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Abstract

We prove some reformulated and slightly sharpened versions of a theorem of
Vapnik on uniform convergence of estimated probabilities. This theorem has
applications, amongst other places, in the theory of generalization ability of

neural nets.

1. Introduction

Vapnik’s theorems on uniform convergence of estimated probabilities [7] form a
corner stone for many developments in learning theory (see eg. [1] [2] [3] [5]).
We will deal here with the theorem concerning relative deviations of estimated
probabilities, or more specifically, with the version appearing in [1]. The main
difference in form between that result and theorems 1 and 2 of this paper, is that
the theorems given here are expressed in terms of an arbitrary map ¢ instead of
a supremum operation or existence quantifier. Moreover, via the parameter a,
theorems 1 and 2 incorporate a certain type of possible a priori knowledge about
the map ¢ in their bounds. Interpreting in terms of learning (cf. section 4 below),
the parameter a can be viewed as measuring the amount a priori knowledge about
the generalizing ability of ¢.

Taking & = 1 in theorem 1 and translating into the usual form, we obtain
(corollary 1) an improvement on the bound given in [1] by a factor of two, and on
the bound given in [7] by a factor of four. Under a certain additional assumption,
corollary 3 further improves the bound by a factor of two.

The proofs we give follow the path of the original one in [7] closely. Concerning
lemma 2, it may be remarked that [1] contains a much shorter and more elegant
argument for bounding the quantity I';. However, the bound we obtain below (by
sharpening the original argument) turns out to be a factor of two better than the

-one in [1].

2. Notation

The letter p denotes power set, and card denotes cardinality. The composition of

a mapping ¢ with a mapping ¢ is denoted ¢ o ¢, ie. ¥ 0 ¢(£) = ¥(¢(£)). The
conditional probability of the event A given the event B is written P(A | B), where
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P is the probability measure. Define the step function x : R — R by x(t) =1 for
t >0 and x(t) =0 for t <0.

3. Basic results

From now on, let X and S be fixed sets, where X is equipped with a probability
measure P. The product measure on X™ defined by P will be denoted P™ for
each integer m > 1. Let v be a fixed probability measure on X™ X S such that the
marginal of v on X™ is P™. The elements ¢ = (z1,...,%m) € X™ will be referred
to as samples of length m. For each sample z € X™ and each r C X, let

mﬂrz{zllgzgmandx,Er},

and put
~ 1
P,(r) = — - card .
(r) — - car (zNr)

IfzeX™, HC p(X)and g € [0,1], we then define
(znH)A ={znr|reH and B,(r) > B}
Put A[Ig](:c) = card(z N H)Al. Finally, define

Al (m) = max AYl(2)

We write Aggl(:c) and Agg](m) for B < 0 simply as Ag(z) and Ag(m), respectively.
If z € X?™ is a sample of length 2m, we use the notation z = (zq4, 23), where
Za,26 € X™. For each r C X and z € X2™, let

Pza(r) — sz(r) )
V1-Bir) +2/m
A class R C p(X) of Borel sets is called well behaved if the two quantities

wf  Pir)—P()
P {§2§—1_¢—?@—>5}

PZ"‘{ flengr(z) > 5}

are both well defined for each § > 0. A map ¢ : X™ x § — p(X) is called good if
its image ¢(X™ x S) is well behaved, and the two quantities

[ Bu(d(a,0)) - P(d(2,0))
A(¢)‘”{ V1= P#(0) >6}

B(4) = P?™ Kyt(,o(2) > 6
(4) {32135 8+ (0)(%) }

K(2) =
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are both well defined for all § > 0, where ¢1 : X2™ x S — p(X) is the map given
by ¢7(2,0) = ¢(24,0). Let Sz, denote the group of permutations on {1,...,2m}.
If z € X*, we define 7(2) = (2r(1)s---»%r(2m))- If 2,2 € X*™ are such that
there is a 7 € Sy, with m(z) = 2/, then 2’ is called a permutation of z. Write

Son = {7!',}5:7?)' For given r C X, z € X?™ and § > 0, let

1 (2m)!
I = @) Z X[Kr(mi(2)) — 6]

Lemma 1. For all § >0, m > 4/62 and good ¢, we have A(¢) < 4B(4).

