ON FINITELY TOPOLOGICALLY DETERMINED MAP-GERMS

HANS BRODERSEN, GOO ISHIKAWA AND LESLIE C. WILSON

§0. Introduction

Let f, g : (R*,0) — (R?,0) be two C*™ map-germs. We say that f and ¢ are C°-
equivalent if there exist homeomorphism-germs i and ! of (R™,0) and (RP?,0) respectively
such that ¢ = lo f o h™'. Let k be a positive integer. We say that a germ f is k-C°-
determined if every germ g with j%¢(0) = j*f(0) is C%-equivalent to f. Moreover, we say
that f is finitely topologically determined if f is k-C°-determined for some finite .

In this article we are going to prove a theorem giving a sufficient condition for a germ
to be finitely topologically determined. To be able to formulate this theorem we need to
introduce some notation.

Let N and P be two C*° manifolds. Consider the jet bundle J*(N,P) with fiber
J¥(n,p). Let 2 € J¥(n,p) and let f be such that z = j¥£(0). Define

o(f)
tf(6(n)) + F*(myp)0(f)

Whether x(f) < k depends only on z, not on f (see [8]). We can therefore define the set

x(f) = dimg

Wk =Wkn,p)={z¢ J¥(n,p)|x(f) > k for some representative f of z}.

W* is semialgebraic and invariant under the contact group X. Let Wk(N,P) be the
subbundle of J¥(N, P) with fiber W¥(n,p). In [8], Mather constructs a finite Whitney
(b)-regular stratification S*(n,p) of J*(n,p) — W¥(n,p) such that all strata are semial-
gebraic and K-invariant, having the property that if S¥(N, P) denotes the corresponding
stratification of J¥(N,P) — W¥(N,P) and f € C®(N,P) is a C® map such that j*f is
multitransverse to S¥(N, P), j*f(N)NWF¥(N,P) = @ and N is compact (or f is proper),
then f is topologically stable.

Now consider the set R? x J¥(n,p) and, changing notation slightly, define for each
f:R" - RP, j*f: R — RP x J¥(n,p) as in [2], namely j* f(z) = (f(z¢), z) where z is
the k-jet at 0 of f(z+z0) — f(zo). Also welet ()™ : (R*)™ — (RP x J*¥(n,p))™ denote
the induced map on m-fold Cartesian products. Let S* denote the product stratification
R? x 8¥(n,p) of R? x (J*(n,p) — W¥(n,p)). Let m} : J¥1(n,p) — J¥(n,p) be the
projection.

Consider the subset

NT = NT®™ = NTE™) (5 p) C (R? x J¥(n, p))™
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consisting of those jets z = ((y1,21),-- - (Ym,zm)) such that y; = --- =y, and either
(1) 7x(z;) € W¥(n,p) for some ¢
or
(iia) 7x(2:) € J*(n,p) — W¥(n, p) for all i
and z satisfies the non-transversality condition (iib) explained below (for brevity we intro-
duce the notation (yi, ;)™ for ((y1,21), .-+, (Yms2m))-
Let z; = j*1£;(0) for some maps f; : R* — R?, 7 =1,...,m. Take m copies of R" and
m

form the disjoint topological union » R™. The f;’s then induce a map £ > R™ — RP.
i=1 i=1

m

Let S C 5. R™ be the subset of m points consisting of 0 in each topological component.
i=1

Consider the condition:

(iib) j* f is not multitransverse to S* at S.
Consider f € C™(U,R?), where U is an open neighborhood of 0 in R". Define

Do(f) ={(z1,---,2m) € (U)™| zi = z; € B(f) for some i # j or z; = 0 for some i}.

Here (f) denotes the set of points in U where the derivative map D f is not surjective.
Now the main result of this article is the following theorem.

(0.1) Theorem. Let f : (R",0) — (RP?,0) be a map-germ. Suppose there exists a
representative f : U — RP and, form =1,...,p+ 1, positive constants Cy, and a,, such
that for some positive integer k and for any x € U™

d((*H )™ (2), NT®™(n,p)) > Crd(z, Dm(£))*;
then f is finitely topologically determined.

In the above Theorem, d(-,-) denotes the Euclidean distance. Moreover, note that we
have used the same symbol to denote a germ and a representative of the germ. We will
continue to do so throughout the article.

Remark. Tt follows from our definitions above that if ((7¥T1£)™)"H(NT*™) C Dp(f)
form = 1,...,p+ 1 then j¥f hits and is multitransverse to the canonical stratification
outside 0. Owur theorem therefore says that if j¥f is multitransverse to the canonical
stratification on some punctured neighborhood of 0, and becomes non-transverse, when
we move towards 0, at a rate controlled by some Lojasiewicz inequalities, then f is finitely
topologically determined.

The proof of (0.1) will occupy the rest of this article. In the proof the key tool will be
a theorem appearing in [2]. To formulate this theorem we must introduce some notation.

Consider the set Uns(m) C (R? x R® x JPTet(n 4 ¢,p+¢))™ consisting of unstable
m-tuples of C® (p + ¢+ 1)-jets. Let F : (R™ x R%,0) — (R? x R¢,0) be a C* map-germ
of the form F(z,u) = (f(z,u),u). Consider the condition (e') defined below.

(¢') There exist a positive constant a and a representative F': U — R? X R® such that
d((j7++1F)"(2,0), Uns(m)) > d((=,0), Dm(F))®

for any (z,0) € (UN(R" x {0}))™ and m=1,...,p+c+1.

Then, the following theorem appears in [2].
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(0.2) Theorem. Let F be as described above and assume that F satisfies condition ().
Then there exist a constant A\ > 0 and a function v : NU {oo} — N U {oo}, with y(k) < o0
for k < co and y(00) = oo, having the following properties:

Let G : (R* xR xR,0xI) - (R? xR°®xR,0xI) be a germ of an unfolding of
F of the form G(z,u,t) = (g(z,u,t),u,t) = (ge(z,u),t) with I = [0, 1], go = F and
1M g,(0) = 77 F(0) for some k. Let H()) be the germ of the “hornshaped” neighborhood

given by
H()) = {(z,u) € R" x R?| JJul| < [lz]|"}.

Then there exist a representatives and G : U x O — V x O and H(X) (of the germs G and
H()\)) with H(\) C U, where U and V are neighborhoods of 0 in R" x R® and R” xR°, and
O is a neighborhood of I in R, together with level-preserving maps L : H(A) x O — U x O
and K : V x O — RPT¢ x O satisfying the following conditions:

(1) The germ of go = F is multistable at each finite set of points in H(N).

(2) KoGoL=F xIdg on H(A\) x O.

(3) L and K|(V — {0}) x O are C* diffeomorphisms onto their respective images and the

conditions
(i) | Zdgn+exm — Lllk (a0, = o(ll(z,u)||*) and
(ii) 1 Tdgs+exn — Kl (g = ol (3, )]1*)

hold where (z,u,t) € H(A) X O and (y,u,t) € V X O respectively.
Furthermore, in the case k = oo, (i) and (ii) can be replaced by the conditions

(i) [ Zdgn+exm = Ll (2, = o(ll(@,w)[™) and
(if) 1 Zdmo+exm = Kl (g0, = ol (g w)lI™)

for any m where (z,u,t) € H(\) x O and (y,u,t) € V x O respectively. (Here, the
norms ||.. .||, are defined in [2]. They are equivalent with those defined in [5].)

We finish this section with a brief sketch of the proof of (0.1). As is well known, a finitely
K-determined map-germ f : (R™,0) — (R?,0) admits a stable unfolding F : (R"*¢,0) —
(RPt¢,0). Mather’s theory (see [8]) produces a Whitney stratification Sy of (RPT¢,0) such
that, letting 5 denote the natural embedding of R? into RP*¢, then j M Sy implies that f
is topologically stable.

Let f be a germ satisfying the hypothesis of (0.1). While f is not finitely K-determined,
we construct in §1 an unfolding F' of f satisfying condition (e') and therefore the conclusion
of (0.2).

In §2 we consider the unfolding F' of f constructed in §1. Let ko be a positive integer.
Since F satisfies the conclusion of (0.2), we can obtain a commutative diagram

H)) —— U

) e |»

k
RP xR® «—— V,
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where R = j7*0) F(0) and [ and k|V — {0} are C*°-diffeomorphisms onto their respective
images. Using (1) and (i) of (0.2), we can show that there exists A’ such that I(H())) D
H()\) — {0} and such that if C = R(Z(R) N (H(X') — H(X"))) and K = R™!(C), then
RIH(\)— K : H(\') — K — R? x R® — C is infinitesimally stable. We can consequently
use the results of Mather in [8], and we get induced stratifications S;(R), ¢ = 1,2,3, where
Si(R), 1 = 1,3, are stratifications of H(X')— K and S3(R) is a stratification of R? xR*—C.

Moreover, since F' is an unfolding of f, we can use (*) to construct another unfolding

0O ', Rvte

(%) lf lR
W _J__> Rp+e .

We end §2 by formulating an important lemma (Lemma (2.7)), concluding that for each
80, 0 — H(7-1(0), 6) (where H(f~1(0), 8) = {zld(z, f~4(0)) < ||o]|?}) and ; satisfy
certain Lojasiewicz inequalities implying that these maps are transverse to Ss(R) and
S2(R) respectively.

In §3 we prove some general metric properties of semialgebraic stratifications. The
results here are used in §4 and §5.

In §4 we prove Lemma (2.7). In fact, we consider a one-parameter unfolding g(z,t) =
(g¢(z),t) = (f(z)+th(z),t) with j°h(0) = 0. If s is large we can construct a one-parameter
version of (),

Y0 -6 ) x 41 D (HO) - K)xT

( * *) 19 lem

(3s5%)
W—{0)xI —20 (Rte—C)xI,
and we prove a one-parameter version of (2.7) for (x * *).
In §5 we consider (¥ * *). Since we have proved a one-parameter version of (2.7)

for (% * %), we know that (is,t)| [J(O — H(g;"(0),8)) x {t} and (j¢,t) are transverse
tel

to S3(R) x I and S3(R) x I respectively. We can therefore take the pullback of these
stratifications via (i;,t) and (j;,t) respectively. If s and B are large, we can also show

that g| U H(g;'(0),8)) x {t} — ({0} x I) is a submersion, and we use this to construct
t€l
a stratification of |J H(g;(0),8)) x {t} — ({0} x I), which fits together with the pull-
tel

back of Sy(R) via (3¢,t). We then add {0} x I as strata in source and target, and obtain
stratifications of O x I and W x I. Now, using the results of §2, §3 and §4, we prove that
these stratifications are Whitney regular, and that g is a stratified map. So by the second
isotopy lemma each level g; is topological equivalent with f. Thus if s is sufficiently large,
f and f+ h are topologically equivalent, hence f topologically s-determined, proving (0.1).

Parts of this work have been done during several visits by the first and second authors to the University
of Hawaii, and during visits of the first and third authors to Warwick University and of the third author
to the University of Oslo; we would like to thank these instititions for their hospitality.
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§1. Stable unfoldings on hornshaped neighborhoods

In this section we will construct a stable unfolding on a hornshaped neighborhood of
the punctured domain of a map. The rate at which the unfolding becomes unstable will

be controlled by a Lojasiewicz inequality.
Now assume U is a neighborhood of 0 in R”*. Let N = U — {0}. The maps f: U — R?
for which we will construct stable unfoldings will be those which satisfy

(1.1.1) P*F(IN)YNWHU,R?) = @ for some fixed k
and, letting ¥, denote f~(y) N E(f) for y # 0 and S denote f~1(0) N E(f) N N,

(1.1.2)) #3, < s for some fixed s.
It is proven in [6] that (1.1.1) implies:
(1.2) tfobe + [*mp)6(fz) D mE10(f,), V2 € N.

Fix a positive integer d. Let g;, 2 = 1,...,¢ = ¢(d), be the collection of all polynomial
maps ¢g; : (R®,0) — (R?,0) in which only one component is nonzero, and that component
is a monomial of degree < d with coefficient 1. Define F': U x R® — R? x R¢ by

(1.3) F(z,u) = (f(z)+ Zuigi(:v),u).

We wish to choose d so that, if f satisfies (1.1), then F will be a stable germ at each %,
y € RP.

Let S be a finite set in N. Let fs (respectively, (¢;)s) denote the germ of F' (respectively
gi) at S. Then we have:

(1.4) Proposition. F is stable at S if, and only if, the images of (¢;)s, i = 1,...,c, span

6(fs) .
tfs(0s) + (Fimp(s))0(fs) + Xj—1 Rgpr o f

(Note that in (1.4) we have identified each (g;)s with a vector field in 6(fs) in an obvious
manner.)

Proof. Alter the proof of Theorem 2.1 (p. 200) and Proposition 3.1 (p. 204) of [4] by
replacing 0 in R® (respectively, R?) by S C R™ (respectively, f(S) C RP). O

If f satisfies (1.2) then, for any finite S C N,

tfs(8s) + (fampcs))b(fs) D (mE8(fs).

Proposition (1.4) implies that F will be stable at S'if (¢;)s,7 = 1,...,¢, span a complement
of (mg™")8(fs) in (ms)8(fs)-

We now have the following proposition:
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(1.5) Proposition. Suppose S = {z1,...,z:} CR" and z; is a k-jet at x;,2 =1,...,s,
k > 2. Let d = sk. Then there is a polynomial map ¢ of degree < d such that j*¥g(z;) = 2;
forv=1,...,s.

