VARIATIONS OF MIXED HODGE STRUCTURE
ARISING FROM CUBIC HYPEREQUISINGULAR
FAMILIES OF COMPLEX PROJECTIVE VARIETIES, I

( SHoJ1 T'suBoI

Dept. of Math., College of Arts and Science, Kagoshima University

Table of Contents

Introduction
§1 Preliminaries
1.1 Sheaf theory on diagrams of topological spaces
1.2 Cubic hyperresolutions of complex projective varieties
1.3 Mixed Hodge structure on the cohomology of complex projective
varieties via cubic hyperresolutions
§2 Cubic hyperequisingular families of complex projective varieties
2.1 Definition of cubic hyperequisingular families
2.2 Cohomological descent of R-module sheaves for cubic hyper-
equisingular families
2.3 Cohomological descent of relative de Rham complexes for cubic
hyperequisingular families
§3 Variations of mixed Hodge structure
3.1 Weight and Hodge filterations on the higher direct image sheaf
of cohomology
3.2 Griffiths transversality
84 Infinitesimal period map
§5 Examples
5.1 Locally trivial families of complex projective varieties with ordinary
singularities of dimension< 3
5.2 Infinitesimal mixed Torelli problem for surfaces with ordinary
singularities

Typeset by ApS-TEX




2 SHOJI TSUBOI

Introduction

As far as we know the first paper which has treated variations of mixed
Hodge structure from the view point of infinitesimal mized Torelli problem is
[14]. This Usui’s paper has discussed such variations of mixed Hodge structure
that arise from logarithmic deformation families of pairs (X, D), where X are
complete nonsingular complex algebraic varieties and D are divisors with normal
crossing on X. In this our paper, concerning complex projective singular cases
we would like to propose a notion of cubic hyperequisingular families of complex
projective varieties as families from which there arise naturally variations of
mixed Hodge structure. To define such families we use cubic hyperresolutions of
complex projective varieties due to V. Navarro Aznar, F. Guillén et al.([7]). The
very rough defintion of the family is as follows: for a given complex projective
variety X we take its cubic hyperresolution X. — X and fix it. A cubic hypereqg-
uisingular family of complex projective varieties is defined to be an analytically
" locally trivial” deformation family of a cubic object X. — X (cf. Defintion2.4
below).

The initial motivation of this notion was related to the infinitesimal mixed
Torelli problem for certain algebraic varieties. In [12] we have introduced the
notion of analytic subvarieties with locally stable paramirizations of a complez
manifold, which is a unification and a generalization of closed complex analytic
subsets of normal crossing (not necessarily of pure dimension) and analytic sub-
varieties with ” ordinary singularities”; and showed that, for a given compact
complex manifold Y, there exists a universal family # : 3(Y) — E(Y) for locally
trivial families, i.e., families which are locally products at every ponit of their
total space, of analytic subvarieties with locally stable parametrizations of ¥,
parametrized by (possibly nonreduced) complex spaces. A remarkable fact on
this family is that it is C* trivial at a non-singular point of E(Y );eq (the re-
duction of E(Y')) and the C* type of the fiber is constant over each connected
component of E(Y'). Therefore we might expect that if Y is a complex projective
manifold there arises naturally a variation of mixed Hodge structure from the
family 7 : 3(Y) — E(Y) at a non-singular point of E(Y);eq. In the procedure
of the trial to find out how to describe its variation of mixed Hodge structure,
we have come to the notion of a cubic hyperequisingular family of complex pro-
jective varieties. Since we have not taken into consideration ”polarization” of
the family, embeddings are inessential for.this notion. Hence we shall treat the
family, forgetting its embedding.

Unfortunately we cannot so far prove that cubic hyperequisingular families
of complex projective varieties can always be obtained from locally trivial fami-
lies of complex projective varieties with *ordinary singularites” of any dimension,
where we say that a complex projective variety is with ”ordinary singularities”
if it is locally isomorphic to one of the germs of pure dimensional hypersurfaces
with locally stable parametrizations in a complex manifold. We can do this just
for locally trivial families of complex projective varieties with ”ordinary sin-
gularities” of dimension < 3, i.e., complex projective varieties with ”ordinary
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singularities” in classical sense, as well as for locally trivial families of complex
projective varieties with normal crossings of any dimension. Hence we may at
least say that the notion of cubic hyperequisingular family of complex projective
varieties is non-empty in any dimension.

The arrangement of this paper is as follows:In §1 we shall review, for the
readers’ convenience, the definition of cubic hyperresolution of an algebraic vari-
ety and the basic facts about it, which are due to V. Navarro Aznar, F. Guillén
et al. In §2 we shall give the definition of cubic hyperequisingular families of
complex projective varieties and prove the relative version of cohomological de-
scent of R-mudule sheaves (R: a commutative ring) and de Rham complexes for
these families. In §3, using the results in §2, we shall prove that there arises
naturally a variation of mixed Hodge structure from a cubic hyperequisingular
family of complex projective varieties. The method is to extend the arguments
in [3] (we also refer to [4]) and [11] to the relative case of cubic hyperequisingu-
lar families of complex projective manifolds. In §4 we shall give a formulation
of the Kodaira-Spencer map for a cubic hyperequisingular family of complex
projective varieties and prove a formula which relate the Kodaira-Spencer map
and infinitesimal period map, i.e., the differential of the canonical map from the
parameter space of a cubic hyperequisingular family of complex projective vari-
eties to the moduli variety of mixed Hodge structure. In §5 we shall show that
there arise naturally cubic hyperequisingular families of complex projective va-
rieties from locally trivial families of complex projective varieties with ” ordinary
singularities” of dimension < 3 as well as from locally trivial families of com-
plex projective varieties with normal crossings of any dimension, and discuss an
infinitesimal mixed Torelli type problem for surfaces with ordinary singularities.

Throughout this paper our method is basically ” complez analytic” and we
always consider algebraic manifolds and algebraic varieties over the complex
number field as complex manifols and complex analytic varieties, where we use
the term of analytic varieties in the sense of reduced complex spaces (possibly
not irreducible). The paper will be devided into three parts. PartI has contained
81, §2, PartII will contain §3, and PartIII §4, §5.
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§1 Preliminaries

In this section we shall briefly review the minimum of the theory of cubic
hyperresolution of complex projective varieties due to V. Navarro Aznar, F.
Guillén et al., which will be needed later. For detailes we refer to [7].

1.1 Sheaf theory on diagrams of topological spaces

Let I be a finite ordered set. We always think of I as a category whose Ob(I)
are all of elements of I and the set of homomorphisms Hom(i,5) (i,5 € I) are
defined by
i—J (anarrow fromitoyj) ifi<j

Homy(i,j) = { 0

In the following we denote finite ordered sets by I, J,--- etc.. Let € be a
category.

1.1 Definition. We call a functor X. : I° — € a diagram of € of type I, or
shortly an I-object of €, where o stands for the dual category

otherwise

Let X. and Y. be an I-object kand a J-object of € respectively, and let
@ : I — J be a functor. We denote by ¢*Y, or Y. x s I, the diagram of € of type
I defined by the composite of the functors Y. o ¢.

1.2 Definition. We define a morphism ®. from X. to Y. over ¢ : I — J

to be a natural transformation ®. : X. = ©*Y.. If I = J and ¢ is the identity
on I, we simply call ®. an I-morphism.

For an I-object X. of € we use the following notations:

X; = X.(i) € Ob(€) foriel,

Xij=X.(0 = j) € Home(X;,Xi) for 4,j€I with i<j.

For a morphism ®. : X. — Y. from an I-object X. of € to a J-object Y. of Cover a
functor ¢ : I — J, we denote by ®; : X; — Y, ;) the element of Home(X:,Y,(;))
corresponding to 7 € I. We denote an I°-object of € by X : I — . For an I°-
object of € and a morphism ® : X — Y~ from an I°-object of € to a J°-object
of € over a functor ¢ : I — J, we use the notation X?, X% and &' instead of
Xi,Xij and @,;.

1.3 Definition. Let S be an object of € and X. an I-object of €. We think
of S as a {x}-object of €, where {*} is the ”ponctuel” category, i.e., the category
consisting of one point. We call a morphism X. — S over the trivial functor
I — {x} an augmentation of X. to S, and we call an I-object X. of € with an
augmentation X. — S an I-object of € augmented toward S.
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We denote by Cat the large category of all (small) categories. Let K be an
I-object of €at (resp. I°-object of Cat).