Lemma 2. Forall z € X*™, r C X, § >0 and m > 4/6%, we have

I’ < le—m62/4
=2

These lemmas are proved in appendices 1 and 2, respectively. From them, the basic
version of Vapnik’s theorem follows quite easily.

Theorem 1. Let o, € [0,1], § € (0,1), and let m > 4/62 be an integer. Assume
that ¢ : X™ x S — p(X) is good, and that P(¢(z,0)) > 1 — a for all (z,0). Then

A(¢) < 2Ae™™0" /4

where .
A = 7Ayxmxs)(2m) + (1 = 1AL (2m)

and 7 < min{1, 7A 4 xmxs) (4m)e“mﬂ2/2}.
Proof. Observe that ¢1(X?™ x §) = ¢(X™ x S). We have

BO< [ s xlK(z)- 8] dPP"(e)
X2m reg(XmxS)

Call the expression on the right hand side of the equation above C(¢). Let 7 €
Som be a permutation. Since the distribution P?™ on X?™ is invariant under
permutations, we get

(2m)!

1 2m
O(¢) = /X T D e, XU(2) = 8] AP,

Now let z € X2™ be fixed. We split up ¢(X™ x S) into equivalence classes defined
by the relation
T ~Ty = zNry =zMNrs.
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It is clear that the map r — K, (mi(z)) will be constant on each equivalence class
in #(X™ x S), for all permutations 7; € Szm. The number of equivalence classes
is Ag(xmxs)(2). Thus we may form a finite set repr(z) consisting of one element
from each equivalence class. Then

sup K, (mi(2))= sup Kp(mi(2)).
r€P(X ™ x.S) r€repr(z)

So

(2m)!
)= [ oy 3 s xIEm(=) =8 AP,

i=1 TErepr(z)
and thus (repacing the sup operation with a sum)
(2m)!
OB ND MR fo= DIRCILORNI EEORNC
(2 !
) rErepr(z)
Let Upaa € X2™ be the set of all 2 € X?™ such that there is an r € ¢(X™ X 5)
with P(r) > 1—a and P,(r) <1—a — . Let Ugooa be the complement of Upsq in

X?m_ Using the standard version of Vapnik’s theorem (theorem A.2, ch. 6 in [7]),
remembering that ¢(X™ x S) is assumed to be well behaved, we get

PP™ (Uyaq) < TAg(xmxs)(4m)e ™8 /2
Assume z € Ugooq. Then for all r € repr(z) we have ]3,(,2) >1—a—pf,so0
d < All~e=hl (o
card(repr(z)) < Ay xmys)(2m)

for all z € Uypoa. Using lemma 2 and substituting this in (1), we obtain

1 2
C(gﬁ) < 5/ A¢(me5)(2m)e—m6 /4 szm(z)
Usad

1 o _ m
+3 / AL bl @m)e™ ™8 /4 dpim (z)

good

1 &2 1 —a— —m
< 3TA(xmxs)(2m)e? /44 51— )AL bl (2m)e e /4
Combining this with lemma 1 and the definition of C(¢), we get the theorem. m

Remark. Instead of using the original theorem A.2 of [7], we could have used the
sharpened version given in [5]. However, the improvement this would lead to is not
essential in the present context.




