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Abstract. We study quasi equivalence of states of free products of C*-
algebras together with free shifts, compute their entropy and show a strong

form of unique ergodicity.
1 Introduction

Let for each element ¢ in index set I, A, be a unital C*-algebra and ¢,
a state on A,. Let (4, ¢) = (xA,, x¢,).cr be the corresponding free product
C*-algebra as defined in [6, 1.5]. In the present paper we shall study states on
A, and if I = Z and all the pairs (A,, ¢,) are equal, the shift automorphism
on A arising from the shift : — ¢+ 1. Our results will, except for those in the
last section, extend those in [5] for the II;-factor L(F) defined by the left
regular representation of the free group F, in infinite number of generators.
Our main result is for general infinite products and shows the existence of a
universal function 7 : (0,1] — N such that whenever (A, ¢) is as above and
w is a state whose GNS-representation is quasi contained in that of ¢, then
there is for each € > 0 a subset J C I of cardinality card J < r(e), such that
(¢ —w)|a,l|l <eforalleélJ.

In the two last sections we assume I = Z and all the (A,, ¢,) are equal
and let o denote the free shift of A which arises as mentioned above from the
shift on Z. Analogously to the free shift on L(F.) we use the above result
to show that the entropy in the sense of Connes, Narnhofer and Thirring [1],
called CNT-entropy in the sequel, of & with respect to the invariant state ¢ is

zero. Then in the last section we show that o satisfies a very strong unique
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ergodicity property. Namely, if (B, 3, ) is a unital C*-dynamical system
and ) is an a ® (-invariant state on A ® B such that A(1 ® b) = pu(b) for
b€ B, then A = ¢ ® 4. An immediate corollary of this is that the entropy of
Sauvageot and Thouvenot of a with respect to ¢ is also zero.

We remark that it is not necessary for the above to restrict attention
to the free shift. Our arguments work for an arbitrary infinite index set I
and an automorphism arising from a bijection ¢ of I such that for all finite
subsets J C I there exists p € N such that the sets o?*(J),n € N, are all
disjoint.

We refer the reader to the book [6] of Voiculescu, Dykema and Nica for
the theory of free products of C*-algebras.

2 States on free products

Let I be an index set, and for each + € I let A, be a unital C*-algebra
and ¢, a state on A,. Following [6, 1.5.1] we shall define the free product
(A, @) = (xA,,*d,),er with its canonical cyclic representation .

Let (m,, H,,&,) be the GNS-representation of ¢,,. € I. Let H) = H,©C¢,,
and (H,&) = *,er(H,, &,). Put

Hu=CtaP( P H ®---H;).

n>1 tiFpF -Fin

L1 #L

We have unitary operators V, : H, ® H(t) — H defined by

£®E—¢

H ®@E—H byn®&—n

LM, @ ®H,) )= H, @ QH, by & @n —n,01 71
H,@H, @ QH, ) > H,QH, @ QH,, by p@n—9Qn,1 #1¢

The representation A, : A, — B(H) is defined by

/\L(a) = VZ(W’L(G) &® IH(L))VL*, a € A,.

The free product representation m = *m, : xA, — B(H) is the *-homomor-
phism of the free product C*-algebra (xA,, *A,) — B(H), using the universal
property of the free product. When we write (A, ¢) = (xA,, *¢,),er we shall
mean *A, in the representation 7 i.e. we shall mean 7(*A,) C B(H).

We can now state the main result of this section, which is a direct gen-

eralization of [5, Lem. 2.4]. Since C*-algebras isomorphic to the scalars are
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redundant in the definition of free products, we shall in order to avoid com-
plications assume the C*-algebras in the product to have linear dimension at
least 2. Hence we shall exclude homomorphisms in the theorem. We denote

by |J| the cardinality of a set J.

Theorem 1. For each e € (0,1] let r(e) = [100e72]+ 1. Then the following
holds. Let (A, ¢) = (%A, *¢,).cr be a free product of unital C*-algebras A,
with states ¢, which are not homomorphisms. Suppose w is a state of A of
the form w = w'om with w' a normal state on w(A)". Then for each e € (0, 1]
there exists a subset J = J(w,e) C I with |J| < r(e) such that

l(p—w)|a,ll<e Viee Joel

Proof. We first assume the state w’ is a vector-state w,. We use the conven-
tion that whenever we write J C I we mean a finite ordered subset of I of

the form
J:{Ll,Lz,-..7ljn}’ LI#LQ#"'#LTL.

