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ABSTRACT. This paper may be regarded as a continuation of earlier studies concerning gen-
eralizations of the Mackey-Blattner induction procedure. Replacing the subgroup H of the
group G of the classical procedure by. a locally compact group H which acts on the same
locally compact space as G and the unitary representation of H by a bounded representation
on a Banach space, we construct an isometric representation of G, depending only of the

~ equivalence class of the initial representation. We extend the Theorem on Induction in Stages
and the Tensor Product Theorem in this case.

1991 Mathematics Subject Classification. 22D30,22D12,22D10.
Supported in part by a Scholarship from the Research Council of Norway

Typeset by AMS-TEX




2 LILIANA PAVEL

0. PRELIMINARIES

The first study on infinite dimensional induced representations of locally compact (sec-
ond countable) groups appears in the memoir of G.W. Mackey ([12]) published in 1952.
Here, G.W. Mackey, first introduced a definition of induced representations for separable
locally compact groups and Hilbert spaces. Using this definition he proved four main the-
orems which he called: the Induction in Stages Theorem, The Tensor Product Theorem,
the Subgroup Theorem and the Intertwining number Theorem. Later, R. Blattner ([2])
gave an equivalent construction for arbitrary locally compact groups.

It is well known that the process of analytic continuation of Lie group representations leads
one to consider representations on Banach spaces (or even, more generally, linear system
representations), ([6]). Moreover, it can occur that the induced representation is unitary,
whereas the initial one is not. Thus it seems natural trying to extend the induction pro-
cedure in various directions.

The present paper is related to two previous generalizations of the classical induction pro-
cedure. The first one is due to R.A. Fontenot and I. Schochetman ([7]). They started
from the ideas of F. Bruhat ([4]) thereby extending the theory of induced isometric rep-
resentations in Banach spaces of H. Kraljevic ([11]) to ”p-q inductible representations”.
The second generalization made by H. Moscovici ([14]), even if treating only unitary rep-
resentations, has the advantage of replacing the subgroup H of the group G by a group
H (which need not be a subgroup of G) acting on the same locally compact space X as
G. In order to indicate the usefulness of his generalized induction procedure, we mention
that in [15], using this method H. Moscovici was able to recover the principal series of a
semisimple Lie group (take G = KAN, X = G/N, H = M A, M=the centralizer of A in
K, in the definition below.)

In the sequel we extend the theory of ”generalized induced representations” ([14]) to Ba-
nach bounded representations in the case when the ”small” group H of the original repre-
sentation is non-compact (the compact case was considered in [16], but only for isometric
representations). We note that it is straight forward to transfer all the results of this paper
to Frechet (bounded or ”p-q inductible” ([7])) representations (except the Tensor Product
Theorem). '

After the Preliminaries, we give, in the first part, an induction procedure in the following
situation: H and G are locally compact groups acting on the same locally compact space
X (called an (H-G) intermediate space) and V is a bounded representation of H in a Ba-
nach space, cf. Theorem 1.2. In the second section we state the Theorem on Induction in
Stages and the Tensor Product Theorem for this induction procedure. We closely follow
the classical proofs, emphasizing the technical modifications involved in this new situation.

Next, we shall recall some terminology and results required by our discussion and we
shall establish some new notations. Throughout this paper, G and H will be locally
compact groups. Let mg (resp. mpy) be a (left) Haar measure for G (resp. H) and Ag
(resp. Ap) the coresponding modular function. As in ([14]) we give the definition of an
(H — G) intermediate space.

