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Introduction

This is the continuation of our previous paper {8]. We inherit the notation
and terminology of it. In [8] we have introduced the notion of cubic hyperequisin-
gular families of compler projective varieties ([8, Defintion 2.1]) and proved, for
these families, the cohomological descent of R-module sheaves (R:a commutative
ring) and relative de Rham complexes ([8, Theorem 2.7, Theorem 2.9, Theorem
2.10, Corollary 2.11]). The purpose of this paper is, using these results, to prove
the following theorem.

Main Theorem. Let X. = £ 5 M be a cubic hyperequisingular family
of compler projective varieties, parametrized by o complex manifold M. We
define R(m) := RtmyZx modulo torsion (0 < £ < 2(dimX-dimM)), R§(r) :=
Rf(m) ®z Q and RG(7) = R'm(nr'Oy) = Rimu(DRy ), where 0w is the
topological inverse of the structure sheaf of M by the mep # : ¥ — M and
DR, o the cohomological relative de Rham complez of the family m : X — M.
Then there ezist a family of increasing sub-local systems W (weight filteration) on
Ré(ﬂ') and a family of decreasing holomorphic subbundles F (Hodge filteration)
on Ré(m) such that {R5(r), (Ré(ﬂ'),W), (RG (m), W,F)} is a variation of mized
Hodge structure (For definition see Definition 8.8 below).

The proof will proceed in two steps. In paragraph 3.1 we shall prove the
existence of weight filteration W and Hodge filteration I on R.é(ﬂ") and R (7),
respectively, and in paragraph 3.2 we shall prove ”Griffiths Transversality”. Now
let us explain the outline of the proofs.

By Theorem 2.9 and Theorem 2.10 in [8], we have an isomorphism

7 Om ~ DRy jpp = 5(a1Q /p0)[1]
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in DT (%, C), the derived category of lower bounded complexes of sheaves of C-
vector spaces on X, where (y /), is the relative de Rham complex of the n-cubic

object X. == M of smooth families of complex manifolds, parametrized by
M, % 25 % x 0, 2 X is the natural factorization of X. = X (cf. [8, (1.6)
and (1.9)]), and s(a1..«Q /M) is the simple complex associated to the n-cubic
object a1.«§2y ,,, of sheaves of C-vector spaces ([8, Definition 1.18]). By this
ismorphism we have

R&(7) := Rimu(n" Op) ~ R‘m(s(al.*ﬂ'x_/M)[l]).

To compute the hyper-direct image Rém, (s(a1.«Q / 10)[1]), we shall use the fine
resolution Ay /M of Q. M where A;z /n BTe the sheaves of C* relative differ-
ential forms of type (r,s) on X, (@ € 0,). Then the natural homomorphism

s(a1 % /p)[1] — s(a.1xtot Az /pr)(1]

is an isomorphism in D (%, C), where tot Aéa M is the simple complex associ-
ated to the double complex A/, for each o € On; and s(a.1utot Ay /M)[l) is
m.-acyclic. Hence we have

RS (7) = H(mus(a.1utot Az )2])

The simple complex s(a.1«tot A3 ),)[1], and so mu(s(a.1.tot Ay ),)[1]), has nat-
urally two filterations W and F', where W is defined over Q. We shall caluculate
the spectral sequence asoociated to these filterations, abuting to Rﬁ,(w), and
prove that the specral sequence associated to W degenerates at Fo-term and
the one associated to F' degenerates at Ej-term. From these the existence of
weight filteration W and Hodge filteration F on Rf () and Rf (r), respectively,
follows (Theorem 3.5).

To prove the Griffiths transversality, we shall use a system of very special
Stein coverings {Va},epr Of X — X, where U, := {(V!*} e, is a Stein
covering of X, for each o € O}, subject to some "analytically trivial condition”
(cf. [8, (2.19)]). The existence of such a system {Va} ¢+ is guaranteed by the
assumption that the family ¥. = ¥ is "analytically locally trivial”. We take
the Céch resolution C'(Vy, Q. /M) of the complex Uy /M with respect to the
covering V, for each & € O,. Then the natural homomorphism

s(a.1:Q /pr)[1]
— 8(a.1xt0t C' (V. Qg a1

is an isomorphism in D+ (%, C); and
s{a.1xtot C (V,, Q‘x_/M))[l] is ms-acyclic. Hence we have

R5(m) ~ HY(mus(a.1tot C (V, Q% m))1])
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By use of this isomorhism, following the method of Katz and Oda in [6], we shall
calculate the Gauss-Mannin connection V on R4 (w). From this the Griffiths
transversality follows. We should mention that the assumption that the family
%. = ¥ 5 M is analytically locally trivial is crucial so that this procedure can
be carried out in our arguments.




§3 Variations of mixed Hodge structure

3.1 Weight and Hodge filterations on the higher direct image sheaf
of cohomology

We begin with recalling the definitions of Hodge structure, mized Hodge
structure and variations of mized Hodge structure. Let A be equal to Z or Q. For
an A-module H 4, the complex conjugation can be defined on Hc :=C®4 H4. A
filteration F' = {F?} of H¢ by C-vector subspaces admits its conjugate filteration

F such that (F)?P = F?.
3.1 Definition. An A—Hodge structure of weight £ consists of
(i) an A—module of finite type H4, and

(ii) a finite decreasing filteration F' = {F?} of Hc by C-vector subspaces
(Hodge filteration) such that Gri,Gri(Hc) =0 for p+q# ¢

The relation above implies that the subspaces

HP?:= FPNFq

give a decomposition

He = @ HPA HPY = Haop,
pta=t

3.2 Definition. A mixed Hodge structure consists of

(i) a free Z-module of finite type Hz,

(i) a finite increasing filteration W = {W,} of Hg := Q ®z Hz by Q-vector
subspaces (weight filteration), and

(ili) a finite decreasing filteration F' = {F?} of H¢ = C ®z Hz by C-vector
subspaces (Hodge filteration), satisfying the condition that

Gry (H) = (Gr; (Hg), Gry’ (Hc), F)
forms a -Hodge structure of weight ¢ for every q.

3.3 Definition. A variation of mixed Hodge structure on a complex man-
ifold M consists of

(i) a local system VZ of free Z—module of finite type on M,
(ii) a finite increasing filteration W = {W,} of V@ := VZ ®; Q by sub-local
systems of {J—vector spaces, and

(iii) a finite decreasing filteration F = {F?} of V := VZ®z Oy by holomor-
phic subbundles, satisfying

(a)(Griffiths transversality)
VFP C QY ® FPL,
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where V denotes the Gauss-Mannin connection on V, and
(b) (VZ, W, F) defines a mixed Hodge structuer at each point ¢t € M.

Let X. =+ ¥ 5 M be a cubic hyperequisingular family of complex projec-
tive varieties, parametrized by a complex manifold M. We denote by R§(w) the
£-th higher direct image sheaf of the constant sheaf Z on X. We are now going
to define a finite increasing filteration W = {W,} on R§(r) := Ri(7) ®Q and a
finite decreasing filteration F = {F?} on RS () 1= Rém.(m Opr), where m Oy
denotes the topological inverse of the structure sheaf of M: First let us notice
that

RY(r) = Rtm.(Qx)

~ R (Ra.. (Qz.)) (by [8, Theorem 2.7))
(3.1)
~ R, (Rag. (Ra.1.(Qz.)) (by [5, Corollary 5.13])

~ Ry (s(a.1.Qx)[1]) (by [8, (1.10)])
and  R&(7) = Rém(Ra. (m:0x)) (by [8, Theorem 2.5])
(3.2) =~ RO, (R (R, /p)

= Rm (Ra.zu (Ra1u (g /pr)

o REmu(8(0.14 Qs (1]),s

where 7, := m-a, (a € O,, n=the length of the cubic hyperresolution X. = X)
and the second isomorphism in (3.2) comes from that 7, Op — Qy ,u, is a
quasi-isomorphism for every o € O, (reference (2] in [8], p.15, 2.23.2).

