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ABSTRACT. We propose a realization of spinors in the Minkowski space as exterior
forms of a special type. It is well known that the symbol of the operator d + 6
determines a Clifford module structure in the space of exterior forms. This module
splits into a sum of two simple ones called a spinor space and a dual spinor space.
The decomposition is determined by two projectors. We suggest a description
of these projectors in terms of hyperbolic planes. This description produces two
algebraic structures into the spinor space: (1) the canonically determined complex
structure, and (2) a noncanonically determined quaternion structure. Tyhe choise
of the latter structure depends on a basis in the elliptic plane orthogonal to the
hyperbolic one. In this case the Clifford algebra is realized as 2 X 2 quaternion
matrices algebra.

1. INTRODUCTION

This article arises from the attempt to understand a sense of Dirac equation solu-
tions. From the formal point of view Dirac equation solutions are spinor fields. But
such an approach gives no indications on a measurement of a such field. In this arti-
cle we give realisation of spinors in the Minkowski space as a special type of exterior
forms. One obtains two corollaries from this description. First, spinor fields can be
measured like electromagnetic fields. And, second, a spinor structure is given by an
measurable object which is an exterior decomposable 2-form of the unit length.

Recall that when introducing spinors the main Dirac’s idea was to compute a square
root of the wave operator [[1][2]]. In differential geometry this problem resolves by
means of the operator d + 8. But d + § is not the Dirac operator, because it is
reducible. Namely, the algebra of differential forms can be represented as a sum of
two submodules that invariant with respect to differential operator d+ 6 with possible
addition of a zero order terms.

Considering symbols of these operators one obtains the following problem in linear
algebra which is solved in this article. The symbol of operator d + ¢ determines
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a Clifford module structure in the exterior forms space. This module splits into a
sum of two simple ones called a spinor space and a dual spinor space. We show
that projectors corresponding to this decomposition are determined by hyperbolic
planes. Moreover, the spinor space is equipped with a canonical complex structure
and a noncanonically determined quaternion structure. The choice of the latter one
depends on a basis in the elliptic plane orthogonal to the hyperbolic one. The Clifford
algebra is realized as the 2 x 2 quaternion matrices algebra.

In conclusion note that the Dirac operator naturally arises as an operator satisfying
the De Broglie principle. It means that singularities of solutions of corresponding
equations move as material points. This remark together with the observation that
the Schrodinger operator is the transport operator for special type singular solutions
of the Dirac equation as well as the fact that spinors can be realized as special
differential forms allow us to indicate geometrical sense of ¥—function as a section

of a quaternion fibre bundle.!

2. AN EXTERIOR ALGEBRA

In this section we give a brief review of structures into the exterior algebra over

vector space equipped with (pseudo)metric.
Let E be a vector space over R, dimE = n, and E* = Hom(E,R) be the dual

space.
Denote by A*(E*) the space of i— dimensional skew symmetric forms on the space

E, and by

A*(BY) = PA(EY)
=1
the graded exterior algebra of the space E*.
This algebra is a direct sum of the subalgebra
A (E*) C A*(E")

where

AY(E)= D AE),

k=0mod 2
and the A®Y(E*)—module
Aod(E*) C A.(E*)

1The research described in this publications was made possible in part by Grant N2F00 from the
International Science Foundation
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where

Aod(E*) — @ Ak(E*)

k=1mod 2

There are two natural operators in the algebra A*(E*) :
1°. operator of ezterior multiplication:

€9 : Ai(E*) — Ai"”l(E*),
w — ANw

by a covector § € E*, and
2°. operator of interior multiplication:

ix 1 A(E*) — AVYEY),
W — Ixw

by a vector X € E.
We assumed here that

(ixw) (X1, -, Xim1) =w(X, X1, -+, Xiz1)

for all vectors X1,--- ,X;1 € E.
Operators e and ¢ satisfy the following well known relations:

€s, 0 €p, +€9,0€9, = 0,
ZX1 o ZXQ + zXz olx, = 01
lx0egt+egoix = €ix@®), |,

forall X € E,f € E*.
Therefore, we have the following representations of the graded algebra A®*(E*)

