States and shifts on infinite free products of C^* -algebras

Erling Størmer

Department of Mathematics
University of Oslo
P. O. Box 1053 Blindern
N-0316 Oslo, Norway

Dedicated to Richard V. Kadison on occasion of his 70th birthday

Abstract. We study quasi equivalence of states of free products of C^* -algebras together with free shifts, compute their entropy and show a strong form of unique ergodicity.

1 Introduction

Let for each element ι in index set I, A_{ι} be a unital C^* -algebra and ϕ_{ι} a state on A_{ι} . Let $(A, \phi) = (*A_{\iota}, *\phi_{\iota})_{\iota \in I}$ be the corresponding free product C^* -algebra as defined in [6, 1.5]. In the present paper we shall study states on A, and if $I = \mathbf{Z}$ and all the pairs $(A_{\iota}, \phi_{\iota})$ are equal, the shift automorphism on A arising from the shift $\iota \to \iota + 1$. Our results will, except for those in the last section, extend those in [5] for the II₁-factor $L(\mathbf{F}_{\infty})$ defined by the left regular representation of the free group \mathbf{F}_{∞} in infinite number of generators. Our main result is for general infinite products and shows the existence of a universal function $r:(0,1]\to\mathbf{N}$ such that whenever (A,ϕ) is as above and ω is a state whose GNS-representation is quasi contained in that of ϕ , then there is for each $\varepsilon > 0$ a subset $J \subset I$ of cardinality card $J \leq r(\varepsilon)$, such that $\|(\phi - \omega)|_{A_{\iota}}\| < \varepsilon$ for all $\iota \notin J$.

In the two last sections we assume $I = \mathbf{Z}$ and all the $(A_{\iota}, \phi_{\iota})$ are equal and let α denote the free shift of A which arises as mentioned above from the shift on \mathbf{Z} . Analogously to the free shift on $L(\mathbf{F}_{\infty})$ we use the above result to show that the entropy in the sense of Connes, Narnhofer and Thirring [1], called CNT-entropy in the sequel, of α with respect to the invariant state ϕ is zero. Then in the last section we show that α satisfies a very strong unique

The present work is partially supported by the Norwegian Science Foundation.

ergodicity property. Namely, if (B, β, μ) is a unital C^* -dynamical system and λ is an $\alpha \otimes \beta$ -invariant state on $A \otimes B$ such that $\lambda(1 \otimes b) = \mu(b)$ for $b \in B$, then $\lambda = \phi \otimes \mu$. An immediate corollary of this is that the entropy of Sauvageot and Thouvenot of α with respect to ϕ is also zero.

We remark that it is not necessary for the above to restrict attention to the free shift. Our arguments work for an arbitrary infinite index set I and an automorphism arising from a bijection σ of I such that for all finite subsets $J \subset I$ there exists $p \in \mathbb{N}$ such that the sets $\sigma^{pn}(J), n \in \mathbb{N}$, are all disjoint.

We refer the reader to the book [6] of Voiculescu, Dykema and Nica for the theory of free products of C^* -algebras.

2 States on free products

Let I be an index set, and for each $\iota \in I$ let A_{ι} be a unital C^* -algebra and ϕ_{ι} a state on A_{ι} . Following [6, 1.5.1] we shall define the free product $(A, \phi) = (*A_{\iota}, *\phi_{\iota})_{\iota \in I}$ with its canonical cyclic representation π .

Let $(\pi_{\iota}, \mathcal{H}_{\iota}, \xi_{\iota})$ be the GNS-representation of $\phi_{\iota}, \iota \in I$. Let $\mathcal{H}_{\iota}^{\circ} = \mathcal{H}_{\iota} \ominus \mathbf{C} \xi_{\iota}$, and $(\mathcal{H}, \xi) = *_{\iota \in I}(\mathcal{H}_{\iota}, \xi_{\iota})$. Put

$$\mathcal{H}(\iota) = \mathbf{C}\xi \oplus \bigoplus_{n \geq 1} (\bigoplus_{\substack{\iota_1 \neq \iota_2 \neq \cdots \neq \iota_n \\ \iota_1 \neq \iota_2 \neq \cdots}} \mathcal{H}_{\iota_1}^{\circ} \otimes \cdots \otimes \mathcal{H}_{\iota_n}^{\circ}).$$

We have unitary operators $V_{\iota}: \mathcal{H}_{\iota} \otimes \mathcal{H}(\iota) \to \mathcal{H}$ defined by

$$\xi_{\iota} \otimes \xi \to \xi
\mathcal{H}_{\iota}^{\circ} \otimes \xi \to \mathcal{H}_{\iota}^{\circ} \text{ by } \eta \otimes \xi \to \eta
\xi_{\iota} \otimes (\mathcal{H}_{\iota_{1}}^{\circ} \otimes \cdots \otimes \mathcal{H}_{\iota_{n}}^{\circ}) \to \mathcal{H}_{\iota_{1}}^{\circ} \otimes \cdots \otimes \mathcal{H}_{\iota_{n}}^{\circ} \text{ by } \xi_{\iota} \otimes \eta \to \eta, \iota_{1} \neq \iota
\mathcal{H}_{\iota}^{\circ} \otimes (\mathcal{H}_{\iota_{1}}^{\circ} \otimes \cdots \otimes \mathcal{H}_{\iota_{n}}^{\circ}) \to \mathcal{H}_{\iota}^{\circ} \otimes \mathcal{H}_{\iota_{1}}^{\circ} \otimes \cdots \otimes \mathcal{H}_{\iota_{n}} \text{ by } \psi \otimes \eta \to \psi \otimes \eta, \iota_{1} \neq \iota$$