3.4 Remark. Since 'Oy has an injective resolution in the category
of 7 Op-modules, RS (7) := Rim.(m Opr) has naturally the structure of Op-
modules. Furhtermore, we claim that it is isomorphic to (Rfm.Cz) ®c O as
Op-modules: to prove this, since there is naturally a Ops-module homomor-
phism (R¢7.Cx) ® Op — Rimem Oy, it suffices to show that

(3.3) (REm.Cx ) ® Oprs — (Rimem Onpg)e
is an isomorphism for any ¢ € M. While, we have
(3.4) (Rbm ' Opr)s ~ HA (71 (1), ' Opp)

for any t € M, since 7 : ¥ — M is proper ([6, p.176, Theorem 6.2]). Further-
more,

(3.5) Hi (7 (1), 7 Op) = HY(n71(t),C) ® Oprs,




since ™ Ops equals to the constant sheaf Opr: on =1 (¢); and
(3.6) HY(r ™ (t),C) ® Oprs =~ (R*mC)y ® Oy,

since the family 7 : £ — M is topologically "locally trivial” over M ([6, p.205,
Theorem 1.6]). Then (3.3) follows from (3.4), (3.5) and (3.6).

We define an increasing filteration W = {W_,} on the simple complex

5{a.1.Qx.)[1] by
(3.7) W_q(s(a.1«Q2)(1]) = 0la|>g+15(01:Qx, ) (g > 0),

where 014>¢+15(0a1+Qx, ) = o5q(K) if we put K = s(a.1.Qx.)[1]. In general,
the subcomplex o54(K) of a complex K is defined as follows:
0 ifn<g

o2g(K)" = { K" ifn>p

The filteration of K defined by these subcomplexes is called stupid filteration.
Using this filteration, we define an increasing filteration on Ré(ﬂ') by

(3.8)  W_g(R(m)) := Im{Ri mast(W_q(s(21:Qx ) — Rimu(s(a.1Qx )}

Here we identify R(m) with Ré7.(s(a.14Qx.)) by the isomorphism in (3.1).
Next we define an increasing filteration W = {W,} and a decreasing one F =
{F,} on the simple complex s(a.1.Qx /\(1]) by

W—q(s(a-l*ﬂ'x,/M)[l]) = Ula!2q+15(aa1*ﬂ'xa/M) (g > 0) and
(3.9)
FP(s(a1eQ p)[1]) = C’kZpS(ad*Qg,/M)[l] (p20)

Using these filterations, we define an increasing filteration and a decreasing one
on R (m) as follows:

W_q(Ro(m))
(3.10)
= Im{REm, (Woqs(a1x 0 y) (1) — BEMa(s(a.1e0 1) 1D,

(3.11)
FP(Ré(m)) = Im{RE m (FP(s(a.14 Q2. /00) (1)) — R (s(a-140./00)[1])}

Using the same letter as for Ré(ﬂ') as to the filteration W is justified by the
fact that the filteration W on Rj(r) is mapped to W on Rg(w) through the
isomorphism R§(r) ®q Oum = Ry ().




3.5 Theorem. Let X. = £ 5 M be a cubic hyperequisingular family of
complex projective varieties, parametrized by a complex manifold M (For defini-
tion see [8, Definition 2.4]). Then, with the same notation as above, there exist
finite increasing filteration W = {W_,} of R&(w)(o < £ < 2(dimX-dimM)) by
sub-local systems of Q-vector spaces and a finite decreasing filteration F = {FP}
of R%(w) by holomorphic subbundles such that (R5(m), W[E),F) defines a mized
Hodge structure at each point t € M, where W[{], denotes the shift of the fil-
teration degree to the right by ¢, i.e., W[l]q := Wy_,. Furthermore, there are
spectral sequences

wED? = ®g)=pt1 BTanQx, yp =>w ERT = GTE‘;(R@Q(W»,
FEP? = R (s(a1.0% (1)) =F ER' = Gr2.(RE(m))

with wES? =w ERY, pEY® = BB

The proof of the theorem will be accomplished after several lemmas. By
(3.1) we have isomorphisms

Ré(w) = R'm.Qx =~ Rimu(s(a.1.4Qx.)[1] and
HY(X:,Q) ~ HE(X:,5(at«Qx, )[1]) forany te M

To compute RéT,(s(a.1.Qx.)) and H (X, s(a:.Qx,.)), we take the canonical
resolution C'(Qg, ) of Qx_ for each a € 0, and put

K1 = s(a.1.C"(Qx.))[1]),
K :=n,K;, and

Kt = s(at.l*C"(Qx‘, ))[1] (t 1S M).

3.6 Lemma. Ré(’n‘) ~ HY(K)

Proof. 1t suffices to show that K is a m.-acyclic, i.e., RPm (K7) = 0 for p >
1,¢g > 0, because

Qx — 5(a.1.Qx)[1] — s(a.1.C"(Qx.))[1]
are isomorphisms in D*(%,Q). Since
Kf = ®lal+k=q+la&1*ck (Qx.),

we have
BPT(KY) = ®jatkmqtr1 BPT * (2014C*(Qx,,)).
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Since the direct images of flabby sheaves are also flabby, aq1.C*(Qx., ) are flabby.
Hence RP7.(001.C*(Qx,) =0 for all p,o, k with p > 1,|a| + k = ¢+ 1, and so
RP,st(K7) =0 for p > 1,q > 0 as requied.

Q.E.D.

We denote by A%’ /p (@ € On) the sheaf of C° relative differential forms
of type (r,s) on X, and by tot Ay /M the simple complex associated to this
double complex. Then the natural map

(3.12) 8(a.14Q% /ar)[1] = s(a.1utot Az /p0)[1]

is an isomorphism in D+ (X, C). Hence by (3.1) and (3.12) we have isomorphisms

RG(m) = Rim.s(aastot Ay ,),)[1], and
(3.13)
HY(X,,C) ~ HE (X4, s(aeantot Ay, )[1])

The latter is obtained from the former by putting M = {¢} (one point). We put

Ly = s(a.1utot Az 3r)[1]),
L:=m.Ly, and
Lt = s(at.*tot.A}{b)[l] (t S M)

3.7 Lemma. RS (m) ~ HY(L)

Proof. By (3.13) it sufices to show that L is m,-acyclic. Since

Lg = @ Gal*A;i/M,
a|+r+s=q+1
we have
Rrr(Li)= @  Rm(eaeA )
|laj+r+s=g+1

Since the direct images of fine sheaves are also fine, aa. A%’ /M Bre fine. Hence
var*(aa*Agz/M) = 0 for all p,a,r,s with p > 1,la| +7+s =g+ 1, and so
RPr (L})=0forp>1,q 20.

Q.E.D.




The increasing filteration W = {W_,} on the complex s(a.1.Qx.)[1] defined
in (3.8) induces filterations on K, K¢, L and L; as follows:

W_g(K) 1= mu(0]a]24+18(2a1C"(Qx. )(1]),

W_q(Ke) = 0jajzg+15(ata1+C"(Qx, o)) [1];
W_g(L) = Tu(0)a|>q+15(Aa1«t0t Ax /m)(l]), and
W_g(Lt) '= Olajzq+15(atarstot Ax_/pe)[1]).