(1)
e: A*(E*) — End(A*(E7)),

0 — €9
where eg has the form
eg = €g 00 eg,,

on decomposable elements § =6y A--- AB, 0; € E*, j=1,--- ,k and
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i: A*(E*) — End(A*(E%),
X — iy

where the operator ix has the form
ix =1x, 0 01lx,,
on decomposable elements X = X3 A---A Xy, X;€E,5=1,--- k.
Denote by (,) the natural pairing between spaces A*(E) and A*(E*) :

(,): AME)xAYE") — R,
(a,b*) — 5"
Let g be (pseudo)metric of the signature (n — [,1) on the space E.
In a usual way we will identify the metric g with the symmetric operator:
Ay E— FE*

where (4,(X),Y) =¢g(X,Y), forall X,Y € E.
Presenting the metric g (or the operator A,) allows us to determine in a natural
way the metric g* on the dual space E*:

* -1, *
Ay=A; 1 E* — E,

as well as metrics g5 and g} on the spaces A* (E) and A* (E*) respectively.
Namely,

Ag, = A*(Ag), Ag = A* (471).

In the sequel, to simplify our notations, we will omit indices k¥ and * and denote
metrics g and gj, by g.

Denote by § € A* (E) and X € A* (E*) elements A, (d) and A1 (X), for elements
6 € A* (E*) and X € A* (E) respectively.

In these notations, one obtains the following relations:

g (61,02) = (Ag (61) ,02) =i 62.

Hence, the following relations between operators e, and the metric g :

’iél o ey, + €g, © iél =g (91, 92) 1 (11)
holds, for any 6,,60, € E*.
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Note also that the following equality is valid

sign (g (6,9)) = (=1)",
for any nonvanishing form 6 € A™ (E*). Here v = ['5‘] +1.

3. CLIFFORD MODULES

Assume that the space E is oriented and choose a volume form 2, € A™ (E*) such
that

Q(Qg’Qy) = (-1)".

The volume form (2, determines the Hodge operator:

#: Ak (E¥) — AR (E*),
0 — 158,
k=1,---,n. k=1,---,n. k=1,--- ,n.

In other words one has the following formulae

#OLA--O) =15 0---045 (), (2.1)

for the action of the operator # on decomposable forms.
Here 6,,--- ,0; € E*. '

Proposition 3.1. Let g be a metric of the signature (n — [,1) on an oriented vector
space E,and Q, € A™ (E*) be a volume form such, that g (€,Q,) = (—1)",v = [g] +l.
Then the Hodge operator # satisfies following conditions: '
(1) # = (1)1,
(2) #Qy = (—1)%, #1 = Qq,
() #oe = i50#,
forall 8 € A*(E*).
(4) g(61,6;) = # 'oeq 0# (),
for all 6,00 € AF(E*).

From now on we assume that v = 1 mod 2.
In this case the Hodge operator # determines the complex structure on the space

A* (E*).
Consider morphisms:

ot: E* — End(A*(EY)),
6 — 69+i9*
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and

o~ : E* — End(A°(EY)),
0 — e5— 1.
Let o (0) = of,07 () = 0.
Then one has

04 004 + 04 oog =2g(01,6,)1, (3.1)

and

g, © Og, + 0g, 005 = —2g(01,62)1. (3.2)
for any covectors 64,6, € E*.
Due to these relations the mapping ot defines a representation C (¢%) of the

Clifford algebra C (E, g) and the mapping o~ determines the representation C (o)
of the Clifford algebra C (E, —g) .

Proposition 3.2. The mappings o+ and o~ anticommute. That is,
0 005 + 05 008 =0
for any covectors 61,0, € E*.

PropoSition 3.3. For any covector € E* the mappings o and o, are linear and
antilinear ones with respect to the complex structure is given by the operator # :

#00';'=0'é"o#,
# 00y =—05 0F#.