The representation $\lambda_{\iota}: A_{\iota} \to B(\mathcal{H})$ is defined by

$$\lambda_{\iota}(a) = V_{\iota}(\pi_{\iota}(a) \otimes 1_{\mathcal{H}(\iota)})V_{\iota}^{*}, \ a \in A_{\iota}.$$

The free product representation $\pi = *\pi_{\iota} : *A_{\iota} \to B(\mathcal{H})$ is the *-homomorphism of the free product C^* -algebra $(*A_{\iota}, *\lambda_{\iota}) \to B(\mathcal{H})$, using the universal property of the free product. When we write $(A, \phi) = (*A_{\iota}, *\phi_{\iota})_{\iota \in I}$ we shall mean $*A_{\iota}$ in the representation π i.e. we shall mean $\pi(*A_{\iota}) \subset B(\mathcal{H})$.

We can now state the main result of this section, which is a direct generalization of [5, Lem. 2.4]. Since C^* -algebras isomorphic to the scalars are

redundant in the definition of free products, we shall in order to avoid complications assume the C^* -algebras in the product to have linear dimension at least 2. Hence we shall exclude homomorphisms in the theorem. We denote by |J| the cardinality of a set J.

Theorem 1. For each $\varepsilon \in (0,1]$ let $r(\varepsilon) = [100\varepsilon^{-2}] + 1$. Then the following holds. Let $(A, \phi) = (*A_{\iota}, *\phi_{\iota})_{\iota \in I}$ be a free product of unital C^* -algebras A_{ι} with states ϕ_{ι} which are not homomorphisms. Suppose ω is a state of A of the form $\omega = \omega' \circ \pi$ with ω' a normal state on $\pi(A)''$. Then for each $\varepsilon \in (0,1]$ there exists a subset $J = J(\omega, \varepsilon) \subset I$ with $|J| \leq r(\varepsilon)$ such that

$$\|(\phi - \omega)|_{A_{\iota}}\| < \varepsilon \quad \forall \iota \notin J, \iota \in I.$$

Proof. We first assume the state ω' is a vector-state ω_{η} . We use the convention that whenever we write $J \subset I$ we mean a finite ordered subset of I of the form

$$J = \{\iota_1, \iota_2, \cdots, \iota_n\}, \ \iota_1 \neq \iota_2 \neq \cdots \neq \iota_n.$$

Here n = |J|. For each $\iota \in I$ we let

$$I(\iota) = \{ J \subset I : \iota_1 = \iota \} .$$

Since each vector ξ_{ι} is cyclic for $\pi_{\iota}(A_{\iota})$ we may (by approximation) assume

$$\eta = \lambda \xi + \sum_{\iota \in I} \sum_{J \in I(\iota)} \eta_J,$$

where

$$\eta_J = \eta_{\iota_1} \otimes \eta_{\iota_2} \otimes \cdots \otimes \eta_{\iota_n}, \ J = \{\iota_1, \cdots, \iota_n\},$$

and

$$\eta_{\iota_k} = \pi_{\iota_k}(a^J_{\iota_k})\xi_{\iota_k}, \qquad k = 1, \dots, n, \ a^J_{\iota_k} \in A_{\iota_k}.$$

Furthermore, $\eta_{\iota_k} \in \mathcal{H}_{\iota_k}^{\circ}$, so that $\phi_{\iota_k}(a_{\iota_k}^J) = 0$, and we have that all vectors η_J are mutually orthogonal since they are the orthogonal projections of η on the Hilbert spaces $\mathcal{H}_{\iota_1}^{\circ} \otimes \cdots \otimes \mathcal{H}_{\iota_n}^{\circ}$, hence in particular, if J = K then the corresponding vectors η_J and η_K coincide.

From now on we fix an index $\iota_0 \in I$, and let $a \in A_{\iota_0}$ be self-adjoint with $\phi(a) = \phi_{\iota_0}(a) = 0$. Denote by $\lambda_0 = \lambda_{\iota_0}$, $\pi_0 = \pi_{\iota_0}$, $\xi_0 = \xi_{\iota_0}$, $V_0 = V_{\iota_0}$. Computing we find

$$\omega(a) = |\lambda|^{2} \phi(a) + 2Re\lambda \sum_{\iota \in I} \sum_{J \in I(\iota)} (\lambda_{0}(a)\xi, \eta_{J})
+ \sum_{\iota} \sum_{J \in I(\iota)} (\lambda_{0}(a)\eta_{J}, \eta_{J}) + \sum_{\iota, \rho \in I} \sum_{J \in I(\iota)} \sum_{\substack{K \in I(\rho) \\ K \neq J}} (\lambda_{0}(a)\eta_{J}, \eta_{K})
= \sum_{\iota} \sum_{J \in I(\iota)} (\lambda_{0}(a)\eta_{J}, \eta_{J}) + 2Re\lambda \sum_{\iota \in I} \sum_{J \in I(\iota)} (\pi_{0}(a) \otimes 1(\xi_{0} \otimes \xi), V_{0}^{*}\eta_{J})
+ \sum_{\iota, \rho \in I} \sum_{J \in I(\iota)} \sum_{\substack{K \in I(\rho) \\ K \neq J}} ((\pi_{0}(a) \otimes 1)V_{0}^{*}\eta_{J}, V_{0}^{*}\eta_{K}).$$