The decreasing filteration F = {F”} on the complex s(a.1.0 /M)[l] defined in

(3.10) induces filterations on L and L; as follows:

FP(L):= 7r*s(a.l*tot(aquAgé./M))[l} and
(3.14)
FP(Ly) := s(as.1utot(og>p A%, )]

Using the filteration W on K defined above, we define a filteration on H(K) by
W_o(HA(K)) = Im{H (W_y(K)) — HYK)}

Notice that the filteration of Rfl (7) defined in (3.9) is mapped to this filteration
by the isomprphism in Lemma 3.6. Similary, using the filteration W and F on
L we define filterations on H(L) by

(3.15) W_y(H4(L)) = Im{HA(W_,(L) — HY(L)},

(3.16) FP(HY(L)) := Im{H*(F?(L)) — H*(L)}.

The filterations defined for RS () in (3.10) and (3.11) are mapped to thses fil-
terations by the isomorphism in Lemma 3.7. Furthermore, the filterations W
of H(K) and H*(L) defined above correspond each other through the isomor-

phisms
HY(K) ®q Owm = Rf(r) ®g Oum ~ Rp(r) = HY(L).

We denote by {E.(K,W),d.} the spectral sequence of the complex K with
respect to the filteration W, abuting to

ERUK, W) =Gr¥ (HP(K)).
In the subsequence we will use the notation
H(4ar £ el AP el APHLY

for a complex A', which means the cohomplogy at the middle term A?. When
we use this notation we often omit the differentials to avoid annoyance.




3.8 Lemma..

(3.17) EPUKE, W)~ P Rima.Qx,
le]=p+1

and this spectral sequence is degenerated at Eq-terms., i.e.,

EPIK,W) = EPU(K,W) .. > ER}(K, W)

Proof. By definition
EPUK,W) = Gri¥,(K™*?) = ©|ajmpt1TanC(Qx, )-
Since

EPY(K,W) = H(EP*™ & 2K, W) 2 BRI (K, W),

we obtain (3.17). From this it follows that
EPUK,W) ~
(3.18)
H( ®'a|:qu7ra*Q£a — ®IQI=P+1RqWQ*%a — ®la!=p+2Rq7ra*Qxa )

Since X. — X — M is C* trivial ([8, Proposition 2.5)), E5"?(K, W) is a local
system on M, and

Eg’q(Ka W)t
(319) = H(®|a|=qu(Xtch) - ®|a|=p+1Hq(XtaaQ) - ®|a|=p+2Hq(Xta)Q))

~ EPYK,, W) for any t € M.

The data: Kz = ZX” (Kt,W), Kiz @z Q ~ Kt, (Lt,VV,F), (Kt,W) ®qQ Cw~
(L¢, W), is a cohomological mized Hodge complez in the sense of Deligne (For
definition see [2, (8.1.6)]). Hence the spectral sequence of {E,.(K;, W),d.} is
degenerated at Eo-terms ([3, p.48, Théoréme 3.2.1 (Deligne), (vi)). Therefore,
by (3.19), the restriction of dp : E? — EP¥(K,W) to each fiber EDY (K, W),
is zero map. This implies that dp : EP?(K, W) — EZ*>4 YK, W) is zero map,
since EY'?(K,W) is a local syatem on M.

Q.E.D.




3.9 Lemma..

(1) EPY(L,W) = B (K, W) ® Oum

~ B|o)=p+1 RITan o Op = @[a|=p+1Ran*(an/M)
(2) B2U(L,W) ~ BP9 (K, W) ®q Oy

H{®|aj=pR? 7r0f*(ﬂlxa/M) = Olaj=p+1 R wa*(ﬂ'xa/M) — Bjaj=p+2R’ Wa*(ﬂ.xa/M) )I

Proof. By definition

Eg’q(L, W) = G,,:VY;)(LP*F‘]) = ®|O(‘=P+l7ra* (@T-}-s:qA;i/M).
Since ‘

EPY(L,W) = H(B}™H(L,W) — EP*(L,W) — E§™ (L, W),
and tot Aéa /M is a max -acyclic resolution of Qéea /v We have
EP(L,W) = Bjaj=pri R Tan (U, /a1) = Blat=p+1 B TanTo O
Hence, by (3.17) and Remark 3.5,
EPY(L,W) ~ EPY(K, W) ®¢ Op.
The assertion (2) follows from (1) and (3.18).

Q.E.D.

3.10 Lemma.
(3.20) EPUL, F) x RIm(s(a.0a % 00)[1])

and this is a locally free Op-module on M. Further, the spectral sequence
{EP9(L,F),d,} is degenerated ot E;-terms.

Proof. By definition

Eg,Q(L, F) = G’I‘%(LP'*'Q) = 7‘r*(@Ia'+s=q+1S(a.l*.A;’:g/M)[l]).

Hence
(3.21) , EPYL,F) ~ Hq(ﬂ*s(a.l*\Ag/M)[l])

By the same reasoning as in the prbof of Lemma 3.8, the simple complex




s(a.1.A% /p[1]) is mu-acyclic. Hence
(3.22) Hi(mus(a10A% po)[1]) = RYmu (s(a.10 A% /p0)[1])

While, since Ag. M gives a fine resolution of Qg. M for each o € 0,5, the natural
morphism

s(a.1. % /3)[1] = s(a1 A% o)1)

is an isomorphism in D+ (%, C). Hence we have
(3.23) R, (s(a.l*Q;./M)[l]) ~ R? m(s(a.hA’;./M)[l])
By (3.21), (3.22) and (3.23), we obtain (3.20). Since

Ef’q(L, F)t ~
HI(D(X:, s(at.*Aggz”l)[l]) = D(Xy, s(ae AR )[1]) — D(Xe, s(at.l*A’)’(-l:‘l,q){l]) )
for any t € M, and since . ——2% M is C* trivial, dimcEPY(L,F); is
independent of t € M. Hence, in order to prove the lemma it suffices to show
that R, (s(a.140% /M[l])) is a coherent Oys-module. For this end, taking into

account the isomorphism in (3.22), we define a filteration ‘F = {{F?} of the
complex 7. (s(a.1.A4% /3r)[1]) by

F(ma(5(a.1045 1)) 1= Oz (5(a.10 AR 1, [11)

and consider the spectral sequence of my(s(a.14.A% /M))[l] with respect to this
filteration , abuting to

P ERT = Gr,F (H™ (ru (s(a.1. A% 3)1]))
=~ Gr (R (s(a1.08 5)[1])-

Then we have

/FEZ)"S = @[af=s+17r*5(a'a1*A§,:/M),
B = Ho(mus(aandR (1)),
and
IFE;,S =

(3.24) HS(W*H(s(a.l*A;’_’"/_A}[l} — s(a.1. AR )] = s(a.l*Agf/j;)[l])

~ R°m, (H’(s(a.l*ﬂpx'/M)).
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Since H™(s(a.1.80%, /M)) is a coherent Ox-module, by (3.24) 1 pEJ° is a coherent
Opr- module. Hence so is . pEL? for any (r, s), which implies that R, (s(a.14
QL /M){l] is a coherent Op-module as requied. To prove the degeneracy of the

spectral sequence {EP%(L, F),d,.} at Ey-terms, it suffices to show the degeneracy
of the spectral sequence

{EPU(L, F)s, dr} = {EP*(Le, F), dir}

at Ej-terms, because E?(L, F') is a locally free Op-module by Lemma 3.10.
While the degeneracy of this spectral sequence follows from the same theorem
due to Deligne, which we have used to show the degeneracy of the spectral
sequence { EF'Y(K;, W), ds-} at Ez-terms in the proof of Lemma 3.9. This com-
pletes the proof of Lemma 3.10.

Q.E.D.

