ENUMERATIVE GEOMETRY FOR PLANE CUBIC CURVES
IN CHARACTERISTIC 2

ANDERS H@YER BERG

Department of Mathematics
University of Oslo

ABsTRACT. Consider the plane cubic curves over an algebraically closed field of char-
acteristic 2. By blowing up the parameter space P? twice we obtain a variety B of
complete cubics. We then compute the characteristic numbers for various families of
cubics by intersecting cycles on B.

1. INTRODUCTION

One of the major objects of enumerative geometry is to determine the characteristic
numbers for families of plane curves. A characteristic number counts the number of
curves in a family that pass through a given points and touch g given lines, where
a + B equals the dimension of the family. For families of plane cubic curves these
numbers were first found by Maillard and Zeuthen in the early 1870’s, but their
methods were based on assumptions that were not rigorously justified.

More than a century went by before these numbers were confirmed. Kleiman and
Speiser [8,9, 10] and Aluffi [1, 2] both compute the characteristic numbers for smooth,
nodal and cuspidal cubics, but by very different means. Kleiman and Speiser’s works
are based on the classical degeneration method of Maillard and Zeuthen. They special-
ize their family to more degenerate ones and then use the numbers already obtained
for the special families. In this way the characteristic numbers for smooth cubics
depend on the numbers for nodal cubics, which in turn depend on the numbers for
cuspidal cubics.

Aluffi’s method is more direct. By a sequence of five blow-ups of P° he constructs
a variety of complete cubics. The characteristic numbers for smooth cubics are then
obtained by intersecting certain divisors on this variety. By a closer examination
of the space parametrizing the singular cubics, Aluffi also obtains the characteristic
numbers for nodal and cuspidal cubics.

These papers, like most other papers on enumerative geometry, assume that the
characteristic is different from 2 and 3. One exception is Vainsencher’s Conics in
characteristic 2 [11] determining the number 51 of conics tangent to 5 other, assuming
the characteristic is 2.

In this paper we will apply the method used by Aluffi [1] and Vainsencher [11,12]
to construct a variety of complete plane cubics in characteristic 2. The strategy is
to blow up the parameter space along smooth centers until the proper transforms of
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the line conditions no longer intersect. The technical difficulties of this method is
at each blow-up to determine the intersection of the line conditions and to compute
certain Segre classes. In our case, two blow-ups will suffice, giving a smooth space,
B, of complete cubics which is relatively easy to handle. The computation of the
characteristic numbers follows the lines of Aluffi and Vainsencher. In particular we will
rely on Aluffi’s blow-up formula [1, Theorem II], which relates intersection numbers
before and after taking proper transforms.

Acknowledgments. Some of the material in this paper is part of the authors cand.
scient. thesis written under the guidance of Ragni Piene. It is a pleasure to thank
Ragni Piene for proposing the problem and for many helpful suggestions. I would
also like to thank Carel Faber, William Fulton and Steve Kleiman for helpful and
inspiring conversations.

The Maple package Schubert (by S.Katz and S.A.Strgmme) has been of some help
with the computations.

2. GENERALITIES ABOUT CHARACTERISTIC NUMBERS

In this section, which is independent of the characteristic of the base field k, we
define the characteristic numbers and give their basic properties.

Intuitively, a characteristic number N, g for a family R of plane curves is the
number of curves passing through a given points and properly tangent to 8 given
lines where a+B=dimR. (We call a tangent proper if it is tangent at a nonsingular
point. By just tangent we mean a line intersecting the curve with multiplicity at
least 2 at a point.) To determine these numbers it is convenient to work in the P
(n = 2d(d + 3)) parametrizing all plane curves of degree d.

Definition 2.1. A point condition in P™ is a hyperplane H parametrizing the curves
containing a given point. A line condition is a hypersurface M parametrizing the
curves tangent to a given line.

The following definition of characteristic numbers differs slightly from the intuitive
one in that it may count curves with multiplicity greater than one. But as we shall
see, this need not be a big problem.

Definition 2.2. Suppose RCP™" is an irreducible, r-dimensional subvariety parame-
trizing a family of curves such that the generic curve is reduced and irreducible.
Suppose we have « points and [ lines in general position, with a+ 3 = r. Let H; and
M; be the corresponding point and line conditions in P™. We define the characteristic
numbers for R to be:

Na,,B=Zm(.'E,R'Hl-...-Ha~M1~__..M’8)
TEQ

where Q@ ={z € P": C; intersects the £ lines only at smooth points} (C; is the curve
corresponding to x), and m is the usual intersection multiplicity. N, g counts the
weighted number of curves in R passing through the a points and properly tangent
to the g lines.

The following theorem shows that these numbers are well defined, and that the
curves counted by a given characteristic number all appear with the same multiplicity.
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Theorem 2.3. Let R C P™ be an irreducible, r-dimensional family of generically
reduced and irreducible curves, and let o and 8 be non-negative integers such that
at+pB=r. 5

(i) There exists an open dense subset U C (P?)* x (P2)? and non-negative integers
N and e such that for each configuration of points and lines (p1, .. .,pa,l1,...,lg) €U
there are exactly N different curves from R passing through the o points and properly
tangent to the (3 lines, and such that the multiplicity m (in the sense of Definition 2.2)
at each of the N curves is p¢ when the characteristic is p and 1 when the characteristic
is 0.

(ii) The multiplicity m = m([3) is a non-decreasing function of 3.

Proof of (i). The existence of U and N is well known and follows from [5, Section
2]. It is also clear (same reference) that the number N remains the same when R
is replaced by any open subset of R. We may then assume that all curves in R are

irreducible.
Let T C U X R be defined by

T ={(p1,..-,Pasl1,...,1lg;z) : C; contains p; and is properly tangent to I;},

and let p and ¢ be the projections from T" to U and R respectively. Let z € R be any
point. Then ¢~!(z) is an open subset of (C;)* x (CY)? c (P?)* x (P2)P. Since C,
is irreducible, so is the dual C)Y. This shows that the fibre ¢~*(z) is irreducible and
it follows that T is irreducible (since R is).