We shall compute the scalar products case by case. We use the notation when |J| > 1, $J = \{\iota_1, \dots, \iota_n\}$.

$$\eta_J^1 = \eta_{\iota_2} \otimes \eta_{\iota_3} \otimes \cdots \otimes \eta_{\iota_n}.$$

(1) $J \in I(\iota_0)$. Then

$$(\pi_0(a) \otimes 1(\xi_0 \otimes \xi), V_0^* \eta_J) = \begin{cases} (\pi_0(a)\xi_0 \otimes \xi, \pi_0(a_{\iota_0}^J)\xi_0 \otimes \eta_J^1) & \text{if } |J| > 1 \\ \phi(a_{\iota_0}^{J^*}a) & \text{if } |J| = 1 \end{cases}$$

$$= \begin{cases} 0 & \text{if } |J| > 1 \\ \phi(a_0^*a) & \text{if } |J| = 1, \end{cases}$$

where we denote by a_0 the element $a_{\iota_0}^J \in A_{\iota_0}$ when $J = \{\iota_0\}$. We next consider

$$X = ((\pi_0(a) \otimes 1)V_0^* \eta_J, V_0^* \eta_K) = (\lambda_0(a)\eta_J, \eta_K).$$

(2) $J = K = \{\iota_0\}$. Then as in (1)

$$X = \phi(a_0^* a a_0).$$

(3)
$$J = \{\iota_0\}, K \in I(\iota_0), |K| > 1$$
. Then

$$X = (\pi_0(a) \otimes 1(\eta_{\{\iota_0\}} \otimes \xi), \eta_K) = (\pi_0(a)\pi_0(a_0)\xi_0, \pi_0(a_{\iota_0}^K)\xi_0)(\xi, \eta_K^1) = 0$$

(4)
$$J, K \in I(\iota_0), |J| > 1, K = {\iota_0}.$$
 Then as in (3) $X = 0$.

(5)
$$J, K \in I(\iota_0), |J| > 1, |K| > 1$$
. Then $V_0^* \eta_J = \eta_J, V_0^* \eta_K = \eta_K$. Thus

$$X = (\pi_0(a)\pi_0(a_{\iota_0}^J)\xi_0, \pi_0(a_{\iota_0}^K)\xi_0)(\eta_J^1, \eta_K^1)$$

$$= \phi(a_{\iota_0}^{K^*}aa_{\iota_0}^J)(\eta_J^1, \eta_K^1)$$

$$= \begin{cases} 0 & \text{if } J \neq K \\ \phi(a_{\iota_0}^{J^*}aa_{\iota_0}^J)||\eta_J^1||^2 & \text{if } J = K. \end{cases}$$

(6)
$$J = \{\iota_0\}, K \notin I(\iota_0)$$
. Then

$$X = (\pi_0(a) \otimes 1\eta_{\{\iota_0\}} \otimes \xi, \xi_0 \otimes \eta_K) = 0.$$

(7)
$$J \notin I(\iota_0), K = {\iota_0}$$
. Then similarly $X = 0$.

(8)
$$J \in I(\iota_0), |J| > 1, K \notin I(\iota_0)$$
. Then

$$X = ((\pi_0(a) \otimes 1)\eta_J, \xi_0 \otimes \eta_K)$$
$$= \phi(aa_{lo}^J)(\eta_J^1, \eta_K).$$

(9) $J \notin I(\iota_0), K \in I(\iota_0), |K| > 1$. Then as in (8)

$$X = \phi(a_{\iota_0}^{K^*} a)(\eta_J, \eta_K^1).$$

(10) $J, K \notin I(\iota_0)$. Then since $\phi(a) = 0$,

$$X = (\pi_0(a) \otimes 1(\xi_0 \otimes \eta_J), \xi_0 \otimes \eta_K)$$
$$= \phi(a)(\eta_J, \eta_K)$$
$$= 0.$$

Summing up (1)–(10) we obtain

$$\omega(a) = \phi(a_0^* a a_0) + \sum_{\substack{J \in I(\iota_0) \\ |J| > 1}} \phi(a_{\iota_0}^{J^*} a a_{\iota_0}^{J}) \|\eta_J^1\|^2$$

$$+ 2Re\lambda \phi(a_0^* a) +$$

$$+ \sum_{\substack{J \in I(\iota_0) \\ |J| > 1}} \sum_{\iota \neq \iota_0} \sum_{K \in I(\iota)} \phi(a a_{\iota_0}^{J}) (\eta_J^1, \eta_K)$$

$$+ \sum_{\substack{K \in I(\iota_0) \\ |K| > 1}} \sum_{\iota \neq \iota_0} \sum_{J \in I(\iota)} \phi(a_{\iota_0}^{K^*} a) (\eta_J, \eta_K^1) .$$