The filteration F on L defined in (3.14) induces filterations on each E,.(L, W)
(r > 0) in three different ways. The first two filterations are defined as follows:

FY(E.(L,W)) := Im{E.(FPL,W) — E.(L,W)} (direct filteration)

FY (E.(L,W)) := Ker{E.(L,W) — E.(L/FPL,W)},
where {E.(FFL,W), d,} stands for the spectral sequence of the subcomplex F?L
of L with respect to the filteration induced by W and so on. From the definition
it follows that F} = FJ, on Eo(L,W) and E;(L,W) (cf. [3, Lemma 2.4.2}).

The third one, which we call "recurent filteration” and denote by Fiec, is defined
inductively as follows: on Ey°(L, W) we define

FL, By (L,W)) = F2(Ep*(L,W)) = Fyy’ (By* (L, W).

rec

If Fio. has already been defined on E.(L, W), we define F,.. to be the natural
one induced by Fiec on E.41{L, W) through the relation

B2, = H(BY ™™+ &, Bpa 4, preracrid),
The relation among these three filterations is
Fy(ED?) C Froc(EPT) C Fyu(EDT).
(cf. [3, Proposition(2.4.5), (iii)). Since there is a natural number ry such that
ERS(L,W) = BRL(L,W) = - = BB (L, W),

the filterations Fy, Fy. on each E.(L, W) induces the filterations on E. (L, W),
which we denote by Fy(Eoo (L, W)), Fyu(Eoo (L, W)). Then we have
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(3.25) Fy(BRH (L, W) C F(ERN(L,W)) C Fau(BR (L, W),

where F(E2(L,W)) is the filteration induced by that on E2}9(L) = HP*I(L)
defined in (3.16) ([3, Proposition 2.4.5, (iv)). Now we are going to prove that

(3.26) Fy(EPUL,W)) = Fee(EBPY(L,W)) = Fau (EP(L, W)

for any r > 0, which implies

(3.27) F(EBYL,W)) = Frec(ERA(L,W)),
because of (3.26). This fact will be used to compute F? (Gri"p[‘} (R () later.

3.11 Lemma. The differential dy : Eo(L, W) — Eo(L, W) is strictly com-
patible with the filteration Fy = Fux, i.e., do(F}) = Imdo N FY for any p.

Proof. We will prove the equivalent assertion that the spectral sequence associ-
ated to the filtered complex (Ey (L, W), F,) is degenerated at E;-term for every
p. Since
) k,¢
Eg q(L7 W) = 69Iot[:p-}-l Ditt=g (Wa*Axu/M)a

we have

Eg*(E} (L, W), Fa) = Gri, (®laj=pt1 Drttmrts Taw AL 1)

- 7,8
= e9|01I=p+17T<Jt*""4x,,,/M

and
do : Eg*(E§ (L, W), Fa) = ®|aj=pi1Tax AR 1
— By (BR (L, W), Fa) = Opafmph1 Tan AR Ty
Therefore
E;,S(Eg' (L, W), Fd) = @!a|=p+1Rs7ra*Q%a/M and
dl H E;’S(Eg(L, W), Fd) = @la!=p+le7ra*Q;a/M
(3.28)

= B[V (BE (L W), Fa) = ®jafepii R*Tan U5 .
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While, in the commutative duagram
(@lal=p+le+17"a*Qg€a/M)t — Bjaj=pr1 H* (X, O, )

(3.29) | ¢

(@'a{=p+1Rs+lwa*Qgtl/M)t — $|04=P+1H5 (Xat, QS:;J;)

for each t € M, the right vertical arow is zero map, because X, is algebraic.
Hence so is dy; for any ¢ € M. This implies dy : E]°(EY (L, W), Fy) —
Ep T (EE (L, W), Fy) is zero map as required, since @[a|=p+1Rs+17ra,Q’§a/M
(k=r, r+1) are locally free sheaf on M.

Q.E.D.

3.12 Lemma. The differential di : E(L,W) — E{L,W) is strictly
compatible with the filteration Fy = Fyu = Flec. Hence Fy = Fy. = Fiec 00
EPS(L,W) (r 2 2).

Proof. We will prove the equivalent assertion that the spectral sequence associ-
ated to the filtered complex (E;?(L, W), Fy) is degenerated at E;-term for every
q. Since

EPY(L,W) = HY(E§ (L, W)) = HY®|aj=pr1Taxtot Az _/ar)
= @}a‘=p+1H‘1(7ra*tot Ax.,/M) jad @Ia|=p+1Rq7ra* (Qxa/M)

and  FJ(EPY(L,W)) = Im{H*(EL (F} (K)) — HU(EZ)}
= @|oj=p+1H (Tan Dr>r tot A’;E'Q/M) (by Lemma 3.11)

k
= Blaj=p+1 Dk B1Taullz, /01
we have

Eg* (B (L,W), Fa) = Fy(B{"*(L, W)/ Fg* (B{**(L, W)
jad @|a|=r+s+1Rq7ra*Q;jﬂ/M

and  do : By (B (L, W), Fa) = ®jaj=rsat1 RTenll /s
— Byt (BY(L, W), Fa) = @aj=rss42RTae % /s

Therefore the differential d; is as follows:

EP(BY(L, W), Fa) ~




13

H(®|a[=r+s waa*Q;a/M - @|a|=r+s+l Rqﬂ-o‘*Q‘%a/M

- @]a|=r+s+2 Rqﬂ'a*ﬂga /M)

dll
BTV (BY(L, W), Fy) =
741 r
H(@]a[=r+s Rq”a*th/M - @;a|=r+s+1 Rq”a*ﬂxtl/M
41
= D ajmrtore B Tan U5 /M)'

This differential d; is nothing but the one induced by the relative exterior dif-
ferential dx, /nr @ Q% M Qg;l/M. While the morphism RIme. (% M

waa*Q;tl/M induced by dg,/a is zero map because of the same reasoning as

in (3.29). Hence d; : E}°(E;!(L, W), Fy) — E[™V°(B;*(L, W), Fy) is zero map.
This completes the former part of the lemma. The latter part follows from
Théoreme 2.4.9, (i) in [3], Lemma 3.8 and Lemma 3.9.

Q.E.D.

3.13 Lemma.

F G (R (m)), = FU(Gr (HY(X., 0))

P
foranyte M.
Proof. By Lemma 3.8 and Lemma 3.9,

Gry¥(Rb(m)) = GrlY ,(Ré(r)) = By PP(L, W)
o~ H(@]afzz_pRpﬂ'a* (Q.xa/M) — @|a1=¢_p+1RP7ra* (Q‘XQ/M)

- @|a|=£——p+2Rp7ra* (Qxa/M)
By Lemma 3.12 and (3.27),

F(Gry P (R (r))) = Fo(B5 (L, W)
~ H(@[a[=i~pRp7ra* (Fq(Qfa/M)) — ®|a|=g_p+1R”7ra*(F‘1(Q'x.,/M
= Blaj=t—p42B Tas (F(Qz, /1))

Therefore, since X. L2ET0, M is € trivial ([8, Proposition 2.5]),

Fo(Gry ¥R (m)):
= H(B|a|=t—pHF (F(Ox,,)) = Blaj=t-pr1HF (F*(Qx,,))

- éB;a|=e—p+2Hp (Fq(ﬂ}(m))
~ Fa (GrVY(HY(X,, 0)) = FU(GrE(HY(X,,C)))

rec




14

where the last isomorphism is obtained from (3.27) by putting M = {t} (one
point).
Q.E.D.

Now Theorem 3.6 follows from Lemma, 3.9, Lemma 3.11 and Lemma 3.14.