Proof. This is a special case of [13, bottom of p. 153], also see [3, Lemma 4.1].00

Thus if f satisfies (1.2) and F is defined as in (1.3), with d = s(k —2), then Fyg is stable
for each S € N with #5 < s. It then immediately follows that:

(1.6) Proposition. If f satisfies (1.1) and F' is defined as in (1.3), then Fx, is stable for
all y in RP.

Next we will control the rate at which f becomes unstable. For any f : R® — RP? define
JTf:R® — RP x J"(n,p) as in §0. If z is an r-jet in J"(n,p) given by j"f(z) = (f(z),2),
then we also let z denote the r-jet in J"(n + ¢,p + ¢) given by j"(f(z),u) = ((f(z),u), 2).
For [ = 1,...s, define ® : (R® x R? x J"(n,p))! — (RP*¢x J"(n+c,p+c)) by & =
(®4,...,®;), where

& ((21,91,21), -5 (25, Y85 26)) = (45, 0), 25) +J"'(Z uigi(z))(z5,0),

(g; and c are as in (1.3)). If f: U — RP? is any mapping and F' is as in (1.3), then

®o((z1,7"f(x1))y-- -, (z1,5" f(=1))) = (7"F(21,0),...,5 F(z1,0))

(here, z1,...,2; are not necessarily distinct). If the critical points of f among zi,...,7;
are distinct, % f(z;) ¢ RP x Wk(n,p), r > k > 2, and d = s(k — 2), then F is multistable
at {(z1,0),...,(2;,0)}. Now assume that 7 > p+ c+ 1. Let Uns = Uns(r,[) denote the
set of unstable multijets in (RP¢x J"(n + ¢,p + ¢))" (see [2] for a precise definition). Thus

it follows from above that
®~1(Uns) c Wrhklu AL,

where W% consists of those points (z;, yi, Zz‘)£=1 with yy =--- = y; and
z; € ()Y (W*(n,p)) for some j, and AL are points (z;,yi, z)iy with y3 = -+ = yj,
z; = zj and z;, z; both critical jets for at least two indices « and j. (Here, II} is the
projection of J"(n,p) onto J¥(n,p).) For any set X and any natural number r, we let
AX denote the diagonal {(z,...,z) : ¢ € X} C X", where the r will always be clear by
context.

Finally, we assume

(1.7.1) d(j* f(2), R? x W*(n,p)) > Cllz||,
(1.7.2) d(5* f(z),R? x 5(n,p)) > Cd(z, (f))"
and for = (z1,...,%541) € U, s > 1,

(1.7.3) (71 £)**(2), AR? x (2(n, p))**") > Cd(z, Deya(f))"
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for some positive constants C' and a.
Let ¢ = (1,...,21), | < s. From (1.7.1) it follows that d((z, (5" f)'(z)), W™F!) satisfies
a Lojasiewicz inequality with respect to min{||z;||}, a fortiori with respect to d(z, Di(f)).
7

To realize that (1.7.2) implies that d((z, (" f)!(z)), AL) satisfies a Lojasiewicz inequality
with respect to d(z, D;(f)) is somewhat more involved. To this end, let
2 = (Zm,TYm,Zm)lney be a point in AL such that

d((z,(57 1) (2)), Ax) = ll(z, (57 ) (2)) = 2.

Let ¢ and j be indices such that z; = £; = Z and Z; and Z; are both critical jets. Assume

first that ||z; — z;]| > d((zs,2;), AZ(f))*. Then

T > e Y—(Z.% iw._w. _1_ T Tx 2
(2, (5" ) () = 2l = [I(zi,2) = (7, 2)]| = \/5“ i — il 2 \/id(( i, %), AB(F))7,

showing that we have satisfied a Lojasiewicz inequality in this case.
Assume now ||z; — z;|| < d((z;,2;), AZ(f))?. Let &; and &; be points in %(f) such that
d(zi, 2(f)) = ||lvi — &il| and d(z;,2(f)) = ||lzj — Z;{|. Then

@i — &) + lzj — &1 > ||z — &l| + |25 — 5] = llzi — 2]l 2
Iz — &5| + |25 — &l — llzs — 251 = lwi = &5|| + lz; — &l = 2[|lzi — ;] =

d((a:,', xj)a AE(f)) - 2d((xi’ wj)> AZ(f))2 > d((wh xj)v AE(f))Z > d(x)Dl(f))z'
(1.7.2) now implies that

I(z, (5" £} (@) = 2 2 17 ) (@) = Fmy Zm)m=all 2 Cllzi = 8l + llej — 25]1%),

and this together with the inequality ||z; — &:|| + ||z; — £;|| > d(z, Di(f))? give us that
d((z, (57 f)!(z)), AL) satisfies a Lojasiewicz inequality with respect to d(z, Di(f)) in this
case too.

From all this we see that d((z, (j7f) (z)), Wrkt U AL) also satisfies a Lojasiewicz in-
equality with respect to d(z, Di(f)).

We now have the following

(1.8) Lemma. Suppose ¥ is a polynomial map from R® toR?, A C R®, B C R? are closed
sets, B is semialgebraic and $~1(B) C A. For each P € R®, there exist positive constants
C and « such that d(¥(z),B) > Cd(z,A)* on some neighborhood of P.

Proof. We may suppose that ¥(P) € B, otherwise the inequality is obvious. Let V =
{(z,¥(z))} and W = R® x B. Clearly V is an algebraic and W is a semialgebraic subset
of R® x R? and therefore they are regularly situated. So there exist &, C' > 0 such that in
a compact neighborhood of P we have that d((z, ¥(z)), W) > Cd((z, ¥(z)),VNW)?*. Let
(y,b) € VN W be such that d((z,¥(z)),V NW) = ||(z,¥(z)) — (y,b)||. Since b € B
and ¥(y) = b, we have that y € U™'(B) and thus d(¥(z),B) = d((z,¥(z)),W) >
Cl(e, U(z)) — (0, D]* > Clle — yl|* > Cd(z, ¥ (B)* > Cd(z, A)°. O
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Now we wish to see that (1.1) and (1.7) imply that F' satisfies the hypothesis of (0.2).
To this end, apply (1.8) to ¥ = &, B = Uns, A = Wkl U AL. We then get that
d((j7F)!(x,0), Uns(r,1)) is Lojasiewicz with respect to d(z, Di(f)) and a fortiori with re-
spect to d((z,0), Di(F)), for [=1,...,s.

We need that d((j"F)"(z,0), Uns(r, 1)) is Lojasiewicz with respect to d((z,0), Di(F)) for
I=s+1,...,p+c+1 as well. Consider the map ¢ : J(n,p) — J*(n + ¢,p + ¢) defined

by
=4 %)

If we let a;; denote the standard coordinates in J Y(n+ec,p+c), then clearly im D contains
the vectors 79:19_1'," 1<:<p,1<j<n. Suppose B isin im¢ and has rank r, and let %,
denote the manifold of 1-jets of rank r. It is easy to see that T3, contains the vectors
%, i > porj >n. Thus 1 is transverse to the stratification of X(n + ¢, p + ¢) by rank.

It follows from the main theorem of [9] that
d(DF(y,0), 5+ ¢,p+ ) > CA(Df(y), S(n,p).

(A more general result with a simpler proof can be found as Proposition 2.16 of [12]).
Putting this and (1.7.3) together, we get that d((j1F)**t1(z,0), ARP* x (E(n + ¢,p +
c))*t1) satisfies a Lojasiewicz inequality with respect to d(z,Dsy1(f)), a fortiori with
respect to d((z,0), Ds11(F)), and it follows that the corresponding inequality also holds
for all I > s+ 1. Now Uns(r,[) is a subset of A(RP*¢)! x (S(n + ¢,p + ¢)'); we therefore
get that d((j"F)!(z,0),Uns(r,1)) is Lojasiewicz with respect to d((z,0), D;(F)) for all
| > s. Since stable maps from R"t¢ to RPT¢ are (p + ¢ + 1)-determined, we have that
d((57F)!(z,0), Uns(r, 1)) = d((j*+*t1F)!(z,0), Uns(p+ c+1,1)), and it follows from above
that the hypothesis of (0.2) is satisfied. We can consequently apply the conclusion of (0.2)
for the germ F' and the subset R".

(1.9) Examples.

(1). Let f(z,y) = (z,y® + a(z)y), where a(z) is infinitely flat at 0 but positive at all
¢ # 0. Then f satisfies (1.1.1) with k = 3 and (1.1.2) with s = 0, so d = s(k —2) = 0, and
f satisfies (1.7.1) (since s = 0, (1.7.3) doesn’t apply). However (1.7.2) fails: if z, — 0,
then d(j!f(zn,0),%(2,2)) is flat along d((xn,0), 2(f)) = |zn|. We get the unfolding F' by
unfolding with constant polynomials in each component (in fact, these aren’t necessary, we
could take F = f; since we haven’t shown this however, we will stick with the unfolding
by constants; consequently, p + ¢4+ 1 = 5). Now if we construct an unfolding of g(z,y) =
(z,y®) by unfolding by the same terms, then we get an unfolding G. So 4°G is unstable
and infinitely close to j5F at the points (z,,0,0,0). F will consequently not satisfy the
hypothesis of (0.2). This shows the need for condition (1.7.2).

(2). If we compose the fold (z,y) — (z,y*) with the complex function z — 2*, we obtain
a map ¢ from the plane to the plane which has fold points along the z-axis intersecting
nontransversally in the target. So the composed map is unstable at the pairs of points
{(z,0), (—=z,0)}. Now we make a flat perturbation of the map z* such that the perturbed
map is one-to-one on the halfplane y > 0 and the images of the positive and negative z-axes

2
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become two non-intersecting curves which are “flatly” tangent at the origin. Compose the
fold with this map instead. Then we have obtained a map f which outside 0 has only
non-intersecting fold singularities on the z-axis, but (j 2)? of this map is infinitely close to
a halfline of unstable multijets on the z-axis. However f satisfies (1.1.1) with k = 2 and
(1.1.2) with s = 1, so d = s(k —2) = 0 and we get the unfolding F' by unfolding with
constant polynomials in each component (in fact, these aren’t necessary; we could take
F =-f). Now if we construct an unfolding of g by unfolding by the same terms and let uq,
uy denote the unfolding parameters, then we get an unfolding G' which has nontransverse
intersecting fold points at {(z,0,0,0), (—z,0,0,0)}. So (5°)?G is unstable and infinitely
close to (7°)2F at {(z,0,0,0), (—=,0,0,0)}. F will consequently not satisfy the hypothesis
of (0.2). This shows the need for condition (1.7.3).

§2. Beginning the proof of (0.1)
We start this section with the following lemma.

(2.1) Lemma. Assume that f : (R*,0) — (R?,0) satisfies the hypothesis of (0.1), then
f also satisfies the conditions (1.1) and (1.7) with s = p+ 1.

Proof. Since R? x Wk(n,p) ¢ NT* and Dy(f) = {0}, (1.1.1) and (1.7.1) follow im-
mediately. Recall from the construction of the canonical stratification in [8], that the set
of critical jets in J*(n,p) — W¥(n,p) is a union of strata in $*(n,p). Therefore a map
f:R™ — RP cannot be multitransverse to the canonical stratification at a set consisting of
p+1 singular points with a common image. It follows that AR? X (S(n,p)Pt* C N T (k:p+1)
and (1.1.2) and (1.7.3) will follow from the hypothesis of (0.1) with s = p. The proof of
(1.7.2) is more involved. To this end, assume that there exists a sequence {zn}, Tn — 0
such that d(j! f(zy), RP x Z(n, p)) is flat along d(zn,Z(f)) (we say that a sequence y, — 0
is flat along another sequence z, — 0 if |ys| = o(|zn|™) for every m € N). Define a
finite product stratification of R? x L(n,p) C J k(n,p) trivial in the RP direction, by
letting the strata in X(n,p) — W¥(n,p) be strata in S*(n,p) and choosing some finite
(arbitrary) stratification of the algebraic set W¥(n,p). Using [15, Lemma 2.2], we can
find a map ¢ : (R, 0) — (RP,0) with 7<¢(0) = j*°f(0), and a sequence y, — 0 such
that j¥g is not transverse to the stratification of R? x ¥(n,p) described above at the se-
quence {y,}. Since ||j*f(z) —j*g(z)| is flat along ||z||, it follows from (1.7.1) that 7*g(yn)
cannot hit W¥(n,p). So, j¥g hits S* non-transversally at y,. On the other hand, since
d(j* f(z), NT®D) > Cy|jz||*, and li%f(z) — j*g(z)| is flat along ||z||, we must have
d(j*g(z), NT®D) > %Hx”‘“, and j*¢ must hit S* transversally outside 0. We have thus
obtained a contradiction. [

From (2.1) and the results of §1, it follows that we can construct an unfolding
F:R" xR — R? x R

of f such that this unfolding satisfies the hypothesis of (0.2) (with respect to the subspace
R”™ x {0} C R™*°).

Let ko be a positive integer. Let R = j 7k F(0) and let G be defined by G(z,u,t) =
(F(z,u) + t(R — F)(z,u),t). We can then apply the conclusion of (0.2) to the unfolding
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G. Let [ and k be the mappings we get by restricting the maps L and K of (0.2) to the
level t = 1. By (2) of (0.2) we then obtain a commutative diagram

H)) —— U

(2.2) lF lR
RP xRE 0 V.