If $J = \{\iota_1, \ldots, \iota_n\}$ put $J_1 = \{\iota_2, \ldots, \iota_n\}$. Then $(\eta_J^1, \eta_K) = 0$ unless $K = J_1$. We therefore have for $||a|| \leq 1$,

$$\begin{aligned} |\omega(a)| &\leq 2|\lambda| \|\eta_{\{\iota_{0}\}}\| + \|\eta_{\{\iota_{0}\}}\|^{2} + \sum_{\substack{J \in I(\iota_{0}) \\ |J| > 1}} \|\eta_{J}\|^{2} \\ &+ \sum_{\substack{J \in I(\iota_{0}) \\ |J| > 1}} |\phi(a_{\iota_{0}}^{J})| \|\eta_{J}^{1}\| \|\eta_{J_{1}}\| + \sum_{\substack{J \in I(\iota_{0}) \\ |J| > 1}} |\phi(a_{\iota_{0}}^{J^{*}})| \|\eta_{J_{1}}\| \|\eta_{J}^{1}\| \\ &\leq 2|\lambda| \|\eta_{\{\iota_{0}\}}\| + \sum_{J \in I(\iota_{0})} \|\eta_{J}\|^{2} + 2 \sum_{\substack{J \in I(\iota_{0}) \\ I \neq I, I \neq I}} \|\eta_{J}\| \|\eta_{J_{1}}\|, \end{aligned}$$

where the last term arises from the fact that

$$|\phi(a_{\iota_0}^J)(\eta_J^1,\eta_K)| \le ||\eta_{\iota_0}^J|| ||\eta_J^1|| ||\eta_K|| = ||\eta_J|| ||\eta_K||.$$

Since $\sum_{J \notin I(\iota_0)} ||\eta_J||^2 \le 1$ we thus have from the Cauchy-Schwarz inequality and the fact that the sum $||\eta_{J_1}||^2$ is the same as over K's with $K \notin I(\iota_0)$,

$$|\omega(a)| \leq 2|\lambda| \|\eta_{\{\iota_0\}}\| + \sum_{J \in I(\iota_0)} \|\eta_J\|^2 + 2\left(\sum_{\substack{J \in I(\iota_0) \\ |J| > 1}} \|\eta_J\|^2\right)^{1/2} \left(\sum_{\substack{J \in I(\iota_0) \\ |J| > 1}} \|\eta_{J_1}\|^2\right)^{1/2}$$

$$\leq 2|\lambda| (\|\eta_{\{\iota_0\}}\|^2)^{1/2} + 3\left(\sum_{J \in I(\iota_0)} \|\eta_J\|^2\right)^{1/2}$$

$$\leq 5\left(\sum_{J \in I(\iota_0)} \|\eta_J\|^2\right)^{1/2}.$$

Note that we have

(12)
$$1 = \|\eta\|^2 = |\lambda|^2 + \sum_{\iota \in I} \sum_{J \in I(\iota)} \|\eta_J\|^2.$$

If $C_{\iota} \geq 0 \ \forall \iota \in I$ and $\sum_{\iota \in I} C_{\iota} \leq 1$, then given $\delta > 0$ and $r(\delta) = [100\delta^{-2}] + 1$ then there exists a subset J of I with $|J| \leq r(\delta)$ such that

$$C_{\iota} < \frac{\delta^2}{100}, \qquad \iota \notin J.$$

Thus by (12) there is a subset $J(\omega, \varepsilon)$ of I with $|J(\omega, \varepsilon)| \leq r(\varepsilon)$ such that

$$\sum_{J \in I(\iota)} \|\eta_J\|^2 < \frac{\varepsilon^2}{100} \quad \text{for} \quad \iota \notin J(\omega, \varepsilon)$$

In particular by (11)

$$|\omega(a)| < \varepsilon/2$$
 for $\iota_0 \notin J(\omega, \varepsilon)$.

We have thus shown the essence of the theorem in the case $\omega = \omega' \circ \pi$ with ω' a vector state. For the general case let $\xi_i \in \mathcal{H}$, $\|\xi_i\| = 1$, $i \in \mathbf{N}$. Let $\alpha_i \geq 0$, $\sum_{i=1}^{\infty} \alpha_i = 1$, $i \in \mathbf{N}$. Put $\omega = \sum_{i=1}^{\infty} \alpha_i \omega_{\xi_i} \circ \pi$, i.e. $\omega' = \sum_{i=1}^{\infty} \alpha_i \omega_{\xi_i}$. Then

$$1 = \|\omega(1)\| = \sum_{i=1}^{\infty} \alpha_i \|\xi_i\|^2.$$

Write as before

$$\xi_i = \lambda_i \xi + \sum_{\iota \in I} \sum_{J_i \in I(\iota)} \eta_{J_i}.$$

Thus

$$1 = \|\xi_i\|^2 = |\lambda_i|^2 + \sum_{\iota \in I} \sum_{J_i \in I(\iota)} \|\eta_{J_i}\|^2,$$

hence

$$1 = \sum_{i} \alpha_{i} |\lambda_{i}|^{2} + \sum_{\iota \in I} \sum_{i} \alpha_{i} \sum_{J_{i} \in I(\iota)} ||\eta_{J_{i}}||^{2}.$$

As above given $\varepsilon > 0$ there is $J = J(\omega, \varepsilon) \subset I$ with $|J| \leq r(\varepsilon)$ such that

$$\sum_{i} \sum_{J_i \in I(\iota)} \alpha_i \|\eta_{J_i}\|^2 < \frac{\varepsilon^2}{100}, \qquad \iota \notin J.$$