3.2 Griffiths transversality
The purpose of this paragraph is to prove the following theorem.

3.14 Theorem. (Griffiths transversality)
In the same setting and with the same notations as in Theorem 3.6, we have

VEP(R(m)) C Ny @ FPH (R (7)),
where V is the Gauss-Mannin connection on R ().

The proof will proceed in the following three steps:

(I) Definition of an integrable connection V : RS (1) — Q, ® RS ().
(II) "Explicit” calculation of the connection.

(I1I) Proof of KerV = R2(r) := R5(m) ®z C.

Step I: Definition of an integrable connection V : RS (n) — Q, ® Rb ().

We modify the proof in the case of a smooth family of algebraic manifolds
in [7]. Since the family of algebraic manifolds 7, : Xo — M is smooth for every
o € O, (n=the length of a cubic hyperresolution X, =+ X, — M of a fiber of
the family X. = ¥ - M), the sequence

0 — m5(Qh) = V&, = Qx,/p — 0 (@€ 0n)
is exact. Since
Eys(Q5F ®0,, ) C Qgﬁp ®0x, v
for every integer p with 0 < p < m (m = dimM) and for every pair (e, 8) of
o, B € O, with @ — B in the category On, {Qx” ®0,_ 75, }aen, constitutes
a subcomlex of sheaves of {2, . Hence the complex s(a.1,§y ) admits a canonical
filteration
5(a.1e) = FOs(@1u0%)) D FH(s(a1a)) D F2(s(a0u k) D -+
where

F? = FP(s(m..Q%))
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= Im[s(a.1.(Q5” ®x. 1)) — s(a.1.0% )]

The associated graded objects of this filteration are given by

gr? = gr¥(s(a1.Q ) := FP/F?H
= s(a.14 (7 () ®04. Q;;’M))
Therefore the spectral sequence which comes from the filtration {F7} and abuts

to the graded objects of H'(Rm. (s(a.1.02% ))) associated to the filteration on it
induced by {F?} is as follows:

EPY = R (gr7) = RV (s(a (77 0)) @0z, Uz hay)))
~ R (s(a1((7" Wy ®02. . /u)))
~ 08 @0, RImu(5(a.1.0% 1r))) = Qs ®0,, Rb(T)
E—1 Ego’q = GTP(RIH‘q'Ir*(S(a-l*Q.x.)))

Since the filteration on s(a.1+8%_) is compatible with the exterior product, i.e.,
Fi A FJ ¢ Fi*, and since the sequence of functor R, is multiplicative, the
spectral sequence has a product structure; that is, there are pairings

f o7 7/ 7
Pq P g TP qTye
EPe x BP9 — et

for each p,q,p',¢ and r, sendinfg (e,e') to e - ¢/ where e,¢’ are sections of E2?
and Ef’*q’, respectively, over an open subset of M. This pairing satisfies

e. e' = (-—'-1)(P+Q)(p,+ql)el - e, and
de(e-€e') =d.(e) - e + (—1)P*%e - d.(¢').

The E; terms of the spectral sequence are as follows:

0,q 1,9
0 — RY (1) 25 0k, @ RS (m) = 02, ® Ry(m) — +-- .

To show that d>*? is a connection, let us consider the pairing
EM x B9 - Y

which satisfies

(3.30) P w-e) = d)Pw-e+w-dMe,

where w, e are sections of EY® ~ R (1) ~ Oy and EY? = RY (), respectively,
over an open subset of M. Since

0, 70,0 1,0 __nl
d° EM > 0y — EP° =0l
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is nothing but the exterior differentiation dps on M, (3.30) shows that d(l)’q is
certainly a connection. Furthermore, since

& : BY = 0}, © Ry (r) — B2 = 0% © Ry (r)

is equal to dyr ®1, di?-d>? = 0 shows that d5'? is an integrable connection. We
denote d}"? by V in the subsequence.

Step(II):” Ezplicit” caluculation of the connection.

First, we mention a general fact that, in the spectral sequence of a filtered
object, the differential

dP? ;. EP = R, (grP) — EPTLE = RpHatle (grotl)
is the connecting homomorphism of the functor R?, for the exact sequence
0 — ng+1 N F”/F”“ — grP — 0
Using this fact, we shall calculate explicitly the connection
' : B = Rim(gr°) = Rfy(m)
— Ep? =R, (gr!) ~ Q) ® Ry ()

In the calculation we will use a special system of Stein coverings {Uy }aen,
of X. , whose existence is guaranteed by the analytically local triviality of the
cubic hyperequisingular family ¥. =+ ¥ 5 M. Using this special covering of
X%., we will explicitly describe the map

VH (r(U), 8(a.0e Q) (1)
— D(U, Rhy) Sr(p,0m) B (7 (U), 5(a.1. Q5 /3 [1])

for a sufficiently small open subset U of M. We take a point 0 € M and put
X, = (7 a)" o), X :=7"1(o).

By the definition of an n-cubic hyperequisingular family %. =» % 5 M, it is
analytically locally trivial. Hence, schrinking M sufficiently small around o, we
are allowed to assume that there is a system of Stein coverings U, := {Ui(a) tieda
of X, (o € O;), which is subject to the following requirements:

(i) for each pair (a, 8) of elements of Ob(CI}) with @ — B in O,
there is a map Aqp : Ag — Ay such that;
(a) if @, 8, are elements of Ob(O}) with @ — 8 — v in O, then
Ay = Aag - Agy, and
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b) eag(UP) c UL . for any i € Ag, where eap: X5 — Xo is
BV Aap (i) 8 B B

(3.31) a holomorphic map corresponding to an arrow o — 3 in 07,
(ii) if we define V* := U x M for a € Ob(T7) and i € A,, then V :=
{Vi(“) } is a Stein covering of X, for every a € Ob(O}), and
(iii) E g V}(ﬁ) — Vi (i) 18 equal to Caplu® X idp, where Eqp : Xp
— X4 is a holomorphic map over M corresponding to an arrow
a— Bin OF for o € O(OF) and 1 € Aq,
(iv) oyl = Pry Vi(“) = Ui(") x M — M/(projection to M, where 7,
=T ay and T = 7.
Note that the existence of a system of Stein coverings of an n-cubic hy-
perequisingular family . =% ¥ -5 M as above also relies on the fact that,
for a holomorphic map f : X — Y between complex spaces, the intersection

f~HU) NV of the inverse image of a Stein subset U of ¥ by f and a Stein
subset V of X is Stein ([4, p.33, Chapter, I, §4, 4]).

We take such a system of Stein coverings of ¥. — ¥ - M and fix it. In the
following we will always caluculate with respect to this coverings unless otherwise
mentioned. Let {K,,ds}aecn, be a bounded complex of sheaves of coherent
analytic sheaves on X.. Let {C"(Uq, K2), 0} be the Céch complex consisting of
alternating cochains with values in K2, respecting the Stein covering Us; that

is,
C' (U, KE) = @(io...iq)eAg+1F(Uio ARERAE Uiqa K%)

ioS"‘Siq

and the coboundary map 6% : C¢(Ua,K2) — C9+1(U,, K7) is defined by

q+1

for § = {Blaspyip-- i)} € C(Ua, KZ), where B(a;piig- ) € T(Ug N--- N
Uy, KB) for (ig, -+ i) € AL™ and |a| = ag+-+~+an for o € On. The pre-sheaf

Ur— CUU,NUKP) = @(iou-iq)eAi’“F(Uio n---nN Uiq NnUKER),
i<y
where U is an open subset of X, define a sheaf, which we denote by C?(Us, K%).