4. CLIFFORD MODULES OVER MINKOWSKI SPACE

From here on we assume that (E, g) is the 4-dimensional Minkowski space with a
metric g of the signature (1, 3).

Recall that a spinor space is, by definition, an irreducible module over the Clif-
ford algebra C (E, g) . Using representation C (o1), one can realize this module as a
submodule of the module A* (E*).

We will look for this submodule in a form PA®(E*) where P € C%(c7) is a
projector. Here we denoted by C°(c~) the image of the even subalgebra of the
Clifford algebra C (E, —g) under the mapping o~.

These projectors can be described in terms of hyperbolic planes.

Definition 4.1. An oriented 2-dimensional plane E, C E s called hyperbolic, if
the restriction of the metric g on this plane has the signature (1,1).
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Any hyperbolic plane Ej, is uniquely determined by two isotropic directions that
are intersection of the plane Ej with the cone of isotropic vectors.

Let v, vy be isotropic vectors forming a basis in Ej,.

Choose vectors vy, v, in such a way, that

g ('l)l, ’U2) = —1.

Note that the choice of such vectors is determined up to a scale factor v; —
t-vq1, vg —> t71 x vy where t € R\ 0. '

By virtue of this remark the exterior 2-form w = 0; A 74 is determined by the
hyperbolic plane Ej, uniquely.

Therefore, one obtains the following statement.

Proposition 4.1. There ezists a one-to-one correspondence between hyperbolic planes
and ezterior 2-forms w € A? (E*) such that

(1) wAw=0, and

(2) wA #Hw = Q.

Proposition 4.2. Any projector P € C%(0™) is a uniquely determined by some
hyperbolic plane E, C E and, conversely, any hyperbolic plane Ep, determined by an
exterior 2-form w € A? (E*), corresponds to the projector

1+ S5,
P, = =
2
where w = 01 A 85,0, = 01,0, = 77, and
S;=-2->< [09‘100;2—09'2009_1].
Remark 4.1. It is easy to check that
P, = 5091 0 Og,-

To prove proposition 4.2 we use the following statements.

Lemma 4.3. Operators o, o o5 corresponding to pairs of orthonormal covectors
a, B3 € E*, are traceless:

tre (a; o aE) =0.

as linear operators in the complez structure defined by the operator #.

e e
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Proof. The spectrum of operator o5 coincides with 41 or +i depending on covector
B. It is enough to note that the operator o transposes proper subspases E ()) of the

operator oy :

o, :E(\)— E(-)).

o

Lemma 4.4. Introduce the operator

ag = Zaiﬁ o; oaj',
i<j

where o;” = g, for some orthonormal basis 61, --- ,64 of the space E*. Then
a =Py +g(vv), (41)
where y = 0 003 003 o0y, v =3, ;a;;0; AO; and Pf [v] is the Pfaffian of 2-form v.

Proof. (Proposition 4.2) Represent the projector P in the form

P=ag+ay+by,

where ag,b € R.
Then, by using lemma 4.1, one obtains

tT‘cP=8(ao+ib).

Since P is a projector, trcP is a natural number. Hence b = 0. Using lemma 4.2
and the equality P? = P,one gets

a2 + 2apay + g (v,v) + Pf (V) vy = ag + as.
Therefore,
1 1
Pf(v) =0,a0 = -2-,g(1/,1/) =7
Introducing an exterior 2-form w = 2v, we obtain the result.

Remark 4.2. A change of the plane Ej orientation leads to the change w — @ =
—w. In addition, the projector Pz is a complementary to P, :

Pw+ PQ’:l, and Pu' PQ =0.
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Hyperbolic plane E}, C E determines the following a direct sum decomposition of
the space E
E=E,®E,
where 2-dimensional (elliptic) plane E. is the orthogonal complement of the plane

Eh in F.
This decomposition leads to a decomposition of the exterior algebra

AM(BY) = YN () © A (EY).
In other words, any exterior form o € A¥(E*) can be represented in the form:

a=a0+01/\a1+02/\a2+01/\92/\a3

where

ag € AR(EY), a1, 05 € AFY(EY), az € AF2(ED).