Therefore, if $a \in A_{\iota_0}$, $\iota_0 \notin J$, $\phi(a) = 0$, we have by (11)

$$\begin{aligned} |\omega(a)| &\leq \sum_{i} \alpha_{i} |\omega_{\xi_{i}}(\pi(a))| \\ &\leq 5||a|| \sum_{i} \alpha_{i} \left(\sum_{J_{i} \in I(\iota_{0})} ||\eta_{J_{i}}||^{2} \right)^{\frac{1}{2}} \\ &= 5||a|| \sum_{i} \alpha_{i}^{\frac{1}{2}} \left(\sum_{J_{i} \in I(\iota_{0})} \alpha_{i} ||\eta_{J_{i}}||^{2} \right)^{\frac{1}{2}} \\ &\leq 5||a|| \left(\sum_{i} \alpha_{i} \right)^{\frac{1}{2}} \left(\sum_{i} \sum_{J_{i} \in I(\iota_{0})} \alpha_{i} ||\eta_{J_{i}}||^{2} \right)^{\frac{1}{2}} \\ &= 5||a|| \left(\sum_{i} \sum_{J_{i} \in I(\iota_{0})} \alpha_{i} ||\eta_{J_{i}}||^{2} \right)^{\frac{1}{2}} \\ &< 5||a|| \frac{\varepsilon}{10} \\ &= \varepsilon/2||a||. \end{aligned}$$

Finally, if $a \in A_{\iota_0}$, $a = \phi(a)1 + a_0$ with $\phi(a_0) = 0$, $a_0 \in A_{\iota_0}$. Then $||a_0|| \le ||a|| + |\phi(a)| \le 2||a||$. Thus if $\iota_0 \notin J$

$$|(\phi - \omega)(a)| = |\omega(a_0)| < \frac{\varepsilon}{2} ||a_0|| \le \varepsilon ||a||.$$

Thus
$$\|(\phi - \omega)|_{A_{\iota_0}}\| < \varepsilon \text{ if } \iota_0 \notin J(\omega, \varepsilon) = J.$$
 QED.

Following [1] if B is a C*-algebra and μ a state of B we denote by $||x||_{\mu} = \mu(x^*x)^{1/2}$. Then $||x||_{\mu} \leq ||x||$. If A is another C*-algebra and $\rho: A \to B$ a linear map we put

$$\|\rho\|_{\mu} = \sup_{\|x\| \le 1} \|\rho(x)\|_{\mu}.$$

Corollary 1. Let (A, ϕ) , r be as in Theorem 1. Let B be a finite dimensional Abelian C^* -algebra generated by its minimal projections p_1, \dots, p_n . Suppose $P: A \to B$ is a positive unital linear map, so that $P(x) = \sum_{i=1}^n \psi_i(x) p_i$

with ψ_i a state of A. Suppose μ is a state of B such that $\mu \circ P = \phi$. Then given $\varepsilon > 0$ there exists $J = J(P, \varepsilon) \subset I$ with $|J| \leq r(\varepsilon)$ such that

$$||P(x) - \phi(x)1||_{\mu} < \varepsilon ||x||, \qquad x \in A_{\iota}, \ \iota \notin J.$$

Proof. We have

$$\phi(x) = \mu \circ P(x) = \sum_{i=1}^{n} \psi_i(x)\mu(p_i).$$

Thus if $\mu(p_i) \neq 0$, $\psi_i \leq \mu(p_i)^{-1}\phi$, so that $\psi_i = \omega_{\xi_i} \circ \pi$ with ξ_i a unit vector in \mathcal{H} . Therefore, if $a \in A_{\iota_0}$, is self-adjoint and $\phi(a) = 0$, it follows by (11) that

$$|\psi_i(a)|^2 \le 25 \sum_{J_i \in I(\iota_0)} ||\eta_{J_i}||^2,$$

where the notation is as in the proof of Theorem 1 and $\xi_i = \lambda_i \xi + \sum_{\iota \in I} \sum_{J_i \in I(\iota)} \eta_{J_i}$. Given $\varepsilon > 0$ choose $J = J(P, \varepsilon) \subset I$ with $|J| \leq r(\varepsilon)$ such that

$$\sum_{i} \left(\sum_{J_{i} \in I(\iota_{0})} \|\eta_{J_{i}}\|^{2} \right) \mu(p_{i}) < \frac{\varepsilon^{2}}{100} \quad \text{for} \quad \iota_{0} \notin J.$$

Thus we have for $\iota_0 \notin J$, since the cases $\mu(p_i) = 0$ don't matter,

$$\sum_{i} \psi_{i}(a)^{2} \mu(p_{i}) \leq 25 \|a\|^{2} \sum_{i} \left(\sum_{J_{i} \in I(\iota_{0})} \|\eta_{J_{i}}\|^{2} \right) \mu(p_{i})$$

$$< 25 \|a\|^{2} \cdot \frac{\varepsilon^{2}}{100}$$

$$= \|a\|^{2} (\varepsilon/2)^{2}.$$

Since $\phi(a) = 0$ and a in self-adjoint,

$$||P(a) - \phi(a)1||_{\mu}^{2} = \sum_{i=1}^{n} \psi_{i}(a)^{2} \mu(p_{i}) < ||a||^{2} \left(\frac{\varepsilon}{2}\right)^{2}.$$

For general self-adjoint $a \in A_{\iota_0}$, $a = \phi(a) + a_0$, $\phi(a_0) = 0$. Hence if $\iota_0 \notin J$,

$$||P(a) - \phi(a)1||_{\mu} = \mu((\phi(a) + P(a_0) - \phi(a))^2)^{\frac{1}{2}}$$

$$= \mu(P(a_0)^2)^{\frac{1}{2}}$$

$$< ||a_0|| \varepsilon/2$$

$$\leq 2||a|| \varepsilon/2$$

$$= \varepsilon ||a||.$$

The conclusion follows.

QED

3 Entropy of free shifts

In [5] it was shown that the entropy of the free shift on $L(\mathbf{F}_{\infty})$ is zero. We shall now generalize this result to arbitrary free shifts.