We associate to the double complex of abelian sheaves C'(Uy, K,,) a simple com-
plex tot C' (U, K,,) defined as followed:

t0t C' (Uay Ko ))" 1= Bpq=rC?(Ua, KT),
d0) = @ppger (=1)11(dP + 68:) 1 tot C (Ua, Ky)" — tot (€ (Ua, K,,))™H,
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where 429 is the Céch coboudary map C?(Ua,K%) — CTF (Us, K%) and df is
the map C9(Uy, KB) — CI(Ua, K2*1) induced by the differential of the complex
K;,. Obviously, {totC'(Ua,K,),da}acr, defines a complex of abelian sheaves
on X. which is quasi-isomorphic to {K,,,d, }aen,, because {tot C' (Ua, K, ), da}
is quasi-isomorphic to (K., dy) for every « € O,.

3.15 Proposition. The simple complez of abelian sheaves
s(a.qutotC - (U, K))) is me-acyclic. Hence

HE (%, s(a.1.K.)) = H*(s(tot C"(U.,K.))) for k >0,

where s(tot (C"(U., K)))) is the simple complex of abelian groups associated io
(n+p)-ple complez tot C'(U.,K:) (cf. [8, Definition 1.18]).

Proof. To prove that s(a.1.totC (U.,K)) is me-acyclic, it suffices to show that

(3.32) H* (=Y (U), s(a.1utot CULK)N) =0 (k> 1,7 € Z).

Let us notice that
S(a-l*totc.(u., K))T = ®‘a|+P+q=‘ra’a*cq(ua’ Ka)’
hence
H*(n=Y(U), s(a.1xtot C (U, K2))7)
(3.33)
= 69lC‘]'*'Z"i'¢1=mH-k(”r—-1 ), axC? (Ua, Kﬁ))

Concerning the holomorphic map a -1y : 77 ({U) — 7 1(U), we have the
Leray spectral sequence

E;,k—-s = Hk(ﬂ"l(U)) Rsaa*cq(u‘l’}cg))
— BY = H¥(n;1(U),C4(Ua, K2)).

From this it follows that
H* (7 (U), aasC? (Ua, KR)) = H (131 (U), € (Uay KE)),
since R®aq+C%(Uy, K2) = 0 for s > 1. On the other hand,
H*(r 21 (U),C9(Uy, KP)) = 0 for k > 1;

hence
He (7 Y(U),a0xCUs, KP)) =0 for & > 1
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Consequently, by (3.33) we obtain (3.32). The latter part of the proposition
follows from the facts that the natural map s(a.1.K.) — s(a.1tot (C'(U.,K))))
is an isomorphism in D* (X, Ab) and so that

HF (%, 5(a.1.K)) =~ H*(%,T(Z, s(a.1.tot C (U, K)))).
Q.E.D.

By Proposition 3.16 the explicit description of
VvV HI (M, ms(a.l*ﬂ'x_/M)[l])
(3.34)
— T(M, Q) ®r(m,04) B (M, s (@140 /p)[1])
is reduced to that of

Vi Hi(s(tot C"(U., Qx./0))[L])
— T(M, Qs) ®r(am,04) H(s(t0t C" (U, Qe /10))1]).-

In the subsequence we will use the notation
K (F) = s(tot(C' U., F)))

for a complex of abelian sheaves F on X.. With this notation we have the
following exact sequences of abelian groups.

(3.35) 0— K'(F' (%)) = K' () = K () =0

(3.36) 0 — K'(Gr'(Qz)) — K" (. /F*(Qx ) = K (R p) — 0.

For o € O, and ¢ € A, we denote by (wEf‘) Lo ,3;5:2) a local coordinate
system on Ui(a), where n, = dim Ui(a). We denote by (1, ,tm) a local co-

ordinate system on M. We decompose the exterior differentiation dx, on X,
as

(3.37) dxa =dp + dUga)

on each V) = U™ x M, where dy is the differentiation with respect to
(t1,-+" ,tm) and d%}’:) with respect to (m(a) ,a:gfi) We define

1 !

¢(a) L

v S

xa'V;(a)
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by
s Y &P, (@ )deld A dalD))
1<<hp
= Z ag-i'.)_,jp(m,t)dxg;’l)/\---d:vg;,),
1<

where [} <..<;, agf,),, 5, (@) t)dzg;”l) A dmgjf‘:)] is a local cross-section of the sheaf

Q. /m Over an open subset V!, represented by a differential form

Z agf‘)_,jp (m,t)d:vg;:) Avedzl®

i7p
J1€<ip
involving dz!® - - ,dz® only. In the following we will omit the proofs from
1

Lemma. 3.17 through Lemma 3.20, as they are simple calculations.
3.16 Lemma. ¢§"’ splits the ezact sequences Og’:)-modules
0 — FHQ% . = Qe v, — Veomv. — 0
and satisfies
$ - dx, v = dye,

where dx_ /u s the differential of the complez Qx., /M i.e., the relative ezterior
differentiation.

Hereafter we use the notation 8(o; pito -+ - 44) (o € Uy, pis a positive integer
and 4g, - ,41 € Ag) ,which represents the component of 3 € s(totC" (U.,K.))" (r

=| a | +p+q) lying in I‘(Ui(oa) N+ N Ui(:),ng), for a complex of abelian
sheaves K is a complex on X.. We define

¢ K (Qx ) = K'(Q)
by
(68)(@ipiio--+iq) = ¢’ (Bleipiio - -ig))
for € K'(Qx./m)-
3.17 Lemma. ¢ splits the ezact sequence of abelian groups

0 — K'(F}(Q)) = K'(Qz) = K'(Qx /n) = 0

Define J : K" (% /) — K'*1(Q% ) by

(JB) (e pido - - ) = (=1)PHIEF(6{®) — gLy (B0 pyag - -4y))
Then we have J(K"(Qx, /3,)) C K'(F*(Q%))
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3.18 Lemma. §¢ — ¢pd=J

,where & is the Céch coboundary map.

Define the total Lie derivarive Ly : K'(Qy ) — K1 ) with respect to
the parameters of M by

(LmB)(e;piio -+ iq) = (=1)1dpr (B(c; piio -+ +4g)
Note that Lar(K'(Fi (%)) C K (F™1(Q ). We denote by

dx.: K — K1 (Qy)
the morphism of C-vector spaces induced by exterior differentiations dg, :
U, — Qy_, and by
the one induced by relative exterior differentiations dem Sy, M Q; } M-
Combining Lemma 3.16 and (3.37), we obtain
3.19 Lemma. (-1)l*ldx ¢ = Ly¢ + (=1)1%pdg /s

We define by

(3.38) DM = ®Ial+p+q=r{ Z (—1)5id§,°"p"7)* + (_1)|a|dg’;‘1) + 5(01,13#1)},
1<j<n

the differential map K"(Qy ) — K™1(Q ) of complexes of C-vector spaces,
where

AP O Uy 0,) = O Uarte;, V) (o5 = (0--1--0)

is the map induced by the holomorphic map Eqa+e; : Xave; — %o oOver M
corresponding to an arrow a — o +¢; in O,

gg=aoto+ a1 1<i<n) fora= (o a,) €Oy,

d(xp;Q) 0 Uay %) = CU U, Q?;l) the exterior differentiation on %4,
and  §(@rd : CUU,, Q%) = CT Uy, Q% ) the Céch coboundary map.
Similarly, we define the differential map K™(Q% ;) — K™ (Qy ) for
Q% /u instead of 2 by
(3:30) D'V i= Blajipromr Y. (~1FEZPI + ()L, + slxr ),

1<j<n

Combining Lemma 3.18 and Lemma 3.19, we find
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Lemma 3.20. .
D¢ —¢D' =Lydp+J

modF1! ‘
K7(Q%) — K™ (Qx. /M)
!
Lyo+J D iD’
' ) modF?! .

