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Abstract

In this paper we look at stochastic Dirichlet equations of the type

m
Au= (Y ci-ExpWg ) ou—g

i=1
and
div(Exp(W¢,}ou) =kou—g
ulpp = f
where A is a uniformly elliptic second order differential operator and Exp{Wy_},k,f and
g are elements in the space (S)~' of generalized white noise distributions. With suitable
conditions on k,f and g both classes of stochastic Dirichlet equations admit unique solu-

tion formulas in the space (S)~'. These are used to give explicit solution formulas to the
Scrodinger and wave equation when the boundary conditions are particularly simple.
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§1 Introduction

It is well known that given a solution u € C(D) N C%(D) of the Dirichlet problem

(1)

where D is an open, bounded domain, k, g, f suitable functions and .4 a uniformly elliptic
second order differential operator, then u has a stochastic representation given by

TD

TD t
u(x) = E¥[f(Xep ) expl— Jo K(xs)ds}+J o(Xe) exp{— jo «(Xs) ds} t] @)

0
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where X; is a certain stochastic process associated with A.

If we would like to use the Dirichlet equation for physical modeling, then it would be natural
to replace A and/or k by stochastic functionals. In the white noise setting, replacing «
with Exp{Wy,} would seem to be an interesting choice, but where should we be looking
for solutions? Although Exp{Wj,} is in £2(p), it seems clear that this would not be the
case for the solution candidate (2). The next logical step would be the space (S)* of Hida
distributions, but since, given arbitrary real constants K; and K3, there always exists x € R
such that

)| = | exp{— exp{x||d||> + i}

= exp{exp{x| d||°}}
> Kj exp{Kz|x +1

|S (Exp{—Exp{We})((x + 1“ ¢”2

24112
||¢’||2| ll ]I}

it is clear from the characterization theorem in [HKPS] that (S)* is probably not the right
space to look for solutions either. Fortunately, recently there have been constructed new
spaces of generalized white noise distributions which will be adequate for our needs. These
spaces will be described in the next section.

The methods used to solve (1) are generalizations of those used by Holden et al. in [HL@UZ]
and [HL@UZ3]. In particular, theorem 3.1 may be seen as a generalization of theorem 10.2
in [HL@UZ] and theorem 4.1 generalizes theorem 3.1 in [HL@UZ3] (k = 0).

§2 Preliminaries on multidimensional white noise

There are many problems of physical nature where the need for several independent white
noise sources arises. For example, given m independent positive white noise sources in a
domain D, one wants to calculate the effect of these on a particle traveling in D. The result
should intuitively be given by

m .
Z Exp{Wg h
i=1

where {Exp{W(I)}}gl are one dimensional independent positive white noise sources.
We will now give a short introduction of definitions and results from multidimensional Wick
calculus, taken mostly from [Gj], [HL@UZ3], [HKPS] and [KLS].

In the following we will fix the parameter dimension n and space dimension m.

Let m
N = H S(R™)

i=1
where S(R™) is the Schwartz space of rapidly decreasing C*°-functions on R™, and

Hs (R™)) ~Hs (R™)

i=1 i=1




where S/(R™) is the space of tempered distributions.

Let B := B(N*) denote the Borel o-algebra on A™* equipped with the weak star topology and
set

m
H =P LHRY)
i=1

where @ denotes orthogonal sum.

Since N is a countably Hilbert nuclear space (cf. eg.[Gj]) we get, using Minlos’ theorem, a
unique probability measure v on (NV*, B) such that

where [|Gl; = £ 19122 ge).
Note that if m = 1 then v is usually denoted by p.
THEOREM 2.1 [Gj] We have the following

L @[ B(S'(RY) = BTE, S'(R™))

2. v=xMpu

DEFINITION 2.2 [Gj] The triple

(J[s'®),8,v)

i=1

is called the (m-dimensional) (n-parameter) white noise probability space.
For k=0,1,2,... and x € R let
xz k X
i) 1= (—1)¥eT <2 (e F)

be the Hermite polynomials and

the Hermite functions.