Here n = |J|. For each v € I we let
IW)={JCI:t=1}.
Since each vector &, is cyclic for 7,(A,) we may (by approximation) assume

77:)‘6_"2 Z N7,
)

el JeI(e

where
nr =N, ®/’7L2®"'®77Ln> J:{l’lf"abn})

and
=, (a’ k=1, ... T c A
Thk L (al,k)é-l»k? ) ,n, all’k E Lk

Furthermore, 7,, € H;, so that ¢, (a]) = 0, and we have that all vectors

L)
n; are mutually orthogonal since they are the orthogonal projections of 7 on
the Hilbert spaces H; ® --- ® H; , hence in particular, if J = K then the
corresponding vectors n; and g coincide.

From now on we fix an index ¢y € I, and let a € A,, be self-adjoint
with ¢(a) = ¢,,(a) = 0. Denote by Ao = A\, To = Ty, &0 = &, Vo = Vip-

Computing we find



wla) = [APola)+2ReAd . D (No(a)é,ny)

el JeI(v)
+ > > MNo@nnnn)+ >0 Y. D (Mola)ns, k)
Lo Jel(u) uL,pel JeI(L) Kei(p)
= > > (Mo(@)ns,ns) +2ReX) > (mola) @ 1(& ® &), Vins)
L JelI(d) el JGI(L)

Lp€el JeI(d) KeI(p)
K#J

We shall compute the scalar products case by case. We use the notation
when |J| > 1,J = {u, -, tn}

M =Ty @iy @ -+ @1,
(1) J € I(t). Then

{(Wo(a)fo ® €&, mo(ag)bo®ny) if [J] > 1
cﬁ(afo*a) if |J|=1
[0 if |J| > 1
N {¢<a3a> it =1,

(mo(a) ® 1(& @), Vo)

where we denote by ag the element a;ﬁ € A, when J = {1,}. We next

consider
X = ((mo(a) ® )Vg'ns, Vo) = (ho(a)ns, nx)-
(2) J=K ={u}. Thenasin (1)
X = ¢(agaao).
(3) J={w}, K € I(w),|K| > 1. Then

X = (mo(a) ® ]‘(/’7{L0} ®E&),NK) = (Wo(a)ﬁo(ao)fo,Wo(afg)go)(&?ﬁ() =0
(4) J,K € I(w),|J| >1,K ={w}. Then asin (3) X = 0.
(5) J,K €1(w),|J|>1,]|K|>1. Then Vyn; =ns, Vink = nk. Thus

X = (mo(a)mo(a])éo, mo(ats)0) (7, nk)

= ¢(ay aay)(ng, nx)
{o if J#£K
¢(ayy aay)|ns|? if J = K.
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(6) J={w}, K¢ (). Then
X = (mo(a) ®@ Ingey ® €, 6 @nx) = 0.

(7) J ¢ I(w), K ={w}. Then similarly X = 0.
(8) J€I(w),|J|>1, K ¢I(). Then

X = ((mo(a) ® 1)nys, & @nk)
= ¢(aay)(ny, Nk ).

(9) J ¢ I(w),K € I(t),|K| > 1. Then as in (8)
X = ﬂaf“)(mﬂﬁ()-
(10) J, K ¢ I(1). Then since ¢(a) =

X = (mo(a) ® (& ® 1), & ® Nk)

= ¢(a)(ns, k)
= 0.

Summing up (1)—(10) we obtain

w(a) = dlajace) + Y ola aa)n
.

+2ReAg(aga) +

+ > > > dlaay) (k)

JEI(vg) 1#10 K€I(1)
|J|>1

Z Z Z ¢(a 77J:77K)

K€eI(vo) t#10 JEI(1)
|K|>1

If J={t1,...,tn} put J1 = {t9,...,in}. Then (n},nx) = 0 unless K = Jj.
We therefore have for |jal| <1,

jw(a)l < 20Mlngopll + g+ - lInsll®

JEI(ig)
|J|>1
+ > e@)nsllinall+ > 1o [zl
JEI(eg) JEI(g)
|J1>1 |JI>1
<2MIngll + Do Mnall>+2 > Inslllinal,
JEI(L()) JEI(g)

|J|>1

where the last term arises from the fact that
6(a) (5, )| < At Hmsllinecll = s lilingll-
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Since Y. ||Ins||* < 1 we thus have from the Cauchy-Schwarz inequality and
JEI(eo)
the fact that the sum ||n;,]|? is the same as over K's with K ¢ (i),

1/2 1/2
@l < 2ol + 3 a2 3l (5 al?)”