Definition. A locally compact Hausdorff space X is called (H — G) intermediate if the
following conditions are fulfilled:
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(1) H acts continuously and properly by right translations on X and X/H is paracom-
pact (the H-action is denoted by 0)
(2) G acts continuously by left translations on X (the G-action is denoted by ¢ )

(3)
0(9)0(h) = 0(h)p(g), (g€G, heH)

(4) There exists a Radon measure m on X such that

pgm=m, (g €G)
0(hym = A(R)m , (h € H)
(i.e. m is G-invariant and H-relatively invariant with continuous multiplier A )

In the sequel, if needed, for showing that H and G (or only H) act on X, we shall use
the notation ¢ Xg (resp. Xg ) = X.
Let (E,|| ||) be a Banach space. As usual C(X, E) (resp. Co(X, E)) is the space of all
continuous functions from X to E ( resp. which are with compact support ). f E=R we
shall put only C(X) (resp. Co(X)).
We include here a result concerning the functions of C(X, E).

Lemma 1. Let f € C(X,E) and K be a compact subset of X. Then, for every € > 0,
there exists an open simmetric relatively compact neighbourhood W of the identity of G

such that
| f(ak) — f(k) |<e, VkeK,aeW

Proof. Let k be an arbitrary element of K. By the continuity of f, it follows that there
exists an open neighbourhood Uy, of k such that

| @)~ f(®) < 5, Yz € Uy

The application (g,z) — gz from G x X to X being continuous in (e,k), we can find a
symmetric relatively compact neighbourhood Wi of the identity in G and an open neigh-
bourhood of k (denoted here also by Uy) such that

Wi U, C Uy
The family (Uy)kex is an open covering of K, thus there exists a finite subcovering
(Uk:){1,2,....n} for K. IEW =N Wy, it is clear that W is an (open) symmetric, relatively
compact neighbourhood of the identity of G. Let a be in W, so a is in Wg,,Vi=1,2...n.
On the other hand, for every k in K, Jjo € {1,2,...,n} such that k € U, .Then
ak € ijo Uk:’o C Ukio

and
ke Uka’o c Wka’o Ukjo C Uka’o
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Consequently, for a € W and k € K we have

I f(ak) = f(k) I<I| £(ak) = f(akio) || + || F(akjo) — F(K) [[< e

Now, let X, H be as above. If 7 : X — X/H is the canonical surjection, we shall put
for z € X, © = m(x). We shall also use the notation KH = 77_1(7T(K )) for any (compact)

subset K of X. It is well known that for any compact subset K of X / H, there exists a

compact subset K in X such that m(K) = K.
We also recall that, by virtue of the statements of [3] (Ch.VII, §2), there exist two functions

on X and a measure on X/H (for convenience denoted by p, § and m, resp.) such that:

(1) The function 8 (called a Bruhat function on Xp) is a continuous positive function
on X whose support has the property that suppBN K H is compact for any compact
subset K of X and 3° =1 (that is [,; B(zh)dmg(h) = 1,Vz € X).

(2) The function p (called a p-function on Xp) is a continuous positive function on X
with the properties

p(zh) = %(h)p(x), Vee X,he H
and
/X/H(/ f(@h)dmg (h))dm(z) = / flx)p(zx), Vfe Co(X)

(3)

@ = S Wpenamu(n), Ve X
x/H DH

Lemma 2. Let ¢ Xpg be an (H — G) intermediate space and a € G. Then

/ ( / £ (zh)dma (h))din(az) =
X/H JH

plaz) .« .
/X /H( /H f(zh)dmg (h) ) din(z), Vf € Co(X).

Proof. Let f be arbitrary in Co(X). Then:
[, Semamanaii) = [ (] s mimu@yaiicy) =

= a”t m(y) = z)plaz)am(z) = Zp(az) z)dm(z) =
— [ s owyims) = [ @nteim) = [ 122 )dm )

= z plazh) m m(z) = zh)dm plaz) m(z
- /X o /H e A ()i ) /X o /H fah)dm () S aina)

Finally, if E is a Banach space, let L(E) be the bounded invertible operators on E.
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Definition. A bounded representation V of H on the Banach space E is a homomorphism
of H into L(E) which is strongly continuous and such that there exists a ¢ > 0 with

|V(R)l<ec, VheH

Remarks. 1. Tt is well known that the strong continuity of V is equivalent to weak
continuity.
2. Tt is obvious that any isometric representation is a bounded representation.