It is well known that the family {€,} C S(R™) of tensor products
ai=&xy ® - ® &,

forms an orthonormal basis for £2(R™).




Give the family of all multi-indecies { = ({3,...,(n) a fixed ordering
(cM,¢@,...,¢M,...) where ¢ = (¢,..., k)

and define & := &; ().

Let {ex}s>; be the orthonormal basis of H we get from the collection

i-1 m—i
—— ——
{(0,...,0,8,0,...,00 e H 1<i<m,1<j< oo}

and let v : N — N be a function such that
ex = (0,...,0, éc(‘v[k)))o)“- ,0).

Finally , let (B(V,83), ..., g% ...) with p = (‘3§k))m, T(lc)) be a sequence
such that g = ¢(v(¥),

If « =(aq,...,0x) is a multi-index of non-negative integers we put

k
Ha(w) i= ] [ he ({, 1))
i=1
From theorem 2.1 in [HL@UZ] we know that the collection

{ch())‘x € Ng,k“'—"o)])}

forms an orthogonal basis for £2(AN*, B,v) with ||Hg|| c2(v) = ol where ol = Hf___] oyl

This implies that any f € £2(v) has the unique representation
flw) =) caHe(w)
[+ 4
where ¢, € R for each multi-index o and
22y = 3 e
04
DEFINITION 2.3 [Gj] The m-dimensional white noise map is a map

w;ﬁS(Rn) x ﬁs'(Rn) S R™

i=1 i=1

given by
WO(h, w) == wi(d;) 1<i<m

PROPOSITION 2.4 [Gj] The m-dimensional white noise map W satisfies the following
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1. (Wd(g, ) 1, is a family of independent normal random variables.

2. Wi(p,) e L2(v) for 1 <i<m.

DEFINITION 2.5 [HL@UZ3] Let 0 < p < 1.

e Let (ST*)P, the space of generalized white noise test functions, consist of all

f=) HeeLV)

such that
[[£]12 5 == Zc (x)*P(2N)* < 00 Vk €N

e Let (ST')°, the space of generalized white noise distributions, consist of all formal

expansions
F=) baHa
24
such that
Zbi(a!)]_p(ZN)_“q < oo for some q € N
[+4
where

k
(2N)* = [T@8" - BRY™ if & = (e, .. o).

i=1

We know that (SJ*)~° is the dual of (ST*)? (when the later space has the topology given by
the seminorms || - ||px) and if F =} bgHy € (ST)7P and f =} cqHa € (SH)P then

(R, f) = Z baCax!.
[0

It is obvious that we have the inclusions
S cSMPc(sM™csM™ pelo]
and in the remaining of this paper we will consider the larger space (‘S'T‘,Z‘)‘1

DEFINITION 2.6 [HL@UZ3] The Wick product of two elements in (SI*)~! given by
F=) asHa, G=) bgHp
o B

is defined by

FoG=) c/Hy
Y
where
Cy = Z aabp
otp=y




LEMMA 2.7 [HL@UZ3] We have the following

1. FEGe(S™M) '3 FoGe (SM)T
2. f,ge (M) = foge (ST

DEFINITION 2.8 [HL@UZ3] Let F = }_ byHy be given. Then the Hermite transform of
F,denoted by HF, is defined to be (whenever convergent)

HF := Z boz®
[ 4

X1

o4
where z = (21,22, ++) and 2% = 272,72 -+

252 p* if o = (o1, .., o).
LEMMA 2.9 [HL@UZ3] IfF,G € (S™)~ then

H(Fo G)(z) = HF(z) - HG(z)
for all z such that HF(z) and HG(z) exists.