Here U is a neighborhood of 0 in R™ x R such that {(H(X)) C U and R(U) C V. Now,
if kg > ), it will follow from (3)(i) of (0.2) that {((H())) contains a representative of the
hornshaped neighborhood H()'), \' > A\. We may assume that A’ is an integer which may
be chosen independent of our particular choice of kg, and that the representative is given
by

H\') = {(2,u) € R* x R [Ju| < [le[|* and ||(z,u)]| < ¢}

for some €. From (0.2)(1) and (2.2), it follows that R becomes multistable at finite sets of
points in H(\"). In fact, it is not hard to see that A’ and e can be chosen such that R is
multistable at finite sets of points in H(\') — {0} and that R~*(0) N Z(R) N H(\') = {0}.

Let C denote the set R(XZ(R)N(H(N')— H(X"))). It follows from the Tarski-Seidenberg
Theorem that C' and consequently R? x R® — C are semialgebraic sets. Assuming that 0 is
a critical point, we get that 0 € C. Let K = R™!(C). Then H(X') — K is a semialgebraic
set in R™ x R¢. We now have the following lemma

(2.3) Lemma. RIH(\')—K : HX)—K — RP xR°®—C is an infinitesimally stable
mapping.
Proof. Tt is obvious from our definitions that the map in (2.3) restricted to its critical set

is a proper map. Since R is multistable at finite subsets of H(\") — K, the conclusion of
(2.3) follows from [7, Proposition 5.1] O.

Since RIH(\') — K : H(\') = K — RP x R® — C is an infinitesimally stable mapping,
we can use the results of [8] to stratify this map.

In §10 of Mather’s article, Mather constructs a collection S; of infinitesimally stable
mapping classes. If f : N — P is an infinitesimally stable mapping between manifolds
N and P, S; induces three Whitney stratifications 8;(f), ¢ = 1,2,3. The properties of
these stratifications are described in [8]. Applying this to the map of Lemma (2.3), we get
induced three stratifications which we will denote by S;(R), 1+ = 1,2,3. S;(R), ¢ = 1,3
are stratifications of H(\') — K and Sy(R) is a stratification of R? x R® — C. These
stratifications will be an essential ingredient of the proof of (0.2). However, before we can
make any use of these stratifications we need to prove the following technical lemma:

(2.4) Lemma. Let ko, R,\',e¢ and C be as described above. Then, for each choice of
ko, \' and e, we can choose € such that if

H2N) = {(y,u) € R? x R° |lu]| < [ly|** and ||(y,u)|| < €'},
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then H(2\') CRP x R¢ - C.
Proof. Recall that

C =R(S(R)n (HN) - H(\)) =
R(S(R) N {(z,u)| [lull = [le]* and ||(z,u)] < €})
UR(S(R) N {(z,u)| [Jull < [lz]| and ||(z,u)]| = €}).

Let M = max{ sup |DR(z,u)|,1}, where ||[DR(z,u)| is the operator norm. We may
ll(z,u)l| <1

assume that € occurring in the definition of the representative H()') also is chosen such
that e < 1/M? < 1; hence | DR(z,u)|| < M when ||(z,u)|| < e. Now, if ||(z,u)| < €, we get
that ||z]| < 1/M? and hence (y,u) = R(z,u) = (Ry(z),u) satisfies ||y|| < M|z|| < ||=|*/2.
So |ly||? < ||zl Soif ||lu| = ||z||, we get that ||ju] > [|ly||*" and consequently that

H(2\) C~ R(S(R) N {(z,u)| [lul| = |l2* and ||(z,u)]| < €})
(~ denotes complement). Now, recall that we had Z(R) N H(\) N R~*(0) = {0}. So
S(R)NHN)NRT0)N{(z,u)| ||(z,v)]| = ¢} = @.
The compact set R(S(R)NH(MN)N{(z,u) | ||(z,u)|| = €}) must therefore avoid 0 in R? xR¢,

and we can consequently find ¢ > 0 such that R(Z(R) N H(A) N {(z,v)|||(z,w)|| = €})
does not intersect {(y,w)||[(y,u)| < €'}. So with this € we also get that

H(2)) C~ R(E(R) N {(z,u)] [[u]l < " and ||(z,u)|| = €}),

and we obtain the conclusion of the lemma. [

Let 7 : R® - R*¢ x R and j : R? — RP*¢ x R be the standard imbeddings. Since k of
(2.2) is a C*o diffeomorphism which is C* outside 0, we can, restricting to neighborhoods
O and W of 0 in R™ and R?, compose ¢ and j with [ and k™ respectively, and we obtain
a commutative diagram

(2.5) lf lR

w ——> RP+e

where : = loi and j = k= 0 j. It follows from (0.2) (3) (i) and (ii) that ¢ and j will be
close to ¢ and j if ko is chosen large. From this, it follows that W can be chosen such that
7(W —{0}) C H(2X\') and it follows from (2.4) and (2.5) that O can be chosen such that
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i(0 — f71(0)) € H()N') — K (provided ko is sufficiently large). We therefore obtain the

following commutative diagram

0 — f~10) i HMN)-K
(2.6) lf lR

W— {0} —— Rrtc_C.

Here, all the maps are C*°.
Now, consider the sets B(7)(R), ¢ = 2,3, defined below:

B(4) = {(#, H)|H is not transverse to T, X where
X is the stratum in S;(R) passing through z},

where (z, H) € (RP*¢ — C') x L(R?,RP*¢) when 7 = 2
and (z,H) € (H(\') — K) x L(R",R"¢) when i = 3. The following technical lemma is
crucial in the proof of (0.1). :

(2.7) Lemma. Let 8 > 0. Then there exists « = a(f) > 0 and neighborhoods O and W
as in (2.6) such that condition (a) and (b) below hold.

(a)
(i=3) d((i(z),Di(z)),B(3)) > ||| when z € ON~ {z|d(z,f*(0)) < |||/} and
(i=3) d(((y),Di(y)),B(2)) = |lyl|* when y € W —{0}.

(b) Let L be a relatively closed set in H()') — K or RP*¢ — C' whose closure in Rt or
RP*¢ contains 0, and assume that £ is a union either of S3(R) or Sa(R) strata. Then,
in the case L C H(\') — K, we have that

d(i(2), £) 2 ||l2]|*d(i(x),imz N L),

for z € ON ~ {z|d(z, f~1(0)) < ||z||?},
and if L C RPT¢ — C, we have that

d(j(y),£) 2 Iyl *d(3(y),imy N L),

fory € W — {0}.

The proof of (2.7) is postponed to §4. To be able to prove (2.7), we will however need
some results concerning metric properties of semialgebraic stratifications which will be
given in the following section.
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§3. Some metric properties of semialgebraic stratifications

Let V,W be linear subspaces of a common Euclidean space. We define the distance,
d(V,W) between V and W by

d(V, W) = inf v — w].
(VW) = sup inf flo—wl]

llvll=1

(Note that in general, d(-, -) is not symmetric, since V. C W implies d(V, W) = 0 # d(W, V);
on the other hand d(-,-) restricts to a metric on Grassmannians (see e.g. [14]).) We start
with the following lemma.

(3.1) Lemma. Let A be a semialgebraic set RN and let S be a Whitney (a)-regular
stratification of A with semialgebraic strata. Let z¢ be a point in A. Then there exist a
neighborhood U of xy and positive constants a and f such that the following hold. Assume
that t e UNX andy € UNY, where X and Y are strata in S with X C Y, and that
e —y|| < d(z,X — X)*. Then d(T.X,T,Y)? < |z —yl.

To prove (3.1) we need the following sublemma.

(3.2) Sublemma. Let A,S and zo be as in (3.1). Then there exist a neighborhood U
of ¢y and positive constants a and 3 such that the following hold. Assume that  and Z
are in U N X, where X is some stratum in S, and that ||z — z| < d(z,X — X)*. Then
AT, X, Te X)P < ||z — 7|

Proof of (3.2). Suppose the conclusion of (3.2) is wrong. Then there exist sequences
{z,} and {Z,} tending to z¢ such that ||z, — T, is flat along d(zn, X — X) and also
along d(T,,X, Tz, X). Using compactness of the Grassmannian, we may suppose that
T,, X — F and T;, X — H as n — 0o, where F' and H are in the Grassmannian G of
dim X dimensional subspaces in RY. Consider the sets

B=1(2,5,L,1:X)|(,5) EX x X,L € G}

and

C ={(z,2,T,X,L)|z € X,L € G}.

Clearly (z¢, o, F, H) € BNC. Since B and C are semialgebraic sets and therefore regularly
situated, there exists a (compact) neighborhood U of (z¢, %o, F, H) and positive constants
M, such that d((z,z,L,L),CNU) > Md((z,%,L,L),BNnCNU)" for (2,%,L,L) € BNU.
Now, if n is sufficiently large, we have that (z,,Zn, T, X,Tz,X) € BN U and also that
(T, T, Ty, X, Tz, X) € CNU. So we get that

(*) |z — Znl| > Md(z4,Zn, Te, X, T5,X),BNCNT)".
Let (Zp, &n, Fn, Hy) € BN CNU be such that
d(2p,Zn, Te, X, Tz, X),BNCNU) =d((24, T, T5, X, T5,X), (Zn, &n, Fn, Hp)).

Then it follows from (%) that ||z, — Zn|| > Mljzn — &,||7, and since ||z, — Z,| is flat
along d(zn, X — X), ||&n — &4 is also flat along d(z,,X — X). We must therefore have
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that #, € X for sufficiently large n. So we must have F, = T3, X = H,. From (*)
we also deduce that ||z, — Zn| > Md(T:, X, Tz, X)?. This proves that ||zn — Tnl|| is not
flat along d(T,X,T3,X). A similar argument shows that ||z, — Tn| is not flat along
d(Tz, X, T5,X) either. Now it follows from the triangle inequality that ||z, — Zn|| is not
flat along d(T,, X, T5, X ) which gives us a contradiction. [

Proof of ($.1). Suppose the conclusion of (3.1) is wrong. Then there exists a sequence
(Zn,yn) — (20,%0), (Tn;yn) € X XY such that |Zn — Yl is fat along d(zn, X — X)
and also along d(Ty, X,T,,Y). Let us suppose that Tp, X — F and T,,Y — H in the
appropriate Grassmannians. Let B = {(y,T,Y)lye Y} and C = {(z, L)z € X,L € G}
where G is the Grassmannian of dimY planes in RY. Since B and C are semialgebraic,
we have that B and C are regularly situated. So there exist M,y >0, and a neighborhood
V of (z9,H) € BN C such that
(1) d((y,L),CNV)>Md((y,L),BnCN V)Y
for each (y, L) € BNV. Then for sufficiently large n, we have that (yn,Ty,Y) € BNV and
(2, Ty, Y) € CNV. Let (Zy, Ln) be a point in BN C NV such that
d((y'rH Tan)’ B n C N V) = d((yn? Tan)7 (5:77'7 Ln))‘

It follows from (1) that

d((yns Ty ), (0, Ty ¥)) 2 M((yn, Ty, ¥), (Zny Ln))-

Taking components of this inequality, we get that

(2) llyn — i M“yn - fnm
and
(3) lyn — znll > Md(Ty,Y, Ln)".

Since we have supposed that ||y, —zn|| is flat along d(zn, X —X), (2) proves that ||y, —Znl|
is also flat along d(z,, X — X). So, using the triangle inequality ||z, — Zn|| is flat along
d(zn, X — X). So, for large n, Z, is a point in X not in X — X. From the definition of B
it follows that each L, is a limit of tangent spaces for a sequence of points in Y tending to
Z,. It follows from Whitney condition (a), that T3, X C Lp. Since |z — Znl| is flat along
d(z, X — X), it follows from (3.2) above that |z — Zn|| is not flat along d(T%, X, Tz, X).
Now, since T, X C Ly, we get that d(Tz, X, Ty, Y) < d(Ln,T,,Y), and this together with
(3) implies ||z — yn|| is not flat along d(Ts, X, T,,Y). On the other hand, using (2) and
the triangle inequality, we get that ||z, — yn| is not flat along |zn — Znl|, and we deduce
that ||z, — ¥l is not flat along d(T5, X, Ts., X) either. Using the definition of d(-,-), it is
not hard to deduce that

ATy, X,T,,Y) < d(To, X, T5, X) + d(T2, X, Ty, Y)-

Therefore, we get, putting everything together, that | — ynll is not flat with respect to
d(T,, X, T,,Y). This gives us the desired contradiction. a

The next lemma is in the same spirit as (3.1) and (3.2).
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(3.3) Lemma. Let X C RY be a semialgebraic set and a C*° manifold. Let R : RN — RP
be a polynomial map such that R|X is an immersion. Let z¢ € X — X. Then there exist
a neighborhood U of z¢ and a constant a > 0, such that

IDR(2)(v)|| 2 d(z, X — X)*
holds for any x € U N X and any unit vector v € T, X.

Proof. To obtain a contradiction, assume that there exist a sequence of points {z,} C X,
T, — T, and a sequence of unit vectors {v,}, vn € Ty, X such that |DR(zx)(vs)| is flat
along d(:cn,Y—X ). We may assume that v, — vg for some unit vector vy € RY. Consider
the sets A and B defined by

A = {(z,v, DR(z)(v))|(z,v) € X x T X, |]v]| = 1},
B = {(z,v,0)|(z,v) € X x To X, |jv|]| = 1}.