JEI(10) JEI(kg) JEI(t)
[71>1 [J]>1
2\1/2 2 1/2
(1) < 2 g2 +3( X llol?)
J€I(L0)
L\ 172
<s( ¥ Inil?)
JeI(wo)

Note that we have

(12) L=nl* =P +3 > lInsll*

el Jel(v)

IfC, >0V, el and ¥ C, <1, then given § > 0 and r(§) = [100672] + 1

el
then there exists a subset J of I with |J| < r(6) such that

52
100’
Thus by (12) there is a subset J(w,e) of I with |J(w,e)| < r(e) such that

C, < L& J

2
E fi

In particular by (11)

lw(a)| <e/2 for 1o ¢ J(w,e).

We have thus shown the essence of the theorem in the case w = W’ o7 with o’

a vector state. For the general case let & € H, ||§z|| =1,i€N. Let a; > 0,

Za,—l i € N. Putw—Zazwg om, i.e. w —Zalwg Then
i1=1

1= Jw(1)] = iainéu?

Write as before

& = /\i€+z Z 1J;-

Lel J;eI()
Thus
L=l&l?=INP+>0 X Il

el J;eI(L)



hence

1= ZazlA P+3 S > sl

el i Jel()

As above given € > 0 there is J = J(w,e) C I with |J| < r(e) such that

S adnal< S g

i JeI(L)

Therefore, if a € A,,, 1o ¢ J, $(a) = 0, we have by (11)

W@l < X ol ((a)

< 5||a||zaz< umP)
zeI(l’O)

- slall o} ( aznmﬁu)
Jzef(bo

5||an(;ai)%(z ) aiumiw)%

1 J;€I(wo)

= 5!lall<z > aillmi||2>%

i J;€I(t0)

D=

IN

9
< Slall
— /2|al.

Finally, if a € A, a = ¢(a)l + ag with ¢(ag) = 0, ag € A,,. Then ||ao| <
lall + |¢(a)| < 2ljall- Thus if 1o ¢ J

5

(¢ = w)la)] = w(ao)| < 5llaoll < ellal.
Thus [|(¢ — w)|a, |l <eifw & J(w,e) = J. QED.
Following [1] if B is a C*-algebra and u a state of B we denote by ||z, =

p(z*2)Y2. Then ||z, < ||z||. If A is another C*-algebra and p: A — B a

linear map we put
1ol = sup [lp(z)lu-
flell<1

Corollary 1. Let (A, ¢),7 be as in Theorem 1. Let B be a finite dimen-
sional Abelian C*-algebra generated by its minimal projections pi,- -+, Pn.
n

Suppose P : A — B is a positive unital linear map, so that P(z) = Y ¥i(z)p;
=1



with ; a state of A. Suppose p is a state of B such that o P = ¢. Then
given € > 0 there exists J = J(P,e) C I with |J| < r(e) such that
|1P(x) — ¢(x)1]|, < ez, z€A, ¢ J
Proof. We have
¢(z) = po Pz sz

Thus if u(p;) # 0, ¥; < u(p;) "¢, so that wi = wg, o with & a unit vector in
H. Therefore, if a € A,,, is self-adjoint and ¢(a) = 0, it follows by (11) that

[Wi(@)l* <25 > sl

J:€I(eo)

where the notation is as in the proof of Theorem 1 and & = M+ > ny,.
W€l JEeI(1)

Given € > 0 choose J = J(P,¢e) C I with |J| < r(e) such that
2 g?
S5 Il )it < g5 for g
i Ji€l(w)
Thus we have for ¢y ¢ J, since the cases u(p;) = 0 don’t matter,
SwePute) < IS (T al?)uo)
i i\ J€el(w)

R
< 25||al?*- 100

= lall*(=/2)*

Since ¢(a) = 0 and a in self-adjoint,

2
IP(@) = 6@ = 3 i) utpo < ol (5)
For general self-adjoint a € ALO, a = ¢(a)+ag, #(ag) = 0. Hence if 1o ¢ J,
1P(a) — p(a)ill, = w((¢(a)+ Plao) — ¢(a))?)?
p(P(ap)?)?
laole/2
2llalle/2

ellall-

IN A

I

The conclusion follows. QED
3 Entropy of free shifts

In [5] it was shown that the entropy of the free shift on L(F) is zero.
We shall now generalize this result to arbitrary free shifts.
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Theorem 2. Let Ay be a unital C*-algebra and ¢o a state of Ag. Let
A; = Ao, ¢ = o, 1 € Z, and let (A, ¢) = (xA;, %¢;)icz. Let a be the free
shift on A, i.e. «a is the automorphism of A arising from the shiftn — n+1
on Z. Then the CNT-entropy of o with respect to ¢, hy(a) = 0.