LEMMA 2.10 [HL@UZ3| Suppose g(z1,22,--) is a bounded analytic function on B4(5)
for some & > 0,q < oo where

Bq(8) :={C=(G1,G,---) € C5; )_ ¢*P(2N)* < 82},
o#0

Then there exists X € (S™)~! such that HX = g.

LEMMA 2.11 [HL@UZ3] Suppose X € (S™)~' and that f is an analytic function in a
neighborhood of %X (0) in C. Then there exists Y € (S™)~! such that HY = f o HX.

THEOREM 2.12 [KLS] Let (T, Z,T) be a measure space and let ® : T — (S™)~! be such
that there exists q < 00,6 > 0 such that

1. H®¢(z) : T — C is measurable for all z € B4(5)

2. there exists C € £1(T,T) such that [H®¢(z)| < C(t) for all z € B(6) and for T-almost
all t.

Then [ @ d(t) exists as a Bochner integral in (ST)~".In particular, ([ ¢ d(t), $) =
JH{@, d) dt(t) 5 d € (ST

EXAMPLE 2.13 Define the x-shift of ¢, denoted by ¢«, by dx(y) := d(y — x).Then
BxpWil € (S™)™' 1<i<mVxeR®

which is an immediate consequence of proposition 2.4 and lemma 2.11.




§3 The first class of stochastic Dirichlet equations

We will in this section let X be the solution of the stochastic integral equation

t

t
x:=x+J b(X%) dG-i—J o(X%) dbe 3)
0 0
under the assumptions that

e the coefficients b;(x), oy x(x) : R* — R are continuous and satisfy
[b(x)]|&n + lo(X)[|3n < K(1 + ||x]|Zn) for all x € R™, where K is a positive constant.

e the equation (3) has a weak solution (X%¥,b:),(Q,F, P*),{F,} for all x € R™ and this
solution is unique in the sense of probability law.

We will use the notation that

o B is expectation w.r.t. =k

e Tp = ’cét = inf{t > 0: X € D€} is the first exit time from D for X;.

THEOREM 3.1 Let D be an open, bounded domain in R*,f € C (D), g € C*(D),A the
differential operator on C2(IR™), associated with Xt, given by

=323

and suppose that we have the following

+Z ah'(" . h e C(D)

M:

ol )ix(x

NI—‘

e A is uniformly elliptic in D.
e the functions (GO'T)i,k,bi are Holder continuous in D.

e every point x € 6D has the exterior sphere property;i.e there exists a ball B 5 x such
that BND =0,BNoD = {x}.

Then
t

w(x) = 10Xy JExpt— | " UXs) ds} + L 6(X)Exp{— L U(X) ds) dt]

0
is the unique (STT)“-valued process which solves the stochastic Dirichlet problem
Au(x) =U(x)ou(x) —g(x) xeD @
u(x) = f(x) x € 0D

where

Ux) =Y ci-BxpWy} (ci €Ry) (5)

i=1




is the potential given by sources of independent positive white noise, £~ JoP - ds and Jo-ds
are the Bochner integrals in (ST)~'.

Remark : If u(x) € (S™)7! and A(Hu(x)) € Ap(Bq(8)), where Ap(Bg(8)) is the space
of all bounded analytic functions on B4(8) , for some q € N,6 > 0, we will use the conven-

tion that Au(x) := H~1A(Hu(x)).

PROOF:
We will assume that n = m = c =1 for simplicity.

We must find § > 0,q < oo such that 1i(x,z) := H(u(x))(z) € Ap(B4(8)) solves the equation

Aii(x) = exp{Wg,} - li(x) —g(x) x€D

- (6)
ti(x) = f(x) x € 0D

when z € Bq(8).

FixﬁeNandﬁwith0<3<2-n%".

LEMMA 3.2 ii(x,z) € Ap(B4(8)) ¥x € D.