1.4 Definition. The total category tot(K) of an I-object (resp. I°-object)
K of €at is defined to be the category whose objects Ob(tot(K')) and the set of
homomorphisms Hom,.k)( , ) are defined as follows:

Ob(tot(K)) := {(i,z) |1 € I, z € K;}
(resp. Ob(tot(K)) = {(3,2) |i € I, z € K*})

HO?TlK,»(-’L’, Ktj(y)) { SJ
Hmntat(K)((i’m)a (.7’ y)) = (resp. Homg:; (Kij(w)) y))
] otherwise.

We denote by (Top) the category of topological spaces. Recall that we
can identify a topological space with the category of open subsets of X, and
a continuous map f : X — Y between topological spaces with a functor f!
between the categories of open subsets of Y and X . This fact allows us to identify
(Top)° with a subcategory of €at. In the following we shall always make this
identification unless otherwise specifically mentioned. For the sake of brevity we
call a diagrm of topological spaces X. : I — (Top), i.e., an I-object of (Top), an
I-topological space. For an I-topological space X. : I — (T'op), regarding X. as
a functor X. : I° — Cat with the identification of Top°® as a subcatogory of Cat,
we get the total category tot(X.).

1.5 Definition. A R-module presheaf F" on an I-topological space X. :
I — (Top) is defined to be a contravariant functor from the total category tot(X.)
to the category of R-modules, where R is a commutative ring.(We shall mainly
be concerned with the cases R = Z,Q or C). We say a R-module presheaf F" on
an I-topological space X. : I — (Top) is a R-module sheaf if the presheaves F*
on X;, defined by F", are sheaves for all 7 € I. For R—module (pre)sheaves F”
and G" on X., a morphism from F" to G is defined to be a natural transformation
from F" to G'.

We denote by M(X.,R) the category of R—module sheaves on X.. Let
®.: X. - Y. be a morphism from an I-topological space X. to a J-topological
space Y. over a functor ¢ : [ — J.

1.6 Definition. For a R-module sheaf G* on Y. we define its inverse image
®*G" € M(X.,R) by ®. as follows:
(@*@)* 1= 85(G*W) for i€ Ob(I).

For a R-module sheaf F* on X. we define its direct image ®..F" € M(Y.,R) by
®. as follows:




(®..F Y := lim (Yjp()F' for j€ Ob(J),

i€\
where
(1.1) Ne:={i€0b(I)|j < @) inJ}.
Thus we have functors
(1.2) ®* : M(Y,,R) » M(X.,R) and
(1.3) d.: M(X.,R) — M(Y, R),

for a morphism ®. : X. — Y. from an I-topological space X. to a J-topological
space Y. over a functor ¢ : I — J. We can easily see that ®., is the right adjoint
of ®*. Now we are going to describe injective objects of the category M(X., R).

Let Idis be the discrete category associated to I; e : 45 — [ the inclusion
functor; Xdisc the Jdi*_topological space X. x; I4*¢; and E. : X% — X.
the natural morphism over e : I%¥¢ — I. Since the inverse image functor
E* : M(X.,R) = M(Xdisc R) is exact, its right adjoint E., : M(X%¢, R) —
M(X.,R) preserves injective objects. A R-module sheaf K* € M(Xd=< R)
whose K* € M(X.,R) are injective for all i € I is injective in M(X3#°, R).
Hence the direct image E..K' € M(X.,R) of such K* € M(X%= R) by E. :
Xdise _, X is injective in M(X., R). By this description of injective objects of
M(X.,R), we conclude that M(X., R) has enough injective objects.

We denote by C*(X.,R) the category of lower bounded complexes of R-
module sheaves on X. and D*(X.,R) the derived category obtained by lo-
calization of the category C*(X.,R) with respect to quasi-isomprphisms, i.e.,
morphisms u' : F* — G of complexes of R-module sheaves on X. such that
u? : F* — G* are quasi-isomorphisms of complexes of R-module sheaves on X;
for all i € Ob(I). Since M(X., R) has enough injective objects, we may identify
D+(X.,R) with K*(X.,Inj.R) the homotopy category of lower bounded com-
plexes of injective R-module sheaves on X.([10, p.435, Proposition 2.7]). For a
morphism ®. : X. — Y. between diagram of topological spaces, since the functor
®* in (1.2) is exact, it trivially defines a functor

(1.4) & : D*(Y,R) —» D*(X,,R)

Furthermore, since the functor ., in (1.3) is left exact, it admits the right
derived functor




(1.5) R®., : D*(X.,R) = D*(Y,R).
For better understanding of this map the following factorization of . : X. — Y.

is convenient:

X .

| : Y.
(1.6) q\ /I’z.

Y.XJI

where ®;. is an I-morphism of I-topological spaces defined by (®1.); = &, for
i € Ob(I), and ®,. is the natural ¢-morphism from the I-topological space Y. x ;I
to the J-topological space Y.. For lower bounded complexes of R-module sheaves
F and F" on X. and Y. x; I, respectively, we have

(1.7) (R®1..F')' = (R®;).F' for j € Ob(I), and

(1.8) (R®..F") =Rlim _ F" for j € Ob(J),

where 7\ is the same as in (1.1). Therefore, since (R®.), = (R®2). - (R®1)x,
we have

(R®..F') =R lim (R®:).F" for i € Ob()
i€5\p

for a lower bounded complex of R-module sheaves F* on X.

1.2 Cubic hyperresolutions of complex projective varieties
We denote by Z the integer ring.

1.7 Definition. For n € Z with n > 0 the augmented n-cubic category,
denoted by O, is defined to be a category whose objects Ob(0;) and homomor-
phisms Homg (@, 8) (@ = (a0,01,++ ,an), 8 = (B, b1, Bn) € OB(OY))
are given as follows:

ob(0F) == {a = (ag,e1, - yan) € L™ |0< @; < 1for 0 <4 < n},

a— B (an arrow from a to f) ifa; < Pifor0<i<n

H ,B) =
omg (2, 5) { 0 otherwise
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For n = —1 we understand O7 is the "ponctuel” category {*}, i.e., the category
consisting of one point. For n > 0 the n-cubic category, denoted by O,, is defined
to be a full subcategory of O} with Ob(Od,) = Ob(TF) — {(0,---,0)}.

Notice that Ob(O;}) — {(0,---,0)} (resp. Ob(O,)) can be considered as a
finite ordred set whose order is defined by a < 8 <= a — 3 for a, 8 € Ob(O})
(resp. Ob(O,)). Let C be a category.

1.8 Definition. A Of-object X.* : (O})° — C (resp. a O,-object X. :
(0,)° — C) of C is called an augmented n-cubic object of C (resp. an n-cubic
object of C).

1.9 Remark. Notice that an augmented n-cubic object X.* : (OF)° — C
of C can be identified with an n-cubic object X. := XTD,, :(3,)° — C of C with

an augmentation toward X("(')Y“_ 0) (cf. Definition 1.3).

In the following we shall interchangeably use an augmented n-cubic object
of C and an n-cubic object of C with an augmentation. We denote by (Proj/C)
the category of complex projective varieties.

1.10 Definition. We call a O}-object of (Proj/C) (resp. a On-object
oof (Proj/C)) an augmented n-cubic complez projective variety (resp. an n-
cubic complex projective variety), or a O -compler projective variety (resp. a
O, -complezx projective variety) for the abuse of language.

1.11 Example. Let X be a complex projective variety and {X,}o<r<n all
of irreducible components of X. For each a = (ag, -+ ,a,) € O, we define

Xo={{X:|a: =1}.

If o < B in O,, then there is the natural inclusion map Xz C X,. Hence the
correspondence a € O, — X, € (Proj/C) defines an n-cubic complex projective
variety X. : (0,)° — (Proj/C). We consider X as a O0F;-complex projective
variety. Then there exists naturally an augmentation X. — X, which can be
considered an augmented n-cubic complex projective variety (cf. Remark 1.9)

Let I be a finite ordered set. All of I-complex projective varieties, i.e., func-
tors I° — (Proj/C), and I-morphisms between I-complex projective varieties
(cf. Definition 1.2) forms a category, which we call the category of I-complex
projective varieties and denote by (I-Proj/C)(We shall mainly be concerned
with the cases I = 07 or O,).

1.12 Definition. For a I-complex projective variety X., a functor Z. :
(@F)° — (I-Proj/C) is called a 2-resolution of X. if Z. is defined by a cartesian
square of morphisms of I-complex projective varieties as follows:




Zy. — Zow.

! !

Zro. — Zoo,,
which satisfies the following conditions:

(i) Zoo. = X,

(ii) Zo1. is a smooth I-complex projective variety,
i.e., a functor from I° to the category of smooth complex projective
varieties,

(iii) the horizontal arrows are closed immersion of I-complex projective
varieties,

(iv) f is a proper morphism between I-complex projective varieties, and

(v) f induces an isomorphism from Zy15 — Z115 to Zgog — Z10p for any
B € 0b(Ot).