Two representations V; (i = 1,2) of H on the Banach spaces E; (i = 1,2) are said
to be equivalent if there exists an invertible bounded operator from E; to E5 such that
Vi(R)T = TV;(h), Yh € H (called an intertwining operator of V1 and V3). If, in addition,
T is an isometry, the representations Vi and V, will be called isometrically equivalent
(V1 =2Va).

1. P-INDUCED REPRESENTATIONS

Assume that p € [1,00]. We shall define (p — V') homogeneous functions on X, where
X is an (H — G) intermediate space and V a bounded representation of H on the Banach
space E. By starting from (p — V) homogeneous functions, we shall construct (for any
p € [1,00]) an induced Banach representation by V' up to G. .

Definition. A function f: X — E is called (p — V') homogeneous ([7]) if

fleh) = (CEE) VNf@), seXheH

Let CX (X, E) be the space of all functions f : X — E with the following properties:

(1) fis (p— V) homogeneous
(2) f is continuous , ‘
(3) f has compact support modulo H (i.e. m(suppf) is compact).

Theorem 1.1. With the previous notations, the next sets equality holds

¢ (X, B) = Uy : X — Blf(o) = [ (o) V) s whdmu(h), f € Co(X, E)}
J H H

Proof. First, we shall verify that fy is a continuous, (p — V) homogeneous function with

compact support modulo H.
(1) For z € X and hy € H, we have

fo(ahy) = /H (e () Vb (ahah)dms (1)

A g 7 A v -1
_ /H (G () (G () V(™ ) f () (1)
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( (hl) V(h1) (/ (-— h)) V(h~ 1)f(ﬂ?h)dvmar(h))—( (hl)) V(h1)f ()

So, as we easﬂy have seen, the function fy is (p — V) homogeneous.

(2) Fix 2o in X and € > 0. Let fg, be the function on H to E defined by fy, = f o Lg,,
(where Ly, : H — X is the right translation in zg, Lg,(h) = zoh). From the fact that H
acts properly on X and from the equality

suppfzo = L3 (suppf)

it follows that suppfz, is compact.
Then, if Z is a fixed compact neighbourhood of the identity ey in H, there exists W a
neighbourhood of ey contained in Z such that

£
zoh) — fzol) ||< , hleH, hlew
| f(zoh) — f(zol) | o (Au) - o

1
(where Ay, = suppfe, - Z, so compact and oz, = sup (-AéH—(h))").
h€ Aqq

Let U be the neighbourhood of zy in X defined by U = zoW. It is obvious to see that for
any y € U and h ¢ Ag,, f(yh) = 0. Then, for arbitrary y in U, we have:

I fv(y) = fv(zo) II=H/H(AAH(h));V(h“l)(f(yh)—f(woh))de(h) I

3 =

</ z ()"~ | yh) = Faoh) || dra (b

Az
3

: mH(ArL‘o) =€

S o .C-
o c-mp(Azy) - Qg

Hence, the continuity of fy is proved.

(3) In order to see that the support of fir is compact modulo H, we observe that the

inclusion

m(suppfv) C w(suppf)

easily holds.

Conversely, let f be in Cz‘)/ (X, E). Then, there exists a compact subset B of X such that
n(B) = w(supp f); moreover, it is clear that BH is a (nonvoid) closed set. If ¢ is a
positive continuous function on X such that ¢|p = 1, we denote by D the open subset of
X, {ze X | [yo(zh)dmg(h) >0}

First, we prove that BH is contained in D. Indeed, let z be an element in BH. Thus,
there exists b € B and h; € H such that zh; = b. By the properties of ¢, it follows there
exists a neighbourhood of b = zh; such that ¢|y > 0. Now, using the continuity of the
application (y,h) — yh (of X x H to X) in zhi, we find that there exists a compact
neighbourhood of h; in H, denoted by W such that W C V. Then, we have