Theorem 2. Let A_0 be a unital C^* -algebra and ϕ_0 a state of A_0 . Let $A_i = A_0$, $\phi_i = \phi_0$, $i \in \mathbf{Z}$, and let $(A, \phi) = (*A_i, *\phi_i)_{i \in \mathbf{Z}}$. Let α be the free shift on A, i.e. α is the automorphism of A arising from the shift $n \to n+1$ on \mathbf{Z} . Then the CNT-entropy of α with respect to ϕ , $h_{\phi}(\alpha) = 0$.

Proof. If ϕ_0 is a homomorphism each ϕ_i can be identified with its GNS-representation, hence the GNS-representation of ϕ is one dimensional, so ϕ is a homomorphism, thus $h_{\phi}(\alpha) = 0$. We therefore assume each ϕ_i is not a homomorphism.

Let C be a finite dimensional C^* -algebra and $\gamma: C \to A$ a unital completely positive map. Let $\varepsilon > 0$ and $r = r(\varepsilon/2)$ as in Theorem 1. Choose $k \in \mathbb{N}$ so large that

$$k^{-1}rS(\phi \circ \gamma) < \varepsilon$$
.

Let B be a finite dimensional Abelian C^* -algebra generated by its minimal projections p_1, \dots, p_n . Suppose $P: A \to B$ is a positive unital map and μ a state of B such that $\mu \circ P = \phi$. For each $i \in \{1, \dots, n\}$ there is a state ψ_i of A such that

$$P(x) = \sum_{i=1}^{n} \psi_i(x) p_i.$$

Then

$$\phi = \mu \circ P = \sum_{i=1}^{n} \mu(p_i)\psi_i,$$

is ϕ written as a convex combination of states. In the notation of [1] we have

$$\varepsilon_{\mu}(P) = \sum_{i=1}^{n} \mu(p_i) S(\phi|\phi_i)$$

$$s_{\mu}(P) = S(\mu) - \varepsilon_{\mu}(P).$$

Since $A = *A_i$ and C is finite dimensional there is $n_0 \in \mathbb{N}$ such that if $x \in C$ then there is $a \in \widetilde{A}_0 = {*n_0 \atop i=-n_0} A_i$ such that $\|\gamma(x) - a\| < \varepsilon/4\|x\|$, and $\|a\| \le \|x\|$. Let $p = 2n_0 + 1$ and $\widetilde{A}_m = \alpha^{mp}(\widetilde{A}_0)$, $\widetilde{\phi}_0 = {*n_0 \atop i=-n_0} \phi_i$, $\widetilde{\phi}_m = \widetilde{\phi}_0 \circ \alpha^{mp}$. By distributivity [6, 2.5.5] and the uniqueness of the GNS-representation of ϕ , we can write (A, ϕ) as the free product

$$(A,\phi) = (*\tilde{A}_m, *\tilde{\phi}_m)_{m \in \mathbf{Z}}.$$

Furthermore, α^p acts as a free shift on A.

For each $j \in \{0, \dots, k-1\}$ let B_j be a C^* -subalgebra of B, and let $E_j : B \to B_j$ be the unique μ -invariant conditional expectation of B onto

 B_j . Then E_j satisfies the Cauchy-Schwarz inequality $E_j(x^*x) \geq E_j(x)^*E_j(x)$. If Φ is a self-adjoint linear map of a C^* -algebra D into B, we have for $y \in D$,

$$||E_{j} \circ \Phi(y)||_{\mu}^{2} = \mu(E_{j}(\Phi(y^{*}))E_{j}(\Phi(y)))$$

$$\leq \mu(E_{j}(\Phi(y^{*})\Phi(y)))$$

$$= \mu(\Phi(y)^{*}\Phi(y))$$

$$= ||\Phi(y)||_{\mu}^{2}.$$

Now put

$$P_j = E_j \circ P \circ \alpha^{jp} \circ \gamma : C \to B_j.$$

Choose the set $J \subset \mathbb{N}$ with $|J| \leq r(\varepsilon/2)$ corresponding to P as in Corollary 1. Let $J_0 = J \cap \{0, 1, \dots, k\}$. Then

$$||P(x) - \phi(x)1||_{\mu} < \varepsilon/2||x||, \ x \in (\tilde{A}_j), j \notin J_0.$$

For $x \in C$, $||x|| \le 1$ choose $y \in \tilde{A}_j$ such that $||y|| \le 1$, and

$$||y - \alpha^{jp} \circ \gamma(x)|| < \varepsilon/4.$$

Then we have by the above estimates applied to $\Phi_j = (P - \phi) \circ \alpha^{jp} \circ \gamma$,

$$||P_{j}(x) - \phi \circ \gamma(x)||_{\mu} = ||E_{j} \circ P \circ \alpha^{jp} \circ \gamma(x) - E_{j} \circ \phi \circ \alpha^{jp} \circ \gamma(x)||_{\mu}$$

$$\leq ||(P - \phi) \circ \alpha^{jp} \circ \gamma(x)||_{\mu}$$

$$\leq ||(P - \phi)(y)||_{\mu} + ||(P - \phi)(y - \alpha^{jp}\gamma(x))||_{\mu}$$

$$< \varepsilon/2||y|| + \varepsilon/2||x||$$

$$< \varepsilon,$$

for $j \notin J_0$, since $||P - \phi||_{\mu} \le 2$.