Notice that, for a finite ordered set I, a O -object X. : (O})° — (I-Proj/C)
of the category (I-Proj/C) can naturally be identified with a O} x I-object
X..: (@ x I)° = (Proj/C) of the category (Proj/C), where OF x I is the
product finite ordered set of O} and I. In the following we shall interchangeably
use a Ot-object of (I-Proj/C) and a O} x I-object of (Proj/C). Especially,
since 07, , = Of x O}, we may think of a 2-resolution Z. of a [I}-complex
projective variety X. as a EII g-complex projective variety.

1.13 Remark. With the above identification, since a morphism X. = X
from a O, x I-complex projective variety X. to a Dfl x I-complex projective
variety X over the trivial functor O, x I — D'_"l x I can be identified with a
morphism from a O,-object X. of I-complex projective varieties to a OF,-object
X of I-complex projective varieties over the trivial functor O, — O¥;, the
morphism X. = X can be identified with a O} -object of I-complex projective
varieties (cf. Remark 1.9), that is a O} x I-complex projective variety.

1.14 Definition. Let n be an integer> 1. Suppose we are given a sequence
{X1,X2... X"} of OF x I-complex projective varieties X."(1 < r < n)
subject to the condition that the OF_; x I-complex projective variety X5t
coincides with X7, for any r (1 < r < n). Then we define, by induction on n, a
OF x I-complex projective variety

Z. =rd(X}, X2, , X7),

which we call the reduction of {X!,X2,---,X"} as follows: If n=1, we define
-Z. = X!. If n=2, we define Z. = rd(X', X?) by




X3s if a=(0,0)
Zaﬁ = 2 .

for every 8 € OF. If n > 3, we define

Z. =rd(rd(X!,--- , X1, X™).

1.15 Definition. Let X a OF,-complex projective variety, i.e., a complex
projective variety, X. a O,-complex projective variety, and X. 25 X a morphism
over the trivial functor 0, — O_;. We think of X. =% X as a D,";-complex
projective variety (cf. Remark 1.13) and we denote it by X*. We call X (resp.
X.) an augmented n-cubic hyperresolution of X (resp. an n-cubic hyperresolution
of X, or an augmented hyperresolution of X of length n (resp. a hyperresolution
of X of length n) if there exist a sequence {X.},X.2,.-- | X."} of OF-complex
projective varieties X7 (1 < r < n) such that:

(i) X! is a two resolution of X,

(i) for 1 <7 <n, Xt is a two resolution of X7, (then the OF_,-
algebraic variety Xg;" coinsides with X7, for every r with 1 <r < n),
and A

(iii) X+ =rd(X,X2... , X"

(iv) X4 is smooth for all (a,4) € O, x I.

1.16 Theorem.. ([7, p.14, Théoréme 2.15]) For any complex projective
variety X of dimension n there ezists an augmented n-cubic hyperresolution
Xt ={X. = X} of X such that

dimcXy < dimX — |a| +1 for every a € O,,

where |a| = Y1 a; for a = (ap, 01, "+ ,an).

The important fact on the cubic hyperresolution is ” cohomological descent”.
There are two sorts of " cohomological descent”; one is of R-module sheaves (R:a
commutative ring, especially R=Z,Q, or C)([7, p.41, Théoréme 6.9]) and the
other is of de Rham complexes ([7, p.61, Théoréme 1.3]).

1.3 Mixed Hodge structure on the cohomology of complex pro-
Jjective varieties via cubic hyperresolutions

Replacing (Proj/C) and (I-Proj/C) by (Top) and (I-Top), respectively,
all notions and terminology in the previous paragraph can be transfered to the
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case of topological spaces. Let a.: X. — X be an augmented n-cubic topological
space and let F" be a lower bounded complex of R-module sheaves on an n-cubic
topological space X.. We will give a concrete description of Ra.. F" € DY (X, R).
For this end we take the factorization

(1.9) X & XxO0, 2 X

ofa.: X. — X asstated in (1.6). By definition a1axF" = {a1..F*}aen, , to which
we associate a simple complex s(a;..F") of R-module sheaves on X. To explain
this we first give the definition of an n-ple complez of an abelian category. Let
A be an abelian category. We denote by C*(A) the category of lower bounded
complexes of A. Let n be an integer> 1. We denote by e; the i-th vector of
the canonical basis of Z™, i.e., ¢; = (0,---,1,---,0) (1 is at the i-th place) for
1<i¢<m.

1.17 Definition. With the notation above, an n-ple complex of A consisits
of the following entities:

(i)a Z™-graded object {K*}qezn of A, and

(ii) a family {d;}1<i<n of differentials of K" such that d; is of defree e; and

they commute each other.

1.18 Definition. For K € n-C*(A) its associated simple complez s(K) €
CT(A) is defined to be as follows:

s(K)P:= Y KPP, pelZ and
X pi=p
the defferential d of s(K) is given by

n
d=Y (-1)%d; on KP"7n,
Jj=1

where €; = 32, pi-

- Let A. be a (OF)°-object of lower bounded complexes of R-module sheaves
on a topological space, say Y, i.e., a functor A. : (O;})° — C*(Y, R). We denote
A.(a) € C*(Y,R) by A, for each a € O;. We associate to such A an object
K(A.) of (n+2)-C* (Y, R), i.e., an (n+2)-ple lower bounded complex of M(Y, R)
as follows:

Al if aeOdf
0 if a€Z™!-0Of;
the (i+1)-th differential is the one induced by the morphism a — a + ¢; in O

for 0 < i < n, and (n+2)-th differential is the one of objects of C* (Y, R). For
the sake of simplicity we denote s(K(A.)) by s(A.).

e =
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Now we return to the set-up at the beginning of this paragraph. We think
of a1.4F" = {a1a+F*}acn, as a (OF)°-object of lower bounded complexes of
R-module sheaves on X, defining F(© %) = {0} for (0,---,0) € O}, and form
s(a1.«F"). Then by (1.8) we have

Ras.« (al.,F’) = 8((1.1.,..F‘)[1]

in DT(X, R), where [1] stands for the shift of the degree of complexes to the left
by 1, i.e., s(a1.«F")[L]P = s(a1..F")?*!. Hence by (1.6)

(1.10) Ra. F" & s(ag., F)[1]

in D*(X, R). This is an explicite description of Ra.. F* which is needed for our
arguments in the following.

For use later we will prove two facts about (O})°-objects A. = {Aa}qem
of complexes of R-module sheaves on a topological space Y. Since OF = O x
Ot _,, we may think of A. as a (O7)°-object of (O;_;)°-objects of complexes of

n—1)

R-module sheaves on Y. We denote it by

A= {4 - ALY},

where ¢ is the morphism between (O} _,)°-objects of complexes of R-module
sheaves on Y corresponding to the arrow 0 — 1 in O¢". § induces a homomor-
phism

6:s(Ap.) — 5(A1)

of complexes of R-module sheaves on Y. We think of this homomorphism as
a (OF)°-object of complexes of R-module sheaves on Y and form s(s(Ap.) —

s(A1)).

1.19 Proposition.. With the notation as above, we have
s(s(Ag.) — s(A1.)) ~ s(A.).

Proof. By defintion
5(s(Ao.) = 8(A1.))P = s(Ao.)P ® s(Ap. )P !

!
= (@a1+--‘+an+q=pAga1~-~an) @ (ea/1+"'+°‘£t+q'=p—1Ag°‘/1"'0‘51)
= @ao+"'+an+q=PAgto-"an = s('A')p'

We will use the following notation for differentials:
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D® : s(s(Ao.) — 5(A1))? = s(s(Ao.) — s(A1))P*,

8(p) : s(Ao.)? — s(AL)?,

(1.11) dP : s(Ai)P — s(AFTY) (i=0,1),

D® : 5(A)P — s(A)PF

6§ao..~anq) . Agzo-najman — Ago-v-a,'+1~-a,. (J =0, ’n) and

d(Q)

. A9 +1
Qg Qn * Aaoma" b Aio...an-

Then by definition

D® =5® 4+ 4P —dP  ons(s(Ao. — s(Ar.))?

and.

a~

Digg,..un =

J(QO..oa,‘q) + Z’n (_1)a1+-..+aj_16(aou-anq) + (_l)lald(Q) . —_ O
{ 0 =1 J Oay-an 0=

Ty (—pmtasmglEred ()il ) wao=1

1o -om

for every (o, - ,Qn,q) With | @ | +¢ = p, where | & |= ap+- - -+an. Therefore,
since 6*°"**% =0 on Al ..., We have

LAZO an

= Z(_l)ao+...+aj_16§a0...+a,.q) + (_1)a0+m+a"d¢(xqo)~-an
Jj=0

— p)

- D"iq&o an

Q.E.D.
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Next, since O0F = OF x O _,, we may also think of A. as a (O7)°-object

of (O;_,)°-objects of complex R-module sheaves on Y, which we denote by
6801-)
A, —— Ao
A = 5§10«)T Ts§oo-)
6(()00') )
Alo — AOO..