0< /W b(wh)dm(h) < /H (k) dm(h)
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and that means z € D.
Now, we define the function 8 frorn X to E by

f(x)
0(z) = fH é(zh)dmg(h) - for z€D
0 for/ ¢(zh)dmg(h) =0
H

Using the facts ”X = DUC(BH)”, "D and 0(BH) are open sets”, ”0|p and 6|¢(pp) are
continuous” it follows that @ is continuous on X. By taking

g=¢-9

it is clear that ¢ is continuous and with compact support (because supp g C supp ¢).
It is straightforward now to see that f = gy.
The theorem is proved.

Next we introduce a p-norm on CI‘,/ (X, E). First, we observe that if we fix f € CX (X, E),

for every x € X the function h — || f(zh) ||/ p(:ch)% is bounded on H. Then, we define
a positive application on X/H, denoted by Fy(f), by

| F(zh) |

Bp(f)(@) = su
eH plah)t H p(zh)?

It is clear that F},(f) is well defined.

Proposition 1.1. For every f € C;/ (X, E), the following statements hold:

(1) suppFp(f) C m(suppf)
(2) Fp(fo)(@) = (pp(zl;)))PF (f)(az), Va € G, © € X/H, (where for a € G, the
function f, on X is defined by fq(z) = f(az)).

(3) Fp(f) is bounded on X/H.

Proof. (1) Straightforward.
(2) For a € G and © € G/H, we have

IR CICIO)N | p— f(a(zh)) |

Fp(fa) (&) = sup———-F—
(.f )( ) hGH p(a:h) heH(l—)’%g—L))FpE(a(mh))

_plan)s [ F@@h) | _ plaz) s
(p(g;)) sup pp((am)h) (p(a:)) E (f)( )

(3) It is clear if one use (1).
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Remark. From the fact that the application Fy,(f)(-) is the supremum of the family of

continuous functions, ( ’; (};); YheH, it follows that F,(f)(-) is lower semicontinuous. Thus,
P h)p
for 1 < p < oo we may define

7= (. L BUErde)?

For p = oo, using once again the previous proposition, we may put

| £ lloo= supFoo(f)(&)
zeX

Proposition 1.2. For every p € [1,00], the application f —|| f ||, on C}(X,E) is a
norm with the property

I fallo=Il £ llp, Va€G.

Proof. Tt is easy to verify that Fj, : C;/ (X,E) — [0,00) is a norm. Consequently, we
shall check only the mentioned property. Let a be in G. If p € [1,00), with Lemma 2
(Preliminaries), we have:

P— &))Pdin(i) = az)? 299 g
1l [ (Bra@rane = [ m(@@rESlan

_ / Fp(f)(azyPdin(az) =I| £ |17
X/H

If p = oo we have:
| fa lloo= sup sup || f(azh) ||
zeX heH

= sup sup || f(azh) [|=]| f |loo
ax€X heH

Notation. For any p € [1,00], let BY, (X, E) be the completion of CX (X, E) with respect
to the norm || - || . For a € G we define on C)/ (X, E) the application Up(G)(a) by

Up(G)(a)(f) = fa—r

which is clearly continuous. Consequently, we may consider the extension of U,(G)(a) to
BY.(X, E), which will be also denoted by Up(G)(a).
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Theorem 1.2. The mapping a — Up(G)(a) on G is an isometric representation of G on
the Banach space B}, (X, E).

For fixed p € [1,00], this representation is named the p-induced representation of the
bounded representation V of the group H in the Banach space E and is denoted by
ind ff V.

