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Abstract

In this paper we look at a model for pollution given by the equation

1
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where «, n and {uj}}=] are constants, Wq,x is a Gaussian white noise vector, {P'EJ/)IJ')' }}=] are

Poisson white noises, k is a generalized white noise distribution and {1]),-}}=1 are suitable real
functions. This equation will be studied on R™ and also on any bounded domain. We will
show that this equation has a unique solution given by an explicit solution formula.

Keywords: Gaussian and Poisson generalized white noise distributions, Wick product, Hermite
transform.

AMS 1991 Subject classifications: 60G15, 60H15, 60H30.

§1 Introduction

We will consider a stochastic model based on the PDE

%u(t,x) = %nzAu(t,x) —V-Vu(t,x) — ou(t,x) + &(t, x) €))
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where %nz is the dispersion coefficient, V is the water velocity, o is the leakage rate, &(t, x) is the
rate of increase of the chemical concentration at (t, x) and u(t, x) is the chemical concentration
at time t on location x. This equation was studied in the paper of Kallianpur et al. [KX] where
the rate of increase £(t,x) was supposed to be a Poisson random variable. We will in addition
consider the case where the drift vector V is modeled as an n-dimensional Gaussian white noise
(with independent components) and « is a generalized white noise distribution. It will be conve-
nient to work in the space (S)~" of generalized white noise distributions, since this space allows
explicit solution formulas for a wide range of possible choices for random &, V and «’s. We will
emphasis on the possibility of transforming the equation into a Gaussian equation. After solv-
ing the Gaussian equation we are able to transform the Gaussian solution into the solution of the
mixed case.

The method used to solve the Gaussian stochastic version of equation (1) is the same as the one
used by Holden et al. in [HL@UZ3]. Several other SPDE’s are solved in a similarly fashion:

e The transport equation ([GjHAUZ)).

e The pressure equation for fluid flow ([HL@UZ3]).
e The Dirichlet equation ([Gj2]).

e The Burgers equation ((HLOUZ2]).

e The Schrédinger equation ([HL@UZ]).

For more examples and background on white noise, the author would recommend [3].

§2 Preliminaries on multidimensional white noise

We will start by giving a short introduction of definitions and results from multidimensional Gaus-
sian Wick calculus, taken mostly from [Gj], [HL@AUZ3], [HKPS] and [KLS].

In the following we will fix the parameter dimension n and space dimension m.

Let
m
N:=]]s®"
i=1
where S(R™) is the Schwartz space of rapidly decreasing C*-functions on R™, and

No=([s® ) ~ ]S ®Y)

i=1 i=1
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where S’ (R™) is the space of tempered distributions.

Let B := B(AN*) denote the Borel o-algebra on N* equipped with the weak star topology and set

H = éﬁz(R")

i=1

where @ denotes orthogonal sum.

Since NV is a countably Hilbert nuclear space (cf. eg.[Gj]) we get, using Minlos’ theorem, a unique
probability measure vg on (N*, B) such that

J 0 ® qvg(w) = e 210l v e N

where [|d17, = 31T [|Pil|Z2 gn)-
Note that if m = 1 then v is usually denoted by pig.

THEOREM 2.1 [Gj] We have the following

L. ®L;B(S'(R™)) = B(I[Z, S'(RY))
2. Vg = XmﬂiG

1=

DEFINITION 2.2 [Gj] The triple

m

(J]s'®"),B,ve)

i=1

is called the (m-dimensional) (n-parameter) white noise probability space.

Fork=0,1,2,... and x € Rlet

£l = (k= 1)) Fe Th, (V2x) 5 k> 1

the Hermite functions.
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It is well known that the family {&,} C S(R™) of tensor products
éocizacx; ®"'®‘t-»cxn

forms an orthonormal basis for £2(R™).

Give the family of all multi-indecies { = ({3, ..., (,) a fixed ordering

(€M, ¢@, ..., ¢™, ...y where {® = (¢, ..., ¢®)

and define & := &; (.

Let {ex}g>; be the orthonormal basis of H we get from the collection

i—1 m—i

——
{(0,...,0,,0,...,00e H 1<i<m,1<j< o0}
and lety : N — N be a function such that

ex = (0,...,0, €rvn, 0,. .. ,0).