Further, we denote by

5(01:)

(A1) < s(Aor.)

SilO-)T IS&OO')

§(00-)

S(Alo. ) — S(AOO‘)

the associated (O7)°-object of simple complex of R-module sheaves on Y , and
by

5(01:)

S(.Au.) 460— 3(A01-)

s *gm-) T I‘sgom)

s(A.) oo 3(Aoo.)

the simple complex of R-module sheaves on Y associated to this.

1.20 Proposition.. With the notation above, we have

§(01-)

8(«411.) 4-50—— 3(./101.)
s poo] Jaeool = s(a).

8(A0.) —— s(Aoo.)
6((,00')

Proof. By definition
s(A1.) «—— (Ao \ P

of 1 I

s(Az0.) —— s(Aoo.)

= 9 — T
- ®|a0|+|°¢1|+4=?‘9(”4a0&1') = 69|¢:lzo|-§-|z:vq|+q=1;v(ealcuo|-4---~+|¢:\z,.|-}-1-=q~'4~¢“-,...c,,ﬂ)
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= ®'aol+-"+|an|+r=p-A;0...an = S(A.)p.

We use the following notation for differentials:

8(A11.) —— s(Ao1.)\?

D? i sl ] |

S(.Alo‘ ) — S(Aoo.)

(A1) —— s(Ao1.)\ 7™

Ll T

5(A10.) «——— s(Aoo.)

567+ 8(Alyay.) — 5(Aag+1ar )Y,
8§°‘°°‘1) : 8(Aagar-)?! — $(Aagag+1.),
e, + 5(Aday.) — 8(Aager) T+,

and D(p), 6§.°‘°'"°"‘Q), d9. o, are the same as in (1.11). Then by definition

(1.12) D@ = §leoer) 4 (—1)“°8§“°“15 + (=1)%0+ergla)

agoy

on $(Aggay)?-

Furthermore, on each AJ, .., with |ao |+ -+ |a. | +r =p,

S(gaoal) — 6(()0:0..41,.1'),
3§aoa1) — 6§a0...aﬂ.,-), and

n

B e L .
j=2

Therefore, by (1.12) we have
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DEL = Y (mpjeorreimglen) 4 (pyeetreng()
0 =0
—_ p®
= Dli'

ag-an

Q.E.D.

From now on, let X be a complex projective variety. We take a hyperres-
olution X. =» X of X and fix it. We denote by D+ (X,Z) the derived cate-
gory of lower bounded complexes of sheaves of Z-modules over X. We define
K € Ob(D*(X,Z)) by

K :=s(a1..Zx.),
where Z x. is the constant sheaf with value Z on the cubic hyperresolution X. of
X and X. 2% X x O, (n=the length of hyperresolution X.) is the factorization
of X. 2% X in (1.9). Notice that by the cohomological descent for Z-module
sheaves ([7, p.41, Théoréme 6.9]),

K ~Zx in D¥(X,Z).
We define a so-called weight filteration W on Kg = K ® Q € Ob(D*(X,Q)) by

W_q(Kq) := 8(0)a|>q010+ZL X,,)

, where |a| = Y1 a; for & = (ao,** ,an) € On. (In general, the subcomplex
0>¢(K) of a complex K is defined as follows:
0 ifp<yg
K)P =
724(K) { K? ifp>gq

The filteration of K defined by these subcomplexes is called stupid filteration,cf.
[4, p.37,2.3.8].) Then (Kg, W) € Ob(D*F(X,Q)), where Dt F(X, Q) stands for
the derived category of filtered, lower bounded complex of Q-module sheaves over
X. By the cohomological descent for de Rham complexes ([7, p.61, Théoréme
1.3]), we have

$(a1.4Qx) ~ Ra..Qx.

~DRy ~Cx ~Zx®C
in DT(X,C), where QY is the de Rham complex of X. and DRY is the coho-

mological de Rham complex of X. Hence Kg := K ® C is quasi-isomorphic to
s(a1..+0y. ). We define a so-called Hodge filteration F on K¢ =~ s(a1..Q% ) by

FP(s(a1.40%.)) := 8(0g2pa1+0% ).
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1.21 Theorem. ([7, p.95, Proposition 1.19]) Let X be a complez projective
variety and a. : X. — X a cubic hyperresolution of X. Then, with the same
notation as above, the data :

ZX’ (s(al-*QX; VW)) QX = s(al-*QX.))

(s(a1x$2%.), W, F),

(s(a14Qx.), W) @ C = (s(ar..2%.), W)
is a cohomological mized Hodge comples in the sence of Deligne ( For definition
see [Théorie de Hodge III, (8.1.6)]). Hence the filteration W €] (W[€]q := Wy—s)
on H{(X,Q) ~ HY(RT(X, s(a1..Qx.)[1])) and the filteration on H*(X,C)
~ HYRL(X, s(a1.. 2% )[1]))(0 < £ < 2dimX) defines a mized Hodge structure.

1.22 Remark. Thus defined mixed Hodge structure on H*(X,C) is inde-
pendent of the choice of a cubic hyperresolution X. = X and has functorial
property. To prove these we need more comprehensive theory of cubic hyper-
resolution; that is, we have to consider not only ”cubic hyperresolution” but
also "k-iterated cubic hyperresolution”, which is inductively defined. ”1-iterated
cubic hyperresolution of a complex projective variety is an ordinary ”cubic hy-
perresolution”. For k > 1, " (k+1)-iterated cubic hypereresolution” of a complex
projective variety is a cubic hyperresolution of an "k-iterated cubic hyperreso-
lution” of the comlex projective variety. For details see [7].

§2 Cubic hyperequisingular families of complex projective vari-
eties

The purposes of this section are to give the definition of cubic hyperequisin-
gular families of complex projective varieties and prove the relative version of
cohomological descent of R-module sheaves (R: a commutative ring, especially
R=Z,Q or C) and de Rham complexes for these families.

2.1 Definition of cubic hyperequisingular families

2.1 Definition. By an analytic family of complex projective varieties,
parametrized by a complex space M, we mean a triple (X, 7, M) satisfying the
following conditions:

(i) m: X — M is a flat surjective holomorphic map of complex spaces,and

(ii) X; := m~1(¢) is a complex projective variety for any t € M.

Let (X,m, M) and (¥X',7', M) be analytic families of complex projective
varieties parametrized by the same complex space M.

2.2 Definition. By a morphism (resp. an isomorphism) for (¥, 7, M) to
(%¥',7', M) we mean a holomprphic (resp. biholomorphic) map H: X — X' such

that the diagram

x 2.,y

1k

M 4,y
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commutes, where idys is the identity map on M.

We denote by Fjs the category of analytic families of complex projective
varieties, parametrized by a complex space M.

2.3 Definition. We call a O} -object (resp. [n-object) of Fjs an ana-
lytic family of augmented n-cubic (resp. n-cubic) complez projective varieties,
parametrized by a complex space M.

Let X. 2> X be an augmented n-cubic complex projective variety and M
a complex space. Then Xo X M (@ € O,), X X M, aq := by X idpr: Xa X M —
XxMandm:= Pry: XxM — M, the projection to M consititute an analytic
family of augmented n-cubic complex projective varieties , parametrized by a
complex space M, which we denote by

X.x M a.:=b.X1dp XxM m:=Prym M

and call the product family of augmented n-cubic complex projective varieties,
parametrized by a complez space M. Let £.% = {¥. = X} be an analytic family
of augmented n-cubic complex projective varieties (For notation see Remark 1.9),
parametrized by a complex space M. Whenever we wish to express its parameter
space M explicitly, we write

(2.1) XS5 E5 M.