PROOF:
Since
We, ()P =1 _(dx, &)zl
k=0
<) (dxre)?- ) Izl
k=0 k=0
<l Y 12%(2N)>d
o0
< &)
when z € Ba(ﬁ) it follows that
~ X D ~
[(x, 2)| < Ky - B¥] exp{— L exp{Wo, }ds}]

TD t .
+Kg - B [L | exp{— L exp{Wo,, } ds}idt]

T

— K- B exp{—J " exp{R(We,, ) +i3(Wipy )} ds}]

0

+
~
(=]

TD t . .
.E"[J |exp{—I expIR (W, ) +13(Wey )} ds)l dt]
0 0
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— K, - B[ expl— J:D exp{TR(Wey, )Hoos I Wiy, ) + Lsin T(Wey, ) ds}]
+Kg - B J:D |exp{— J: exp{TR(Wepy )}(cos T(Wepy ) + 18inT(Wey,)) ds)l dt
=K Bllexpl [ explOR(Way, oosT(We,) s

+K, - E"[J:D |exp{— E exp{TR(Wepy )} 08 3(Wy, ) ds) dt]

< Ki+Kqg- E"[ED exp{—t exp{—8|| ||} cos (8] ||)} dt]

2K, - exp{8ll 6]l
=K s Glol)

where

K¢ := sup [f(x)],Kg := sup|g(x)|.
x€dD xeD

LEMMA 3.3 u(x) is well-defined as a Bochner integral in (S™)~.

PROOF:

Estimating as in lemma 3.2 , we get with

TD . TD t .
O(x,z,®) = f(Xp ) exp{— L exp{Wy, }ds}+ J;) g(X¢) exp{— L exp{Wy,, }ds}tdt

that
2K - exp{8]| ||}

cos(5]|¢[])

whenever z € Ba(ﬁ), i.e it follows from theorem 2.12 that u(x) is given as a Bochner integral
in (S7)7". m

I(D(x, z, a)l S Kf +

LEMMA 3.4 1i(x,z) is the unique function which solves equation (6) when z € Ba(ﬁ).

PROOF:
Since
. o0
Wi, (2) =D (I, ex)z
k=0

for all z € Cg’, it follows that exp{VV¢x} > 0Vx € D whenever z € Bq(ﬁ) NRY. In this case
the claim now follows from proposition 7.2 and remark 7.5 in [KS], and by expanding the
natural analytic extension of {i(x,z) into real and imaginary parts, the result follows for all
zZ € Bq(s).




LEMMA 3.5 Au(x) is well-defined as an element in (S™)~' Vx € D.

PROOF:

Since
Atl = exp{Wy,} i —g

it follows from lemma 3.2 that

N 2K, - exp{8]| oI}
\ATL(x, )| < exp{8]| |} - (K¢ + —2 ) +K
’ cos(8]|)) ?
when z € Bq(ﬁ),i.e the claim follows. ]
The theorem now follows from the previous lemmas. [

REMARK 3.6 It is easy to extend theorem 3.1 into more general situations.
Let f(x) € (S™)~' ¥x € 9D, g(x) € (S™)~! ¥x € D and U(x) € (S™)~! Vx € D be given and
assume that there exits § € N and § > 0 such that the following holds:

e Hf(x,z) € C(0D) when z € Bq(g) and JK¢ > 0 (independent of x, z) such that

sup  [Hf(x,2z)| < K¢
x€dD,zeB4(8)

e Jx(z) > 0 such that Hg(x,z) € C*#)(D) when z € Bq(S) and 3Ky > 0 (independent of
x, z) such that

sup  [Hg(x,z)| < Kq
x€D,zeB;(3)

e 3B(z) > 0 such that Hi(x,z) € CP®) (D) whenz € Bq(s) and JKy(x) > 0 (independent

of z) such that

sup |HU(x,z)| < Ky(x) ¥xeD
zeB4(8)

o R(HU(x,z)) >0 ¥x € D,z € B(3).