We identified here forms 3 € A*(E;) with exterior forms on E that satisfied to the
following conditions:

i5,8 =0,
for all j =1,2.
Proposition 4.5.
Im P, = (1+ e,)A*(E}) + e, A°(E7)

In other words, any element z € Im P, can be represented as a pair (g, z1) where
Zo,T1 € A.(E;), and

z = (14 ey,)zo + €s, 1.

Proposition 4.6. The operator oy, determines an isomorphism

g, - Im P, — Im P;.
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Proof. By straightforward computations one gets

o [(1+ e,)zo + €s,21] = 2eg,20 + (1 + €u,) 1.
Proposition 4.7.
, Ker P, = Keroy,.
Proof. The statement of the proposition follows from the equality:

g,

o Pw = 0¢,-

Corollary 4.8.
Im P, ~ Cokerog,,

Proposition 4.9. Isotropic direction 6, determines a pair of projectors F,, Py such
that P, + P; = 1. That is, the direction determines a non oriented hyperbolic plane

E, CE.
5. SPINORS

The restriction of the metric g onto the elliptic plane E, is a negative definite
metric ge. ,

Therefore, operators o where § € EX induce an action of the Clifford algebra
C(E.,g.) (isomorphic to the division ring of quaternions) on the exterior algebra
A (E?). .

In addition, the Hodge operator # induces the operator

#e: N'(E2) — A7H(EY)
for all s =1,2, and

#2=-1.

Hence, the space A*(E?) is a quaternion and complex space simultaneously.
Note also, that the operator # admits the restriction onto the subspace Im P,
and acts on in the following way:

# : (%0, 1) — (F#eo, —#eT1).
Let’s show that the module Im P, is a simple.
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Consider a cyclic vector (z,y) in some irreducible o*— module. Then one gets all
covectors (azx + by, cx +dy), for any real numbers a, b, ¢, d by acting o for all § € E},
and considering all linear combinations.

Consider now the subspace spanned in A*(E?) by covectors z and y. Acting by
elements o} ,0 € E! we obtain the whole space A®(EZ). Thus the module under
consideration c01nc1des with the whole image Im P,,.

Denote this module by S,. We call elements of the module S, spinors with the
orientation w, while elements of the module S; are called dual spinors with the
orientation w.

Note that there exists an isomorphism between spinors S,, and dual spinors S;
with the orientation w (Proposition 5.2) and the exterior algebra A*(E*) decomposes
now into the direct sum

A*(E*) = S5, & S

Note also, that the module S,, in addition to the complex #, carries a module
“structure over the Clifford algebra C(Ek, g.). The latter algebra is isomorphic (but
noncanonically) to the quaternion algebra.

Moreover, the complex structure # is induced by the Clifford multiplication on the
element #w.

In other words, we can consider the module S, as a module over algebra C(E, ge),
while the Clifford algebra C(E, g) under the representation o™ is mapped onto the
2 x 2 matrices algebra over algebra C(Ek, ge).

Namely,

001 (:L' y) (0’93)7
o + (5,9) — (=20,0),
g, (zy) — (o7, er)GGE*
' Therefore, the following theorem is proved.

Theorem 5.1. Let (E,g) be the 4-dimensional Minkowski space with a metric g of
- signature (1,3).

Then the following statements hold.

1°. The spinor structure on the space E is determined by a hyperbolic plane Ep, C E,
or by the exterior 2-form w € A%(E*) such that

a. wAw=0,

b. g(w,w)=1.

The hyperbolic plane E}, uniquely determined by two isotropic directions vy, vq, such
that g(vy,v2) = —1.

The form w (one of two possible orientations of the plane Ey) coincides up to sign
with the form 6, A 03,0, = ©y,02 = . The pair of forms (w,—w) corresponds to a
non oriented plane determined by an isotropic direction.
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2°. The spinor space S, corresponding to the hyperbolic plane E, C E with the
orientation w is isomorphic to the space Coker oy, or the space

(1+ ew)A™(EZ) + eq, A°(E)

where E, is the orthogonal complement to the plane Ej,.