Fort € M, Xiq = (7-aa)71(t) (@ € On), Xt := 771(t) and ara = aqx,, :
Xta — X: constitute an augmented n-cubic complex projective variety, which
we denote by X;. = X, and call the fiber at ¢ € M of an analytic family of
augmented n-cubic complex projective varieties in (2.1). Similarly, for an open
subset U of %, we form an analytic family

a. "N U) 2=, 1L )

of augmented n-cubic enalytic varieties, parametized by a complex space w(U).
With these notions, we define an n-cubic hyperequisingular family of complex
projective varieties, parametrized by a complex space as follows:

2.4 Definition. Let X. 2> ¥; — M be an family of augmented n-
cubic complex projective varieties, parametrized by a complex space M. We
call . 25 %y — M an n-cubic hyperequisingular family of complez projec-
tive varieties, parametrized by a complex space M if it satisfies the following
conditions: '

(i) for any pont t € M, X;. == X, is an augmented n-cubic hyperresolution
of Xt,

(ii) (analytically "local triviality”) for any point ¢ € Xg, there exists an open
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neighborhood U of p in ¥, such that a~* () 25U 5 n(U) is ana-
lytically isomorphic to
PT,,(U)

(@ (U) N Xrp)) X 7(U) = (UN Xn(p)) x 7(U) —— 7(U)
over the identy map idn(y) : 7(U) — 7(U)

2.5 Proposition.. Let £. = X 5 M be an n-cubic hyperequisingular
family of complex projective varieties, parametrized by a complez manifold M.
Then the On-object X. — M(m. := 7 - a.) of smooth families of complez mani-
folds, parametrized by M is C* trivial at any point of M ; that is, for any point
to € M, there exists an open neighborhood N of to in M and a diffeomorphism
®.: (r."1)(N) — Xy x N of On-objects of complex manifolds over the identy
map idy : N — N. Furthermore, X. 25 % 5 M i3 topologically trivial at any
point of M.

Proof. Let N; be a coordinate neighborhood of ¢o in M with a holomorphic local
coordinate system (1, ,tm), and N a relatively compact open subset of Ny
with N C Ny. Let t; = z; + V=12Zm+i(1 < i < m) be the expression of ¢; in
real local coordinate functions z;,y;. To prove the proposition it suffices to show
that for evry -5‘2—‘ (1 <i < 2m) and every a € O, there exists its liftings v to
771(N), i.e., a C* vector field on w3 (N) with the property

(dra)08) = 723,

subject to the requirement
(2.2) dEap(v)) = Eap(vf)

for every pair (a,3) of elements of Ob(O,) with o < B in the category [,
where Eap : X3 — X4 denotes a holomorphic maps corresponding to an arrow
a — B in O,. In fact, if such liftings {v}qeq, exist, integrating vf*, we have
a C'®-trivialization of the family 7o : £, — N along the z;-axis in N for all
a € O, such that those trivializations commute with the maps Eap : X5 — %o
for every pair (a, 8) of elements of Ob(0,) with o — J in the category O, due
to the requiement (2.2). Arguing inductively on the dimension of M, we finally
get the trivialization asserted in the proposition (cf. For more precise arguments
we refer to Theorem 3.3 in [5]). Now we are going to prove the existence of the
liftings v¢ to 75 (N) of 52- subject to the requirement (2.2).

We take open coverings V = {Wx}rea, and V' = {Vi}ren, of 771(N) in X
that satisfy the following conditions:

For every A € Ao,
(i) Vs is a compact subset of Vj,

(ii) there exists an embedding ¢y : V, — C™, and
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(iii) a.71(V}) = V4 = m(V4) is analytically trivial.
We are allowed to put the condition (iii) due to the analytically "local trivial-
ity” of the family X. =» X 5 M (cf. Definition 2.4 (iii)). By this condition
there exist liftings v§; of 3%‘ to azl(V4) for every a € O, and every A € Ag
subject to the requirement (2.2). We take a C*® partition of unity {px}rea, On
X = U)‘E Ao A subordinate to the covering V = {Va}ren,, i-€., pa’s are "C*®
functions” on X' := {Jy¢a , V> satisfying the following conditions:

(i) 0 < pa <1 for A € Ay,
(i) Supp px C Vi for A € Ao,

(i) 2oaen, P =1on X
Notice that %' is a singular space. We use here the term ”C functions” in the
sense of that they are locally pull-backs of C* functions on C** via embeddings
@x : Vi — C™. The existence of C*-partition of unity {px}xea, as above
is guaranteed by the fact that the proof of the existence of C*°-partition of
unity subordinate to a countably indexed open covering of a C*-manifold is
also applicable in our case (cf.[5, Chapter I, Theorem 4.6]). We define

¢i= ) an(p)Ve
AEAg

v

for a € O,. Then we can easily check that
(dma)(0F) = 2(2) and
* @ 61‘,'
(dEap)(vf) = Exp(v)

for every pair (a, 3) of elements of Ob(0,) with a < f in the category O,.

Finally, we will show that the C* triviality of the family ¥. = M implies
the topological triviality of the family X. 2% 5 M. For afiber X;. (t € M) of
the family . = M, we define an equivalence relation on the topological space
Heeq, Xta (disjoint sum) by

a<lp and eqs(q) =p

~ q iff p € Xiq,q € X4 such that
PraBpE e d= S {or a>f and ega(p) =4,

where eqag @ Xig — Xia (resp. ega : Xia — Xis) is the holomorphic map
corresponding to an arrow @ — f(resp. 8 — «) in O,. Then the natural map
from ([I,eq, Xta/ ~) (the quotient topological space of [],cq, Xta by the
equivalence relation ~ above) to X give rise to a homemorphism between these
spaces, because X;. is a cubic hyperresolution of X. Therefore a diffeomorphism
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between different fibers X;. and Xy.(¢,t' € M) give rise to a homeomorphism
between different fibers X;. — X; and Xy. — X of the family X. x5 M.

Q.E.D.

2.2 Cohomological descent of R-module sheaves for a cubic hy-
perequisingular family _

Now we are going to prove cohomological descent of R-module sheaves for
a cubic hyperequisingular family of comlex projective varieties. Let X. be a
O;-object of complex projective varieties and M a complex space. We take a
two resolution of X. and denote it by

v 4, X

(2.3) g.l l 5.

Yy, — X.
We form direct product of each term in (2.2) with M. We denote it by

I''=u xidp
—_—

Y'xM X'x M
G.:=g.xidMJV 1F.:=f.xidM
Y xM ——— X.xM

T:=u. xidp

2.6 Lemma. With the notation as above, for a R-module sheaf A on X.x
M, the simple complex associated to the OF —object of complezes of R-module
sheaves on X. x M

RH.H*A «—— RF.,F*A

(2.4) I [

LI*A —— A

where H. := I.0G. = F.oI', is acyclic. Here we identify the derived category
D*(X. x M,R) of lower bounded complezes of R-module sheaves on X. x M
with the homotopy category of bounded complezes K+ (X. x M,Inj R) of lower
bounded complezes of injective R-module sheaves on X.x M.

Proof. We proceed with the proof by induction on n.

(I) The case n=1: We have short exact sequences of sheaves

(2.5) 0= SJJA-A-ILI"A—0
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(2.6) 0— JJ*"F*A—= F*A> TI'I"F*A—0

on X x M and X’ x M, respectively, where J: (X x M)\(Y x M)(dif ference set)
—XxMand J': (X'x M)\ (Y'x M) — X' x M are inclusion maps. Since F
is proper, the adjunction morphism define a morphism of distinguished triangles
in D¥(X x M,R)

RH, H/"'.A
/——;IRF F*A

II‘.A

//

S J*A ————— REA J’J”"F*A

(2.7)

Hence we have a distimguished triangle in D (X x M, R)

s(LI"A — RH.H*A)
(2.8) 41 /
s(hJ*A — RE, JIJ"* F* A) s(A — RE, F* A),

where s(J;J* A — RF, J{J™*F*A) is the simple omplex associated to the
OZ -object of complexes of R-module sheaves JiJ* A — RF. J/J™ F* A and so on.
From (2.8) it follows a long exact cohomology sequence

oo = Hi(3(JJ* A = RE, J! J" F* A)) — Hi(s(A — RF, F* A))

(2.9) — H(s(L.I'A— RH.H*A)) — H*(s(hJ*A — RF, J|J"F % A))
— e

Since Jlo FoJ': (X'x M)\ (Y' x M) — (X x M)\ (Y x M) is an analyitcal
isomorphism,

MJ*A~REJJ*F*A in DY(X x M,R).

Hence )
H'(s(hJ*A - RE.J/J*F*A)) =0 for any i,

so by (2.9),
Hi(s(A—=RF,F'A) = H'(s(I.I"'A— RH.H*A))
for any i. This means the morphism of complexes of R-module sheaves

$(A — RE.F*A) — s(I.I"A — RH. H" A)
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is a qusi-isomorphism. Hence we have
(2.10) H'(s(s(A — RF.F*A)) — s(I.I*A— RH,H*A)) =0 for any i.
While, by Proposition 1.19

s(s(A = RF,F*A) — s(I,I"A — RH, H* A))

is no more than the simple complex associated to the El‘l"-object of complexes
of R-module sheaves in (2.4). Hence we have done.