We know that p is a generically finite surjective map of integral varieties. Let s
and m be the separable and inseparable degree of p. Then it is well known ([11,
Section 7|, is one reference) that the general fibre of p has s distinct points, and the
multiplicity at each is m. Shrinking U if necessary we have this statement for all the
fibres.

Finally, the argument given in the remark in {11, Section 7] shows that the mul-
tiplicity in the last paragraph coincides with the intersection theoretic one. (The
intersection-theoretic multiplicity can be obtained from an alternating sum of Tor’s.
Since the line conditions are smooth, and in particular Cohen-Macaulay, at the points
of intersection, all the higher Tor’s vanish.) O

The following two lemmas are used in [1] to prove the characteristic 0 version of
the above theorem. We will need the lemmas to prove the second part of the theorem.

Lemma 2.4. Suppose S C P™ is a curve parametrizing generically reduced and
irreducible curves, and let x € S be a general point. Then there exist at most finitely
many point conditions H, tangent to S at z.

Proof. Let T}, be the tangent line to S at , and suppose T, C Hp. Then p is contained
in all the curves parametrized by T;. Clearly (since the curve parametrized by z is
irreducible), only a finite number of such p can exist. O

Lemma 2.5. Suppose R C P" is an irreducible family of generically reduced and
irreducible curves. Then a general point condition will intersect R transversally (by
transversal we always mean that the scheme theoretical intersection has no nonre-
duced components).
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Proof. Since the set of points p such that H, does not intersect R transversally is
closed, it is enough to show the existence of one H, that does. Suppose that all
point conditions intersect R in a nonreduced component. Then the union of these
components will cover R. Let x € R be a general point, and let S C R be any curve
having x as a smooth point. Since the set of point conditions is 2-dimensional there
will be infinitely many point conditions tangent to R at x. These will also be tangent
to S, contradicting Lemma 2.4. O

Proof of Theorem 2.8 (ii). Let H1,...,H, and M, ..., Mg be general point and line
conditions in P™. We know that the points in RN H;N---NH,NM;N---N Mg
counted by Ny g all appear with the same multiplicity m. If we remove one of the
point conditions, then by (2.5) the components containing these points will also have
multiplicity m. When these components are intersected with a line condition, all the
points in the new intersection must have multiplicity at least m. O

Remark. Note that the first part of this theorem seems to be a special case of [5,
Theorem 2]. The important difference is the definition of the characteristic numbers.
While we intersect in P™, the characteristic numbers in [5] are defined by intersections
in I" x R where I C P? x P2 is the insidence variety.

Definition 2.6. With the same hypotheses as in Definition 2.2 we define the total
characteristic numbers for R to be:

I‘ayﬁz Z m(m7R'H1"'-'Ha'M]_'-..'Mﬁ)
zePN\L

where L is the locus of the nonreduced curves. I, g is the weighted number of reduced
curves passing through the o points and tangent to the 3 lines (but not necessarily
at smooth points).

In order to compute the total characteristic numbers I', g (from which the charac-
teristic numbers will be deduced), we shall need the concept of a variety of complete
curves, which is defined as follows.

Definition 2.7. A variety B together with a surjective morphism 7: B— P" is called
a variety of complete curves if:

(1) = restricts to an isomorphism outside the locus, L, of nonreduced curves.
(2) The proper transforms of the line conditions in P™ does not have a common
intersection in B.

Proposition 2.8. Suppose B is a complete nonsingular variety of complete curves
of degree d. Suppose R C P™ is a subvariety parametrizing a family of generically
reduced and irreducible curves, and let R be its proper transform in B. Also, denote
by H and M the proper transforms of point and line conditions respectively. Then
the total characteristic numbers for R are given by

Top= /B (BT with o+ 8=r = dimR.
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Proof. Let Hy,...,H, and Mj,..., Mg be general point and line conditions in P",
and let E =7~ (L) Since m: B — P™ restricts to an isomorphism B\E-—P™\L it
is sufficient to show that RNH;N---NH,NM;N---NM, 3 does not intersect E. Since
the general curve in R is reduced we can assume that dim(RNE) < r — 1. The result
follows if we can show that H; and M ; intersect a given irreducible subvariety V C B
properly. (V and W intersect properly if codim(V)+codim(W)=codim(VNW).) The
set {l € P2:V C M} is closed, and since B is a variety of complete curves this set
is not all of P2. It follows that the general line condition does not contain V', so
the intersection is proper. Similarly, we can show that H; intersects a given V C B
properly. O

3. GENERALITIES ABOUT CUBICS IN CHARACTERISTIC 2

In this section we will discuss some elementary facts about plane cubic curves
in characteristic 2. It is essential to get information about the subvarieties of P°
parametrizing special families of cubics.

From now on, and for the rest of the paper, we will assume that the characteristic
of the ground field is 2. The defining polynomial of a plane cubic curve will be written
in the following form:

F(z,y,2) = ax®+ by + c2®+ dz% + ez + fry’+ gy’ + haz®+ iy2> + jryz

Let V = {(p,1) : | is tangent to C,} C P® x P2, and let m; and 7y be the two
projections. Then the fibre 77 (p) is the “total dual” of C,, (the union of C, and the
possible multiple lines corresponding to each singularity of C) , and 75 (1) is the line
condition M;.

Lemma 3.1. If we use z,y and z as coordinates on 152, we have the following equation
for V:

(be+ gi)a® + (ac+eh)y? + (ab + df)2* + (cf + gh+ ij)a’y
+(fi +bh + gj)aPz + (cd + ei + hy)zy? + (ai + dh + ef)y2
+(dg + be + fj)e2? + (ag + ef + dj)yz" + j*zyz =0

Proof. Assume A2 = P2\{y = 0} has affine coordinates m = z/y and t = z/y and
let W =V N (P°x A2). Let I € A2 be the line in P2 given by y = mz + t2, and
let F(x,y,2) = 0 be the equation for a cubic Cp. Now (p,l) € W if and only if
9(z,z) = F(z,mz + tz,z) has multiple factors, and this happens exactly when the
discriminant Ag(z,1) = 0. In characteristic 2 the discriminant of a cubic polynomial
az®+bz?+cz+dis ad+be. Letting F(z,y,2) = ax®+by3+- - +jzyz, and computing
AF(z,mz +t,1) we easily obtain (after some elementary, but tedious computations)
the equation for W, and the equation for V follows. O

It should be well known that in characteristic 0 any nonsingular plane cubic can be
linearly transformed into one with equation 3+ y3+ 23+ tzyz = 0. This is also true
in characteristic 2. See [4, Section 7.3] for a proof that works in all characteristics
different from 3. Note that the curve C; given by 23+ 33+ 23+ tzyz = 0 is singular
if and only if ¢ = 1.
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Lemma 3.2. The following holds for plane cubic curves in characteristic 2:

(1) The dual of a nonsingular cubic is a nonsingular cubic.