H/G

Proof. Tt is obvious that the application a — U,(G)(a) is a group homomorphism. With
the previous proposition it is also clear that Ya € G, Up(G)(a) is an isometry. We need
only prove the (strong) continuity of the application a — Up(G)(a). To do this, it is
enough to show that if f € CZ‘,/ (X, E), for any € > 0, there exists W, a neighbourhood of
the identity eg of G, such that:

| Up(G)(a)(f) — f llp<e, VaeW

Therefore, let f be in CZ‘,/ (X, E). First, we remark that if Z is a fixed symmetric compact
neighbourhood of eg, the set w(Z(suppf)H) is compact in X/H. (Indeed, if we consider
the application on G x X/H to X/H, (g,z) — gz, the set m(Z(suppf)H) is the immage
of the compact set Z x m(suppf) under this continuous application.) Consequently, there
exists a compact K in X such that KH = Z(suppf)H. It results that for every a € Z,
supp(fa-1 — f) C KH.

Now, let € > 0 be. By virtue of Lemma 1 (Preliminaries), we obtain an open symmetric
(relatively compact) neighbourhood W of eq, W C Z such that:

| f(a™'a) — f(z) |[<e, VzeK,aeW
Let p be in [1,00). For a € W, we have

15,0 == [ Gupl L L i

cP z)~ ! a tz) = f(z) ||P dm(z
< /m”“ | fa= ) — f() [P din(a)
<@ infp(z) -(r(K) ¢

If p= o0,
| Up(G)(a)(F) = f lloo= sup sup || fa™ zh) — f(zh) |
ze€X heH

<c-sup | fla™'z) - f(z)|[<e-c, YaeW
rzeK

With the previous calculus, the theorem is proved.
Remarks. 1. It is obvious to show that (in the spite of the fact that in appearance the
~ definition of I}?}% f,( V depends of the choice of the function p in X) up to isometric equiv-
alence, ind I)f V is independent of the choice of p.

H/G

2. As it was expected, in the case where H is a closed subgroup of G, we refind the usual
definitions of induced representations in Banach spaces ([11],[7]) by taking X = G.
The next result shows that the representation 137}% 1)1{ V depends only on the equivalence

class of the original representation.
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Proposition 1.3. Let V; be two (isometrically) equivalent representations of the group
H on the Banach spaces E;, (i = 1,2). Then, the representations Iy}dG f,{ Vi, (i =1,2) are

also (isometrically) equivalent.

Proof. 1t is appearent.

In order to simplify some parts of the proofs of the main theorems of the next section,
we shall use a certain density property of the set functions { ey (¢,£) | ¢ € Co(X),£ € E },
where, for ¢ € Co(X) and £ € E, the function ey (¢,§) is defined by

v(6,6) = [ (M) ok (Wedms ()

(It is easy to see that ey (¢,€) € Cy (X, E),V¢ € Co(X),§ € E.)
The proof of the next lemma is analogous to [11] (Theorem 1(c)).

Lemma 1.1. If D is a total subset of the space E, then ey (Co(X), D) is total in B}, (X, E).

Finally, we include here another result which will be used also in the next section. This
is similar to the classical one (Theorem 5.10,[7}).

Theorem 1.3. If X is second countable and V an isometric representation of H on the
separable Banach space E, then , for each p in [1,00), the space BY, (X, E) is isometrically
isomorphic to LP(X/H, E).

2.THE INDUCTION IN STAGES AND TENSOR PRODUCT THEOREM

Let G1, G2, G be locally compact groups, X2 a (G1 — G2) intermediate space and X,
a (G2 — G) intermediate space. Assume V is a bounded representation of (G on the
Banach space E. With the previous induction procedure we can construct the isometric

representation of zgcé ff”V of G and, also the induced ”in stages” isometric represen-
1 2

tation ind X2 ind X2V of G. It is natural to pose the question”if there exists a G — Gy
G2 /'GP G1/GoP

space X1 such that the representation ind gflV is equivalent with ind 5,(2 ind z)fu V. In
G, /G G2 /'GY G1,/G2