Finally , let ([3 BA M, Y with B0 = (B L. BY)) be a sequence
such that B = ¢v(K),
If x = (o, ..., o) is a multi-index of non-negative integers we put

k

Hy(w) = Hh“i((w, ei)).

i=1
From theorem 2.1 in [HL@AUZ] we know that the collection
{Ho(-);x € Ng;k: 0,1,...}

forms an orthogonal basis for £2(N*, B,vg) with ||Hq||z2(vs) = o where ! = ]—ﬂ‘:] ol

This implies that any f € £2(vg) has the unique representation
= Z CoHo(w)
x

where ¢, € R for each multi-index « and

||fH£2 (vg) — Z (X!Ci'

[o4
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DEFINITION 2.3 [Gj] The m-dimensional white noise map is a map

W ﬁsu&n) x ﬁS’(R“) S R™
i= i=1

given by _
Wb, w) = w;(d;) 1<i<m

PROPOSITION 2.4 [Gj] The m-dimensional white noise map W satisfies the following
1. {W®(&, )}, is a family of independent normal random variables.
2. WO(¢,:) € L2 (vg) forT <i<m.

DEFINITION 2.5 [HLAUZ3] Let0 < p < 1.

o Let (SI)°, the space of generalized white noise test functions, consist of all

f=> Hqe L ve)

such that
llfllﬁ,k = Z c2(a)TP(2N)* < 00 Vk €N
[0 4

e Let (8", the space of generalized white noise distributions, consist of all formal ex-
pansions
F=> bsHq
x

such that
Z b2 («!)'P(2N)™4 < oo for some q € N
o4

where
k

(@N)* =TT B if o = (e, ... , o).

i=1

We know that (S7)c” is the dual of (ST*)2 (when the later space has the topology given by the
seminorms || - |[px) and if F =}~ boHy € (ST) P and f = 3~ cqHa € (ST % then

(F,f) =) bacaal.
o

It is obvious that we have the inclusions
(86 C (SME C (SME° C (S pelo,1]

and in the remaining of this paper we will consider the larger space (ST)g'.
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DEFINITION 2.6 [HL@UZ3] The Wick product of two elements in (ST)g' given by
F=) asHs, G=) bgHp
o B

is defined by
FoG = Z cyHy
Y

where

Cy = Z a“bﬁ

oxt+B=y

LEMMA 2.7 [HL@UZ3] We have the following

1. EGe (8™ = FoGe (ST
2. f,ge (SM)L = foge (SML

DEFINITION 2.8 [HL@OUZ3] Let F = ) b,H be given. Then the Hermite transform of F,
denoted by HF, is defined to be (whenever convergent)

HF:=) baz*

where z = (21,2, -+ ) and 2* = 27252 - - -z if & = (otq, . .., Ok)-
LEMMA 2.9 [HLGUZ3]If F,G € (S™)g' then

H(Fo G)(z) = HF(z) - HG(z)
for all z such that HF(z) and HG(z) exists.

LEMMA 2.10 [HL@UZ3] Suppose ¢(z1,23,---) is a bounded analytic function on B4($) for
some & > 0, g < oo where

Be(8) :=1{C=(C1,0a,---) € CF; )_IC*P(2N)* < 8%},
o#0

Then there exists X € (S™)g' such that HX = g.

LEMMA 2.11 [HL@UZ3] Suppose X € (S™)¢' and that f is an analytic function in a neighbor-
hood of HX(0) in C. Then there exists Y € (S™)g' such that HY = f o HX.

THEOREM 2.12 [KLS] Let (T, Z, T) be a measure space and let ® : T — (8{{‘)51 be such that
there exists q < oo, & > 0 such that
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1. H®(z) : T — Cis measurable for all z € B4(5)
2. there exists C € L1(T, 7) such that [H®;(z)| < C(t) for all z € B,(5) and for T-almost all
t.
Then fT @, dt(t) exists as a Bochner integral in (STT)E‘. In particular,
(1 Dedt(t), d) = [(De, d) dr(t) ; ¢ € (STG-
EXAMPLE 2.13 Define the x-shift of ¢, denoted by ¢,, by dx(y) := d(y — x). Then
Exp(W{'} e (SM)g' 1<i<m,VxeR"

which is an immediate consequence of proposition 2.4 and lemma 2.11.

Instead of developing the Poisson analysis as we did with the Gaussian analysis, we only men-
tion the existence of a measure vp on HL] S’(R™) together with independent random variables

{P?)}}ﬂ which are all Poisson distributed. Moreover, we also know from [BGj] that

1 1

A5 ®),ve) = A" ®™), ve)

i=1 i=1

where U is a unitary mapping with U(BS)) = PS) —t, {Bf)}}zl being standard independent Brow-
nian motions. In particular,

m 1 m 1
([Ts'®) x [Ts"®),ve xve) = LA [ 8'(R™), ve) ® L2(] [ S'(R™), ve)
i=1 i=1 i=1 i=1
m 2
~ (8" ®Y),ve)® L[ [S'(RY), ve)
i=1 i=1

m 1
~ EZ(HS’(R“) X HS’(R“),‘VG X Vg)
i1

i=1

where the composed unitary mapping is denoted by V. Note that the last space is a Gaussian space
W = H]:{l S'(R™)). By extending the unitary mapping V/, as explained in [BGj], we may define
the combined Gaussian and Poisson distribution space, denoted by (S7")gly := V7' ((ST)gh).