(2) The dual of a nodal cubic is a nonsingular conic.

(3) The dual of a cuspidal cubic is a line. In particular, a cuspidal cubic is strange
(there is a point common to all the proper tangents).

Proof. (1) This can be checked on C; given by z3 + y% + 23 + tzyz =0 (¢3 # 1). By
Lemma 3.1 we see that C’ is given by 23 + v + 23 + t2zy2z = 0 which is nonsingular.

(2) It is an easy exercise to check that all nodal cubics are projectively equivalent,
so we only need to consider the nodal cubic given by 2 + 32 + zyz = 0. By (3.1) the
dual curve is 22 + zy = 0 (we ignore the line z = 0 in P2 corresponding to the node)
which is a nonsingular conic.

(3) The dual of the cuspidal curve z2 + y22 = 0 is the line y = 0. The arguments
are similar to the nodal case. [

If C; is a nonsingular cubic given by z3 + y3 + 23 + tzyz = 0 we see from the proof
of the first part of the lemma that (C})V = Cy« so that in general biduality does
not hold. We have biduality only for a special class of cubics characterized by the
following proposition.

Proposition 3.3. The following are equivalent for a nonsingular cubic C C P?:
(1) C=(CY)Y
(2) C is projectively equivalent to the curve with equation 3+ y3+ 23= 0.
(3) j =0 in the equation for C.
(4) C has Hasse-invariant 0.
(5) C has j-invariant 0.

Proof. (1) < (2) is a trivial consequence of the fact that (C}')V = Ci« when C; given
by 23+ 43+ 23+ tzyz = 0. If C ~ D (projective equivalence) and jp = 0 then it is
easy to verify that jo = 0, so we have (2) & (3). (3) & (4) is a special case of [7, IV
Proposotion 4.21] (4) < (5) follows from [7, IV 4.23] (note to corollary). O

Remark. It can be shown that the j-invariant of C; equals t'2/(t3 + 1)3, which gives
another proof of (3) <& (5). When we use the notation jo we do not mean the
j-invariant, but simply the coefficient j in an equation for C.

The cubics described in Proposition 3.3 we call j-curves. We next show that the
cuspidal cubics are degenerate j-curves. First we need some lemmas.

a f h
Lemma 3.4. Let C be a cubic with jo =0, and let H be the matrix { d b 1
Then: e g c

(1) C is nonsingular < rk(H) =3
(2) C is singular and reduced < rk(H) =2
(3) C is nonreduced < rk(H)=1

Proof. The singular locus is precisely the set of points (z, y, z) such that all the partial
derivatives are zero, or equivalently: (z2,y?,22) belongs to the nullspace of H. The
lemma now follows by elementary linear algebra. O
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Lemma 3.5. Let C be a singular cubic. Then C is cuspidal (possibly degenerate) if
and only if j = 0 in the equation for C.

Proof. Choose a B € PGL(2) mapping a singularity of C to (0,0,1). Let D = B(C)
and introduce affine coordinates ' = £ | ¢/ = L. The affine equation of D can be
written as f(z',y’) = 0. Let f = fs+ fo + f1 + fo where f; is homogeneous of degree
i. Since D is singular at (0,0) we have f; = fo =0, and fo = epz’> + gpy'> + jpz'y’
is the equation of the tangent cone. D is cuspidal exactly when the tangent cone is a
double line, and that happens exactly when jp = 0. Since by (3.3) jo =04 jp =0
the lemma follows. O

Proposition 3.6. A plane cubic curve C is cuspidal (possibly degenerate) if and
only if det(H) = j = 0.
Proof. If C is cuspidal, then j = 0 by (3.5) and det(H) = 0 by (3.4).
det(H) = j = 0 implies that C is singular by (3.4) and cuspidal by (3.5). O
Let C be a non-degenerate cuspidal cubic given by F(z,y, z) = az3+by3+- - -+jzyz.

By (3.4) we have that rk(H) = 2. It follows that the cofactor matrix, cof(H), has
rank 1, so that nonzero rows (resp. columns) of cof(H) define the same point in P2.

bc+gi cd+ei dg+be
cof(H)= 1| c¢f+gh ac+eh ag+ef
fi+bh ai+dh ab+df
Let P be the point defined by the columns, and let @) be the point defined by the
square root of the rows: If (o, 8,7) # (0,0,0) is a row, then Q = (v/o, /B, /7). This
is well defined since there is only one square root in characteristic 2.

Proposition 3.7. Let C, P and () be as above. Then @ is the cusp of C, and P
is the only flex of C. Also, P is a strange point, that is: every proper tangent of C
contains P.

Proof. Suppose Q = (y/bc + gi,+/cd + ei, \/dg + be) is given by the first row of cof(H).
Using that det(H) = 0 we easily see that F;,(Q) = Fy(Q) = F,(Q) = 0, so Q must be
the cusp of C. Now the last part: The tangent at (ug,u1,us) € C is given by

(aud + fuf + hud)z + (dud + bu? + ud)y + (eud + gu? + cud)z = 0

or equivalently (z y z)H (u u? u3)*=0. We must show that this equation is satisfied
when P = (z y 2) is a column in cof(H) or a row in adj(H). But from the identity
(adjH)H = Idet(H) = 0 we have that (z y z)H = 0, and the result follows.