Then

u(x) = B¥f(Xeg) 0 Bxp{— jo ux)as+ [

t
o(Xe) o Exp{—-j UXs) ds} at]
0 0

is the unique (S,T)"-valued process which solves the (modified) stochastic Dirichlet problem
given by (4).
COROLLARY 3.7 (The wave equation)

Assume that the assumptions of theorem 3.1 are valid.
Then

Y(t,x) = Ex[sinh(t)f(bTD)Exp{— JTD (U(bs) /\c)°—1 ds]l
0

10




is an (S™)~'-valued process which solves the stochastic wave equation

e

W(t’ x) = U(x)Ac)o AVY(t,x) (t,x) eRy xD
Y(0,x) =0 x€D

?%I(O,x) — f(x) x € 9D

where ¢ € R U{oo} and ¢(x) is the potential given by (5).

PROOF:

It is clear that the boundary conditions are satisfied and that
%y
W(t)X) = ‘y(th)

i.e we must show that the following equation is satisfied
Y(t,x) = (U(x) Ac) o AY(t,x)
or equivalent
ANV, x) = (UMK) Ac) T oW(t,x)
but this is nothing but the (modified) Dirichlet equation of remark 3.6, i.e the result follows.
[ |

COROLLARY 3.8 (The Schrédinger equation)

Assume that the assumptions of theorem 3.1 are valid.
Then " o Py
(%) = 8lexpli=f(beo ) Bxpl— |  (1+ T3U(be) ds}
2m 0 fi2
is an (8,‘{‘);1-valued process which solves the stochastic Schrodinger equation

—ﬁ—zAx‘J!(t, x)+UMX)oVY(t,x) = iﬁﬂ(t, x) (t,x) eRy xD

2m ot
Y(0,x) = f(x) x € oD
where U (x) is the potential given by (5),1 = +/—1 is the imaginary unit, # is Planck’s constant
divided by 27t and ™ is the mass of the particle in study.
PROOF:

It is clear that the boundary condition is satisfied and that

ov h

— = ——iY(t

ap (bX) = 5=i¥(t,%)
i.e we must show that the following equation is satisfied

2
AN %) = (1+ Z2U()) oWt X)

but this is again nothing but the (modified) stochastic Dirichlet equation of remark 3.6, i.e
the result follows. n

11




§4 The second class of stochastic Dirichlet equations

We will in this section assume that m = 1 and use the notation

o B%is expectation w.r.t. the measure P~

e Tp = 't%" = inf{t > 0: by € D¢} is the first exit time from D for by.

where (bi(®),B") is a Brownian motion in R".

THEOREM 4.1 Let D be an open, bounded domain in R™ such that every point x € 9D has
the exterior sphere property; i.e. there exists a ball B 3 x such that BND =@, BNaD = {x}.

Assume further that we are given functions D 5 x — k(x) € (§)77, 9D 3 x — f(x) € (S)™!
and D 3 x — g(x) € (S)7! such that
e J(gs € N, 8¢ > 0,K¢ > 0) such that

1 SUP, oD, ze B, (5¢) [Hf(x,2z)| < Ks

2. x = Hf(x,z) € C(0D) whenever z € B4, (5¢).
e 3(qq € N,8g > 0,Kg > 0) such that

1. SUP, e 2B, (55) Hg(x,z)| < Kg

2. 3(x(z) >0 Vz € Bg,(6g)) such that x — Hg(x,z) € cx= (D).
e 3(qc €N, 8¢ > 0,0 < ¢ < F,Kc(x) >0 Vx € D) such that

L. SUP,cB,, (6«) [Hk(x,z)| < Kg(x)

. 3(B(z) >0 Vz € By, (5¢)) such that x — Hk(x,z) € CPE(D).

2
3. SUP,cp 2cB,, (5x) larg(Hk(x,2))| < § — ex.
4. Hk(x,z) >0 Vx € D whenever z € Bq, (5¢) NRY.