By standard arguments, these sets are semialgebraic. Moreover, by the assumptions we
have made, (zg,v0,0) € AN B. Now we have that

IDR(zn)(vn) ]| = [l(Zn, V0, DR(n)(vn) = (#n, 90, 0)| = d((zn, vn, DR(zn)(va)), B)-

For each n, let (Z,,0,,0) € AN B be a point minimizing d((rn,Vny DR(24)(vn)), AN B).
Since (%, 9n,0) € A and R|X is an immersion, we must have Z,, € X — X. It is also clear
that (%p,%n,0) — (20,v0,0). Since semialgebraic sets are regularly situated, we can pick
a neighborhood V of (zg,vo,0) and constants M,y > 0 such that

d((z,v, DR(z)(v)), B) = Md((z,v, DR(z)(v)), AN B)"
for (z,v, DR(z)(v)) € ANV. In particular, we get that
IDR(z) ()l = MI|(21, 00, DR(n)(v0))=(&n, T, Ol 2 Mlzn—al|” > d(@n, X=X)7.

We have therefore obtained a contradiction. [J

We close this section with another lemma which will be used in §4.

(3.4) Lemma. Let R: RY — R be a polynomial map where N > P. Let z9 € Y(R).
Then there exist constants a, 8 > 0, and a neighborhood U of x¢ such that the following
conditions are satisfied.

(a) Let z,y € UN(RY — 2(R)). Assume that ||z — y|| < d(z, £(R))*. Then
d(ker DR(z),ker DR(y))? < ||z — v
(b) With the same assumptions as in (a), we also have that
d((ker DR(z))"*, (ker DR(y))-) < Jlo — yl.
(¢) For any unit vector v € (ker DR(z))* we have that | DR(z)(v)|| > d(z,2(R))P.

Proof. (a) and (b) are proven in the same manner as (3.2), replacing X by RY —%(R) and
T,X by ker DR(z) or (ker DR(z))™ respectively. (Actually d(V, W) = d(VE+, W), so (b)
is equivalent to (a)).

(¢) is proven in the same manner as (3.3), replacing X by RN — %(R) and T, X by
(ker DR(z))*. O
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§4. Proof of (2.7)
We start this section with a technical lemma.

(4.1) Lemma. Let R, H()X'),C, K and Si(R) be as described in §2. There exist constants
a,\ > 0, and a representative H(\) of the set germ

H(X) = {(y,u) € R*[||ul| < ly]*}
such that the following conditions are satisfied: H(A) N C = @, and if
(y,u) € R(S(R) N H(N)) N H(X)

and

{(z1,u), (z2,u)} C R} (y,u) N E(R)NH(N)

with ©1 # x4, then B
|1 — 22| > d((y,u), Y —Y)%,

where Y is the connected component of the Sy(R) stratum in RPT¢ — C that (y,u) belongs
to, and Y denotes the closure of Y in RP*¢,

Proof. The assertion that H(X) N C = @ follows from (2.4), taking X\ > 2)". Let us
therefore assume this and prove the remaining part of the conclusion of (4.1).

Since the stratification S3(R) of H(X') — K is finite with semialgebraic strata, we can
find a neighborhood U of 0 in R™*¢ such that if X is a connected component of a critical-
point stratum in S3(R) with X NU # @, then 0 € X. Let X; and X, be two (not
necessarily distinct) such components. Assume that #{R™(R(z)) N (X1 U X32)} > 1 for
some z € X; UX,. Then it follows from the way S3(R) is constructed (see [8]) that
#{R7Y(R(2))N (X1 UX3)} > 1for any z € X3 U Xy.

Let V; and Va be the semialgebraic sets in (R"¢)? defined by

Vi = {(21,22) € (Xl U Xz) X (Xl UXz)IR(Zl) = R(Zz)} — A(Xl U Xz)

and Vo = A(X; UX3). Since we have assumed 0 € X, for i = 1,2, we must have that
(0,0) € V1NV;,. Since V; and V; are regularly situated, we can find a neighborhood Uy C U
of 0 and a constant ay > 0 such that

(411) d((thZ)aV.Z) _>_ d((ZIaZZ)a‘/l m%)ala

for every (21,22) € Uy N V4. Since we have only finitely many strata, we can suppose that
U; and oy are chosen such that (4.1.1) holds for any such pair of strata X;,¢ = 1,2.

Recall from §2, that we have chosen H(\') such that R™1(0) N Z(R) N H(X') = {0}. Tt
follows that R(Z(R) N H(X') N (~ Uy)) is bounded away from 0. We can therefore also
choose our representative H()) such that R~ (H (X)) N Z(R) N H(N') C Us.

Now, let (y,u),(z1,u),(z2,u) and ¥ be as described in the hypothesis of this lemma.
Since H(A\)NC = @, we have {(z1,u), (z2,u)} C H(\')— K, and thus we can let X;,i = 1,2
denote the connected components of the strata in S3(R) such that (z;,u) € X;. From the
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construction of the stratifications S;(R) given in (8], it follows that R|X;, ¢ = 1,2 are
immersions, and that dim X; = dimY’, ¢ = 1,2. So the latter implies that no one of the
two components X; can be contained in the closure of the other unless actually X; = Xa.
Let V;, j = 1,2, be the semialgebraic sets we constructed above from the pair X;, ¢+ =1, 2.
Let (z,2) € V4 N V3 be such that

d(((z1,u), (22,u)), Vi N V2) = [|((21,u), (22, u)) = (2 2)

Since z is the limit of a sequence of double points from X; U X,, and each R|X; is an
immersion, it follows that either z € X, — X, or z € X5 — Xo. Now, either z € K or z
belongs to a stratum in S3(R) of dimension strictly less than dim X;. In the latter case
this stratum is mapped to a stratum in S3(R) with dimension strictly less than dimY". So,
in any case we must have R(z) € Y —Y. Since R~ Y(y,u) N S(R)N H(X') C Uy, we get
from (4.1.1) that

(41.2) [[((z1, u), (22,1)) = (22,0, (@2, u)l| = 21 — 2al] 2 (w1, ), (w2, w)) = (2, )|

Since the derivative of R is bounded, it is clear that H(A') can be chosen such that
|21 — 22| = || R(21) — R(2)||? for any 21,22 € H(\'). This and (4.1.2) imply that

(4.1.3) o = a2l > [(wsw) — R > d((y,w), ¥ = Ve,
and (4.1) follows choosing o = 2a. [
Recall that in the diagram (2.6) we assumed that ko was chosen so large that
J(W —{0}) c H2\) C Rt - C.

Since it follows from the proof of (4.1) that \ is independent of the particular ko (because
)\ is independent of ko), it is clear that kg can be chosen such that this inclusion also
is valid if 2)' is replaced by the exponent A of (4.1). Since C avoids H (\) we may also
assume that ko is chosen so large that y € W — {0} implies that d(j(y),C) > lly||® for
some constant § > 0. With these additional assumptions on 7 we will now prove part (a)
of (2.7) in the case i = 2. To obtain a contradiction assume that (a) of (2.7) does not hold
for any o > 0. We can then find two sequences {y,} C R? and {((n, tin), Hn)} C B(2)
such that d((7(yn), D7 (yn)); ((#in, fin), Hn)) is flat along [|yx[|. Since our stratification is
finite, we may assume that the sequence {(Fn, Un)} is contained in a connected component
of a single Sy(R) stratum Y, and we may suppose that the dimension of this stratum is
chosen as small as possible. Now we will first prove the following claim.

(4.2) Claim. There exists a > 0 such that d((Yn,@in),Y —Y) > |lyal|® for sufficiently
large n.

Proof of (4.2). Suppose that (4.2) does not hold. Then there exists a sequence {(Jn, Un)}
in Y — Y such that ||(§n,@n) — (§n,tn)| is flat along [ly»|. From the assumptions on
7 it is clear that (§n,{n) does not belong to C for n large. We may therefore assume
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that (fjn, i) belongs to a connected component of an Sp(R)-stratum in ¥ — Y chosen of
dimension as small as possible. Denote this component by Y’. Since the dimension of
Y" is minimal, d((§n, @ ),Y’ —Y') cannot be flat along ||yn||, and ||(§n, tin) — (Jn, @n)|| is
consequently flat along d((§n, iin), Y’ —Y"). Since S2(R) is a Whitney regular stratification
it follows from (3.1) that d(T(4, 4.,)Y"s T(4,,a.)Y") is flat with respect to |ly.|. Let V, be
the image of Ty, 4,)Y"' under the orthogonal projection onto T(y, a, )Y Since we have
that ((Yn, Un), H ) € B(2), we have that H, is not transverse to T( i, Y and therefore
not to V), either. Since d(T(y, 4,)Y",Vn) = d(T(yn,u,,)Y Tijn,amY) 1 is ﬂat along ||y ||, it
is not hard to see that we can find linear maps H, not transverse to T(j,,a,)Y", such
that d(H,,H,) is flat along |y,|. We therefore have that ((yn,un),Hn) € B(2). From
everything above it follows that d((5(yn), Dj(yn)), (n, iin), H,)) is flat along ||y,||. Since
(Yins@n) € Y' C Y —Y and consequently that dimY’ < dimY, we have obtained a
contradiction to the assumptions that {(§n, @y,)} was chosen from a stratum with as small
dimension as possible. This proves (4.2). O

To proceed with the proof of (2.7) (a) in the case ¢ = 2, we let, for each n,
R (gn, i) NS(R)N H(N') = {£,

Since we have assumed that all (y,, @i, ) belongs to the same Sy(R) stratum, [ is independent
of n. Let 2, = (31,...,5,) € H(\')". We now have the following.

(4.3) Claim. There exists a > 0 such that for n sufficiently large, the following two
conditions are satistied:

(i) 12— ] > all® fori # 3,12 0,5 2 1

(i) 24 2 |zl for 10> 0

Proof of (4.8). Since we know from (4.2) that d((§n, tin),Y —Y) is not flat along ||yx||,
and we also, by choosing k¢ large, may assume that (§n,0,) € H (X) (this holds since 7
is close to the standard imbedding j and ||](yn) (Gn, @n)|| is flat along ||yn||), we can
apply (4.1) to conclude that each ||#i — ZJ|| is not flat along [|yn||. Since 7 is close to
. 15wl = Oyl 2nd flyall = O s0 12 — 24| is not fat along [Gasn)l
either. Since R is a polynomial which only vanishes at 0 on the compact set 2(R) N H H(\),
(%, @in)| is not flat along any of || || and therefore is not flat along ||Z,|| either. Since
the derivative of R is bounded, we also get that each || ]| is not flat along ||(§n, @n )|, and
putting these facts together we get (i) and (ii). O

Let us finish the proof of (2.7) (a), case ¢ = 2. From (2.2) and the fact that I{(H()\)) D

H(\'), we can construct a diagram

0—f10) = ITYHW)-K) - H)-
(4.4) ir | F IR
w-{0 L kY v-0) & v-c.
From (2.3) and (4.4), it follows that F|I™'(H(\') — K) is infinitesimally stable. So we
can construct stratifications S;(F), i = 2,3, of F|I"}(H(XN') — K). From [8] it follows
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that the strata of S;(R) and Si(F) are mapped to each other via ™' and k and vice
versa. We can also construct bad sets B(i)(F), i = 2,3, depending on S;(F) and the
imbeddings 7 and j. It is clear that the map (2, H) — (I71(z), DI7*(z)o H) (respectively,
(z,H) —> (k(z),Dk(z)0o H) ) maps B(i)(R), i = 3 (respectively, ¢ = 2), to B(:)(F), 1 =3
(respectively, i = 2).

Recall that we had that

d((7(yn), D3 (yn))s (G, tin), Hn)) is flat along [|yal|.

Since k|U — C is C™ and close to the identity, it follows that

d((j(yn)7Dj(yn))a(k(gmﬁn)a Dk(gman) o Hn)) is flat along ”yn“

Let Dk(ijn,tin) © Hy = H), and k(fn, ) = (y!,u'). Using [15, Lemma 2.2] we can
construct a C® imbedding 7 : W — RP* with the same oco-jet at 0 as j such that
(G(yn), D (yn)) = ((yh,ul), H}) for infinitely many n’s. Note that since ((yh,ul), H}) €
By(F), 7 is not transverse to Sy(F) at {(yn)}. Since F’ t j and 517(0) = j*5(0), F 7 at
0, and hence close to 0.

Let j; = (1 —t)7 + t(7), t € [0,1]. It is easy to see that there are submersion germs
¢ with ¢71(0) = imj, and j°¢¢(0) = j*¢0(0). Then & = ¢, 0 F is a family of sub-
mersions with j°®,(0) = j*°®(0); therefore there are diffeomorphism germs 1y such that
§°94(0) = I and ®;01py = 9. Therefore we have a diffeomorphism germ ¢ = %, |F 7 (im j),
:: F~'(imj) = (R",0) — F_l(imi) with the same co-jet as ¢ at 0. Put g = 77 1o Fou.
Then jg(0) = 7 £(0). From arguments similar to those given at pp. 173-174 in [8], the
fact that 7 is not transverse to So(F) at {y,} implies that ¢ is not multitransverse to the
canonical stratification at ¢ (yn) C L(F) = {z,...,2}}. Since the canonical stratifica-
tion restricts to a stratification of the singular k-jets in J¥(R™, RP) —W*(R",R?) and each
intersection of p + 1 singular image points are automatically nontransverse, we may (by
taking a subset if necessary) assume that [ < p+1. Let {#7} be the points which occur in
(4.3). We can order our points such that we have zd =171 ol 1(#]). Since lis a C* diffeo-
morphism close to the identity and ; is close to i, {zJ } must satisfy inequalities similar to
those occurring in the conclusion of (4.3). These inequalities will imply that d(zn, Di(f))
is not flat along ||z ||, where ¢, = (z1,...,2}). The inequality given in the hypothesis of
(0.1) then show that d((j***f)!(zn), NT®DY is not flat along ||zx|. On the other hand
7°g(0) = 7 f(0) implies that ||(*+!f) (zn) — (551 £)!(z,)|| is flat along ||z,| which
implies that d((j*T1¢)!(zs), NT*:D) is not flat along ||z,| either, and since lzn]l # 0, g
must be multitranverse to the canonical stratification at {zl,...,z5} = g7 (yn) N 2(g)-
This gives us a contradiction and proves that (2.7)(a) holds when ¢ = 2.