Proof. If ¢q is a homomorphism each ¢; can be identified with its GNS-
representation, hence the GNS-representation of ¢ is one dimensional, so ¢
is a homomorphism, thus hy(a) = 0. We therefore assume each ¢; is not a
homomorphism.

Let C be a finite dimensional C*-algebra and v : C' — A a unital com-
pletely positive map. Let ¢ > 0 and r = r(¢/2) as in Theorem 1. Choose
k € N so large that

E'rS(poy) <e.

Let B be a finite dimensional Abelian C*-algebra generated by its minimal
projections pi,- -+, pp. Suppose P : A — B is a positive unital map and p a
state of B such that go P = ¢. For each i € {1,---,n} there is a state 1); of
A such that

P(@) = Y i(ope

Then .
¢p=poP = Zﬂ(pi)lbi,
1

is ¢ written as a convex combination of states. In the notation of [1] we have

n

€M(P) = Zﬂ(pi)5(¢]¢i)

1

su(P) = S(p) — eu(P).

Since A = *A; and C is finite dimensional there is ng € N such that if
z € C then there isa € Ag = ¥ A, such that ||y(z) — a| < /4|, and
=—ng

la|l < ||z]. Let p = 2no+1 and A, = o™ (Ay), o= % i, dm = pooa™.
i=—ng
By distributivity [6, 2.5.5] and the uniqueness of the GNS-representation of

¢, we can write (A, ¢) as the free product
(A7 d)) = (*Am’ *ém)mez-

Furthermore, o acts as a free shift on A.
For each j € {0,---,k — 1} let B; be a C*-subalgebra of B, and let
E; : B — B; be the unique p-invariant conditional expectation of B onto



B;. Then Ej; satisfies the Cauchy-Schwarz inequality E;(z*z) > Ej;(x)*E;j(z).
If @ is a self-adjoint linear map of a C*-algebra D into B, we have for y € D,

1Bj oWl = »

1 IA
= T E
/-}e'l\ —~ /b?] —
<
T

Now put
Pj=EjoPoajp0fy:C~%Bj.

Choose the set J C N with |J| < r(e/2) corresponding to P as in Corollary
1. Let Jo=JN{0,1,---,k}. Then

1P(z) = ¢(@)1]l < g/2lzll, = € (4;),5 & Jo.
For z € C, ||z|| < 1 choose y € A; such that ||y|| < 1, and
ly — a0 y(z)]| < e/4.
Then we have by the above estimates applied to ®; = (P — ¢) o a/? 0 v,

1P(z) — ¢ o v(@)llu = [|1Bj 0 Poa® or(z) — Ejo ¢ oal oy(z)|,
<|(P —¢) o o y()l,
<P = @)Wl + (P = &)y — Pv(2))|u
<e/2||yll +¢/2|=|
<e,

for j ¢ Jy, since ||P — ¢||, < 2.

If we in the notataion of [1, VI.2] let p = P}, p' = ¢ oy then we have for
j & Jo
(13) |5u(F;) = su(@ o) < b(n,d, €),
where d is the linear dimension of C' and lg% 6(n,d,e) = 0. By definition the
entropy of the Abelian model (B, E;, P, 1) for (A, ¢,7v,v0a®,---,v0 aP(k=1))

1S
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By subadditivity of S and [1, IT1.3] we therefore have that the entropy of the

Abelian model is smaller than

S(ul \/ By) +S(ul \ By) = > su(Py) = 3 su(Fy)

j€Jo i¢Jo Jj€Jo J¢Jo
= (S(ul V Bj) = D2 sulP)) + (S(ul \ Bj) = > sulFy))
j€Jo Jj€Jo i¢Jdo J¢Jdo
< 3" S(¢0+’") + Entropy of Abelian model (B, E;, P, u; j & Jo).
j€Jo

As in the proof [1, VI. 3] it follows by (13) that the entropy of the Abelian
model (B, E;, P, p;j ¢ Jo) differs from that defined by ¢ oy by at most
(k — |Jo])e’ < ke, where ¢/ > 0 is a number which converges to zero with
e. It follows that the entropy of the Abelian model (B, E;, P, i) differs from
that of (B, ¢) by less than

r(e/2)S(¢ o)+ ke'.
We therefore have
|Hy(y,0F 0, ++,0"* D oq) — Hy(¢ov)| <r(e/2)S(p o)+ ke'.

