,. Since for each
combination of ; and r we have (Cover, 1965)

card O, < 22( 1) < (-’})k

it follows that the number K of equivalence classes under ~ satisfies

K<HHcard®,r§(k)mk (4)

i=1r=1

Let F, be one of the equivalence classes. Pick fo € Fy. Define an equivalence
relation 2 on {z1,...,Zm} by letting z, = z, iff

{(1:,7') | Ty € Hfo,if} = {(Z,T‘) | zy € Hfo,ir}

Let Dy,...,Dn be the equivalence classes under . Let C¢ be the convex hull in
R* of the set of points in D¢, for 1 < ¢ < N. Then for each ¢ and ¢, there exist

real numbers af and bf such that
n k ‘
folp) = wly + > wi [af(wd; + > whip’) + b
=1 j=l

for all p € C¢, where the parameters w? correspond to fy. Moreover, the restriction
of an arbitrary f € Fy to C¢ can be written

n k
f(p) = wao + Z wa; | af(wii + Z wip’) + b (5)
=1 j=1

for the same numbers af and bf. The equation (5) can be rewritten in the form

f(P) = wgo + thb + szzwl,a + Z ng,w”a p

17=1
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For each pair of integers 1 < { < N and 1 < J < W, define the map 1/13 :RF SR
by

¥i(p) =1

¢f.|.,‘(P) = bf for1<:i<n

¢f+n+i(1’) =a§ for1<:<n

¢'f+2n+(j—1)k+i(1’) = ajp’ for 1<i<n,1<j<k

Then define ¢;: [ J; C¢ = Rfor 1 < J < W by Yi(p) = ¢3(p) for p € C¢. Finally,

define ¢ : J; C¢ — RY by putting ¥(p) = (¥1(p),...,¥w(p)). Now assume
z, € Cg,. Let f € Fy have parameters w. Then

n n
flzp) >t <= wao + Z waibd” + Z waiwyiat”

i=1 =1

n k
§v .j
+ 30 waawijaf al >y,

=1 j=1

= (w0 — yu Wi (2,) + Z waithYi(2,)
=1

n
+ sziwu"bﬁnﬁ(wu)

=1

n k
+ Z Z 'w2iwij"‘/)f:-2n+(j—l)k+i(wﬂ) >0

=1 j=1

= (w0 —yu)1(z,) + Y waithiga(z,)
i=1

+ 3 waiwritrpnti(Tp)

=1

n k
+ Z Z wziwij¢1+2n+(j-1)k+i(wu) >0

=1 j=1

for 1 < u < m. Hence we see that f induces a particular homogenously linearly sep-
arable dichotomy on the set {t)(z1),...,%(zm)} in RY. Moreover, this dichotomy
uniquely determines (z;y)N f+. Thus it follows from Cover’s formula (Cover 1965)

that
w-1 m—1 m wW-1
AF&"(”’;I‘/) <2 ; ( ; ) < (W:_—l)

But since this estimate will be valid for all the ~ equivalence classes, it follows that
Ap+(z;y) < K - (m/(W —1))W~1. Substituting (4), the result follows. m
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Appendix 3: Proof of theorem 4

First assume § = 0. Then v is the identity. Using lemma 5 to replace the VC
dimension bounds, its follows from the proof of theorem 7.6 in (Vapnik 1982) that
foralla<1

{E(’\ga L) — E()‘g, La z)

S n s @ <T ©

where T' = co[Ap+(2m)]2e=*"™/4, ¢y is a constant and Vz(a) < +/a. Vapnik uses
the value 8 for ¢y. However, theorem 1 of section 2 improves the bound of the
underlying theorem on uniform convergence by a factor of 4, so we may take ¢y = 2.
Assume z € Z™ is such that E(A\?,L) > eand E(AJ,L,z) < ve. Then E(\?,L,z) <
7E()‘ga L)a SO '
E()‘Za L) — E()‘g’ La z)

E()\g,L)

Now use (6), with /a substituted for V3(a) and 1 — v = 74/a. The condition

7 > 1 ensures that a = (1 — v)?/72 < 1. Finally, apply the formula v(4 | B) =

v(AN B)/v(A) for conditional probabilities, with the obvious choices for A and B.
Assume now 6 > 0. Write 87 = ¢)(A?). Then for all z,0

>1—7x

E(B7,L,2) = (1/m) Y pr(lyi — B2 (2:)l)

i=1

<(1/m) Z#L(L%f = AZ(za)| + A2 (=i) — B7 (=i)])
< (1/m)ZuL(|yz‘ — Al (zi)| + 6)

< (1/m) Y [un(lys = A(20)]) + 6]

=1

=E(A\],L,z)+¢é

In the same manner, one can show that E(A\J,L) < E(B7,L)+cb. Soif E(AZ,L) > ¢
and E(AZ,L,z) < ve — 2¢b, then E(B7,L) > ¢ —cb and E(B7,L,z) < ey —cbd <
v(e — ¢b). The result follows by applying the case § = 0 of the theorem to the NL
situation A’ obtained from A by replacing F' by (F') and A by 3, substituting e — cé
fore. m
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