Next, we will prove that (2.7)(a) holds with ¢ = 3. We start with some lemmas.
(4.5) Lemma. Assume that f : (R",0) — (RP,0) satisfies the condition given in the
hypothesis of (0.1). Then there exists C >0 and a >0 such that the inequality

1£(2)]| + | det Df(z)Df(z)"| > Cllz||*
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holds in some neighborhood of 0.

Proof. Assume that no such C and « exist. Then we can find a sequence =, — 0 such
that || f(z)|| + |det Df(z)Df(z)T]| is flat along ||z,|. Let & C RP x J'(n,p) be the set
consisting of pairs (0,2) with z a singular jet. Then it is easy to see that the assumption
above is equivalent to assuming that the distance d((f(z,), 7' f(zn)), L) is flat with respect
to ||zn||. Using [15, Lemma 2.2], we can find a map ¢ with j*°¢(0) = 7> f(0) such
that ¢ has singular zeros along a subsequence of {z,}. This subsequence, which we also
denote by {z,}, can be chosen such that any (p + 1)-tuple (zpn,Zn+1,-..,Tntp) satisfies
|Zntill = (Zny-- s Tntp)||® and ||ntill = ||Zati — Tntj]|® for some & > 0 (independent
of n) and any 4,7, ¢ # j. Now the hypothesis of (0.1) and an argument similar to the one
given in the end of the proof of (2.7)(a), i=2, will give us that g is multitransverse to the
canonical stratification at the pointset {z,...,Zn4p}, which contradicts the fact that this
pointset consists of p + 1 singular points with the same image. Hence the conclusion of

(4.5) follows. O

The next lemma is another technical lemma in the same spirit.

4.6 Lemma. Let f be as in (4.5). Let f > 0, and let
H(f~(0),8) = {z|d(z, f71(0)) < ||z||®}. Then there exist a = a(B) > 0 and a neighbor-
hood U such that || f(z)|| > ||z||* for z e~ H(f~%(0),8)NU.

Proof. If (4.6) is false, then there exists a sequence z, — 0, , € ~ H(f7*(0), ), such
that || f(z,)|| is flat along ||z,||. Using [15, Lemma 2.2] again, we can construct a map-germ
g : (R™,0) — (RP,0) with j°°f(0) = j°°¢(0) and with zeroes along a subsequence of {z,}.
It follows from (4.5) and the results in [1] that f and g are K-equivalent with a conjugating
contact-diffeomorphism having the same co-jet as the identity. Therefore there exists a
diffeomorphism with the same co-jet as the identity moving the points of a subsequence of
{z,} to points in f71(0). An easy estimate will however show that it is impossible for a
germ with the same oco-jet as the identity to move points outside H(f~*(0),3) to points
in f71(0), and we obtain a contradiction. [

Let us proceed with the proof of (2.7)(a) in the case ¢ = 3.

Recall that we could assume d(j(y),C) > |ly||® for some § > 0. Now since the diagram
(2.6) is commutative and the derivative of R is bounded, it follows from (4.6) that for each
constant B > 0 there exists another constant y = () such that we have d(i(z), K) >
|z||” for each = €~ H(f~*(0),8). Let B > 0 and assume, to obtain a contradiction,
that we can find sequences {z,} C~ H(f~1(0),8) and ((Zn,tn), Hn) € B(3) such that
d((i(zn), Di(24)), (Zn,n), Hy)) is flat along ||z, As in the case 1 = 2, we may assume
that the sequence {(#,, )} is chosen from a connected component X of an S3(R) stratum
of as small dimension as possible. Exactly as in (4.2) we can prove that there exists
a = a(f) such that in some neighborhood of 0 we have

(4.7) d(Eny 1), X = X) 2 [f2a]|

Now, two cases may arise:

(1) X C Z(R);
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(2) X Cc~ X(R).

We will first consider case (1). In this case we know that R|X is an immersion. Let
vl,...,vl be an orthogonal set of unit vectors in R™ such that the H. (v1) form a basis for
im H, N T(3, 4,)X- Then | D(z,)(vE) — Hu(vi)|| is flat along ||z, | for each i and, since
|2(2n) — (%n, @is)| is flat along ||z,||, we must also have that

IDR(i(2n)) 0 Di(wn)(vh) = DR(En, iin) 0 Ha(v},)]

is flat along ||z,||. Now, since Hy is close to the standard imbedding ¢ : R" — Rt we
must have || Hy(v3)|| > £ for each i. Using this, (3.3) and (4.7), we get that || DR(&n,tn) o0
H,(vi)| is not flat along ||z,||. From these arguments it also follows that the distance from
any of the vectors DR(#p, 1y, ) 0 H,(v}) to the subspace spanned by the others cannot be

flat along ||z,| (otherwise we could construct a unit length v, in the span of vl . ..o

such that ||DR(%y,1s) 0 Hn(vy)|| is flat along ||z,||). It also follows that the same state-
ment must be true for the set of vectors {DR(i(zy)) 0 Di(z,)(v:)}. This set of vectors
are equal to the set {Dj(f(zn)) o Df(zn)(vy)}. Now, we may assume (by passing to a
subsequence if necessary) that [ is independent of n. So for each n, {Df(zn)(v},)} are I
linearly independent vectors, and since 7 is close to the identity neither the norms nor the
distance from each of these vectors to the subspace spanned by the others can be flat along
Tnl|.
: l\yow, let us define a linear map K, : R? — RPt¢ by mapping each Df(z,)(v}) to
DR(%y, 1) 0 Hy(vl) and letting the restriction of K, to the orthogonal compliment of
{Df(zn)(v:)} be equal to the restriction of Dj(f(zyn)) to this compliment. From the
construction of K, it follows that ||K, — Dj(f(z,))|| is flat along |zn| and K, is not
transverse to Tr(z,,a,)Y, Where Y is the stratum in S(R) such that R(X) C Y. Moreover,
it is also clear that ||7(f(zs)) — R(%n, )| is flat along ||za||. So, putting y, = f(z,) and
(ny in) = R(&n,%n), we have produced a sequence {y,} € R? and ((Gn, in), Kn) € B(2)
such that d((7(yn), Di(yn)), (#in, iin), Kn)) is flat along ||zy|. On the other hand, since
zn €~ H(f~1(0), B), it follows from (4.6) that the distance also is flat along ||y ||, and we
have therefore obtained a contradiction to what we already have proved in the case 7 = 2.

We will now consider case (2), X C~ L(R). We start by proving the following state-
ment.

(4.8). There exists a > 0 such that d((&n,1n), 5(R)) > ||Z.]|* for n sufficiently large.

Proof. Assume that (4.8) is false. Then d((Zn,tn), Z(R)) is flat along ||Z,||. Recall that
we earlier in this section have pointed out that d(j(y),C) > ||ly||® for some 8. Then it
follows from (2.6), (4.6) and the assumption that ||i(zs) — (&n,in)|| is flat along [lz.||
that d((&n, iin), K) is not flat along ||#, . So points in £(R) minimizing d((Zy, i), 5(R))
cannot be points in K. We can therefore find a connected component of an S3(R) stratum
Y C (R) such that d((#,1n),Y) is flat along ||Z,||. Since X C~ %(R) we cannot have
X cY,s0oXNY C X —X. Now since X and Y are regularly situated, we must have that
d((&n,iin), X NY) also is flat along ||Z,||. Since ||, — x| is flat along [|zx||, we thus get
that d((#n, ), X NY) is flat along ||z,||. Since d((Zn, tin), X NY) > d((Zn, tin), X — X)
this will however contradict what we already have proved in (4.7). O
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Since im H, is not transverse to T(3, a,)X, we must have
codim(im H, N T(z,,4,)X> T(3,,3,)X ) < codimim H, = c.

From the construction of our stratification (again see [8]) we have that ker DR(&n, @in) C
T(,,4,)X. From the construction of diagram (2.6) we also have that ker DR(i(z,)) C
im Di(z,). Since ||H, — Di(z,)|| is flat along ||z,||, it is not hard to see that we can find
a perturbation of each H, which also is flat along ||z,|| such that each of the perturbed
maps contains ker DR(i(z,,)) and remains non-transverse to T(z, a,)X. Let us replace
the original H, with these perturbed maps, which we also denote by H,. It is then
clear that the inclusion (ker DR(%n,1in))™ N T(z,,4,)X — T(z,,a,)X is transverse to
im .Hn N T(fin,’&n)X (1n T(;én’,&n)X) Put

H, =imH, N Tz, 4,)X Nker DR(#p, iin)".

We now have that .
codim(Hp, T(z,,4,)X N kerDR(i:n’an)J-) =

codim(imHn N T(f[;n’ﬁn).X, T(ggn’ﬁn)X) <ec.

Let [ = dim H,. Pick ! orthogonal unit vectors v}, ...,vl, such that {H(v})} span H,.
We can now argue exactly as in case (1), but use (3.4)(c) and (4.8) instead of (3.3) and
(4.7). We will then obtain a sequence of points in B(2) whose distance to the sequence
(G(f(zn)), Dj(f(zn))) is flat along ||z,[|. As in case (1), this will contradict (2.7)(a), = 2.
This completes the proof of case 2 (2.7)(a), ¢ = 3. O

We will now prove (2.7)(b); in fact we will prove a slightly stronger statement. To be
able to formulate this statement, we will consider the following situation.

Let h be a map with j°h(0) = 0. Consider the l-parameter unfolding defined by
g(z,t) = (f(z) +th(z),t). Let G be the corresponding 1-parameter unfolding of F' defined
by G(z,u,t) = (F(z,u),t) + (th(z),0,0). Then the t-levels of G have the same s-jet as F
at 0. We can also consider G as an unfolding of g. So, if s > (ko) where v is given in
(0.2), we get a diagram of maps (where L and K are as in (0.2)).

OxI >4 Rotexr & HO)xI
(4.9) lg |G | Fxid
wxI ¢ vxr K RetexI.

Here I = [0,1] and i and j are the standard imbeddings, and O and W are adjusted so
that j(W) C V and g(0) C W. Consider the diagram given in (2.2). Recall that I and
k were close to the identity. Also the t-levels in L and K are close to the identity and
become closer as s is chosen greater. Then it is not hard to see that everything can be
adjusted such that L™ is defined in a neighborhood of the image of ¢ X id and that L™!
maps this neighborhood into H(A) x I and we can consequently define the composition
(Ixid)o L™ o (i x1d). We may also assume that (k X id)~! is defined in a neighborhood of
im K o(j x id) and we can therefore define (& x id) Lo Ko(j xid). If ko and s are sufficiently
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large (I x id)o L™ o (i x id) and (k X id)~1o K o(j xid) will map | (O —g71(0)) x {t} and
tel

(W — {0}) x I into (H(\') — K) x I and (RP+e — C) x I, respectively. (This follows from
(2.4) since our maps become closer to the standard imbeddings when s and ko become
greater.) Denoting the t-levels of the two compositions above by i; and j; respectively, we
can therefore adjust the situation such that we can put (2.2) and (4.9) together to yield a
commutative diagram

U©O-g ) x 1 () - K) x T

(410) l!) leid

WofopxI 2 (mete—0)x 1.

Now we have the following;:

(4.11) Lemma. For each § >0 there exist a = a(f) > 0 and s = s(f) such that the
following statements hold:
() d((3¢(z), Dig(x)), B(3)) = ||z||* for z €~ H(g;7(0), 8);
(ii) d((j:(y), Dis(y), B(2)) = llyll*-
Moreover, let £ be defined as in (2.7)(b); then we also have that:
(iii)
dia(@),T) > 2] *d(ie(w), imi N D)

when z € ON ~ {z|d(z, g7 (0) < ||z||?} and £ C H(X');
(iv) ify € W — {0} and L C RPte — C, we have that

d(js(y), L) > llyl*d(ie(y),imje N L) for y € W — {0}

Note that from the proof of (0.2) in [2], it follows that the 0—levels of L and K are
equal to the identities. It therefore follows that 7 = 1 and jo = j so (2.7)(b) follows from
(i) and (iv) restricting to the level ¢ = 0. (i) and (ii) is a corresponding generalization
of (2.7)(a) which will be needed in the proof of (i) and (iv). We therefore start with the
proof of (i) and (ii).

Proof of (4.11) (i) and (i1). From the characterizations of co-K-determinacy given in [1], it
will follow from (4.5) that f is 0o-K-determined and therefore also finitely K*-determined
for any finite k. So given k there exists s = s(k) such that each g; and f are K*—equivalent
and g; *(0) and f~'(0) are therefore C* diffeomorphic. From [1] it also follows that s can
be chosen such that the diffeomorphism between these zero sets has the same k-jet as
the identity. This implies that g; 1(0) is close to f7'(0). Therefore, given 3 > 0, it is
not hard to see that there exists an s = s(f) such that, for this choice of s, we obtain
H(f~1(0),28) C H(g;'(0),8) for each t € I. Now, let & be the exponent such that
(2.7)(a) holds when f is replaced by 28. From our definitions of iy and j; , it follows
that if s is chosen perhaps even greater then we can obtain that Iz — el = o(llz||*),
I7(y) — deW)Il = o(||y||*), and similar statements also hold for the derivatives of these
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maps. So, since z € ~ H(g;*(0),8) = ¢ € ~ H(f~1(0),28), we can prove (4.11)(i) and
(i), using the conclusion of (2.7)(a) together with an estimate of the distance between
(i¢, Diy) and (3, D7) and (js, Dj;) and (7,Dj) respectively, and we will then see that (i)
and (ii) hold with a = & + 1.