§3 The pollution model in R™

We will in this and the next section assume that (bgt”‘) (w), Pt¥) is a Brownian motion starting at
location x € R™ at time t, and use the notation
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o Et*isexpectation w.r.t. the measure P*x,
e CZ(R™) are the functions on R™ with continuous derivatives up to order 2.

e C3(R") are the functions on R™ with compact support and continuous derivatives up to
order 2.

e C3([0, T] x R™) are the functions on [0, T] x R™ with compact support, t-continuity and

continuous x-derivatives up to order 2.

We are now ready to state our main result of this section:

THEOREM 3.1 Let T > 0 be given and assume furthermore that we are given functions R" >
x > f(x) € (SPYgh, [0, TIXR™ 3 (t,%) — k(t,x) € (SpY)gh, W5 € C§([0,T] x R) and
constants p; > 0 (1 <j < 1) such that

e 3(q; € N, 8¢ > 0,Ks > 0) such that

1. SUP, crn zeBq, (51) |Hf(x,z)| < K.

2. x — Hf(x,z) € C3(R™) whenever z € B, (5¢).
e 3(gqc € N, 6, > 0,K, > 0) such that

L. SUP(, )cto.TxEm 6By, (50) [FER(E X, Z)] < Kie

2. x = Hk(t,x,z) € C%(R“) whenever t € [0,T],z € By, (8«).

3. 3(B(z) > 0 Vz € By, (8«)) such that (t,x) — Hk(t,x,z) is uniformly Holder
continuous (exponent 3(z)) in (t, x) on compact subsets of [0, T] x R™.

4. Hk(t,x,z) > 0 whenever z € By, (6¢) NRY.

Then
.
u(t, x) = ET-"[f(bt) o Exp{— J k(T —8,bg) d8} o J; 7] )
T—t
T s
+ ET-tY J g(T —s, bg) o Exp{— J k(T —0,be) dO}ds o ;7]
T—t T—t
where
n T n T
Jer=Exp{) n~’ J [ngj]yznbs dbt — % n? J [Wd, o2 b, ds} 3)
=1 Tt =1 T—t
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and

1
9(t,x) = ) ;(t,x)PY),
i=1

is the unique (S:*I)E]P-Valued process which solves

ou 1 - ! ;

i zﬂzAu’"' We, o Vu—k(t,x)ou+ ;wj(t, X)PE/)M (t,x) € [0,T] x R™ (4)
):

u(0,x) = f(x) x € R" (5)

where £ and [ - ds are Bochner integrals in (S7)glp.

n

where Ay, (B4 (0)) is the space of all bounded analytic functions on B4(6) and A := % — %nZA —
Wd, o V, we will use the convention that Au(t, x) := H H{HA(Hu(t,x))}

REMARK 3.2 If u(t,x) € (Spt)gh and A(Hu(t,x)) € Ap(Bg(8)) for some g € N,5 > 0,

PROOF:

We will now adapt the all Gaussian point of view as explained in the end of section 2. We will
therefore replace g by

1
o(t,x) ==Y _j(t,x)(BY, +t/m) ©6)
j=1

Note that given 4 > 0 and q4 € N, using definition 2.8 and lemma 2.10, we have

sup Hg(t,x,z)| < Kq
(tx)€l0, TIxR™,zeBq 4 (84)

for some constant Kg > 0.

To solve equation (4), we must find § € N and § > 0 such that fi(t, x, z) := H(u(t,x))(z) €
Ap(Bg(0)) solves the equation

ot 1 =
a—‘: = AL+ W, - VE—R(t,0) - T+ 5(tx) (%) €O, TIXE  (7)
(0, x) = f(x) x € R" @)

when z € B4(3).
LEMMA 3.3 3(8 > 0,4 € N) such that z — fi(t, x, z) € Ap(By(8)) V(t,x) € [0, T] x R™.

PROOF:
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By taking absolute values in (2), we get
[TL(t, x,z)] < Kee™ < 4 TngTKK

whenever z € Ba(ﬁ) where 4 > max{qy, g, q«}and 0 < 3 < min{s, b4, 8¢} Note that we have
used the equality

n T - ) 1 n B T -
Tl = £ expl)_n! | Wy dbh =3 3 | WL, )
i=1 i=1 t

T-t
1.

which follows by using [, Corollary 8.23]. H
LEMMA 3.4 The Bochner integrals in the expression for 1.(t, x) are well-defined.

PROOF:

This is obvious from the estimates in lemma 3.3 B
LEMMA 3.5 Au(t,x) is well-defined as an element in (S;f’l)gjp V(t,x) € [0, T] x R™.