Corollary 1 (Standard version). Let § > 0, and assume that R C p(X) is well
behaved. Then for all integers m > 4/6? we have

P,(r)— P(r)

7 {f‘éﬁ V1P

> 6} < 2Ag(2m)e~ ™5 /4

Proof. Let S = {0}, and let v be the unique measure on X™ x S such that the
marginal of v on X™ is P™. Let the map ¢ : X™ x S — R be such that the
following condition is satisfied: Given x € X™, if there is an r € R such that

P,(r) — P(r) o5

irm

Px(gﬁ(:l},())) — P(qﬁ(:l:,O)) > 6
\/1 - P(¢($30))

Since R is well behaved, ¢ is good. Clearly

| B = P()
Ald)=F {f‘éz‘% TP >5}

Now apply theorem 1, taking o = 1 and noting that (X™ X S)C R. m

then

4. Applications to learning

In this section, I will indicate how the preceeding formalism fits in with a special
type of learning situation. First I will make some additional definitions and prove
the relevant corollary of theorem 1. Then I will comment briefly on interpretation.
A more detailed discussion is given in [4].

Let F be some function class, and let § : FF — p(X)and A : X™ xS — F
be maps. We write A\(z,0) as A:. For all f € F, integers m > 1, £ € X™, and
t € [0,1], let

E(f,0,z) = (1/m)card{i |1 < i< m and z; ¢ 6(f)}

E(f,0) =1— P(8(f))
Q(ta 0) = V{E()\g,e,:l:) <t}

Corollary 2. Assume that §o X is good. Let o, 3 € [0,1], v € [0,1), € € (0,1), and
let m > 4/(e(1 — v)?) be an integer. If E(A7,0) < « for all (z,0) € X™ x S, then

2A
(e, Q)07

V{E(/\‘;,G) >e| E(A],0,z) < 'ye} <
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where A is as in theorem 1, with 6(F') substituted for ¢(X™ x §).

Proof. Let Q; and Q- be the events (relative to v) given by
Q1 ={E(A{,0) > €} Q2 = {E()\7,0,2) < ve}

Assume that (z,0) € X™ x § is such that @ and @, are both true. Let r = 6(A7).
Then P,(r) >1—~eand 1 — P(r) > ¢, so

Py(r) > (1—v)(1 = P(r)) + P(r)

In other words,

Py(r) = P(r) —
\/T——P—(;TZ(I—ﬂvl P(r)
> (1—7)Ve

Applying theorem 1 with ¢ = § o A and § = (1 — 7)+/, it follows that
V(Ql n Qz) _<_ 2A6_em(1_7)2/4

where A is as stated in the corollary. But then by the law of conditional probability,

‘ _v(@i1NQs) (@1 N Q2)
v(Q1 | Q2) = 1(Q2) = Q(ve, 6)

which gives the result. m

Now some words on interpretation. For convenience, I discuss this in terms of
learning with neural networks. Of course, the formalism can be interpreted in
terms of many other types of learning models as well.

There are two different classes of situations I want to distinguish between,
namely learning with and without noise.

Situation 1: Noiseless learning. In this case, we may call the set X the input
space. We assume that in addition we are given another set Y, called the output
space. The class F is the function class defined by the neural network architecture
we work with, and F' consists of functions f : X — Y. We imagine that we are given
a “target” fo : X — Y which we want the network to learn. The map A is called
the learning algorithm, and the map 6 may be called a learning criterion. The idea
is that the set 8(f) € X should be interpreted as the region of the input space
where f behaves “acceptably” relative to the target fo. Then E(f,0,z) represents
the error of f on z, and E(f) is the global error of f. Each £ € X™ can be viewed
as a “training sequence” of length m, and the set S represents possible stochastic
elements in the training process. The quantity €(t,6) is the probability that the
“learned function” AJ has error < t on the training sequence z. Corollary 2 says
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something about the probability that the learned function has small global error
given that is has small error on the training sequence.

Situation 2: Learning with noise. Here we take X =Y X Z, where Y and Z
represents the input and output space, respectively. Now F' consists of functions
f:Y — Z, and the probability measure P itself represents target. The set 6(f)
can be viewed as the region of the input-output space which is acceptable relative
to f. Otherwise, everything works roughly as in the noiseless situation.