If we in the notataion of [1, VI.2] let $\rho = P_j$, $\rho' = \phi \circ \gamma$ then we have for $j \notin J_0$

(13)
$$|s_{\mu}(P_j) - s_{\mu}(\phi \circ \gamma)| \leq \delta(n, d, \varepsilon),$$

where d is the linear dimension of C and $\lim_{\varepsilon \to 0} \delta(n, d, \varepsilon) = 0$. By definition the entropy of the Abelian model (B, E_j, P, μ) for $(A, \phi, \gamma, \gamma \circ \alpha^p, \dots, \gamma \circ \alpha^{p(k-1)})$ is

$$S(\mu | \bigvee_{0}^{k-1} B_j) - \sum_{j=0}^{k-1} s_{\mu}(P_j).$$

By subadditivity of S and [1, III.3] we therefore have that the entropy of the Abelian model is smaller than

$$\begin{split} &S(\mu|\bigvee_{j\in J_{0}}B_{j})+S(\mu|\bigvee_{j\notin J_{0}}B_{j})-\sum_{j\in J_{0}}s_{\mu}(P_{j})-\sum_{j\notin J_{0}}s_{\mu}(P_{j})\\ &=(S(\mu|\bigvee_{j\in J_{0}}B_{j})-\sum_{j\in J_{0}}s_{\mu}(P_{j}))+(S(\mu|\bigvee_{j\notin J_{0}}B_{j})-\sum_{j\notin J_{0}}s_{\mu}(P_{j}))\\ &\leq\sum_{j\in J_{0}}S(\phi\circ\gamma^{jp})+\text{ Entropy of Abelian model }(B,E_{j},P,\mu;\ j\notin J_{0}). \end{split}$$

As in the proof [1, VI. 3] it follows by (13) that the entropy of the Abelian model $(B, E_j, P, \mu; j \notin J_0)$ differs from that defined by $\phi \circ \gamma$ by at most $(k - |J_0|)\varepsilon' \leq k\varepsilon'$, where $\varepsilon' > 0$ is a number which converges to zero with ε . It follows that the entropy of the Abelian model (B, E_j, P, μ) differs from that of (B, ϕ) by less than

$$r(\varepsilon/2)S(\phi\circ\gamma)+k\varepsilon'.$$

We therefore have

$$|H_{\phi}(\gamma, \alpha^{p} \circ \gamma, \cdots, \alpha^{p(k-1)} \circ \gamma) - H_{\phi}(\phi \circ \gamma)| < r(\varepsilon/2)S(\phi \circ \gamma) + k\varepsilon'.$$

By [1, III.3] $H_{\phi}(\phi \circ \gamma) \leq S(\phi \circ \gamma)$. Therefore, with our original choice of k as satisfying $k^{-1}r(\varepsilon/2)S(\phi \circ \gamma) < \varepsilon$, we find

$$\frac{1}{k}H_{\phi}(\gamma,\alpha^{p}\circ\gamma,\cdots,\alpha^{p(k-1)}\circ\gamma) \leq \frac{1}{k}S(\phi\circ\gamma) + \frac{1}{k}r(\varepsilon/2)S(\phi\circ\gamma) + \varepsilon' < \varepsilon + \varepsilon + \varepsilon',$$

which can be made arbitrarily small. As in [5, Lem. 3.4] this means that $\frac{1}{m}H_{\phi}(\gamma,\alpha\circ\gamma,\cdots,\alpha^{m-1}\circ\gamma)$ can be made arbitrarily small, hence $H_{\phi,\gamma}(\alpha)=0$ for all γ , i.e. $h_{\phi}(\alpha)=0$. QED

4 Unique ergodicity of free shifts

In ergodic theory an automorphism of C(X), X compact Hausdorff, is said to be uniquely ergodic if there exists a unique invariant probability measure on X, or equivalently a unique invariant state. For free shifts we shall prove a much stronger property. Our proof is a modification of an argument of Powers [3].

Theorem 3. Let A_0 be a unital C^* -algebra with a state ϕ_0 . Let $A_i = A_0$, $\phi_i = \phi_0$, $i \in \mathbf{Z}$, and put $(A, \phi) = (*A_i, *\phi_i)_{i \in \mathbf{Z}}$. Let α be the free shift and suppose (B, β, μ) is a C^* -dynamical system (i.e. B is a C^* -algebra, β an automorphism and μ a β -invariant state). Suppose λ is an $\alpha \otimes \beta$ -invariant state on $A \otimes B$ such that $\lambda(1 \otimes b) = \mu(b)$ for $b \in B$. Then $\lambda = \phi \otimes \mu$.

Proof. For each $i \in \mathbb{Z}$ let

$$\mathring{A}_{i} = \{ a \in A_{i} : \phi_{i}(a) = 0 \}$$

$$\mathring{A} = \operatorname{span} \{ \prod_{k=1}^{n} a_{i_{k}} : a_{i_{k}} \in \mathring{A}_{i_{k}}, i_{k} \neq i_{k+1} \}.$$

Then C1+Å is dense in A, and $\phi(a)=0$ for all $a\in Å$. For $k\in\{1,\cdots,s\}$ fix $a_k\in Å$, $b_k\in B$, such that $a=\sum\limits_{k=1}^s a_k\otimes b_k$ is self-adjoint in $\mathring{A}\otimes B\subset A\otimes B$. We shall show $\lambda(a)=0$. We have

$$a_k = \sum_{l} \prod_{k_i} a_{k_i,l}$$
 with $a_{k_i,l} \in \mathring{\mathbf{A}}_{k_i}$

is a finite sum of finite products of operators in different \mathring{A}_i 's. Let

$$J = \{ j \in \mathbf{Z} : a_{k_i, l} \in \mathring{A}_j \text{ for some } a_k \},$$

i.e. J is the set of indices i such that some $a'_i \in \mathring{A}_i$ appears in the decomposition of a into a finite sum of finite products of elements in the \mathring{A}_i .