To prove that P € C just note that F = (z y 2z)H(z? y? 2%)* and use the same
argument. If the tangent at P meets the curve at another point S, then (since P
is a strange point) this tangent would be a bitangent which is impossible for cubics.
This proves that P is a flex. The tangent at other nonsingular points all contain P
so there cannot be more flexes. O

The set of j-curves (including degenerate curves) are parametrized by P® when we
to a point (a,b,...,%) in P® associate the curve with equation az3+ by®+ - - - + iyz2.
We have seen that the cuspidal cubics are parametrized by a hypersurface of degree
3 in P8.
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Proposition 3.8. The cuspidal cubics with cusp (resp. flex) on a given line are
parametrized by a 6-fold of degree 3 in P8.

Proof. Assume the line is given by = 0. By the first part of (3.7) we find the desired
locus to be given by bc+ gi = cf + gh = fi + bh = 0 which the computer program
Macaulay tells us has degree 3 and codimension 2 in P8. The case with the flex is
similar. O

Let ¢ : P2 x P2 — P? be the map given by
#((a,b,¢), (d,e, f)) = (ad, be,cf,ae,af,bd,bf,cd,ce,0)

(¢ is the Segre embedding on the P8 given by j = 0). We claim that the image of ¢ is
exactly L, the locus of the nonreduced curves. Indeed, the curve I>m € L can easily
be seen to be the image of ((z3,12,22), (z1,v1,21)) Where | = (x0,%0,20) € P? and
m = (x1,y1,21) € P2. This shows that we have an isomorphism L ~ P2 x P2, Now,
T C L, the locus of the triple lines, is isomorphic to P2 (I e P2 corresponds to the
triple line [3), and the map i : T — L is via these isomorphisms given by i(l) = (12,1)
(the coordinates of [2 € P2 are the squares of the coordinates of I). Let j be the
embedding L — P°. We record for later use:

Lemma 3.9. Let hy and hy denote the pullbacks of the hyperplane classes on the
factors of L ~ P? x P2, and let h and t be the hyperplane classes on P° and T ~ P2
respectively. Then j*h = hy + hg, t*hy = 2t and i*ho =t. O

4. THE TWO BLOW-UPS

We now follow the strategy of blowing up the parameter space, P?, along nonsin-
gular varieties supported on the intersection of the line conditions, until we have a
variety of complete curves. This strategy was succesfully employed by Aluffi in [1],
where five blow-ups were needed. We shall only need two blow-ups, and the varieties
and maps involved in this process appear in the following diagram:

D B
| =
S F—* . F :3
Lol
P2 — T — L - , PO

By Section 3 we know that L is nonsingular, so that will be the centre for our first
blow-up.

4-1. The first blow-up. Let B; be the blow-up of P° along L, let N be the normal
bundle of L in P°, and let E = P(N) be the exceptional divisor with maps as shown
in the diagram.
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If H and M are point and line conditions on P?, denote by H; and M, their proper
transforms in B;. (We reserve the notation H and M for the proper transforms in
B.) We call Hi and M; point and line conditions in B;.

To determine the intersection of the line conditions in B; we need to examine the
tangent hyperplanes of the line conditions in P°.

Lemma 4.1. Let M; be the line condition in P° corresponding to the line I, and let
r € M; be a cubic not containing l. Suppose C, is tangent to | at p and that q is the
other point of intersection.

(1) If p # q the tangent hyperplane of M; at r equals the linear span of X, and
Y,, where X, is the cubics tangent to l at p and Y, is the cubics through g
and tangent to | at another point.

(2) Ifp = q the tangent hyperplane of M; at r equals the point condition H,.

Proof. Assume that [ is given by z = 0, and that C, is tangent to [ at ¢ = (0,1,0)
and also meets [ at p = (0,0,1). This means that b = ¢ = g = 0 in the equation for
Cr. We know from the beginning of Section 3 that M; is given by bc + ¢gi = 0, and a
simple computation shows that the tangent hyperplane of M; at C, is given by g = 0.
Xp (b=g=0) and Y, (c = g = 0) are both contained in this hyperplane, and (1)
follows. (2) follows by a similar argument (H, is given by b=0). O

Lemma 4.2.

(1) Suppose z € T corresponds to the line l. The intersection of the tangent
hyperplanes of the line conditions at x is 5-dimensional and consists of the
cubics having | as a component.

(2) If z € L\T, the intersection of the tangent hyperplanes of the line conditions
at z is 4-dimensional and thus equals the tangent space of L at .

(8) The tangent space of L at a triple line I3 consists of the cubics having | and
a touching conic as components.

Proof. (1) follows directly from the second part of Lemma 4.1. To prove (2) one needs
to compute (using the first part of 4.1) tangent hyperplanes to 5 sufficiently general
line conditions at a point € L\T'. For (3) assume [ is given by z = 0. Then the triple
line {3 corresponds to the point (1,0,...,0) € P°. By (3.4) we know that L c P? is
given by j =0 and rkH = 1. A simple computation shows that the tangent space of
Lati®isgivenby b=c=g=14=4 =0 and the result follows. 0O

Proposition 4.3. The intersection S of the line conditions in B; is a 2-dimensional
subvariety of E. More precisely, S=P(L), where L is a sub line bundle of i*N.

Proof. Obviously, S must be contained in the exceptional divisor E. Also, since the
intersection of the line conditions is “sufficiently transversal” at points in L outside
T (the second part of Lemma 4.2) the line conditions M in B; can only intersect in
the fibres over T

Let v3 : P2 — P?® be the composition j o, sending a line [ to the point corre-
sponding to the triple line /3. (This is the third Veronese embedding of P2 projected
into the hyperplane j = 0.) Similarly, we let v; : P2 — P® be the map sending ! to
12, where P5 parametrizes the conics.
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We have the following exact sequences of vector bundles on T ~ P? = P(Q):
0 — Opz — Sym3Q ® O(3) — v3Tps — 0
0 — Op2 — Sym?Q ® O(2) — v3Tps — 0

0 — Ty, -1 v3Tpe — *N — 0

The first two are the pullbacks of the Euler sequences on P(Sym3Q) and P(Sym?Q),
and the last is the pullback from L of the standard sequence relating the normal
bundle with the tangent bundles. From the composition

Sym?Q ® O(-1) — Sym?’Q ® @ — Sym®Q

we get (by tensoring with O(3)) an induced map v3Tps — v3Tps. In the fiber over
I3 € T the image of this map can be identified with the cubics containing I. By the
third part of (4.2) we see that the map f in the third sequence above factors through
v3Tps. The quotient £ = v3Tps /i*Ty, is then a sub line bundle of i* N. That S=P(L)
can now be checked at each fibre using Lemma 4.2 (1). O

4-2. The second blow-up. Let B be the blow-up of B; along S, and let D be the
exceptional divisor. To show that the intersection of the line conditions on B is empty,
we will introduce local coordinates on B; and compute the tangent hyperplanes of
the line conditions there.