KT (FY Q) —> K™ (0 ) &=——= K™ (Qz./m)

Thus the connecting homomorphism associated to the ezact sequence (8.35) is
induced by the morphism of C-vector spaces

Lu¢+J: K (g ) = K (FH Q).

Proof. We denote by D and D' the differentials of the simple complexes of C-
vector spaces K" (% ) and K" (Qy ), respectively, defined in (3.38) and (3.39).

Since

D=3, cjen(-1)d; + (-1)1¥ld} b on C (U, Q%) and,

D' =3 icn(-1)%d5 + (=1)1ldx, ps + 80 0on C (Uay U )
we have

D¢ - ¢D' = (3(-1)dj)¢ — ¢(3o(-1)%d})

(3.40)

+H(=1)*N(dx, ¢ — ¢dz, /1) + (0ad — 66a)
on C" (Ue, Uy /M). From the requirement (iii) in (3.31), satisfied by the map
Egate; (0 <j < n), it follows that

(-5 d3)p - ¢(3 (-1 d;) =0.
Therefore we obtain Lemma, 3.20 by Lemma 3.18, Lemma 3.19 and (3.40).

Q.E.D.

On each Vi(a), we define the total interior product with respect to the pa-

rameters of M
i 0 .
I(Ot) . Qxal‘/i(a) — Qxal‘/((a)
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I(ia)(ZJK hr Bk (T t)d.’vfi) ARRRNA d:l,‘,;j,(‘a) Adbey Ao dix,)
ki< <kr
r4s=p
o<r,s
= S ccin 8 Qjyoroky ok, @ )T A Ade (a) VN dbry A dy,)

i

k<o <

r4g=p

0gr,s
for a local holomorphic p-form on Vi(“). When p = 0, we put Ii(o‘) = 0. Notice

I("a)(ﬂéam(a,) C FI(Q'%Q)W‘_(.,).
Define
XK (Qx) - KT Q)

by (AB) @i pyio - -+dq) 1= (=1)PHII(IE0) = T4y )(Blas pyin -+ y))

Lemma 3.21.
Ap=J mod K (Fz(ﬂ'x_))

Proof. Tt suffices to show that, for B(a;p;i1 -+ -iq) € I‘(Ui(la)ﬂ- . -ﬂUi(:‘), 0 /M)
of the form

Bla;p;is - 1q) = [,uda;fz)l A A dazgf;) )
where p is a local holomorphic function on Uff‘ 'n.n Ui(:‘) ,
(3.41) A(8B)(a; pi oty -+ ip) — JB(a; pyiois - +1p) € F2(0%,)

holds. Since

11 jp
o) 2 )
= WSy ey, 2R Ao A dals)

@

H << 3™,
‘ iod} i0dp

+ ke 2 Aeifh 2 Ec‘!’)”) dw(“ Ao AT, Adty)
k=1 j{<...<j;_1 a(m(a) - ) 10_7/ ig -7p— k
07

’ ’m'oz

p—1

mod F2(Q% ),
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(342)  JB(a;pidohs - - i) = (—1)PHeFL (gl _ gl B(espriy i) =

a(zsa) )" Ea) ) (af
(——1)P+la|+1 ( Zk IEJI< <o a(m(“}lj.l. i up dzu‘)"]’/\ /\d:l,’ /\dtk)

@ i0Jy,

mod F?(Q% )

On the other hand,

MoB)(a; ps ity -« - ip)

= (_1)P+|a!(1io __I(i‘; )(,uda:ml . /\d:l)(-a? )

() 1 3p

2@ (a)

(343) =( )p+|a[I20)(ﬂ(ZJl< <, G 1.7,1: ! llJ;L.dxl:J) A /\diEE:?;

sT ‘0]

() =) )
a(z‘;’Jl) “! ‘IJP

(@) (@) -
+Zk =1 231< < 8(1:(‘” o) t )dmzog’ A A dxigj;_l A dtk) + .- )) =

e i0dy,

() a)
—1pHelu(TR, T, 2ol o) gol?) A ndel) Ade)
24 k=1 Ji<e <_71J 1 a(w(n), e ,:z;(a Z 3310] k

07y 'OJP

mod F2(Q% )
Then (3.41) follows from (3.42) and (3.43).
Q.E.D.

By Lemma 3.20 and Lemma 3.21 we infer that the connecting homomor-
phism associated to the exact sequence in (3.35) is induced from

K (e o) 5 K () 20 K (FY (@ ) 2245 K (Gr ().
Furthermore, since
K Qe ) — K'(Q%)/K (FlQx) =K (. /0)
is the identity map and
(L + (K (F' Q%)) C K (F*(Q)),

we conclude that this connecting homomorphism is induced from Lps + A :
K'(Q) — K (F'()) by passing to quotients, i.e.,
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K (Q ) = K (Q )/ K (F1(Q.)

(3.44)
L2, fe (FH Q) /K (F2(2)) = K (G ().

Lemma 3.22.
(Lp+ND +D(Lpy+MN) =0

Proof. The proof will be accomplished after proving several claims.
Claim 1.

d;LM + LMCi;f =0 and
diA+Ad; =0 (0<7<n)

Proof. Let w € K™(Q) = ®jaj+pte=rC?(Uas, Q) and let § € O, be such

' i
that there exist a € O, with § =« + ¢;, where e; = (0---1---0). Then
(Ludiw)(B;psio - -ig) == (—1)Pldps (Engw(0; pj Aaplio), -+ » Aap(ig)),

where Eqop : 3 — X4 and Aop : Ag — A, are such which have been defined in
(3.31). On the other hand,

(d;Lmw)(B;pido -+ iq)
= E35(Lmw)(05p; Aap(io), + » Aap(iq))
= Ex5((—1)1*darw(a; py Xag(io), -+, Aap(iq))

Since Eap = eap X idyr on Va2 00 VP, dy By = B pdas. Hence

(=D)L pdjw)(B; pyio - +iq) = (= 1)1 (d5 Lasw) (B pido -+ g)

, which means df Ly + Lyed} =0 as | B |=| & | +1. Similarly, we can show that
diA + Adi = 0.

Q.E.D.

Claim 2.
6Ly +Lyéd=0 and SA+A=0

Proof. The first identity is trivial. We are going to show the second identity.
Let w € K™(Q%) = ®aj4ptrq-1=rC7 (U, 0% _). Then Mw € K™12(Qy ) =
B al+p+q+1CTT (Uay Q) is giben by
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(Aw) (o pido -+ dg41) = (=1)PHN(IE,) = I (Bw) (0 pyia -+ +ig41)
(3.45)
Eq+1 )g—l(I(io —I(“;)) wla;pyiy - -ty Gg+1).

On the other hand,
(5)\&))(0;29; 7:0 e iq-}-l) ( 1)p+|a| Eq+l (Aw)( a; Ds 20 """" Z‘q—\\-l)
= (I — Iy wlespria - vigar) = (I8 = Iy )wl(es pyiz - dgt1)
(3.46)
Z(H—l I") I(ﬁ; ) )(a pyh ....... 7:q+1)~
= (NI, - T )@ piin i)}
From (3.45) and (3.46) it follows that
{(Ad + oNwHa;pido - + - g41) = 0.

Hence A6 + 6\ = 0 as required.

Q.E.D.