Proof of (4.11) (i) and (1v). We only prove (iv) since the proof of (iii) is similar. Assume
that s is chosen such that (4.11) (ii) holds for some «, but (4.11) (iv) fails for any exponent.
We can then find a set £, a sequence of functions h, with j%h,(0) = 0 and a sequence
{Yn,tn} C RP x I such that (y,,tn) — (0,%) for some to € I,

d((]tn (yn)a Dy, (yn))a B(2)> 2 ”yn”Cy

(where jy, is the imbedding we get by applying the construction (4.10) to the map h = hy)
and

d(jt, (yn), £) < |[ynlld(jt, (yn), im gu, N L).

Let D,, be the closed disk in R? with center y, and radius r, = $d(jt, (yn),imjz, N L).
Then since 7, is close to 7 which again is close to the standard imbedding, we must
have j; (D) N L = @. Furthermore, d(j,(Dn),L) is flat along ||ly,||. We can now use
a perturbation technique similar to the one used in the proof of [15, Lemma 2.3] and for
each n construct another imbedding 3tn which agrees with j;, outside the interior of Dy
and which satisfies

ljtn = Ftall = O(d(jen(yn), £)) and || Djt, = D, |l = O(d(jtn (yn)s £)/7n),

and which has the property that there exists a pomt n € D such that jt is not transverse
to some Sy(R) stratum in £ at §n. So (74, (n), D]tn (Jn)) € B(2). On the other hand, com-
bining inequalities given above it is clear that d((Js, (§n), Djtn (G0)), (Gt (Gn), Dit, (Gn))) 18
also flat along ||yn||. Since 0 € £ we must have that r, < }|lyn|l and consequently that
9al] = O[]} Therefore d(Gi (Gn), Dien (), Gou (0)s Dt () is also flat along
5nll- Since (71, (¥n), Dt,(#n)) € B(2), this contradicts what we already have proved in
(ii). This completes the proof of (2.7). O

5. Completing the proof of (0.1)

Let f : (R™,0) — (RP?,0) satisfy the hypothesis of (0.1). Let ko be a positive integer, let
F be the unfolding constructed in §1 and let R = jko) o (0) be as in §2. Then we showed
in §4 that, given 8 > 0, we can find s = s(8, ko) such that for each h with j°h(0) =0, s >
(8, ko), we have an unfolding of the map g(z,t) = (f(z) +th(z),t) = (9:(z),t) of the form
given by the diagram

U(0 = Hig™(0),8)) x {1} —2 (B(V) = K) x T

tel
(5'1) lg leid

(W —{0}) x I N (RPHe — C) x I,
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where H(\'), K,C, i, j; and H(g; '(0), 8) are explained in §2 and §4, and 7, and j; satisfy

the conclusion of (4.11). ;jFrom now on we abbreviate |J by Uj.
t€1
Now, we wish to pull back the stratifications Sy(R) x I and S3(R) x I via (jt,t) and

(it,t), and then add {0} x I in the target and also stratify U;H(g; *(0),8) x {t} in the
source such that we obtain Whitney regular stratifications of O x I and W x I, and such
that ¢ is a stratified map with respect to these stratifications. Then Thom’s second isotopy
lemma will show that f is s-C°-determined, proving (0.1).

To be able to prove Whitney regularity, we will compare the pullback-stratifications
with some semi-algebraic stratifications we get induced in the same manner. To this end,
put h = 7°f(0) — f, let 7; and j; denote the 1-levels of the maps i; and j; of (5.1) with
this h, and let j*f(0) = ¢s. Then we obtain a diagram

0 — H(gs"1(0),8) —— H(\) - K
(5.2) lqs l R

a

w-{0) 2, Retc_C.

We now have the following lemma:

(5.3) Lemma. For each ko there exists s(kg) such that, if s > s(ko), then the pullbacks
of §3(R) and S3(R) by i1 and ji are Whitney regular stratifications such that the strata
in these pullback-stratifications also are Whitney regular with respect to 0.

Proof. From the constructions in §2 and §4 we have that (5.2) was obtained from putting
together (2.2) and the 1-level of (4.9). So if s is chosen greater than the maximal degree
of the unfolding terms of F, (5.2) is obtained from the following type of diagram:

o 4 Rr-+e — H)) — U

(5.4) Lgs 1 7°F(0) |F IR
W — 1% — RPFe — V.
J

Here ¢ and j are the standard imbeddings and the other horizontal maps are germs of
diffeomorphisms which approximate the identities as well as we want when s, kg — oo.

Recall that the image of H(\) contains H(A'). Since our maps are close to the identities
it is not hard to see that we can find A" > )\’ such that we can obtain a diagram

0—H(¢7H0),8) —»  H(O\'")  — mHWN) c HW)
L j*F(0) IR IR

lQS
174 — 1% — mV C Rp+c,
J

(5.5)

where 11 and j; of (5.2) are respectively the compositions of the upper horizontal maps
and lower horizontal maps of (5.5). As we did for R, we can also stratify j°F(0) by
throwing away bad sets C = C(j°*F(0),\") and K = K(j°F(0),\"), and we obtain a
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stratified map j°F(0) : (H(\") — K) — RPte — C. Pulling back these stratifications by ¢
and j, we obtain a semialgebraic partition of O — H(q;71(0),8) and W — {0}. If we can
see that the pullbacks of these stratifications are the same as what we get by pulling back
the stratifications S3(R) and S3(R) by ¢1 and ji, we obtain that this is a semialgebraic
Whitney regular stratification (because it follows from (4.11) that i1 and j; are transverse
to S3(R) and Sa(R), so the pullback stratifications are therefore regular; note that ¢; and
j1 are not necessarily algebraic, which is the reason for this roundabout argument for the
semialgebricity of the pullback stratifications), and because the strata are semialgebraic
they must be Whitney regular to 0 as well. So (5.3) will follow from this assumption.

We must therefore prove that the pullbacks of the source and target stratifications of
j°F(0) and R coincide. Now since the canonical stratification is A-invariant, it is clear
from the commutative diagram (5.5) that the strata of the source and target stratifications
of j°F(0) will map to the strata of the corresponding stratifications of R| im H(\"). So
the pullbacks of these stratifications to O — H (¢7%(0), ) and W — {0} will coincide. The
problem, however, is that the stratifications of R| im I (\'") are not necessarily the restric-
tion of the stratifications S;(R) to the smaller neighborhoods where the stratifications of
R| im H(\") are defined, because R|H(\") may contain more points in a critical fiber than
perhaps R| im H(X") does.

For our purpose, however, it suffices to see that there exist neighborhoods around 71 (O —
H(q;(0),)) and j1(W — {0}) such that the stratifications of the two restrictions of R
coincide here. To see this, note that since the map H(A") — im H(X") of (5.5) is close
to the identity in the sense of (0.2), we can, if s and k are sufficiently large, assume
that imH(\") contains another hornshaped neighborhood, say H (A), where 2> A\ > L
Arguing as in (2.4), we will find that the hornshaped neighborhood H (2)) in the target
will not contain any R-critical values from im H(A") — im H(A"), and since 2% > 2\, it
follows from (2.3) that H(2)) will not contain any R-critical values from H () — H(X)
either. Moreover, since R is bounded and u-level preserving, it is not hard to see that
R™Y(H(2)) c H()) C im H(X"). From this it follows that the target-stratification we get
from stratifying R|im H(\") will coincide with S3(R) on the neighborhood H (23).

Moreover, note that since the hornshaped neighborhood H(X) of (0.2) can be kept fixed
if we change s and kg, and all our mappings becomes closer to their respective identities if
we let s and ko tend to 0o, we do not have to alter our choice of A', \" and ), if we change
our maps by choosing s and ko larger. We can therefore conclude from (0.2) that if s and
ko are chosen sufficiently large, j1 becomes so close to our standard imbedding that we
must have im j; C H (25\) We must therefore have that the two pullback stratifications of
W — {0} coincide. From the way the S; stratifications are constructed, and from the fact
that im1(0 — ¢;*(0)) C R™*(imj1) C R~1H(2)), the same must be the case for the two
pullback stratifications in the source. We have therefore proved (5.3). O

Our next goal is to prove that, by pulling back the stratification S;(R) x I via the
imbeddings (i4,t) and (jz,t) of (5.1) and then adding {0} x I as a stratum in source and
target, we obtain Whitney regular stratifications. We will here make use of the following
technical lemma.

(5.6) Lemma. Let Gflv and GY denote the Grassmannians of ¢-planes and r-planes in
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RY. For W € Gé\’ and V € GY, we denote by D(V,W) the exterior angle, that is the
distance from V to the set of r-dimensional planes not transverse to W.
(a) Then there exist K > 0 and € > 0 such that, for any W € Gflv and any two V,V' € GV

with d(V',V) < 1D(V, W),
dV' "W,V NW) < Kd(V',V)/D(V, W)

(where d(-,-) is defined in §3).
(b) For any W € Gév and V € GY, D(V,W) = D(W,V).

Proof. It is enough to prove (a) with fixed W. So fix W and denote by Z the set of planes
in G not transverse to W. Put U = GY — Z. Then the map ¢ : U — Gfﬂ_q_N given
by g(V) = VN W is a restriction of a rational map. We can therefore find K', € such
that d(g(V),g(V")) < (K'/(D(V',W)D(V, W)V, V). It d(V',V) < 1D(V,W), then
D(V',W) > 1D(V,W) so (a) follows.

Since D(V,W) = 0 if, and only if, V ¢f W if, and only if, D(W,V) = 0, we can without
loss of generality assume that V h W. Let K = VN W and let V; = V N K+ and
Wy = W N KL, For any nonzero vectors v and w, let S(v,w) denote the sine of the angle
between them, and let (v) denote the line spanned by v. Then (b) follows immediately
from the following formula:

D(V,W) = vE‘lfflf{O} S(v,w) = (%).
weW; —{0}

Suppose V' € Z. Then dim V' N'W > dim K, hence there exists wy # 0, wo € V' NW N
K+. We may assume that V' was chosen so that

D(V,W)=d(V,V')=d(V',V)= sup inf S(v,w)
weV’'—{0} veEV—-{0}

> velifnf{o} S(v,wp) = S(mywo, wp).

Since wg € K+ D VJ‘, mywy € V4. Thus D(V, W) > (%).

For each w ¢ VL, let v = myw. Let V, = ({(v)1 NV) + (w). Then d(V, V) = S(v,w).
If we Wy — VL, then Vi, € Z. Thus if Wy # V4, then

by, w) < weVinllf_..VJ. d(V: V) = weVinllf_Vl S(rvw, w) = ve‘ifflf{o} S(v,w) = (+),
weW —V+

since inf,ev; — {03 S(v,w) = S(ryw,w) and Wy — VL is dense in Wy — {0}. On the other
hand, if Wy = V4, then D(V,W) = (x)=1. O

We will now return to the situation described in diagram (5.1). Let S;i(g), 1 = 2,3,
denote the stratifications we obtain by pulling S;(R) x I, i = 2,3, back to Ui (O —
H(g:~%(0),8)) x {t} and (W — {0}) x I respectively. Using (4.11) it follows immedi-
ately that these stratifications are Whitney regular. We want, however, to see that it is
also possible to choose s such that the strata in S;(g) are Whitney regular over {0} x I
in source and target. To prove this, we will prove that they are (a) and (b') regular since
this is equivalent to (b)-regularity (see Lemma 1 of [11]). We will prove this only for Sz(g)
since the proof in the case involving S3(¢) is similar. The regularity of S3(g) along {0} x I
follows directly from the lemma below.
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(5.7) Lemma. For each kg and each non-negative integer ¢ we can find an integer s(1, k)
and a positive constant a; = a;(1,ko) such that, if h in (5.1) satisfies j°h(0) = 0 with
s > (1, ko), then the Whitney conditions (a) and (b') hold along {0} x I when we consider
sequences of points tending to points in {0} X I and the points in such sequences are chosen

from the sets N;(«;) defined by

Ni(ai) = {(y,1)|d(J(y,1), Fi) < [lyl|**},

where F; denotes the closure of the union of all S3(R) X I strata of dim < ¢, and J(y,t) =
(jt(y)v t)‘

Proof. The proof uses induction on i. Let ig be the minimal dimension of strata in Sy(R)x I
intersecting J((W — {0}) x I). We will first prove the statement in (5.7) for all 7 < 1.
Using (4.11)(iv), we can choose s such that we obtain

d(J(y7t)7Fio—1) 2 ”yl|ad(‘](y7t)7im=7 N Fio—l)'

By assumption, im J N F;,—1 = {0} X I. So, since j(y) is close to the standard imbedding,
we must have that d(J(y,t), Fi,—1) > 5|ly[|***. This shows that N;(a +2) = {0} x I for
all 7 < 79, and the conclusion of (5.7) holds trivially for these ¢’s.

Now let ¢ > 49 and assume by induction that the statement of (5.7) holds for all j < z.
Let Y; denote the union of all strata in S3(R) x I of dimension ¢. We must consider the
following two cases:

(1) J(W - {0}) x ) NY; = &,
(2) J(W —{0}) x ) NY; # &,
where J((W — {0}) x I) NY; is considered as a set-germ at {0} x I.