Let U C P° be the open set where a = 1. Affine coordinates for U are then
(b,c,d,e, f,9,h,1,7), and affine equations for L are

b+df =0 c+eh=0 g+ef=0 i+dh=0 ;=0

We may now choose affine coordinates (b,¢,d, ¢, f, 7, h,1,) on an open V C Bj such
that

bj =b+df d=d j=13
gi=g+ef E=e
¢j =c+eh f=f
ij=1i+dh h=h

Now j = 0 is the exceptional divisor, and (b,¢, g,4) are coordinates for a fiber in E.
Let [ be the line given by z+ay+82=0, and let M, be the corresponding line condition
on P°. One may now calculate the equation of M; in V, which turns out to be

J o Jte h+p
det | d+ « b it+68 | =0
e+p gHo ¢

Since O= (0,0,0,0,0,0,0,0,0) € V obviously lies on all the line conditions, we have
O € S. We need to show that the intersection of the tangent hyperplanes of the
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line conditions at O equals the tangent plane of S at O. By expanding the above
determinant we find that Tp M is given by

afj+B°f +?h+af’(d+7) + B0+ a’Be+17) +a’c =0
The intersection of these planes as a and § varies ((a, 8) # (0,0)) is given by
b=¢=f=h=j=0 d=§ é&=1
which is 2-dimensional and thus equal to TpS. This proves that the intersection of
the line conditions on B is empty. In other words

Theorem 4.4. The variety B, obtained by the sequence of two blow-ups of P?, is a
variety of complete cubics. [

5. THE INTERSECTION RING OF B

The first aim of this section is to give a complete multiplication table of the divisor
classes on B. Our main tool will be the following intersection formula.

Lemma 5.1. Suppose L CV are nonsingular varieties of dimensions | and n. Let V
be the blowup of V' along L, and let E be the exceptional divisor with maps as shown
in the diagram.

E;»f/

s

Suppose further that N is the normal bundle of L in V with total Segre class s(N).
Assume 8 > 1, and let x € Ag(V') be the class of a 3-dimensional cycle on V. Then
the following formula holds.

B 7= (=1)P7t [ s(N)-i%
14 L

Proof. Recall that j*[E] = ¢;Og(—1) and that s(N) = Y ., p«c10g(1)" by defini-

tion. Now we have B

/[E]ﬂ'”*f”=/(J'*[E])ﬁ‘l-j*ﬂ*"’z/(010(—1))B"1-p*i*w= (—1)5_1/8(1")-2"%
v E E L

where the last equality is by the projection formula. O

In view of this lemma, what we need in order to compute intersection numbers on
B are the total Segre classes of the normal bundles Ny, /pe and Ns/p,. Let hy and ho
be the pullbacks of the hyperplane classes of each of the factors of L ~ P2 x P2, and
let ¢ be the class of a line on S ~ P2.

First we will examine the embedding f of S in B;. Let e = [E] be the class of
the exceptional divisor in B;. We would like to know the pullback of e by f. We
know that e pulls back to ¢;O(~1) on E = P(N/ps) and then also to c;O(—1) on
S =P(L). But since L is a line bundle, Og(—1) = L. It follows that

f*e = 61[, =C (U;Tps/’i*TL) = ’U;Cl (Tps) - z'*01 (TL)
= ’U;(Gh) — ’i*(3h1 + 3h2) =12t — 9t = 3t.
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Proposition 5.2.

$(Np/po) =1 — Thy — Thy + 28h% + 28h3 + 59h1 hy — 2T6h%hy — 276h1h3 + 1479A2 N3
s(Ng/p,) =1 — 15t + 120>

Proof. Recall that L is the image of a Segre embedding, r, of P2xP2ina hyperplane
in P°. Then we have:

C(N ) _ T*C(TPQ) . (1 + hi + hz)lo
L/es) = c(Tpaypz) (1+h1)3(1+ho)3

$(Np/po) = ¢(Np/pe)~" can now be obtained by expanding and inverting the above
expression.

The second part is more complicated. The following exact sequence of vector
bundles on E is well known [6, Lemma 15.4]:

0— Ofg -—ﬁp*NL/pg R0(1) — Tg — p*T, — 0

The total Chern class of the tensor product is given by (see [6, Remark 3.2.3)):

5

c(p*Npypo ® O(1)) = Y c(O(1))*ic;(Ny /po)
=0

= (1—e)°+ (1 —e)*(Thy + Thy) + (1 — e)3(21h2 + 21h2 + 39h hy) + - - -

Restricting to F = 7~ }(T) we get (recall that h; and hy pull back to 2t and ¢
respectively):

k*C(TE) =C(q*i*TL)C(q*i*NL/p9 ® 0(1))
=(1+2t)3(1 +t)3(1 + 21t — 5e + 183t — 84te + 10 + - - -)
=1 + 30t — 5e + 405¢% — 129te + 10e? + - - -

which pulls back on S to 1+ 15t + 1082 (remember that e pulls back to 3t). Finally
we have (we omit the pullbacks):

o(Ts,) _ c(Ng/s,)c(Tr) _ (1+e)(1 +15¢ +108¢%)

— =1+ 15t + 1052
o(Ts) o(Ts) DR + A9t +

¢(Ns/B,) =

and the result follows by inverting this expression. 0O

Denote by d = [D] the class of the exceptional divisor of the second blow-up. Also,
denote by e and h the classes of the pullbacks to B of [E] and [H] respectively. We
omit pullback and integral signs when no confusion is likely to occur.
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Proposition 5.3. The group of divisor classes on B is generated by d, e and h, and
the multiplication table is as follows (all other terms are zero):

e = 1479 d® =120
he® = 552 d®e = dh =45
h2e” =174 de®=deh=d"h*=9
h3eb = 42
h'e® =6 R =1