3°. There erists an isomorphism between the spinor space S, and the dual spinor
space Sg,@ = —w. This isomorphism is given by the mapping g, : Sy — Sa-

4°. The exterior algebra A*(E*) splits into the direct sum:

A(E") =5, @ Ss.

5°. The spinor space S, is a module over the Clifford algebra C(Ek,g.) where ge
is the restriction of the metric g onto the elliptic plane E,. This algebra possesses the
canonically determined complez structure # and is noncanonically isomorphic to the
division ring of quaternions.

6°. The representation ot of the Clzﬁord algebra C(E, g) in the spinor space S, s
irreducible and defines the isomorphism of the algebra C(E, g) with the 2 X 2 matrices
algebra over the division ring of quaternions.

6. MISCELLANY

In conclusion we describe the kernel of the operator

of : Sy — Se.

It is easily seen that the nontriviality kernel condition implies isotropy of the cov-
ector 6. Isotropy of the covector § implies in turn an isomorphism

of : Coker of — Im oy ~ Keroy.

Using the decomposition E = E @ Ee, it is possible to represent any covector 6 in
the form

0 = 0. + A161 + A2ba,

where A\, A2 € R, and 0, € E}.
In terms of this decomposition the isotropy condition takes the form:

2)\1)\2 — g(Oe,Be) =0

while the action of the operator o on an element (z,y) € S, is given by
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of 1 (z,y) — (=2hay + ogz, Mz —o05y). (7.1)
We set:
Ao = | g(ee;ae) I%7
#o = | g(0e,0.) |—% .03;7

if 6. # 0.
Remark that the operator #j defines a complex structure in the module A*(E}).
In this situation we define the transformation

2% : E' — End (A*(E}))

as a composition of two transformations:

1) reflection in the plane E} with respect to the line orthogonal to the covector 6.,
and

2) the transformation o™.

From the definition of the transformation =° it follows that the following relations

is valid

+ om0 — 4+ 65T
oy 0%, =0, 00y,

for any elements p, A € E7.

Therefore transformation Z¢ determines a C(E,,g.)— module structure in the
space Ker oy .

Keeping in mmd the description of the space Ker oy, denote by Sj1) the C ( ey Je)—
module Ker oy, |s, . The module S,1y is generated by spinors of the form (0, y), where
y € A*(E7).

Denote also by S, the C(E., g.)— module Ker oy, |5, generated by spinors of
the type (z,0) where z € A*(E?).

These remarks prove the following

Proposition 6.1. Let 0 be an isotropic covector in the space (E*,g).Then,
1) there exist an isomorphism

Coker 0f — Imoj ~ Keroy,

2) Ker oy is a module over the Clifford algebra C(E, —g) with respect to the rep-
resentation C(o™),
3) the kernel of the operator

3_:59—>S.9




14 VALENTIN LYCHAGIN AND LEV ZILBERGLEIT

is nontriwvial and have the following descm’ption
a. if 6. = 0, then the subspace Kerog coincides with one of C(E,, ge)— modules
S(wh),% =1,2,
b. if 6, # 0, then the subspace Ker oy is generated by spinors of the type

(/\l#em> )‘21;)7

where © € A*(E2), A, A2 €R.
This space has an additional module structure over the Clifford algebra C(E., ge)

with respect to the representation 2.

Proof Prove the statement 1°. Note that for any isotropic covector 0 the embedding
Imo, C Keroj is obvious. To prove the embeddmg Ker 0’9 C Imoyg, we consider
a covector §y C E* such that g(6p,6) = —— . If ¢ € Keroy, then using the formula
(3.1), one gets

0=o0f oofs= [cf;;,a;*]c=—c+ojoo;§c.

Therefore, ¢ € Imoy .
Statement 2° follows from the anticommutativity of reprentations ¢ and o~

(proposition 3.1).

Statement 3° follows from description (7.1) of the operator o7 action, # € E* and

from the definition of the representation =°.
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