the classical induction procedure, when G; C G2 C G, X12 = G2, X2 = G, by taking X;
equal to G, the well-known Theorem on Induction in Stages states that the representations

ind ind V and ind V are equivalent, even in the case of representations on Banach
G1./G2G2 /"G G1/G ~
spaces ([7],[11]). The theorem on induction in stages was also proved (for the above gen-

eralized induction procedure) in the particular case of unitary representations in [14] and
of isometric representations only when Gy, G2 are compact groups in [17]. Here, we state
that this theorem holds also for bounded representations on Banach spaces without the
compactness hypothesis on the groups G1, Ga.

Let G1, G2, G be locally compact groups with left Haar measures mg, , mg,, ma. Suppose
X1o, (resp. X3) is a (G2 — G1), (resp. (G — G2)) intermediate space equipped with the
measure myz, (resp. my), relatively invariant under the G action, (resp. G2 action) and
with the continuous multiplier Ay, (resp. Ag). We shall construct a (G — G1) intermediate
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space, denoted by X (like in [14]). This space will be equipped with a measure m; which,
assuming that X5/G3 is paracompact, will be invariant under the G action and relatively
invariant under the G; action with the same multiplier as the measure mjs of X2, that
is A; ([14],Prop. 2.1). Consequently, defining the (left) continuous action of the group G2
on the space Xy x X12 by 7(9)(z,y) = (zg71,9y), (9 € G2,z € X5,y € X12), let X; be the
orbit space of X3 X X2 with respect to this action (X1 = X3 X X12/G2). The elements of
X; are denoted by zoy = q(z,y), where g : X3 X X192 — X is the canonical surjection. We
define the left (continuous) action of G on X3 by ¢(s,zoy) = (sz,y), (s € G,xoy € X;1)
and the right (continuous) action of G1 on X7 by 0(s,z o y) = x o yh, (actions for which
we shall further use the notations s(z o y) = p(s,z 0 y), resp. (zoy)h =0(h,z0y)). We
notice that X; is a G — G intermediate space, the Radon measure on X3, invariant under
the G action and relatively invariant under the G action with continuous multiplier Ay,
being mg X mia/ma, ([3], §2, Prop.4), which here will be denoted by my. By virtue of the
results of [14] (§ 2), there exists on X5 X X12 a continuous strictly positive function r such
that
(1)
r(s7tz,yh) = r(z,y), VY(z,y) € X2 x X12,s € G,h € Gy

(2)

A
r(zg,97'y) = A—G;(g)r(w,y), V(z,y) € X2 X X12,9 € G2

(3)

/ frd(mg x miz) =/ dmy(zoy) [ flzg,97 y)dma,(9), Yf € Co(X2 x X12)
XoxXi12 X1 (/ \\?2

We shall observe that if 35 is a Bruhat functioh)q Xag,,and P12 is a Bruhat function on

Xi2¢,, then the positive function v definite by \\

N
.

Az oy) = /G B2(29)Bra (g~ ) dma, )

is a Bruhat function on Xi, .
Indeed, by its definition, it is clear that v is continuous such that the intersection of its
support with any set of the form KG; (K compact in X;) is a compact set. We also have:

[ At evmana, = [ ([ paanbials yh)ime, (@)ime, ()
G, G1 JG2

_ / Baleghdma, o) | Pralg™ yh)dma, () = 1
G2 G,

In the sequel we preserve the above notations and, in addition pi2, (resp. p) will be a
p-function on X1z, (resp. Xig,)- '