Proof. The first assertion follows from the general theory of blowing-up [6, Section
6.7], and the numbers can be computed using (5.1) and (5.2) above. For example:

h2e7=/ W;WT[HPW;[EV:/ WI[H]Q[E]’?:/S(NL/pQ)(h1+h2)2
B B, L
= /(28h% + 28h3 + 59h1ho)(h3 + h3 + 2h1hy) = 28 + 28 + 118 = 174
L

where the last “integral” was evaluated using that h2h% =1 and A3 = 0in A(L). O

Suppose W C P? is a hypersurface. The proper transforms of W in B and B;
will be denoted by W and W respectively. We shall need a formula for computing
[W] € AY(B) in terms of h, e and d. The following lemma, follows directly from the
general theory of blowing-up [6, Section 6.7].

Lemma 5.4. Let m; be the multiplicity of W along L, and let mg be the multiplicity
of W1 along S. Then

[W] = (degW)h — mie — mod
in AYB) O

We shall also need to compute the classes of proper transforms of subvarieties of
higher codimension. This can be done with Fulton’s blow-up formula [6, Theorem
6.7], but for our purposes it is more convenient to use a different version (Theorem
5.5 below).

Let V be a nonsingular variety, L a nonsingular closed subvariety, and let X be
any pure-dimensional subscheme of V. Define the full intersection class of X by L in
V by

LoX = C(NL/V) N S(LﬂX,X).

Note that if X has codimension 1 in V, Lo X = ux(L) + ¢*[X] where pux (L) is the
multiplicity of X along L (see [1, Section 2]). Applied to our first blow-up we have
for example:

LoH="h;+hy
LoM =1+ 2h; + 2hs

Another convenient result is that Lo X = X oL when both L and X are nonsingular
[2, Lemma A.1].
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Theorem 5.5. [1, Theorem II]. Suppose that V is the blowup of V along L as in

(5.1), and that X3, ..., X, are pure-dimensional subschemes of V' whose codimensions
add to the dimension of V. Then the following formula holds.
- - [T(L o X))
Xq) ..o [ X =/X o [ Xl - |
fl &= [l - [ L5

Proof. The proof is essentially the same as for the blow-up formula [6, Theorem 6.7].
One shows that both sides agree after pushing forward to V, and after pulling back
to E. The details may be found in [1]. O

6. CHARACTERISTIC NUMBERS OF NONSINGULAR CUBICS

We will now determine the characteristic numbers N, g for the family of all nonsin-
gular cubics. By (2.8) this amounts to compute the intersections [H]*[M]? in A(B).
The following lemma is an application of (5.4).

Lemma 6.1. In the intersection ring A(B) we have the following relations:

1) [H]=h
2) [M]=2h—e—d

Proof. (1) is obvious as L is not contained in any point condition. From (3.1) we
know that bc + gi = 0 is the equation for the line condition corresponding to the line
x = 0. It follows that M has degree 2 and is generically smooth along L. We also
have that M is generically smooth along S (in Section 4-2 we computed the tangent
spaces of M at points in S). Hence (2) follows from Lemma 5.4. O

By this lemma the characteristic numbers are given by
No s = h®(2h—e—d)P.

This can be evaluated by (5.3), and the result is:

Theorem 6.2. The characteristic numbers for nonsingular cubic curves in charac-

teristic 2 are
Ngo,Ng1,...,Nog =1,2,4,8,16, 26, 34,29, 13,2

where the last number, Nyg, counts one curve with multiplicity 2, and the other
numbers count each curve once.

Proof. We only need to justify the multiplicities. Since by (2.3) all multiplicities
must be powers of 2, the second last number, N; g = 13, must count each curve with
multiplicity one. By the second part of (2.3) so must the 8 preceding numbers.

We will now show that Ny g only counts one curve. Assume that C; and C; are
2 different nonsingular cubics tangent to 9 given lines in general position. The dual
curves, CY and CY, then contain the 9 corresponding points in P2. Since there is
only one cubic D passing through the 9 given points, we must have that CY = CY.
Since Np,9 = 2, C; and Cs are the only cubic curves having D as dual.
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If we assume that the equation of D is in normal form, z3 + 3 + 23 + t22yz = 0,
we have from Section 3 that the curve given by z3 + 3% + 23 + tzyz = 0 is the only
cubic in normal form having D as dual. We may then assume that C; is in normal
form, and that Cs, given by F(z,y,2) = 0, is not. Obviously, the 6 curves given by
F and permutations of the variables must all have D as dual. It follows that these
6 curves must be equal, so we may assume that F'(z,y, z) is a symmetric polynomial
(with d # 0):

F(z,y,2) = a(z® + 4>+ 2%) + d(@®y + - - + y2?) + jzyz.
By (8.1) the dual of Cs is given by:
(@ +d*)(@® +4° + 2°) +d(a + d +j) =%y + - - + y2%) + j2xy2.

Since this polynomial is assumed to be in normal form we must have that a + d = j.
Then a? + d? = 52, and the equation for Cy reduces to 22 + 3 + 23 + zyz = 0,
which implies that CY is singular. This is a contradiction since Co was assumed
nonsingular. O

Remark. Let§: P?-..— P9 be the rational map associating to each nonsingular cubic
its dual. Then we obviously have that §(M;) = H;v, but since biduality does not hold
we can not expect 6(H,) to be a line condition. In fact, the degree of §(H,) C P?
must equal N1 g. (The duals of the curves counted by N; g is the intersection of § (Hp)
and 8 point conditions in 159.) Computing the degree of the image of a variety by a
rational map can easily be done with the help of Macaulay . Doing this, we find that
6(H,) C P9 is given by a polynomial of degree 13 (with 303 terms), confirming our

computation of N; g.

7. CHARACTERISTIC NUMBERS OF NODAL CUBICS

The computation of the characteristic numbers for nodal cubics is considerably
more difficult than in the nonsingular case. Here we will take advantage of Aluffi’s
results and methods in [1], [2] and [3]; in particular Theorem 5.5 and the results
about the full intersection classes. Many of our intermediate results are similar to
Aluffi’s and some of the proofs carry over.