(II) The case n > 2: We denote 0T, —objects corresponding to each o € O}
by putting o as subindexes in such a way that A = {Aa},cpt, etc.. By the
definition of a two resolution of a OF —object of complex projective varieties, a
07 -object of complex projective varieties

!
L
Y, —— Xo

W e

Ya————-»Xa

which comes from (2.3) is a two resolution of X, for each a € O;. Hence by
the result in the case of n = 1, the simple complex associated to a O —object
of comlexes of R-module sheaves on X, x M

RHuu HAA —— RF,, FXA

I DA —— A,
where H, = I, 0G4 = FyoI | is acyclic for every a € O}. From this it follows
that the simple complex associated to a OF-object of complex of R-module
sheaves on X. x M in (2.4) is acyclic ([7, p.35, Proposition 5.17]).

Q.E.D.

2.7 Theorem.. Let X. = £ = M be an n-cubic (n > 1) hyperequisin-
gular family of complez projective varieties,parametrized by a complex space M.
Then, for o R-module sheaf A on X, the adjunction map

A — Ra..a’'A
is an isomorphism in DT (X, R).

Proof. Let X. 22 X x O, % X be the factorization of X. =» X as defined
in (1.6). Then by (1 10) the assertion of the theorem is equivalent to that the

natural map
A — s(a1..a’A)[1]

T
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is a quasi-isomorphism. Since this problem is of local nature with respect to X,
by the globally topological triviality of the family X. < ¥ — M (cf. Proposition
2.5), it suffices to prove the theorem for the case in which the family is given by

X.x M foXidu v oopr B ap

where X. 225 X is an n-cubic hyperresolution of a complex projective variety
X. In fact, we will prove the following claim by induction on n.

Claim: Let {X1, X2, ---, X"} be a sequence of O} —complez projective va-
rieties X™ (1 < r < n) satisfying the conditions (i) through (ii), but ezcluding
the condition(iv) in Definition 1.15. We put zM = rd(Xt,--- ,XT)(1<r<n)
and denote its natural augmentation by -

(2.11) o)z — X,
We form direct product of each term in (2.11) with M and denote it by
ol = al? xidy 1 27 x M — X x M.

Then, for any R-module sheave A on X x M, Ra'l a{™* A is acyclic in D*(X x
M,R).

Proof of the claim:
(I) The case n = 1: This is nothing but Lem.ma 2.6:
(II) The case n > 2: We assume that the assertion of the claim holds for

any r with 1 <7 < n—1. We take the factorization of the natural augmentation
™20 x M - X x M asin (1.9)

20« 2, XxM)xD"'

e

XxM

for each r with 1 <7 <n — 1. Since ZD x Misa O;_,—object of complex
projective varieties, it is represented as

712 o g 28 ag:” Z('n—2) « M,

where a§0 Visa morphlsm between [I_,—objects of complex projective vari-

eties. Let o™ : Z" ¥ x M — X x M and a{"™? : 2" x M — X x M be
the natural augmentations. Taking the factorization of ag'_'—” and a(" ) asin

(1.9) and putting together into one diagram, we obtain the follomng diagram:
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I(n—Z) x M
(n-2)'
tdxxM Xtda+
(X x M) x or_,
ag?-z)” ol a(()v't-—2)“
N
xxi XxM

For a R-module sheaf 4 on X x M, by (1.10) and Proposition 1.19

Ra("=1 g~ 1* 4
(2.12)
= s(s(a§T V"l A) — s(al"T a7 4)

and by the induction hypothesis
(2.13) H(RT V""" 4) =0 for any i.
Since X™ is a 2-resolution of Z{(,n_” , X" x M is repfesented as

xt VLo X0 M
wl l“’
Xty Lo x5 M

I
7" x M,

where Xg;;f ) x M (0 < ap,a; < 1) are O7F_,—objects of complex projective
varieties. Let

b x0T M — XXM
be the natural augmentation for each (ag, ;) with 0 < ag,a; <1 (bgg__” =

agf,’—?))., Taking the factorization of each bg,’;;f) as in (1.9) and putting together
into one diagram, we obtain the following:
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x (=2 o™ +
i XM —— (X x M) x 0O} _,
v r 3"
( _’2) pn=2) v (n=2)"N\
X x M s (X x M) XDI—/OL_%X x.M
XE P x M— | 87V (X x M) x Of_,~ Ly

n—2)"
b

I\ ¢
A {0

Xég‘-Z) X M ——-(——2—)"—) (X X M) X D:_2
bgo.

Denoting by b{™ . X" x M — X x M the natural augmentation, for a R-module
sheaf A on X x M, we have

b(n_2)lb§1;_—2)*¢4 b(n—2)lb(()1]1:.—2)*A

11-% 01.%
RMp™* A~ s T T
+ BB A b PP A

(2.18

s A) —— s A)

I I

S5 BT A) —— (b5 "bls " A).

R
«»

Here the second isomorphism is because of Proposition 1.20. Since X" x M is a

2-resolution of a 00} _,-object of complex, projective varieties, by Lemma 2.6

HY(®RMb™* 4) =0 for any i.

Hence
(@' el ™" A) = s30T A)
(2.15)
s A) —— s A)

I

s(bo b5 A)

(14
»

——
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in D* (X x M, R), where the last symbol stands for the simple complex aséociated
to the O;—object of comlexes of R-module sheaves on X x M. Since zM =
rd(ZD, x™), 2™ x M is represented as follows:

x0T Dem Lo xPIxm

ZMx M = ‘I’l |5
X0 x M — Z5=D x M.
"‘13-— I

Hence for any R-module sheaf A on X x M we have
b(n—2)lb(n—2)*A b(n—2)lb(n—2)*A

11-% 11. 01.% 01.
Ra™a™* A~ s T T
e PR ey

SO ) —— 0T

T T (by Prop.1.20)

sBETD B A) —— s(al D alPP" )

b
@

= s(s(a’ ™ a" ™" A = s(a{"TV'a{"V"A)  (by(2.15))
~Ra Va4 (by (2.12))
Therefore by (2.13) we have
Hi(®a™a™*4) =0 for any i.
This completes the proof of the claim and so we have done.

Q.E.D.

2.3 Cohomological descent of relative de Rham complexes for cu-
bic hyperequisingular families of complex projective varieties

We are now going to define the cohomological relative de Rham complex
DR/ € D(X%,C) for an analyitc family X I M of complex analyitc varieties,
parametrized by a complex space M. For this end we take a system of relative
local embeddings U := {(U!,U:),pi, V!, Vs, i)} of £ = M which consists of the
following entities:
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(i) {u!}, {U;} are open covers of X,
and for every i,
(ii) U; is a relatively compact open subset of ],

(iii) V! is of the forms as Y} = D; x w(U;) where D; is a polycylinder in a
complex number space C*, .

(iv) Y is a relatively compact open subset of Yi,

(v) ¥; =5 m(U}) is a smooth family of complex manifolds, parametrized by
7(U;) such that the following diagram commutative:

Vi — Vi

w;l lP"*(u;)

m(Us) —— 7(U))
(vi) @; : U! — V! is a closed embedding over 7(U;) such that ¢;(U;) = Vi

For each (p+1)—tuple (@) = {ip < i1 < --+ < ip} we consider an open set
Uy =Ui, NN U; and a relative closed embedding

Uy = Vi
= (mig (w@Uf)) O VL) Xty (75 (TUG) N VL) Xy
X,y (T, 1(7"(74@))) nJi)

over 71'(2,{( i)), where Xn(ul,)) denotes the fiber product over n(u('i)); and define
1 . k. 0O )
Q3’(. /UG T 2%'193’5&)/"(“&)/ Tty - Vo ettty

where Q'y, /e (Ul) is the relative de Rham complex of the smooth family y('i)

Prﬂ,(u: )
— 9, w(u(t)) of comlex manifolds and l'u; is the ideal sheaf of Ll(l) in
the structure sheaf 03”4 of ))(1) We call Qy(') Jr gy itk the completion of

Q’y&) Jn(uity) along U;). Then we consider a complex of sheaves of C-vector
spaces on X