We are now in a position to state and prove the theorem of ”induction on stages”.
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Theorem 2.1. IfV is a bounded representation of the group G1 on the Banach space E,
X1s is a (G1 — G2) intermediate space, X, is a (Go — G) intermediate space, then, there
exists a (G1 — G) intermediate space, X1, such that, for any p € [1, c0] the representation

ind f,ﬁV is isometrically equivalent to ind fﬁ ind Z),{“V.
G G G2 /GY G1,/G2

Proof. Let X1 be the space constructed as above, starting from the spaces Xi2, X2. To

make the notations easier, we shall use v for the representation GindGif 1V, A for ngcé Z)f 12y,
1 1 2

and x for Gz'%iGg? A. In order to prove that v & x it is enough to define an intertwining
2

isometry A € L(BY}, (X1, E), By (X2, B, (X12, E))) only for the elements of CY (X1, E).
Therefore, for f € C) (X1, E) and z € X, we define on X the function f(z) by

f(@)(y) = r(z,y)7 f(z o y)

Basically, by using the facts ” X; equipped with the measure m; has the same multiplier
A; as the measure mi3 (on X12)” and ”any compact in an homogeneous space is the image
by the canonical surjection of a compact”, it can be shown that f(z) e CI‘,/ (X12, E). Hence,
_ for any f € C},’(Xl, E) we can define an application uf on X3 to C,Y(Xm, E) by

ug(z) = f(2)

We state that uy € Cp(Xa, B (X12, E)). It is straitghforward that us is (p — ) homoge-
neous and supp uys is compact modulo G3. In order to prove the continuity of uy on Xs,
let o be fixed in X, and for arbitrary z in X5, let us compute || us(z) — ug(wo) ||5. First,
we consider p € [1, 00).Then:

” uf(a:) —Uf(ﬂlo) ”£= /X y (hsug “ (uf(-’lﬁ) _lu(f(:)O))(yh) ”) dﬁ?lz(’y)
12/G1 h€EG: 1o (y

— /X ) lpf21(y)(hs§£l(icz ()% || (us(z) — us(zo))(yh) ||)Pdﬁz1§(g)

<o / P W)@, 9) || f(zoy) — F(wooy) [P dmua(y)
X12/G1
_ / ( / Bua(yh)ort @)r(z,9) || £(z o y) — f(zo 0 y) P dma, (h))dimaa(y)
X12/G1 Gy

=P i Pra(y)r(z,y) || f(z oy) — f@ooy) ||P dmaa(y)
12 .
For zo € X192, there exists a compact set K12 C Xi9, such that supp fmo = Ki2G1. Let
C = supp P12 N K12G1 be, therefore C is a compact set. For € > 0 and z € C, from the
continuity in (xo, z) of the application on Xy x X1g, (z,y) +— r(z,y)f(z o y) it follows
there exists a neighbourhood U, of (zo, 2) such that, if (z,y) € U,

r(z,9)7 || fzoy) - flzooz) ||<e?
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By taking into account that the projection on X;4 of U, denoted by U7, is a neighbourhood
of z in the space X1z, by the compacity of C C |J,.oUf,, it results that there exist

21,...2n, € C with C € |J;_, Uti. We put Tj' =Nie Uz , Where Uz, is a neighbourhood
of (o, z;) such that the projection on X2 of Uy, be Ui, (i =1,...,n). Now, if U is the

projection on Xio of [7’ which is clearly a neighbourhood of zy in X2, we have for any
yelU
r(@,y) | fl@oy) = f(mooy) [[P<e

For any y € U, we obtain:
| ug(z) —ug(zo) I5< ¢ /Cﬂlz(y)"’(w, y) || f(zoy) — f(zo 0 y) [P dmaa(y)

<cf- SUPﬁlz(y) €.
yeC

It follows that for p € [1,00), uy € CI’}(Xg,B{}(Xlz,E)).
If p = oo, by the relations

| ug (@) —ugp(z0) lo= sup (sup || (us(x) —ug(zo))(wh) )
y€X12 heGy

<c sup || fzoy)— f(zooy) |l
y€Xi2

it results also (with arguments similar to the above) the continuity of u;.
We define the linear operator A from C) (X, E) to Cg‘ (X2, BY, (X192, E)),