Suppose that R is an r-dimensional family of singular curves where the generic
curve is reduced and irreducible. Denote by R! the curves with a singularity on a
given line [, and RP those with singularity at a given point p. The following definition
will be useful when we consider nodal and cuspidal curves.

Definition 7.1. Suppose a+f3 =r—1. Define the following numbers associated to
the family R:

I‘fl’ 5 = the total characteristic numbers for R’

N, é s = the characteristic numbers for R'.
Suppose a+B8=r—2. Then define:

I";, 5= the total characteristic numbers for RP

N 5, 5= the characteristic numbers for RP.
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Note that when the generic curve in R has exactly one singularity we clearly have
Nog=Tes

Letting R in the above definition be the nodal cubics, the numbers I'y, g, fo, 5 and
N. 5, s are the total characteristic numbers for the three families N, G and P where:

N = nodal cubics
G = cubics with singularity on a given line [
P = cubics with singularity at a given point p
Also, let F' be the nodal cubics properly tangent to a given line . The characteristic

numbers N, g follow from the total characteristic numbers by the following lemma.
(Compare with [3, Theorem IJ.)

Lemma 7.2. We have the following relations between the characteristic numbers
and the total characteristic numbers for the families N, G and P:

Lap = Nap+ IBN(IX,,B—I + (g) Ng,,@—z

! l
T'a=Nasg+BNg s

Proof. We will prove that [N N M;] = [F] + [G], in other words that N and M;
intersect transversally. Let x be a general point of N N M;. All we need to show is
that the tangent hyperplanes T, N and T, M, are different. It is sufficient to show this
for a general line ! tangent to C,. But (4.1) tells us that T, M; varies as [ varies, so
in general we must have that T, M; # T,N. The lemma now follows by arguments
similar to those following Lemma 1.3 in [3]. O

Remark. That N and M intersect transversally is special for characteristic 2. In all
other characteristics we have [N N M;] = [F] + 2[G] as shown in [3, Lemma 1.3]. The
rest of Aluffi’s proof is characteristic free. The only difference is that the multiplicity
2 appears as a coeflicient in the formulas.

Consider the following blow-up diagram where B; is the blowup of P° along L as
before. .
P2xE —— P2x B

o] s

P2xL —— P2xP°
2

Let D C P2 x P? be given by the vanishing of the three partial derivatives of
F = az® + by®> + - - + jzyz. This means that (p,t) € D if and only if C; is singular
at p. Let k be the class of a hyperplane in P2.

Proposition 7.3. The full intersection class (P? x L) o D (regarded as a class in
P2 x L) is a quadratic polynomial in k, and the coefficients are given by:

L o N = coefficient of k?

L o G = coefficient of k

L o P = the constant term
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Proof. This follows from the birational invariance of Segre classes [5, Section 4.2]. See
[2, Proposition 2.1] and [3, Lemma 2.2] for details of the proofs of similar results. O

Proposition 7.4. The full intersection classes of N,G and P by L are:

Lo N =8+12(hy + ho)
Lo G =2+ 8hy +6hy + 6(hy + hy)?
Lo P = hy +2h% + 3hihg + (hy + hy)®

Proof. By (7.3) this amounts to computing (P2 x L) o D. Let W = (P2 x L)N D.
(That the intersection is transversal can easily be checked by pulling the equations
for D back to P2 x L.) This means that W = {(p,l?m) : p € I} C P? x L, so that
[W] = h1 + 2k € A(P? x L). Letting p be the inclusion of W in P2 x L we have

p*S(Ws P2 X L) = p, [c 1 :l hl + 2k

(Nw/p2xL) T 14k +2k

Since D C P? x P? is given by 3 equations of bidegrees (2,1) we have ¢(Np/p2xpo) =
(1 + h + 2k)3 which pulls back on P? x L to (1 + hy + hg + 2k)3.

P2x [ —— P2 xP?

d I

As all the varieties in the above diagram are nonsingular, the full intersection classes
commute, and we get (as classes in P2 x L):

p.l(P? X L) 0 D] =p,[D o (P* x L)] = pulc(Nppaxps)s(W, P? x L)]
(14 hq + ho + 2k)3(hy + 2k)
14+ hy + 2k

=p*S(W, P2 X L)’I:*C(ND/szPQ) =

and the result follows by expanding the last expression. O

Since L o N = 8 + 12(h; + h2), the multiplicity, m1, of N along L is 8. Let mo
denote the multiplicity of N along S. By (5.4) we have that [N] = 12k — 8¢ — mad.
To determine mo we will compute I'gg in two different ways. Since the dual of a
nodal cubic is a conic, no nodal cubic can be tangent to more than 5 given lines in
general position. Also, at most two of the lines can pass through the node, so we see
that I'p,g = 0. On the other hand by (2.8) and (5.3) we have

Tog = / (12h — 8e — mod)(2h — e — d)® = 60 — 12m,
B

so we must have mq = 5.
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Theorem 7.5. The following table gives the complete list of characteristic numbers
and total characteristic numbers for the families N, G and P:

a,8 Tap Nag Fla,;a-1 Néz,ﬁ—l Ng,ﬁ—z

8,0 12 12
71 24 18 6 6

6,2 48 25 12 11 1
53 96 30 24 20 2
4,4 144 24 36 24 4
3,5 168 8 42 22 5
2,6 123 0 33 8 5
1,7 42 0 12 0 2
0,8 0 0 0 0 0

Proof. The total characteristic numbers for N are given by
Lap= / [N)[H]*[M)P = h®(2h — e — d)P(12h — 8¢ — 5d)
B

which can be evaluated by (5.3).
The numbers fo, 5 and N, g’ 5 with 8 < 4 follow by applying (5.5) and (7.4) to the
first blow-up. For example:

b= [ (AP = [ (Gl
1
(since the intersection of 3 general point conditions in B; does not meet S)
= / [GI[H)}[M)* - / (LoG)(LoH)*(LoM)*s(Np/ps)
Po L