Then
u(x) = Exp{W_ 1 ¢x} o R¥ [f(brp) © Exp{—-;- J K(bs) ¢ Exp{W_d,bs} ds}o J(1p,x)]
0
] ™™D 1 t
+ ZER(W_3, }o B | 0(01) 0 Bxpl—; | k(b) o IW_oy }ds}o Tt 1) a8

0 0

where
1 101
T(4,%) 1= Exp(zWan, = 5 [[5(TWeu) ™ + AWo,Jxs, ds (7)
0

12




and
8(x) :== g(x) ¢ Exp{W_¢,}

is the unique (S)~'-valued process which solves

div(Exp{Wg,}o Vu) = k(x) ou(x) —g(x) x€D
u(x) = f(x) x € oD

where B, f; -ds and [;° - ds are Bochner integrals in (S )~

REMARK 4.2 : We use the convention that arg is defined to be the function
arg : C =< —m, m] given by the relation z = |z|exp{i - arg(z)}.

REMARK 4.3 : If u(x) € (§)~! and div(exp{HWgy,} - Hu(x)) € Ap(Bg(8)) for some
g € N,4 > 0, we will use the convention that

div(Exp{Wg,} o Vu) := HT (div(exp{HWy,} - Hu(x))).

PROOF:
We must find § > 0, § € N such that {i(x,z) := H(u(x))(z) € Ab(Bq(g)) solves the equation

div(exp{\;\'/d,x} Vi) =k(x)-1(x) —g(x) xe€D 8
fi(x) = f(x) x € 0D )

when z € Bq(ﬁ).

LEMMA 4.4 3(8 > 0,4 € N) such that z — fi(x,z) € Ap(B4(8)) Vxe€D.

PROOF:

It is clear that 5
|lexp{W_14, 3l < exp5[d[l}

and : 5 5
|exp{5We,,, H < expl5 b, I} = exp{ 6]}

when z € Bq(98) , since V(q € N, > 0)
We, (2) < 8|67

Using this last estimate on
17
w(x,z) = exp{—z J K(bs) exp{W_d,bs}ds}
0

13




we get

= lexp{—y [ Ik(b)|exp((W_g,, )b expfilarg(k (b)) + IOV _g,, )} ds]
= expl—y | k(b expRW_y, ) cos(arg(R(bs)) +IW-e,)) s

0
<1

whenever ¢ < min{dr, dg, d«} and 0 < & < min{8¢, 8, &«, 137}

Applying these estimates on 1i(x, z), still assuming q < min{qy, qq,q«} and
0 < 6 < min{d¢, 64, O«, n%‘-”}, we get

00,21 < Kr explBl G expl—yg | 15(VWa, P + AW, bems, dsl]
0

D t
1 x I P .
+ 3K expl25 18" | | exp{—Z (13 Wg. 7 + AV 1oy, asat]
0 0

< (Keexp{8l|oll} + 5 K ( exp{26||¢||} )E*lexp{c(8)Tp]]

where

2
c(d) = 15 Y IS 2|2+ Zna"’
i=1

i=1

since

n
- 0 .~

2 _ 2
[(VWe, ) = i§=1 (_6xi |

<3 W
< I5=We,
i=1 axl

n

*lei) '2

i=1

<ey |20

i=1

14




and

02

1—1

<Z| W¢x

1.—1

=Z_|W(£?) l

ach

We know from [DUR] that there exists p > 0 such that
B¥lexp{ppll <00 V¥x€D
i.e if we choose a 0 < & < min{5, g, 8k, ﬂ%‘ﬂ} such that

1.8 « , 00 2, azcb
Z(Téllﬂ” Z“

and a q < min{qy, qq, d«}, then the claim follows. u

LEMMA 4.5 The Bochner integrals in the expression for u(x) are well-defined.

PROOF:

This is obvious from the estimates in lemma 4.4. ]

LEMMA 4.6 {i(x,z) is the unique function which solves equation (8) when z € Bq(ﬁ).