Claim 3.
Lydg, +dx. Ly =0

Proof. Letw € K™(Q) 1= ®laft(p—2)+q=rC?Ua, V7). Then Lyrdw € K™H3(
Q) = Bjatprq=r+2C0(Ua, Q%) s given by

(Lymdx.w)(e;pito - iq)

= (=1)!*dps (dz.w) (51380 -+ 4g))
= (~1)l* ¥ dy (dpw)(e; p-1ido -+ 4q)
= (=1)dz.(Lpw)(os p-15d0 - -+ ig)
—(dz.Lyw)(o;pido -+~ iq)

Hence we have done.
Q.E.D.




Claim 4. On each V) (a € Onyi € Ay),

I ydx, —dx.I

(o) = it

holds.
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Proof. It suffices to show that for a local holomorphic form w on Vi(a) of the

form
w = pdz; (@) A .. /\da: /\dt;cl soedty,),

71

where 4 is a local holomorphic function,
Loydx,w — dz, Iiyw = dfgw

holds. Meanwhile,

d a Zjﬁ(h Jp) f 5d$ /\d:l)S;;) /\ /\ da:z];(;a) /\ dtk1 A

+ Zaﬁf(kx -kq) Bt Fe-dt; A da’(a) TARERA d:c,-j;(,a) Adtg, A

Hence

I} (d2,9) = A sg015) 3 —-{i;da:(a Az A Ndigs™ Adti, A

(3.47)

‘I+1 (ng(kl kg) 6\9 dt] /\d:l:<a)/\ Adﬂ?zj(a)/\dtkl/\

On the other hand,

I(a)w = qud:v(a) Ao A da:ij}(,"‘) Adbgy Ao diy,).

tn

Hence

dx, (Ifyw) = AT g s, ——%dz(“) Az A A dzigS A dti, A

1

(3.48)
F0( gy et A D) A A dzig$ A dty, A

L)

From (3.47) and (3.48) it follows that

[y (dx,w) = dx, (I} yw) = dfgw.

--dtk)

- dty,

~-dtkq.

'-dtkq)

'-dtkq)

dtkq) ‘

q

Q.E.D.
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Claim 5.
Mz, +dx A=0

Proof. Let w € K™(Qx) = Sjajt(p—1)+(g-1)=rC? " Ua, W%_"). Then Mdzw €
KT+2(Q'x’) = @;a|+p+q=r+204(ua, Qg) is given by

(Mdzx.w)(ospiio - iq)

= (=1)PHI(1, — 10 (dx w) (e piio 1)

= (~)PHlde (1) = I3 w) (@i pyio - -+ i)

= —dz, (-1~ — 1)) e pido -+ +4g) (Claim 4)
= —dx, (Mw)(a; piio -+ +iy)

Hence
(Adz. +dx Nw)(a;pyio - -ig) =0

This means Adg. + dx. A = 0.
Q.E.D.

Proof of Lemma 3.22. Now we are ready to prove Lemma 3.22. By
Claim 1, Claim 2, Claim 3 and Claim 5, we have

LD
— LM{(@Ial+p+q{215jgn("1)€jd§-a’p’q)* + (_1)|a|d(xp;q) + 6(a,p,q)}

= {®|aj+p+a(D1<icn(—1)% Lagds PO + (=1)1®dpd 8D + L5t}

=7r

— (‘1){(@Ia{+p(21gj_<_n (_l)sjd§a,p+1,q)*LM + (-1)'“'d§§”")LM + 5(a,p+1,q)LM)}

@

+q=r
— {(®la|+p+q(Z]_S_jsn(—'l)ejdg‘a’p’q)* + (_1){a|dg’;4) + 5(a,p,q)}LM
=r+1

= (—1)DU*+D Ly,

and similarly AD(") = (=1)D+D ), Therefore,
(La + A)D) = (=1)DUFD(Lys 4 A).

Q.E.D.
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Consequently, by (3.36), (3.44) and Lemma 3.22, we conclude that the con-
nection

Vi H (M, (a1 Q% jar)) = HU (K (Qz./00))[1])
— T(M, Qi) Or(m,00) B (M, (a1 Q% ) [1]) = HUK (Gr (Q)[1])
= T(M, Q) ®r(m,0m) HH(E (e jpr)[1])
is nothing but the homomorphism induced by Ls + A in (3.44). We should note
that L+ A is independent on choice of a system of Stein coverings of X. subject
to the conditions (i) through (iv) in (3.31) (cf. [1, p.220, (3.7.1)]).
Step(I1I) Proof of KerV = Im{RE&(r) — R&(m)}
Let Oy be the sheaf of germs of C* functions on M. If K.(Q'oox./M) is a

C* analogue of K" (f2x./5) constructed by use of the complex of C* C-valued
relative differential forms on X. over M, then locally we have

(3.49) o, (m) = HY(K (Qoz./m))

Furthermore, we can define the C* analogue

(3.50) Ve : RS_ (1) = Qy ® RS _ ()

of the connection V : R5(m) — 2}, ® R5(w) so that the following diagram

commutes:

0 —— R&(m) —— RhH(r) —— Qi ®RhH(n)

! ! !

0 —— RA(m) — Rb_(r) —=> QL ,, ® RS _(m)

Therefore it suffices to show that
(3.51) KerV,, = Im{R&(n) — RS L(m}

Since Qoo /m» (0 < p < dimgXa,a € O,) are fine sheaves, the explicite calcu-
lation of Ve in terms of H™(K"(Q ¢ /5,)) remain valid verbally for all coverings
of X. which are subject to the conditions (i) through (iv) in (3.31), but not Stein
open coverings. Since, by [1, Proposition 2.5}, the family X. = M (7. = 7 - a.)
is C* trivial at any point of M, we may take U, = {X,} for all @ € O, to
calculate H™ (K" (Q, % /1)) and

Voo : HY(E (Qzyu)) = T(M, Q% 00) ® HHK (V. /01))-
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We fix this covering. Here we use the following symbols:

K (Qox ) = s(C(X, Qoz./m)

K (Qez.) = s(D(X., Qoox.)),

K'(F* () == s(D(%., FP(Qooz)) forp2 1,
etc..

Locally the connection Vo, in (3.50) is induced from
L+ X K (Qx ) = K'(F Qz /a0))

by passing to quotients, i.e.,

K Qo p) 2 K (Qz )/ K (FH(Q0z.)
2 K (FH(Qx )/ K (FA(ix.)) = DO, Q1) 81 (04,0 K oz a0

Note that A is in fact zero map in this case, because we may take V, =
{%4} for any @ € O,. We have the C* analogue of the exact sequence in
(3.36):

0= K (FHQx )/ K (F*(Q 2 4s))
(3.52)

= K (U )/ K (FA( Q) = K (Qz )/ K (FH (U jp)) —

K (Qx/nm)

Remember that V., comes from the connecting homomorphism of long exact
sequences of cohomology associated to this exact sequence. On the other hand,
we have

0.

Ré(ﬂ') = Rzﬂ'*(S(avl*(CI')[l])
= R (5(a.14 Q) [1])
= HY (K (Q,2)[1]) (locally)

Therefore, since the inclusion map R&(r) — R, () is induced from the com-
posite of the projection map

K (Quz) = K (Qz )/ K (F*(Qz.))
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and the map P in (3.52), we infer that
(3.53) Im{R&(r) — R5_(m)} C KerVy

Hence,

ranko,, R‘é)w (m) > rankec KerV o, > rankcIm{RE&(n) — Réw (m)}

= ranko_, Rém (m)

From this (3.51) follows, and so KerV = Im{R&(r) — RS (m)}. This means
that horizontal local cross-sections of R%(7) with respect to V coinsides with
local cross-sections of R¢t. That is, V is the Gauss-Mannin connection on R} (7).

The fact VF?P(Rg(m)) C Q}; ® FP~1(R2(r)) follows from the explicit cal-
culation of V in SteplI. This complete the proof of Theorem (3.14).
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