0(1,) - J* (Qyé.) /W(u '))Iu(/i))lu“) )

where j is the inclusion of u(') into X. Here, putting 0 outside U;), we con-
sider C(l) as a complex of sheaves on X¥. Now for any 0 < j < p, let (') =
{10, ,1j,*** ,ip} (omit zJ) Then we have natural inclusions U; — Uiirys
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which maps U;) into U(x), and Vj;) — V(;) over w(u(’ ) = (Ui, which maps
Vi) into Y1y over m(Uy) — m(Ury)- Hence there is a natural map

oy @ et ™ Pttty

and a morphism of complexes on X

85,6y * Clary = C
Notice that, by construction, for two integers 0 < j < k < p, the corresponding
four § maps are compatible with each other. Hence we can define a double
complex C(U) by

ey = II ¢y

lil=p

where |¢| = p for i = (do, - ,1p), and

7= ][ zp:(-niaj,(i) L CU)P — CU)P

lit=p j=0

We denote by fl‘x M (U) the associated simple complex of C(U). IV = {(V}, V)),
¥;, (2}, 2;,m;)} is a refinement of a system of relative local embeddings U,
then there is a natural map of double complexes ¢ : C(U) — C(V) and, as in
the absolute case, we can see that the associated map ) = O (V)
of simple complexes to ¢ is s qusi-isomorphism (cf. [8, p.29]). Therefore we
conclude that Q'x /M(Zl) defines an element of D*(X,C), which is independent
of the choice of Y.
2.8 Definition. We call an element of Dt (%, C) determined by the 2, U )I

as above the cohomological relative de Rham comples of X 5 M and denote by
DRy /-

Let . = £ 5 M be an n-cubic hyperequisingular family of comlex pro-
jective varieties, parametrized by a complex space M. For each o € O, we
denote by 0y /), the relative de Rham complex of a smooth family X M
of complex manifolds. Then Q ,,, := {Q%_/pr}aen, is obviously a complex of
sheaves of C-vector spaces on a O,-complex manifold X.. The rest of this section
will be devoted to proving the following theorems and a corollary.

2.9 Theorem. (Cohomological descent of relative de Rham complezes)
Under the same setting as above, tere ezists naturally an isomorphism

in D (%, C).
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2.10 Theorem. (Relative formal analytic Poincaré lemma) Under the
same setting as above, (U /M(U) yields a resolution of the sheaf m'(Op) for
a system of relative local embeddings U = {(U.,Us), pi, V!, Vi, ™)} of £ 5 M,
where m (Opr) denotes the topological inverse of the structure sheaf of M by
T:X—-> M.

2.11 Corollary. There ezxist isomorphisms
HY(%, ' (Om)) = H'(RU(X, s(ar+Q /a))[1])
~ H'(RT(X., Qe /(1)) (1 <i < 2dimcX).

To prove this the following two theorems are essential.

2.12 Theorem. (Mayer-Vietories sequence for relative de Rham com-
plezes) Let ) — M be a flat family of analyitc varieties, parametrized by a
complez space M. Suppose that 9 — M is relatively embedded in a smooth

family X M of complez manifolds, parametrized by the same complezr space
M, and further suppose that Q) is a union of two closed subvarieties 91 and s
of X. Then there is a sequence of relative de Rham comlezes

0—-Q Q @ Q

/My x/MiD2 0,

%/MiD: /M9y,

which is ezact on any relatively compact subset X' of X, where Qx M is the
completion of a complex of the relative de Rham complex (Y /M along ) and so
on.

2.13 Theorem. Let f : X' — X be a poper morphism of analytic vari-
eties. Let Y be a closed analyitc subvariety of X, and let Y' := f~1(Y). Assume
that f maps X' =Y' isomorphically onto X —Y. Suppose we are given coherent
sheaves F on X and F' on X', and an injective map F — f.JF', whose restric-
tion to X — Y is an isomorphism. Then the simple complez associated to the
O -object of lower bounded comlezes of sheaves of C-vector spaces on X

LRE,F' —— Rf,F'

I I

WF —— F
is acyclic in D+ (Xo,C), where Xo is any relatively compact open subset of X,
¢ 1s the closed immersion Y — X and " denotes the completion along Y or Y,
respectively.

The proof of Theorem 2.12 for the absolute case, i.e., M = {one point}, can
be found in [8, p.89, Proposition(1.4)]. Since QF, /0 BTe locally free sheaves over




28

P P —
O%, and since all of Qx/Mm Qx/Mm (t=1,2), 0 %/M{D1nD:

with respect to some ideal sheaves of Oy, the same arguments also go well for
the relative case. Hence we obtain Theorem 2.12. Theorem 2.13 is an analytic
analogue of Proposition(4.3) in [8]. The key point of the proof of Proposition(4.3)
in [8] is "fundamental theorem of a proper morphism” ([6, 4.1.5]), which tell us
that, with the same notation as in Theorem 2.13, though under the assumption
that all things are algebraic,

Rf,F' ~ (RIf.F'Y (i>0),

are completions

where (R?f.F') is the completlon of R f,F' along Y, and R f. ' the i-th hxgher
direct image sheaf of F' by the morphlsm of formal scheames f X - X,
induced by f, from the completion X’ of X' along Y’ to that of X along Y.
Fortunately, we have analytic analogue of the ”fundamental theorem of a proper
morphism” due to C. Bénicd and O. Stanasa ([1, p.225, VI, Cor.4.5). Using this
theorem, we can carry out the same arguments as in the proof of Proposition(4.3)
in [8]. Hence we obtain Theorem 2.13.

To prove Theorem 2.9 we shall use the following theorem, which is an ana-
lytic analogue of Theorem(4.4) in [8, p.44].

2.14 Theorem. Let X' T M and £ 5 M be two flat families of analytic

varieties, parametrized by a complez space M. Let X' L xbea proper morphism
of analytic varieties over M, 9 a closed subvariety of X,9' := f~1(2), and
h:= fiy : Q' — 2 the restriction of f to Y'. We assume the following:

(i) f maps X' —9Q)' isomorphically onto X — 9,
(i1) there exist
(a) smooth families of complez manifolds 3' 2 M and 35 M,
parametrized by the complez space M,
(b) closed immersions X' — 3' and X — 3 over M, and
(c) a proper morphism g:3' — 3 over M
such that gjx = f and g maps 3' - g~ 1(9) isomorphically onto 3-9).

Then the simple complez associated to the following Of -object of lower
bounded complezes of sheaves of C-vector spaces on X

Rh. Q) 3'/M|93' — RAO

I I

QS/MTLD QS/Mix

/Mlx'

of lower bounded complezes of sheaves of C-vector spaces on X is acyclic in
DT (%9,C), where Xy is any relatively compact open subset of X.
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Since the proof of Theorem 2.14 is almost identical with that of the é.lgebraic
case ([8, p.44, ChapterII, Theorem(4.4)), we omit it, just mentioning that we
essentially use Theorem 2.12 and Theorem 2.13 to prove it.

2.15 Proposition. Let 9 — M be a flat family of analytic varieties,
parametrized by a complez space M, which is relatively embedded in a smooth

family £ =5 M of complex manifols, parametrized by M. Suppose ) is a union
of finite closed subvarieties D1, - ,Yn(n > 2). Let ¢ : Y. — Y be the n-cubic
object of analytic varieties, augmented to ), which comes from the finite closed
cover {Yr}1<r<n 0f Y (cf. Ezample 1.11). Then we have a quasi-isomorphism

9

x/MD

on any relatively compact open subset Xo of X, where

Q

z/miy — 8

/i, = Ve i, Joeln

is the complez of sheaves of C-vector spaces on ), obtained by the completions
of Q%/M along Yo for every a € O,.

Proof. We use induction on n. The case n=2 is nothing but Theorem 2.12. In
the case n > 2 the argument is almost identical with that of Proposition 1.4 in
[7, p.61], which concerns the absolute and algebraic case. Hence we omit it.

Q.E.D.

2.16 Proposition. Let X be a complex projective variety embedded in a
smooth complex projective variety Y, and let X. = X be an n-cubic hyper-
resolution of X. We denote by X, and Y}, the corresponding complez analytic
varieties, and by Xn. —= X}, the corresponding n-cubic hyperreosolution of Xp,
in the category of complez analytic varieties. Let p be a point of Xp. We take an
open neighborhood V' of p in Yy, and define U' := V'N X}, and U, := aZ*(U’) for
each o € O,. We consider an n-cubic object of the product families of complex
analytic varieties ‘

U x M 2224, 17 M

where M is a complez space and idys is the identy map on M. Then, for any
relatively compact open neighborhood V' of p, contained in V', we have a quasi-
isomorphism

(2.16) Oy wnaymivxn = Rl@ X idw)Qy pr/m

where U :=V N X}, and Uy := a3 (U) for a € O,.