5. Another variant

If one makes the additional assumption that em is an integer, the bounds given in
corollaries 1 and 2 can be improved by a factor of two. The proofs parallel the ones
given above, and I will only briefly indicate the differences.

If r C X is measurable, let P¥(r) be the smallest real number t such that
t > P(r) and tm is an integer. We call a class R C p(X) of Borel sets well
f-behaved if the two quantities

P,(r) — P¥(r)

Pm{f‘éﬁ N 0] >5}

sz{ f’lengr(Z) > 6}

are both well defined for all fixed § > 0. Also, a map ¢: X™ x S — p(X) is called
§-good if its image ¢(X™ x §) is well f-behaved, and the two quantities

[ P6(a,0) - P(O(a,0)
A9 = { V= Pz, 7) >5}

B(¢) = P*™ Kyr(zo(2)>6
(¢) {glég o+ (2,0) (%) }

are both well defined for all § > 0, where ¢* : X?>™ x S — p(X) is the associated
map given by ¢*(z,0) = ¢(24,0). Then we have the following result.

Theorem 2. Let «,3 € [0,1], § € (0,1), and let m > 4/§% be an integer. Assume
that ¢ : X™ x S — p(X) is §-good, and that P(¢(z,0)) > 1—a for all (x,0). Then

A¥(¢) < AemmE* /1,
where A is as in theorem 1.

Proof. I claim that in this case, for all § > 0, m > 4/6% and f-good ¢, we have
A(¢) < 2B(4). The proof of this is analogous to the proof of lemma 1, except for the
following: The probability of the event P, (r) < P¥(r) is equal to Pr(W < [mgq]),
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where W is binomially distributed (m,q) with ¢ = P(r), and < [mg]| means the
smallest integer > mg. It follows [6] that this probability is > 1/2, which gives the
claim. The rest of the proof is identical to the corresponding part of the proof of
theorem 1. m

Corollary 3. Let § > 0, and assume that R C p(X) is well §-behaved. Then for
all integers m > 4/6% we have

5\ D .
pm {sup Felr) = PA(r) > 5} < Ag(2m)e ™o /4

réR /1 — Pﬁ(r)

Proof. Analogous to the proof of corollary 1, using theorem 2 instead of theorem
1. m

Corollary 4. Assume that 6 o X is §-good. Let «, € [0,1], v € [0,1), € € (0,1),
and let m € {1,2,3,...} be such that m > 4/(e(1 — v)?) and em is an integer. If
E(X7,0) < a for all (xz,0) € X™ x S, then

A
O (re, B)een =78

V{E(/\;,H) >e| E(A],0,z) < fye} <
where A is as in theorem 1, with 0(F') substituted for ¢(X™ x 5).

Proof. As before, let Q1 and Q2 be the events given by @1 = {E(AZ,0) > €} and
Q2 = {E(A\2,0,2) < ve}. Assume that (z,0) € X™ x S is such that @1 and Q>
are both true. Then P,(8(\2)) > 1 — ye and 1 — P(8()\Z)) > e. But since em is
an integer, it follows that 1 — P#(#(\9)) > e. The rest is analogous to the proof of
corollary 2. m

Appendix 1: Proof of lemma 1

Since the marginal of v on X™ is P™, clearly

2m P, ($*(2,0)) — P(¢7(2,0))
A< P {iléfs’ =P (z0) 6}

Assume that z € X2™ is such that there is an o € S with r := ¢*(2,0) satisfying

P.()-P() _,

/1= P(r) ’

P, (r)> P(r)+6-4/1—P(r). (2)
8
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Since P,,(r) < 1, this implies
1—P(r) > §°. (3)

Assume that we also have X
P, (r) < P(r). | (4)

Proceeding as in [7], it can be shown by straightforward algebra that under the
conditions (2), (3) and (4), we have K,(z) > é.