PROOF:

Since
All=—k -1+ §

it follows from lemma 3.3 that

JATL(t, %, 2)] < K (KeeT™ 4+ TKe™x) + K,
when z € By (8), i.e. the claim follows. i
LEMMA 3.6 {i(t, x, z) is the unique function which solves equation (7) when z € By (8).

PROOF:

Equation (7) may be written as

%—1:+Eﬁ:A5ﬁ+§ (t,x) € [0, T] x R™ )
(0,x) =f x € R" (10)

where A% is the second order differential operator given by
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Assume now that & € B4(8) N RY.

The operator A% is clearly uniformly elliptic with drift term which satisfies the linear growth con-
dition

!VVQ,‘Z — = |Z — Oy, ex) &l
-y
o0

<) e — by, ex)llExd

k=0
oo

<MY | lewlx)l arleuix —y
k=0 n
where

09
M= rg&xﬂ{:elllgl$a—)ql}< 00.

It follows by standard results that the stochastic process
dxt = W¢X§(£) dt+db; ; X5=x

exists with A% as generator.

The solution of (9) is given by the Feynman-Kac formula [KS, Theorem 5.7.6]

ity x, &) = ET4¥[f(X%) exp{— JT (T —0,X5) de}]

T—t
T s
+ ET—t,x[[ g(T —s, XE') exp{-— [ R(T — e, Xg’) de} dS]
JT—t JT—t

and by a change of measure this may be written as

T
i(t,x, &) = = ET[f(bq) exp{— J R(T —6,bg) dOIM, 7]
T—t
T s
+ ﬁT‘t"‘[J g(T —s,by) exp{—J R(T —6,bg) dO} dsM 1]
T—t T—t
where
" T
Mt = CXP{Z n’ J Wg) y=nbs db pl Zﬂ_z J 17 1 y—nbs ds}.
i=1 T—t

This expression is easily seen to have an analytic extension for all z € By (8) and this completes
the proof. E

The theorem now follows from the previous lemmas. =
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84 The pollution model in a bounded domain

THEOREM 4.1 Let T > 0 be given and suppose D C R™ is a bounded domain such that every
point on the boundary of 4D has the exterior sphere property; i.e. there exists a ball B > x such
that BN D =0, BN oD = {x}.

(t (52’1)6319’

Assume furthermore that we are given functions [0, T] x 0D > (t,x) — h(t,x) €
o, W € C3(10, T] x D)

Dox— dp(x) € (S,T{‘l)g;’,, and [0, T] x D 3 (t,x) — k(t,x) € (ST g'ps
and constants p; > 0 (1 <j <'1) such that

e d(gn € N,6n >0,Ky, > 0) such that

1. SUP ¢ x)e[0,TIx 2D zeBq, (6n) "Hh(t, %, z)| < Kp.

2. x — Hh(t,x,z) € C*>([0, T] x D) whenever t € [0, T}, z € Bq, (6n).
e El(qq, e N, 5¢ >0, K¢ > 0) such that

L. SuprD,zqu¢(6¢) H(x,z)| < Kg.
2. x = Ho(x,z) € C3(D) whenever z € B, (8¢)-

e J(gc € N, 6, > 0,K, > 0) such that

1. Sup(t,x)G[O,T]xD,zEBqK(SK) |HK(th) Z’)| < Kk
2. x = Hk(t,x,z) € C*(D) whenever t € [0, T],z € B, (84).

3. (B(z) > 0 Vz € Bg,(8«)) such that (t,x) — Hk(t,x,z) is uniformly Holder
continuous (exponent 3(z)) in (t, x) in compact subsets of [0, T] x D.

4. Hk(t,x,z) > 0 whenever z € B, (8,) N RY.

e h(0,x) =d(x) Yx € 0D
Then

U(t, X) = ﬁT_t’X[h(T —T, bT) < EXP{_ J K(T — S, bs) dS}X’t<T <o s7t,T]

T-t

+ ﬁT—t,x[d)(bT) OEXp{— J K(T — 8, bs) dS}XT=T <o jt,T]

T-t

+ﬁT—t,x[J g(T —s,bg) o Exp{— J k(T —0,bg) dB}ds o Ty 1]

T—t Tt
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where J; 1 is given by (3), g by (6) and T is the first time A € [t, T] that b, leaves D if such a
time exists and T := T otherwise, is the unique (Sﬁvl)afp-valued process which solves

ou 1 > ! ;
3¢ = 5 AU+ W, 0 Vu—k(t,x) out > i, )P, (t,%) €0, TIxD
j=1
u(0,x) = ¢p(x) x €D
u(t,x) = h(t,x) (t,x) € [0, T] x 6D

where £ and [ - ds are Bochner integrals in (S2) ).

PROOF:

This follows, since T < T, as in the proof of theorem 3.1, but instead of using the Feynman-Kac
formula, we use [F2, Theorem 5.2]. =
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