PROOF:
Since
p = ol 2%
div(exp{We,} - Vii) = Z a—(exp{\/\/d,x —+ Z exp{We, }— 52
i=1 et
= %l
Z W¢x exp{Wq,,‘}— + Z exp{W, }— i
i=1 i=1 Xi

our problem (8) may be written as
AL = % exp{W_q,x}k(x)ﬁ — % exp{\/'\’/_m}@(x) x €D
i(x) = f(x) x € 0D

where A* is the second order differential operator given by

192 h 10 .- oh
z o . 2
A*h = E 26 2 IZ_Bxi(Wd”‘)_ax-‘ ; he C4(D).

(9)

15




Assume now that z=(_ € Ba(g) NRY.

Then this operator is clearly uniformly elliptic in D and since the drift coefficient satisfies
the linear growth condition

0

0 .~
| (aX1W¢x) by - (a_xiwtbx) it ](C) = |W(%)h2 (C) (ayi)M (C)l
w00 10
= |kz=o((ay1,)h2 (ay )h]) k)Ckl
— 0 Lo}
< QG e = (G dmy el
k=0
<MY | lexto)l anltdihe —
k=0 /K™
where
M=
1<i<n R
the process given by
1_ .-
dXt = §VW¢,‘((,) dt + db¢ ) Xo =X.
exists with A% as the generator.
We know that
We, =) (bxex)lk
k=0

so it follows that exp{W, ()} > 0 Vx € D and from [KS] we know that the solution of (9) is
given uniquely by

(x,0) = BF(X ) expl— j R(X,) expIW_gy,}ds}
0
bt [j G(0X6) expW_g}expl— | ROXe) explW -, } s}t
0 0

By a change of measure this may be written as

W(x,¢) = 8"F(bro) expl— | R(0e) xplW_,,}as)M(0)]
0

™D t
+ 381 660 expl_g, Jexpl [ &(be) explW_g, ) dsh(t)
0 0

16




where

t t
] ~ 1 ~
M) 1= expl [(VWe)ems, b — 3 [(FWalocp, s} (10)
0 0

and by applying the Ito-formula we know that

t t

1 [roni 1[0 1.. 1.
J[VW¢x]x=bs dbs = —7 J[AWd,x]x:bs s+ 5 W, = 3We.
0 0

(S]]

so finally, by substituting this expression into (10), we obtain equation (8).

This expression is easily seen to have an analytic extension to all z € Bq(g) and by applying
the generator of b; on both the real and imaginary part of {i(x,z) we see that equation (8)
also holds in this case. m

LEMMA 4.7 The differential operator div(Exp{Wy,}oVu) is well-defined as an element in
() vxeD.

PROOF:
This is an obvious consequence of lemma 4.4 since we have shown that
div(exp{Wy,} o Vit) = R(x)ii(x) — §(x)

in lemma 4.6. ]

The theorem now follows from the previous lemmas. [

COROLLARY 4.8 (The wave equation in an isotropic stochastic medium)
Assume that the assumptions of theorem 4.1 are valid.

Then

Y(t,x) = Exp{(W_ 1 ¢x} o Ex[sinh(t)f(bm) o Exp{—% J Exp{W_¢,, }ds}o J(tD,x)]
0

where J(t,x) is given in (7) is an (S)~'-valued process which solves the wave equation in an
isotropic medium given by

Rl )
ﬁ(t,x) = div(Exp{Wy,} o Vx¥) x€D
Y(0,x) =0 x€D
ov
= (0,%) = f(x) x € D.

17




PROOF:

It is clear that the boundary conditions are satisfied and that

o2y

ez (Bx) =¥(t,x)

i.e we must show that

Y(t,x) = div(Exp{Wg,} o V<Y¥)

but this is nothing but the Dirichlet equation of theorem 4.1. m
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