By [1, IIL3] Hy(¢po~y) < S(¢ o). Therefore, with our original choice of
k as satisfying k~1r(e/2)S(¢ 0 v) < &, we find

1 1 1
EH¢(%a”0%---,a”(’“‘”07) < ES(¢07)+ET(5/2)S(¢O’Y)+5,
< e+e+é€,

which can be made arbitrarily small. As in [5, Lem. 3.4] this means that
LHy(vy,a0%,---,a™ ' oy) can be made arbitrarily small, hence Hy () = 0
for all 7, i.e. hy(a) = 0. QED

4 Unique ergodicity of free shifts

In ergodic theory an automorphism of C(X), X compact Hausdorff, is
said to be uniquely ergodic if there exists a unique invariant probability
measure on X, or equivalently a unique invariant state. For free shifts we
shall prove a much stronger property. Our proof is a modification of an

argument of Powers [3].
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Theorem 3. Let Ay be a unital C*-algebra with a state ¢o. Let A; = Ay,
b = ¢o, t € Z, and put (A, ¢) = (xA;, *¢;)icz. Let o be the free shift and
suppose (B, (3, 1) is a C*-dynamical system (i.e. B is a C*-algebra, [ an
automorphism and p a B-invariant state). Suppose X is an o ® [-invariant
state on A ® B such that A(1 ® b) = u(b) forb€ B. Then A = ¢ ® p.

Proof.  For each 1 € Z let
A = span{ [ [ a;, : a;, € A yik # g}

k=1

Then C1+ A is dense in A, and ¢(a) = 0 for alla € A. For k € {1,---,s} fix
a, € A, by, € B, such that a = Y. aj ® by, is self-adjoint in A Bc A® B.
1

k=
We shall show A(a) = 0. We have

ay = ZHaki,l with ak,1 € Akz
I ks

is a finite sum of finite products of operators in different Ars. Let
J={j€Z ay, €A; forsome az},

i.e. J is the set of indices i such that some a; € A; appears in the decompo-
sition of a into a finite sum of finite products of elements in the A,.

If we represent (A, ¢) in its GNS-representation we may assume (A4, ¢)
acts on the Hilbert space H, where

H=C({Pp P H, @ 0H;,
i1 FlgFE e Fir

For each n € Z let
Hn)= P H, @ - QH;.

i1:n

(Thus H = CED @ H(n)). Let

n=—oo

Hr= @H(n) C H.

neJ

Then
Hy =Cep D H(m),

meJC

where J¢ is the complement of J in Z.
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Ifn=mn& - ®n, €H(m),me J andi € J then if a; € A;, we have
(see section 2),
7T(ai)"] = Az(az)n (77',((11) ® 1)‘/1'*77
(mi(ai) ® )& ®@n
= Vz(ﬂ'z(a )fz & 77)
= m(az) &E®neHy.
If j #4,j € J, then similarly for a; € Aj,
m(ajai)n = m(aj)m(ai)n
= 7(a;)(mi(a:)& ®n)
= mi(a;)§ @ mi(a:)& @n € Hy.
An easy induction argument shows that with aj € A as in the beginning of

the proof, then m(ax)n € H,, hence we have
7r(ak)7'ﬁ C Hy.
Suppose B acts on the Hilbert space K. Let
M;=H;®K.
Then M+ = H+ ® K, s0 a = Y ai, @ by, satisfies
7 ®@id(a)M7 C M.

Since « is the free shift there exist integers 0 = n; < ny < -+ < ngg such
that if oy denotes the shift on Z then the sets ag*(J), i = 1,---,20, are all

disjoint. Put
1 20

b= 55 2@ )" (a).

Then b € A ® B. For simplicity of notation identify a and 7 ® id(a) and
similarly for (o ® )" (a). Put

HJT = @ H(n)

neag” (J)
My =H; QK.
Let e, denote the orthogonal projection of H = H ® K onto Mj, . Since
the sets af?(J) are mutually disjoint, the projections e,, r = 1,...,20, are

mutually orthogonal. Furthermore
(a®B)™(a) : e (H) — ex(H).
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Corollary 2. The Sauvageot- Thouvenot entropy of a free shift is zero.

Proof. Take B to be abelian in the above theorem. Then it follows as in [2]

easily from [4] that the entropy vanishes.
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