Proof. By the same argument used in the proof of Theorem 2.7, we can reduce
the proof to the case of n=2. Hence it suffices to prove (2.16) for the folloeing
Di"-ob ject of complex analytic varieties:
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Un XM —— UpnxM

l laol Xidapr

UloxM ——*UooxM,

I
UxMCVxM

which is a cartesian square, and where Uy, is a smooth analytic variety, ap; :
Uo1 — Ugo a proper morphism (hence so is ag1 X idp : Upy X M — Ugg x M),
Uyt X M — Upy X M and Uyg X M — Ugg X M are closed immersions, such that
ag1 X ldM : (Um X M) \ (Uu X M) — (Uoo X M) \ (UIO X M) is an isomorphism.
Furthermore, using Proposition 2.15, we can reduce the proof in the case where
Up: and Uyg are irreducible.(For the details of this procedure we refer to the
proof of Théoréme 1.5 in [7, p.62]). Now we will check the proof in this case.

We write X,X',Y,Y',Z and ao; instead of Ugg,Uo1, Uo,U11,V and f,
respectively. Since X, X' come from complex projective varieties, by the result
of Hironaka (Elimination of points of indeterminancy of a rational mapping, [9]),
there exists a commutative diagram

X —* X

|
(2.17) \E\\J;>\\Q
XI

—s X7
f

such that; (i) f1, fo are the composits of blowing-ups along non-singular center,
(ii) X, X’ are non-singular, and (iii) f2, f4 are proper morphisms. Blowing up
Z along the same center as X, we have the following diagram

T

Y » X » Z
(2.18) 1 lﬁ lm
Y X . Z

where Y := f;}(Y)rea. Forming direct product of each term in the diagram
(2.18) with M, we come to the same setting as in Theorem 2.14. Hence, by
that theorem, we conclude that the simple complex associated to the following
07 -object of lower bounded complex of sheaves of C-vector spaces on X x M

RA1. 0 — Rf1 L

L

ZxM[YxM ZxM[XxM
! N — : -
L*QZxM]YxM QZxM|XxM’
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where hy := fi - T, is acyclic in D¥(Xo x M, C) for any relatively compact open
subset Xo of X. If we define s(X x M/Y x M), s(X x M/Y x M) to be the
simple complexes associated to the morphisms of complexes

y - — : -
QZleXxM L*QZleYxM and

= — *O=_ ., o
Oz vz ~ M7

respectively, then the above statetement is equivalent to that the morphism
fr:s(XxM]Y x M) — s(X x M/Y x M) induced by f; is a quasi- isomorphism
on any relatively compact open subset Xo of X. We consider the following
diagram derived from the one in (2.16)

s(XTx M/Y" x M) — s(X x M/Y x M)

(2.19) 3 f3 T
s(X'x M]Y' x M) <f—‘s(X x MY x M)

Here we should notice that since X ', X' are non-singular, s(X' x M/Y' x M),
s(X' x M/Y" x M) are defined as the simple complexes assciated to the mor-
phisms of complexes

. I
Dxrsensne = Wy vaymaiyr xe

'_ YN o M
Qrnaynr = Vg mivxar

and

respectively, where ¢/ : Y/ — X', v : Y' — X' are natural inclusions. By
the same reasoning as for f;, we conclude that f, ff are quasi-isomprphisms
on any realatively compact open subsets of X, X' , respectively. Hence by
the commutativity of the diagram in (2.19), we conclude that f3 is a quasi-
isomorphism on any relatively compact open subset of X' and f* is so. This
completes the proof of the proposition.

Q.E.D.

We are now in a position to prove Theorem 2.9 and Theorem 2.10.

Proof of Theorem 2.9: By the assumption we can take a system U =
{U!,Us), @i, (DL, D;)} of relative local embeddings of X which satisfies the fol-
lowing conditions:

For each ¢ there exists a point p; € U; and an embedding e; : Xr(,,) — Y5,
of Xr(p;) (the fiber of X over m(p;)) into a smooth complex projective variety
Yy, such that
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a. -
| , iU
> U]

a”t@)

() a7t (U) £, w(U}) is isomorphic to

a.X id,(u‘()

(@7HU) N Xn(py)) X w(Uf) —— (U N Xn(py)) X w(1) T, m(U;)
(2.20) (For the notation see Definition 2.4)

(ii) D! is an open neighborhood of the point e;(p;) in Yp; and

(iii) @i (U]) = (ei(Xn(pi)) N D7) x m(Uhf).
Then by Proposition 2.16 the natural map

Qitgmieay = Ra=t gy +Lamr iy = Bas Qe pari

is a quasi-isomorphism on every relatively compact subset U}’ of U] with U}’ D U;,
hence
e (g fequan)iss = e (R Qe gy i

is a quasi-isomorphism on X for evry ¢, where j : U — X is the inclusion map.
From this it follows that for any (1) = {ip < i1 < - < ip}

Cu = j*(ﬁ'u&) /,,(u(".)))lu,- — Dy = Ju (Ra.. Sy /M[L((’.-))W-‘

is a quasi-isomorphism. Similarly as for C(l{), we define a double complex D(U),
using {D(;)} is nothing but Ra..Q /), Therefore we conclude that the natural
map X

is a quasi-isomorphism. Since any system of relative local embeddings of X
has its refinement satisfying the conditions (i),(ii),(iii) in (2.20) we obtain the
theorem.

Proof of Theorem 2.10: Since the poblem is local, we may asuume that
m: X — M is a product family, namely 7 = Prys : ¥ = X x M — M, where X
is a complex projective variety, M a complex space, and « := Pr)s the projection
to M. Furthermore we may assume that X is embedded in a smooth complex
projective variety Z. We define 3:=Zx M andm :=Pryy:3=2ZxM —- M
the projection to M. Under this set-up we will prove that

(2.21) mOp — 03/MT£
is a quasi-isomorphism on any relatively compact open subset of X. In the
following we shall confuse complex algebraic objects and their associated anlytic
objects, and write them by the same letters. To prove (2.21) we proceed by
induction on dimcX. If dimcX = 0, this is nothing to prove. We assume that
(2.21) holds for any X with 0 < dimcX < n. By the Hironaka resolution theory
([9]) there is the following commutative diagam:
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vy — X'

(2.22) gl l f

Y ——— X7

with the property fix/_y: : X' =Y’ — X =Y is an isomorphosm, where X' is a
smooth complex projective variety, f : X' — X a proper morphism, Y a proper
closed subvariety of X, Y’ := f~1(Y), and ¢+, closed immersions. Taking direct
product of each term in (2.22) with M, we obtain the commutative diagram

II

g)l 5 xl
(2.23) Gl F
P —— %3,

where £:= X x M, X' := X' x M, F := f X idyy, etc.. Then, by Theorem 2.14
it follows that

RH, Qx'/MTED' — RF, Qx’/M
RLG iy Ly

is acyclic in D* (%o, C) for any relatively compact open subset X, of X, where
H :=I0G = FoI' Therefore we have the following long exact sequence of
cohomology

— H'(%,Q ) — H'(%o,RL.Q & H* (%0, RF. Qs /)

3/M% 3/M1p)

(2.24)

— Hz(xo,RH*Q‘x,/MTm,) — HHI(%O’RH*QS/Mix) —

On the other hand, applying the argument in the proof of Theorem 2.7 for the
case n=1 (the length of cubic hyperresolution), we derive from (2.23) that

]RH*Wl"m,OM — RE, 7" Op

I I

]RI*w!‘mOM — 70pMm

is acyclic in D* (X, C) for any relatively compact open subset X, of X. Therefore
we have the following long exact sequence of cohomology
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— Hi(XQ,ﬂ"OM) — Hi(xo,RI*ﬂl'QOM) @Hi(xo,RF*WI'OM)

(2.25) | |
- Hz(xO,RH*ﬂ'IIm,OM) — H1'+1(£0,7T'OM) —_ e

There are naturally homomorphism from (2.25) to (2.24). Among these homo-

morphisms, ' '
H*(X,, RI,W@OM) — H*(X%o,RI, QS/MTQ))’

H* (%o, RH. 7wl Onr) — H' (%0, RH. O, My

are isomprphisms on X, by the induction hypothesis, and

H (%0, RF.7") — H* (X0, RE. Qs 0r)

is also, because 7' : X' — M is a smooth family ([2, p.15, 2.23.2]). Hence we

conclude that ) '
Hz(an 7l-(DM) - Hz(x()) QS/MTx)

is an isomorphism on Xy, which means 7' Ops — Q. iz is a quasi-isomorphism

on X, as required. This completes the proof of Theorem 2.10.

Corollary 2.11 follows from Theorem 2.9 and Theorem 2.10.
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