If we represent (A, ϕ) in its GNS-representation we may assume (A, ϕ) acts on the Hilbert space \mathcal{H} , where

$$\mathcal{H} = \mathbf{C}\xi \bigoplus_{i_1 \neq i_2 \neq \cdots \neq i_r} \mathcal{H}_{i_1}^{\circ} \otimes \cdots \otimes \mathcal{H}_{i_n}^{\circ}$$

For each $n \in \mathbf{Z}$ let

$$\mathcal{H}(n) = \bigoplus_{i_1=n} \mathcal{H}_{i_1}^{\circ} \otimes \cdots \otimes \mathcal{H}_{i_r}^{\circ}$$

(Thus $\mathcal{H} = \mathbf{C}\xi \bigoplus_{n=-\infty}^{\infty} \mathcal{H}(n)$). Let

$$\mathcal{H}_J = \bigoplus_{n \in J} \mathcal{H}(n) \subset \mathcal{H}.$$

Then

$$\mathcal{H}_{J}^{\perp} = \mathbf{C}\xi \bigoplus_{m \in J^{C}} \mathcal{H}(m),$$

where J^C is the complement of J in \mathbb{Z} .

If $\eta = \eta_{i_1} \otimes \cdots \otimes \eta_{i_r} \in \mathcal{H}(m)$, $m \in J^C$, and $i \in J$ then if $a_i \in \mathring{A}_i$, we have (see section 2),

$$\pi(a_i)\eta = \lambda_i(a_i)\eta = V_i(\pi_i(a_i) \otimes 1)V_i^*\eta$$

$$= V_i(\pi_i(a_i) \otimes 1)\xi_i \otimes \eta$$

$$= V_i(\pi_i(a_i)\xi_i \otimes \eta)$$

$$= \pi_i(a_i)\xi_i \otimes \eta \in \mathcal{H}_J.$$

If $j \neq i, j \in J$, then similarly for $a_j \in A_j$,

$$\pi(a_j a_i) \eta = \pi(a_j) \pi(a_i) \eta$$

$$= \pi(a_j) (\pi_i(a_i) \xi_i \otimes \eta)$$

$$= \pi_j(a_j) \xi_j \otimes \pi_i(a_i) \xi_i \otimes \eta \in \mathcal{H}_J.$$

An easy induction argument shows that with $a_k \in \mathring{A}$ as in the beginning of the proof, then $\pi(a_k)\eta \in \mathcal{H}_J$, hence we have

$$\pi(a_k)\mathcal{H}_J^{\perp}\subset\mathcal{H}_J.$$

Suppose B acts on the Hilbert space K. Let

$$M_J = \mathcal{H}_J \otimes K$$
.

Then $M_J^{\perp} = \mathcal{H}_J^{\perp} \otimes K$, so $a = \sum a_k \otimes b_k$ satisfies

$$\pi \otimes id(a)M_J^{\perp} \subset M_J$$
.

Since α is the free shift there exist integers $0 = n_1 < n_2 < \cdots < n_{20}$ such that if α_0 denotes the shift on **Z** then the sets $\alpha_0^{n_i}(J)$, $i = 1, \dots, 20$, are all disjoint. Put

$$b = \frac{1}{20} \sum_{i=1}^{20} (\alpha \otimes \beta)^{n_i} (a).$$

Then $b \in A \otimes B$. For simplicity of notation identify a and $\pi \otimes id(a)$ and similarly for $(\alpha \otimes \beta)^{n_r}(a)$. Put

$$\mathcal{H}_{J_r} = \bigoplus_{n \in \alpha_0^{n_r}(J)} \mathcal{H}(n),$$
$$M_{J_r} = \mathcal{H}_{J_r} \bigotimes K.$$

Let e_r denote the orthogonal projection of $H = \mathcal{H} \otimes K$ onto M_{J_r} . Since the sets $\alpha_0^{n_i}(J)$ are mutually disjoint, the projections e_r , $r = 1, \ldots, 20$, are mutually orthogonal. Furthermore

$$(\alpha \otimes \beta)^{n_r}(a) : e_r^{\perp}(H) \to e_r(H).$$

Corollary 2. The Sauvageot-Thouvenot entropy of a free shift is zero.

Proof. Take B to be abelian in the above theorem. Then it follows as in [2] easily from [4] that the entropy vanishes.

References

- Connes, A., Narnhofer, H. and Thirring, W. [1987] Dynamical entropy of C^* -algebras and von Neumann algebras, Commun. Math. Phys. 112, 691–719.
- Narnhofer, H., Størmer, E. and Thirring, W. [1995] C^* -dynamical systems for which the tensor product formula for entropy fails, Ergod. Th. & Dynam. Sys. 15.
- Powers, R. [1975] Simplicity of the C*-algebra associated with the free group in two generators, Duke Math. J. 42, 151–156.
- Sauvageot, J-L. and Thouvenot, J-P. [1992] Une nouvelle définition de l'entropie dynamique des systemes non commutatifs, Commun. Math. Phys. 145, 411–423.
- Størmer, E. [1992] Entropy of some automorphisms of the II₁-factor of the free group in infinite number of generators, Invent. Math. 110, 63–73.
- Voiculescu, D. V., Dykema, K. J. and Nica, A. [1992] Free random variables, CRM Monograph Series, American Math. Soc.