In case (1) we must have im J N F; C F;_y. Again, by (4.11)(iv), we can find « such

that
ATy, 8, F) > ly|%d(I (g, 1), Fios).

If (y,t) ¢ Ni—1(ai—1), we therefore have that
d(J(y, ), Fy) > [ly|| >

This implies that N;(a + aj—1) C Ni—1(ai—1), and we can choose a; = a;_1 + « in this
case.

Now, consider case (2). Since we assume that im J NY; # &, we can pick a sequence
J((Yn,tn)) = (fn,tn) € im J NY; such that (§,,t,) — (0,%0) for some to € I. First, we
wish to prove that when s is sufficiently large, then Whitney conditions (a) and (b') hold
when we pass to limits along such sequences. Since we already know this on N;_1(a;—1), we
assume that (yn,tn) € ~ Ni—1(a;—1). Now consider the map j; X id of the diagram (5.2).
Put (j1(yn)stn) = (Yn,tn). Since the levels of g; have s-jet equal ¢5, J and j; X ¢d must be
close. In fact from the construction of the diagrams (5.1), (5.2) and the estimates (ii) of
(0.2), it follows that, given k, it is possible to find s such that the k-jets of J and j; X:d agree
on {0} x I. This will imply that ||(§n,tn) — (Fin, tn)]| = o(||lyn||*). We will determine below
how large we want to choose this k. Clearly, we may assume that the two sequences (§n,tr)
and ({yn,t,) belong to two connected components of strata in S3(R) x I, which we will
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denote by Y and Y, respectively. From above it follows that d((§n,s), f’) = o(||yx|*). On
the other hand, since Y and Y are semialgebraic and therefore regularly situated, we must
have that d((§n,tn), Y) > d((n, tn), Y NY)® for some @. (Note that since our stratification
is finite, we can assume that & actually is independent of the particular strata Y and Y.)
From this we get that d((ﬂ,tn),f’ NY) = o(||yn|*/®). Now, since_? —Y C F;_; and
we assumed that (yn,tn) € ~ Ni—i(ai—1), we have that d((Jn,tn),Y —Y)) > [yn]|**.
So if we have k > @a;—1 and s is chosen according to this, we will get from above that
d((§n,tn), Y NY) = o(|lyn
therefore either have
(A)Y=Yor

(B)YcYV -Y.

We will first consider case (A). In this case (J5,t,) € Y. From above we have that |9 —
Inll = o(||lyall®) < d((Fn,tn), Y — Y)k/@i-1, Now we will apply (3.2) to the stratification
S>(R) x I (including {0} x I as a stratum in this stratification), and to zo = (0,%¢); let
a and B denote the exponents occurring in (3.2). Then, if £ > aa;_; and s is chosen
according to this, we get that

d(T(gn,tn)KT(@n;tn)Y) S ”?jn - lgn”l/ﬂ = O(Hyn”k/ﬂ)

Since it follows from (4.11) that J and j; X ¢d are transverse to Sy(R) x I outside {0} x I,
we can use (5.6) to get

() ATt Y N Tgata)(m I)s Tg )Y 0 gt (im g1 % 1d))
<A(T(g 1) Y 0 T ) (i )3 T 1) Y 0 T (i J))
+d(T(g,0)Y 0 T t) () Tig )Y 0 g 1) (i 51 X 1))
( AT )Y Lo 1) Y) AT (g, t) (im ), Ty, 1, (im J1 X id))
(D(T(gn,ta) Yy Tty (im I)))E (DT ) (im0 1 X i), T 1) Y)))0
_olyall*?) |, olllyall*~H)
[y | |
where this time « is the « of (4.11) and we have used that the k-jets of j; x id and
J agree on {0} x I. Now if k > max{fBae,ae+ 1} and s is chosen according to this,
then (*) tends to 0 when n tends to co. This will prove that T(, :,)(Y Nim J) and
T3 t)(Y Nim (j1 x id)) tend to the same limit. On the other hand since J and jy X id
have the same 1-jet as the standard imbedding, Ty, +,)(J7'Y") and Ty, +,)((j1 ¥ id)~1Y)
must also tend to this limit. Since we already have proved that j; ' (Sa(R)) x I is Whitney
regulars along {0} x I (this follows from (5.3)), it follows that J~'(S2(R) x I) is Whitney
(a)-regular when we tend to (0,%) along the sequence (yn,t,). Also since ji YSy(R) x I
is (b')-regular along {0} x I and lm Ty, ¢\ (J71(Y)) = lim Ty, +,)((j1 x id) 7 (Y)), it
follows that lim -ZZL“ € lim Tyy, 4,)(J7H(Y)). So we get (b')-regularity along (yn,t.) as

n—oo ¥ n—oo

@i-1) and therefore Y NY must contain points in Y. We must

<K

9

well. _
Next, we must consider case (B), in which ¥ c ¥ — V. We have from (4.11) that

(G tn) Y) 2 lynl|*d((Jn, tn), im(j1 x id) NY),
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and since d((Jn,tn),Y) = o(||yalF), We get that d((Jn,tn),im(j1 X id) NY) = o ||lya]|F~*).
We can therefore find points (¥n,t,) € im(j; x id) N'Y such that ||§n, — gl < |lya ¥~
So we get ||in — Unll < |¥all*=% + [lynll® < |lyn]*~*~1. Now, choosing k and therefore s
sufficiently large, we can get ||§in — Un| as small as we want, and since (yn,tn) € Y, we
can repeat the arguments from case (A) over again to prove (a)-regularity. The case of
(b')-regularity differs slightly from what we had in (A), since now (y,t,) is not the j; X :d
image of the point (yy,t,), but of some other point say, (y.,,t,). However, since j; X id
and J both are close to the standard imbedding and ||§, — ¥x|| is small, an easy estimate
shows that

~ !
lim 9" — lim 2% Un

n—=oo [lyn||  n—oo |fnll  n—eo [[gall  mmee [lynll

So (b') follows from applying (5.3) in this case too.
To sum up, we have now proved Whitney regularity along sequences in
J7YY;) U N;_1(a;—1). Now consider the set

i 1.
Y.i = {(yat) € Y;| d((y7t)7Fi—l) > 5“@1” 1-1}7

and let 3 —
Ni(v) = {(y, )l d(J(y, 1), Ys) < [lyll"}-
We wish to see that if v is sufficiently large, then we also have Whitney regularity along
Ni(7)- .
To this end, let ¥ > 0 and consider a sequence (yn,ty) € Ni(fy). Let J(Ynytn) = (n,tn)
and assume that ({,,%,) belongs to a connected component Y of a stratum in Sy(R) x I

Then we can find points (§n,ts) in ¥; such that ||§n — §in]| < |lynl|”- Assume that §p
belongs to a corresponding component Y. Repeating an argument given above, we find

that if v is chosen sufficiently large then either (A) Y = V,or(B)YY CY - V. In case (A)
we have already proven Whitney regularity along (yn,t,) (since then ¥ =Y C ;). We
therefore only need to consider case (B). By (4.11)(iv) we have

||yn||7 > d((yAmtn),?) > ”yn”ad((y'\n,tn),imj ﬂ?)
So d((Yn,tn),imJ N Y)< lyn]|¥~%. We can therefore find points (yl,,t,) € im J NY such
that [|(Gn, tn) = (U, t)|| < lyn]|*~*. Since (§n,tn) € ¥;, we have that
g L
(ot T ~¥) > Sl
So .
(W )Y =Y) > SHinll =t = g™ = Nyl > g1

if v is sufficiently large. (In the above we have used that our various inequalities imply

that [|yn [ = O([|gnl]).)
Now let & and f be the constants we get from applying (3.1) to the stratification
S2(R) x I. If v > a(ai—1 + 1) + o, we have that

”('gnatn) - (y;wt{n)” < d((y:wtfn)a? - Y)&’




ON FINITELY TOPOLOGICALLY DETERMINED MAP-GERMS 31

and we get from (3.1) that d(T(, «,Y, T(y}l,tn)?) < [|yn||L;’ﬁ. Let H, be a dimY dimen-
sional subspace of T(gn,tn)f/ such that

ATy, 1) Tign,ta)Y) = ATy, 1) Y Hn)-

We can now use the estimate d(T(y: Y, H,) < ||yn[|"/(°‘ﬁ), together with (4.11)(ii) and
(3.6), to estimate

d(TyaY N T(y;l,t'n)(im J),H, N T(Qn,tn)(im J));

this estimate shows that T'y-1(y 1)(J7'Y) and (DJ(yn,tn)) " (Hy) tend to the same limit
as n tends to oo provided v is chosen large enough. Using this, the estimate ||(gn,tn) —
(Y, t )| < llynl|¥™%, the fact that J=1(yl,t,) € J~1(Y) C J7}(Y;) and finally that we
already have proven Whitney regularity for sequences in this set, it follows that we have
Whitney (a)- and (b')-regularity along (yn,tn). (Here we leave out further details since
we have given details in the similar case in which we considered sequences in J~(Y5).)
We have therefore proven that if v is sufficiently large we have Whitney regularity along
sequences in N,('y) UDN;—1(ai-1).

Finally we need to see that given 7 there is a constant a; such that Ni(a;) € Ni(v) U
Ni_1(a;_1). To this end, consider (§,t) € Y; such that d((§,%), Fi—1) < 3||g)|*-*. We
must find a; such that ||J(y,t) — (§,%)|| < |ly||** implies that (y,t) € Ni—1(ai—1).

Let (y',7) € Fi_y be such that [|(7,%) — (v',7)|| < 31§]|*~". Then [|J(y,t) - (¥, D)l <
lyl|* + %Hg”“"-l. If all our exponents are greater than some lower bound, we must have
O(lly]) = O(|l¥']) = O(||g]]) (since J is close to the standard imbedding). So a; > a1 +1
implies ||J(y,t) — (v',1)|| < |ly||*-*(provided y is sufficiently close to 0). Thus, if a; =
max(y,a;—1 + 1), we obtain N;(a;) C ](7,(7) U N;—1(a;—1), and we have completed the
induction step and thus proven (5.7). O

(5.8) Remark. In the proof given above there are several possibilities at each step,
and it may seem that our choice of s(z, ko) and a(, ko) will depend on the case which
actually occurs. Note, however, that when we keep ko fixed, the stratification Sy(R) will
be kept fixed. Also note that the exponent « of (4.11)(ii) and (iv) is not dependent of our
unfolding ¢ if s is sufficiently large. From our proof we see that in all cases our integers
s and exponents «; are constructed from this « together with exponents occurring in
inequalities expressing various metric properties of the stratification Sp(R). Since these
constants are not affected when we change g by choosing s somewhat larger, there will
always be only finitely many choices for «;, and we can find a constant working in all cases
by choosing the greatlargeest one.

Arguing as in the proof of (5.7), we can also prove that the the strata in the stratification
S3(g) of Uy(O—H(g:71(0), 8)) x {t} are regular along {0} x I, using (4.11)(i) and (iii). Note
however that the integer s and exponent « here are dependent on 3. So the lower bound
for the integer s which gives us Whitney regularity along {0} x I will here also depend
on 3. In the proof we will also apply the conclusion of (5.3) giving Whitney regularity
with respect to 0 for the pullback in the source. Here we must however take some extra
care, namely, given 3, we must choose s so large that H(¢;(0),28) C H(g; *(0),8). We
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will then see that the sequences in the source corresponding to (yn,t,) and (y,,t,) in the
proof of (5.7) will be contained in the compliment of H(g;*(0),43). We can then apply
the conclusion of (5.3) with s chosen according to the constant 43 and proceed as in the
proof of (5.7).

If we only consider Whitney condition (a), we can give a much simpler proof that Sz(g)
is (a)-regular along {0} x I. Actually we can prove a stronger statement: if s is sufficiently
large, then Sy(g) will be close to a product stratification in the sense described in the
lemma below.

(5.9) Lemma. Given k > 0 there exists s such that, if j°¢4(0) = j°f(0) for all t, then for
each stratum Y in S3(g) and point (y,t) € Sa(g), T(y,1Y contains a vector v = vy(y) such

that o = () with v1(0,) = oflu]*).

Proof. Let Y be an 8y(g) stratum. Let ¥ be the S3(R) x I stratum such that ¥ = J~1(Y).
Let (yo,t0) € Y and let o = j¢(yo). Let ¢, be a sequence of points such that ¢, — to. Let
Jin = 71, (o). From the estimate in (0.2) and the construction of diagram (5.1), we see that

the imbedding J(y,t) = (thy)) has the property that the levels j:(y) get closer to jo(y)

(in the sense that they will share the same high order jet at 0) as s becomes larger. We can
consequently choose s such that j; has the form jo(y) + t5:(y) with ||7:(y)|| < ||y||* (when
y is close to 0), and we may also assume that the derivative of 7¢(y) (in y and t) satisfies
the same estimate. So a Taylor expansion of tj;(y) shows that ||§n — Fo|| < [tn — to|||yol|*-
Since (§o,tn) € Y, we must have that

d({n, ¥ N (RP*E x {tn})) < [tn — tolllyol|*.

On the other hand (4.11) implies that

d(in, ¥ N (RPF X {ta})) 2 [lyol|*d(n, (im G, ) NY N (RPFE x {E0})).