Now let us examine the condition (4) more closely. When ¢% is given, the
event (4) is independent of the event (2) under the probability measure P?>™ on
X?™_ The reason is that (2) depends only on the first m coordinates of the sample
z, while (4) depends on the last m only. The probability of (4) in X?™ is equal to
Pr(W > [mgq]), where W is binomially distributed (m,q) with ¢ =1 — P(r), and
[mgq] means the smallest integer > mg. Since m > 4/6% and ¢ =1 — P(r) > 6% by
(3), we have m > 4/q. It follows from a result in [6] that the probability of (4) is
> 1/4, and the lemma follows. m

Appendix 2: Proof of lemma 2

We have N o
oy WD)
| D
where the sum runs through all k such that max(0,n — m) < k < min(n,m) and
k/m—(n—k)/m

V1—-n/2m+2/m )

The condition (5) is equivalent to

n (m [2m —n +4
k>§+7, where (=46 — 5

Put s = min(n,m) and T = max(0,n — m). Following [7], for T' < k < s we let
() Caci)
k)= ——"—=
=
okt (= BYm—k)
p(k) (k+1)(m+k+1—n)

d(k) = p(i)
=k

q(k)

Using that ¢(t) is monotone decreasing, we then get [7]
. s—1 3
d(k+1) < g(k) > p(i) < g(k) D p(i) = q(k)d(k).
1=k 1=k
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Now let
_{n/2+1 if n is even

n/2+1/2 ifnis odd.
Since m > 2/6%, we have § > 1/2/m. Also ¢ > §/2/m, so ( > 2/m. Thus

(m/2 > 1,s0 k >n/2+1 in the case we are considering. Thus we always have
k > j. By repetition of the argument above

k—1
d(k) < d(j) I T a3

1=

for k > j. Since the expression for p(k) is symmetric around n/2, it follows that
d(j) < 1/2. So

) < 1T a0
for k> j. Let t =k —(n —1)/2. Then
o(k) = (n+1)/2—t (m—(n—-1)/2)—1
(n+1)/24+t (m—(n—1)/2)+1t

By taking logarithms on both sides and using linear approximation at the origin,
we obtain [7] the bound

n—1 n—1

2
) =—K(k— "),

n+1+2m—n+1]

where K = 8(m+1)/[(n+1)(2m—n+1)]. This estimate holds for (n—1)/2 < k < s,
ie. it is sufficient for all the values of &k we are interested in. Assume first that n is
even, so that j =n/2+ 1. Then

1n(2d(k))<ln(HQ())—Zlnq()< —K- Z( n_1>

Ing(k) < -2 [

e B e E

=5 e-5r-1

Then assume n is odd, so that j =n/2+ 1/2. Then

ln(2d(k))<ln(HQ())—Zlnqw< —K- Z( n_1>

i=j i=j
k—(n— 1)/2 1

K n 1

R ey

; i=—o|(k-5) - g
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So In(2d(k)) < —(K/2)[(k —n/2)? — 1] for all k such that j < k < 5. Let k be the
smallest integer such that k —n/2 > (m/2. Then I = d(k), and therefore

In(2T) < —% [(%)2 - 1] = —%(szz —4).

Substituting for K and ¢, we now get

m+1
(n+1)(2m—-—n+1)
_ m+1
T (n+1D)2m—-n+1)

Since m > 4/6%, we have 3mé?/2 > 6 > 4. So

In(2T") < — [(2m —n +4)mé?/2 — 4]

[(2m — n + 1)mé® /2 4 3mé? /2 — 4]

m+1 B (m + 1)mé?
(n+1)2m—-n+1) 2(n+1)

The expression on the right hand side reaches its maximum for n = 2m, so

_(m+1)m62) < L ms?/4.

7 < - e
’<2eXp< 2em+1) ) <2

In(2T) < — [(2m —n+1)mé?/2] =
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