=96 — (24 8hy +6hg + - )(h1 + h2)3(1 + 2h;y +2h)*(1 — Thy — Tho +---)
=96 — (h1 + h2)3(2 4+ 10h; +8hg +--+) = 96 — 54 = 42
All the zeros follow from the fact (3.2) that the dual of a nodal cubic is a non-
singular conic, so that a nodal cubic can be properly tangent to at most 5 lines in

general position. The remaining numbers can now be computed using the relations
in(7.2) O

Remark. Some of the arguments above (in particular the “zero-arguments”) could
have been replaced by the computation of the full intersection classes:

SoN;=5+12t
SoGy=1+Tt+6t2
So P, =t+ 2t

combined with another application of Theorem 5.5. See [2, Section 2.1] for a similar
computation in characteristic 0.
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8. OTHER CHARACTERISTIC NUMBERS

In section 3 we mentioned the very special class of curves called j-curves. These
curves are parametrized by an open subset of the hypersurface J C P° given by
j = 0. The computation of the characteristic numbers for this family is now an easy
consequence of our previous results.

Lemma 8.1. [J] = h —e as a class in the intersection ring of B.

Proof. We know that degJ = 1, and that L C J with multiplicity one, so by (5.4)
we only need to prove that S is not contained in Ji. From Section 4 we know that
S = P(L) where the fiber of £ over a triple line I3 can be identified with NT}s M;/T}s L.
Now, by (4.2), NT};s M is just the 5-dimensional space of cubics containing the line I.
Obviously, NT;sM; ¢ J, and it follows that S ¢ J;. O

Theorem 8.2. The characteristic numbers for the family, J, of cubics with j-inva-

riant 0 are:
N8,OaN7,17 see 7N0,8 = 1a2)4)8a 10a8a4a 231

and all the numbers above count curves with multiplicity 1.

Proof. We apply (2.8) with R = J to obtain N, 3 = h*(2h —e — d)?(h —e) which can
be evaluated by (5.3). Since the last number, Ny g = 1, clearly counts curves with
multiplicity 1, it follows from (2.3) that all the other numbers will also count curves
with multiplicity 1. O

Remark. The symmetry of the numbers in (8.2) reflects the fact that the dual of a
j-curve is also a j-curve, and that (CV)Y = C for a j-curve C. This is similar to the
case of smooth conics and cuspidal cubics in characteristic 0.

We now proceed to the characteristic numbers for families of cuspidal cubics. Let
K, G}, and P, be the subvarieties of P? defined by

K = cuspidal cubics
G = cubics with cusp on a given line [
Py, = cubics with cusp at a given point p

Lemma 8.3. We have the following relations in the intersection ring of B:

[N[J] = 4[K]
[GI[J] = 2(G]
[PILJ] = [Pi]

Proof. We know from (3.5) that N N J = K set theoretically. By comparing the
degrees (degN = 12 and degK = 3) we see that the intersection multiplicity must be
4. A minute of reflection should convince the reader that set theoretically

—

NnJ=NnJ=K
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so that [N][J] = 4[K]. The other relations follow by similar arguments. O

We now use the notation from Definition 7.1 with R = K, the cuspidal cubics. This

means that Ny g, N, f% g and N, 5’ s are the characteristic numbers for the three families
K, Gy and Py, and I'y g, fo, s are corresponding total characteristic numbers. Also,
let Fy, be the cuspidal cubics properly tangent to a given line [. From (3.7) we know
that F} can also be described as the cuspidal cubics with a flex on the given line I.

The following lemma is the cuspidal version of Lemma 7.2.

Lemma 8.4. We have the following relations between the characteristic numbers
and the total characteristic numbers for the families K, Gy, and Py:

B
Ta,6 = Na,g +BNgp_1 + (2 Ne.p-2

Ths=Nos+BNE g

Proof. This is similar to the proof of (7.2). All we need to show is that [K N M;] =
[Fx] + [Gk]. Recall that deg(K) = 3 and deg(M;) = 2. From (3.8) we have that G
and Fj, both have degree 3, and it follows that K and M; intersect transcersally. O

Before we prove our final result, we note that

LoJ=yp;(L)+j*[J]=1+hy+he

SolJi=p;z(S)+ f[h]=Ff(h—e=3t-3t=0
where f is the embedding of S in B;. The last relation, S o J; = 0, basically tells us
that the second blow-up is superfluous when our family is contained in J.

Theorem 8.5. The following table gives the complete list of characteristic numbers
and total characteristic numbers for the families K, Gy and Py, and all the numbers
count curves with multiplicity 1.

1 l
a,f Tap Nag Pa,,@—i Na,ﬁ—l Nz,ﬁ—2

7,0 3 3

6,1 6 3 3 3

5,2 12 1 6 ) 1
4,3 12 0 6 2 2
3,4 6 0 3 0 1
2,5 0 0 0 0 0
1,6 0 0 0 0 0
0,7 0 0 0 0 0

Proof. The total characteristic numbers for the families K, Gy and Py follow from
(5.5) and (8.3). Recall that SoJ; = 0 so that we only need to apply (5.5) on the first
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blow-up. For example:

rhs = [ (GRS = 5 [ @I ?

=5 ([ OWIEPME - (Lo T o (Lo mP(EoMPstisym))

1
= —(48 —-42) =
(48 —42) =3

The characteristic numbers N, g and N a,p for the families K" and Gy now follow by

Lemma 8.4.

It remains to prove that the multiplicities are 1. By (2.3) this holds for N, g and
N, p . If we can show that N4 o counts two different curves, the result will be true for
N ¥ 5 and then by (8.4) also for I'y 3 and T,

N4’2 counts the curves passing through 4 given points, with the flex at another

given point p (the intersection of the two lines) and with cusp on a given line I. The
curves counted by Nf, , have the same description with cusp and flex interchanged.
Suppose p = (0,0,1) and [ is given by z = 0. Let C be a curve counted by NZ ;- Let
H be its matrix and let C* be the cuspidal cubic given by the transpose H*. Since
cof(H®) = (cof H)? it follows from (3.7) that C? has a flex at p and a cusp on [. So
C" is counted by Ni,2. Since N, counts different curves then also Ni,2 must count
different curves. 0O
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