So

d({n, (m je,) NY N (RPF X {ta})) < [tn — tol[lyol| "~

We can therefore find a sequence of points (indexed by n) from (im j, )NY N (RP+e x {t,})
whose distance to ¢, is no more than ||t, — to|[||yo||*~%. If k is large this sequence cannot
be contained in {0} x I and, since j;, is transverse to S(R) we can actually choose this

sequence from (im j;, ) N'Y N (RP*¢ x {t,}). Let us denote this sequence by §,. So we
have

19n — Goll < [t — toll(llyoll* + llyol1*=*),

which implies g, — Yo.
So, since (im J)NY is smooth at (Jo, o),

(gna tn) - (g07t0)
[(Gn,tn) — (Fo,t0)||
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must tend to a unit vector 9(yo,to) in T(g,,t)((im J) N V) and, since
19 = Goll < lltn = tollCllvoll* + lluolI* =),

k—o
this unit vector must have the form (O(”ylon) ) Now,

— D:cjt h

DJ = < 0 1)

with b = o(||yo|*) and Dyj: = O(|lyol]). It is therefore clear that the vector v(yo, t0)
k—a

which is mapped by DJ to (Yo, o) also must have the form <O(Hylo||) > Since we

can choose k as large as we want, we have proved (5.9). O

Lemma (4.5) together with an easy estimate will show that # and s can be chosen such
that

C
| det Dgy(z)Dgs(z)T| > —2-||:z:||CY on H(g;(0),B), for all t € I.

So we may assume that ¢ is a submersion on Ui(H(g7%(0), B)x {t}—({0} x I). We therefore
get a stratification of UeH (g;7(0), B) x {t} by pulling Sz(g) back to U(H(g;%(0), 8) —
g7 1(0)) x {t}, and then inserting Ue(g7(0) — {0}) x {t} and {0} x I as two additional
strata. Tt follows from the commutative diagram (4.10) that these fit together with the
stratification S3(g) defined outside UsH (g, 1(0), 8) x {t}. We can therefore put these two
stratifications together to form a stratification on the neighborhood O x I in the source.
Let this stratification also be denoted by S3(g). We now have the following lemma.

(5.10) Lemma. If s and § are chosen sufficiently large, then the restriction of S3(g) to
UeH (g7 1(0), B) x {0} is (a)- and (b')-regular.

Proof. As we pointed out above we may assume that B and s are chosen such that
T C a -1
|det Dgi()Dau(@)"| 2 Sla]* on H(g7(0), 9).

Since ¢ is a submersion on UtH(g; 1(0), 8) x {t} — ({0} x I), Whitney regularity holds
trivially here (since Sz(g) is Whitney regular by (5.7)).
To prove Whitney regularity along {0} x I, consider the equation

0

Fri Dyg(¢)-

From the estimate | det Dg¢(z)Dg¢(z)T| > $||z[|* we find that this equation can be solved
on UgH (g7 1(0), 8) x {t} — ({0} x I) by putting

(= (DgtT(DgtDlgip)“l(—h)> .
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(Recall that g; is of the form f+th). From above we also get that ((z,t) = (0(”3;” ) )>

Now we have that ¢ € T(z,5(Usg; '(0) x {t}) when z € ¢;'(0) and, since ((z,1) — 2 asa
tends to 0, we get (a)-regularity for the pair (U;g;(0) x {t} — ({0} x I),{0} x I).

Now consider another stratum in S3(g) intersecting U;H (g; (0), 8) x {t}. Let (z,t) be
a point in this stratum and suppose ¢(z,t) = (y,t) € Y, Y € Sa(g). From (5.9) we can

U1

find a vector v = v¢(y) in T(y Y such that v = 1

) with |Jv1]| = o(||y||*). Now putting

n(z,t) = (DgtT(Dgt(Dga)T)_l(vl - h)) ,

we get that Dg(z,t)(n(z,t)) = vi(y). We also see that the R"-component of 7(z,t) is of
k 8
the form 2U*ellzl)  Now y = gy(z) = O(||||). It is therefore clear that with k and

[EIS

0) as * — 0. So we have (a)-regularity in

s sufficiently large, we must have n(z,t) — ( 1

this case too.

Next we prove that the stratification also is (b')-regular on U H(g; '(0), 8) x {t}. Con-
sider the vector field ¢ constructed above with the property that Dg(z,t)(¢(z,t)) =
%. Let (1(z,t) = Dg}(Dg:Dgl)~*(—h), the R*-component of . From the inequality
|det Dgy(z)Dgs(2)T| > $||z||* it follows that, given k, we can choose s = s(k) such that

(a,1) s OF on UH(g; 1(0),/2) x {t} — ({0} x ), with [i*Ca(a,1)]| = of[l2][¥) on this
set.

From (4.5) it also follows that f is co-K-determined and finitely X k_determined. It then
follows from the results in [1] that, if s is sufficiently large, there exists a one-parameter
family of C*-diffeomorphisms {¢:} with j¥(¢; — idgn)(0) = 0, such that b:(971(0)) =
F71(0). Given t and ¢ we thus get that ¢;' o $+(971(0)) = ¢7'(0). Now if z € g7 (0)
we may then assume that k¥ and s = s(k) are chosen so large compared to B that with
z' € ¢t o dy(z) we have

2’ — || = [[($5 0 $¢ — idan)(2)]| < min([l2], z]))".

Now we choose representatives of UyH (g7 (0), 8) x {t} and U.H(g;*(0), £) x {t} such
that

K = UH(g; "(0), 8) x () C UcH(g7(0), 5) x {1}

Define a Taylor field Q of order 1 on K by letting Q(z,t) = j*¢i(z,t) on (K — {0}) x I
and Q(0,t) = 0. We wish to see that k and s can be chosen such that this is a Whitney
field. Let us use the notation of [10] concerning Whitney fields.

Consider first points p = (z,t) and ¢ = (0,t'). Then

(Re@)™ ()] < 17" Gl )| = oIz, 1)) = o(lI(z, 1)II)
if k> 1, |m|=0,1. Likewise

(B,@)™ (@) = o(ll(z,)II)
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if |m| =0, 1.
Next assume p = (z,t), ¢ = (z',#') and that ||p —g|| > max(||z]|, ||z||)?. Then, for some
C >0,

IRz @)™ < CU3* G @ + 15 (@l < CCllll® + 12']])
< 20 max(|le, [|2'|}) < 2C]lp — ¢||*/*.

So with k chosen such that k > 8+ 1 we get |(R;@Q)™(p)| = o(||lp — ql})-
Finally consider two points p = (z,t) and ¢ = (2',t') with ||p — ¢|| < max(||z||, ||z']|)?.
Let = (Z,t) be a point in g; *(0) such that

lp = 5ll = lle — 2| < [|=]I”.

Let #' = ¢! 0 ¢4(%) and put § = (z',#') € g;,*(0). As above we have
Iz — z|| < min(||2'], |l2Il)* < [|z]|°.
If B is large and we are close to {0} X I, then
l[|? < 2[|2'|I” and |l2]|” < 2||z[|” < 4]}"||”.
Thus,
Iz —2'|| < llp - qll < 2l|="]|.
Putting this all together, we get
lg = all = [l=" = &' < flz = 2|l + ll= — 2] + [|=" — 2|
<2l|z'||? +2/|2'[|® +4fla"|* = 8]la"||” < |l2"||*/?
if we are close to {0} x I. Although we have supposed that ¢ € K C U;H(g; *(0), 8/2) x{t},
the argument shows that the ball with center p and radius max(||z||,||z']|)? is contained in
U:H(g;71(0), 3/2) x {t}. We may therefore suppose that the line segment between ¢ and p
is contained in U;H(g;1(0), 8/2) x {t}. If B is large, this line segment does not intersect
{0} x I.
Now, since {; is C* on UH(g;(0),8/2) x {t} — ({0} x I), and we may assume that

k > 2 and that derivatives of { of order < 2 are bounded, we get from Taylor’s formula
with remainder that

(R,Q)™()] < Cllp = all>~™ = ofllp — gl|* 1™

Putting all the estimates for R together, we see that Q is a C* Whitney field on K.
By Whitney’s Extension Theorem, extend Q to a C! function (;(z,t) on R™ x I which
actually is C® on the interior of UsH(g; 1(0), 8) x {t}. Put {(z,t) = (Cl(f’t)> Inte-

grating this vector field, we get a one parameter family of C! diffeomorphisms {%;} of R"
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which trivialize the family g; inside U;H(g; *(0), 8) x {t} (this follows since ¢ is mapped
e}

on %; in this neighborhood). From our construction it also follows that each h; has the
same 1-jet at 0 as the identity; from this it is not hard to see that everything can be ad-
justed such that H(f~1(0),8) = H(gy'(0), 8) contains another hornshaped neighborhood
H(f~1(0), B') such that for each t we have that hy(H(f~'(0),5")) C H(gt_l(O) B).

Now, put f = j°f(0) — f and consider the map 9(z,t) = (f(z) + tf(:c) t). Applying
the above to this unfolding § of f, we get a family of diffeomorphisms hy with properties

described above. Letting g, = 7°f(0) and k = hy, we get a diagram of mappings

H(g71(0),8) & H(fY0),8) X H(g7'(0),8)
(5.11) 1 gs Lf L gt
RP i R? AL} R?

Now since f~1(0) is mapped by Ay to g7 1(0) and each h; has the same 1-jet as the identity,
we can find § such that H(g;1(0),3) C he(H(f(0),"). From all this we get a diagram

1 (hohy M) xidy _1 ~
H(q;(0),8) x I « UeH (g, (0), 8) x {t}
(5.12) 1 gs x1d . lg
RP x I i RP x I.

Since ¢, is a polynomial map, the pair of strata ((¢;1(0)—{0}) x I, {0} x I) is (b')-regular.
Since the pair (Us(g, 1(0) — {0}) x {t},{0} x I) is mapped to that pair of strata by the
C-diffeomorphism (h o h7!) x idy, the latter pair of strata is also (b')-regular.

Now we want to prove (b' )-regularity when we consider sequences from other strata in

U:H (g71(0), 8) x {t}. To this end, consider a point
(z,t) € (H(g;'(0),8) — {0}) x I.

Since we have seen that
C o _
det(Dgs(z)Dga(z)T) > 5 2l on H(g; '(0), 8),

¢s X idy is a submersion on the smaller set (H(¢;1(0),8) — {0}) x I. Let z' € ¢;1(0) be
such that ||z — z'|| is minimal, hence ||z — 2'|| < ||z]|®. Let o' and ' denote the « and f
of Lemma 3.4(a), applied with R = ¢, and z¢ = 0. Using ||z — 2'|| < ||z||?, the inequality
det Dgy(2)Dgs(z)T > $||z||* and the fact that the zero set of det(Dgs(z)Dgs(z)T) is
%(gs), an easy estimate will show that 8 can be chosen such that ||z —z'|| < d(z, 2(g,))¥’.
From (3.4) we get that

d(ker Dgs(z),ker Dgs(z")) < ||$“ﬂ/ﬁ,'

So, to prove (b') for S3(g) inside U H (g;(0), B) x {t}, let ¥ be a stratum in this strat-
ification, and let (zn,t,) be a sequence of points in ¥ N (U.H (g;(0), 8) x {t}) converging
to a point (0,%9). We must prove that

(Zn,0)

—eo |lzal

hm T(xn tm)Y D 11
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Let _
(Zn,tn) = (ho ht_nl(fcn)atn)-

Let &, be the point in ¢;*(0) closest to &,. Then ||, — &4 < ||Zx||? and it is easy to see

that lim ;22 = lim 22 (provided the limit exists). Denote this limit by 6. Since we

know that the pair (¢;*(0) — {0},{0}) is Whitney regular, & C lim T;,¢;"(0). On the

other hand, since
Ts, 5 (0) = ker Dg,(2,)

and '
d(ker Dgy(2), ker Dgy(in)) < ||5n]|?/?

(recall that, here, A’ is the exponent of (3.4)), we also get that # can be chosen such that

nlggokequs(in) = nlgréokequs(:%n) D 9.
Now &, = ho htjll(:z:n) and h o h;zl has the same 1-jet as the identity at 0. We must
therefore also have nlgrolo ”—ﬁz—” = 9. On the other hand,
ker Dgy, (z,,) = D(hy, o ﬁ—l)(in)ker Dgqs(%,)
and, since hy, 0 h~1 also has the same 1-jet as the identity, we must have that

lim ker Dg, (z,) = lim ker Dqy(Zn).

We therefore get from above that
lim —m
n—co ||z, ||

C lim ker Dgy, (2n)-

Now since Y is the pullback through a submersion of a stratum in the target, T(s, ¢,)Y
must contain ker Dg¢_(z,) and we consequently get

z

lim —— C lim T, Y,

n—00 H:an n—00 (Zntn)
proving that (b') holds inside U,H(g; *(0), B) x {t}. Letting B’ be the j in the statement
of (5.10), we have proved (a) and (b') hold inside UtH(g7%(0), 8) x {t}. This completes
the proof of 5.10. O

We have now established that if s is chosen sufficiently large our stratification in the
target is both (a) and (b'). The stratification in the source is also (a)- and (b')-regular
both inside (by (5.10)) and outside (by (5.7) and the comments which follow (5.7)) a
neighborhood U;H(g; '(0),8) x {t}, and consequently is (b)-regular in a neighborhood
of {0} x I. From the construction of the stratification it also follows that the map ¢ :
R"™ x I — RP x I is a stratified map if we restrict to a sufficiently small neighborhood of
{0} x I. The family g; is therefore topological trivial by the second isotopy lemma, and
we have consequently completed the proof of (0.1).
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