A(f) = us
We shall prove that A is an isometry. First, suppose p € [1,00). Then:
A p_ _ AG2 1 pdvx .
1AW 3=  p2 A (9)7F [ ug(2g) [1)Pdmaz(y)
X2/Ga 2 2

Ag,

Ba(@)(sup (3 26, <g)>"( (g)),, | X(g)ug (z) [)Pdma(z) =

X9 geGo

:/ Ba(z) || ug (@) [|P dma(z)
X2

[ b sup LI @OYR)
= [ B P oup TR S st

ﬁz(w)(/ Bra(y)(supr7 (z,y) || V(R)f(z 0 y) )P dmas(y))dma(z)
X2 X12 heG,

= / ﬂz(ﬂi)(/ Brz(y)r(z,y)(sup || V() f(z oy) ||)Pdmiz(y))dma(z)
X2 X2 heG,
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_ / Ba(@) Bz (y)r(e, ) (sup || V(R (& o y) [)Pd(ms x miz)(@,y)
XaxXi2 heGy

= [ dmaon)([| BBl sup VT o) Pime,()
X1 G heGy

/X Aaon)(sup | V) fG@os) [Pdmeon) =1 1 I

If p = 0o, we have:

I A(f) 5= Sup sup | ug(zg) llo= sup sup || A(g)us(z) [l
2 geG z€X2 geG

= sup || uf(z) [|lo= sup sup sup || f(zoyh) |
z€Xo r€X2 Y€X12 h€eGy

= sup sup || f((zoy)h) =] £l
zoy€X; heG,

With arguments similar to the compact case ([17], §2, Theorem 2), by using Lemma 1.1,
it is easy to see that the image of the operator A is dense in Bz),‘ (X3, BY,(X12, E)), hence
it follows that A is onto.

A short computation proves that A is an intertwining operator for the representations v
and x. Indeed, let a € G be and an arbitrary function f in CI‘,/ (X1, E). Then:

(x(@)A)()(@)(¥) = (x(a)us)(2)(y) = x(a)(f(z o))
= f(a™ (z 0y)) = (A(f))(@)(y) = (Av(a))(F)(=) ()

The theorem on induction in stages is proved.

We obtain next a Tensor Product Theorem ([12],[5]) for the present construction of
induced representations. The circumstances of our definition lead us to consider the pro-
jective tensor product of Banach spaces (and implicitly of operators). In order to prove
the analogue of the classical Tensor Product Theorem, we need an isometric isomorphism
between BX X 1,E1)§>BZ‘,/2 (X2, E3) and BZ‘,/ 18V2 (X x Xa, E1§>E2). Assuming that the in-

termediate space X is second countable and the Banach space E is separable, we have

(Theorem 1.3) that B, (X, E) is isometrically isomorphic to LP(X/H, E). It is known,

in general, the projective tensor product of ”LP” spaces ”is not” an ”LP” space. With

the above hypothesis, A. Kleppner ([10]) proved for p = 1 that there exists an isometric

isomorphism between L'(X;/Hy, E1)®L'(Xo/Hy) and L(X1/Hy x X2/Hs, E1QFE,). By
™ ™

virtue of this result we can generalise the Tensor Product Theorem to our context.

Therefore, for i = 1,2, let H; be a locally compact group with a (left) Haar measure

mu;, (Ei, || - ||l;) be a Banach space and V; be a bounded representation of H; on E;. Let

E1®FE5 be the projective tensor product of the spaces E; and E2 (that is the completion
U
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of the algebraic tensor product £y ® Ey under tht norm topology) and V; ® V, (defined on
H; x Hj) be the tensor product of the operators V;, i =1,2: -

(Vi ® V2)(h1, h2) = Vi(h1) ® Va(he), hi € Hy,hy € Ha.
Since, for any (h1, he) € Hy X Hy and & € Eq, & € E3 we have
| (Vi ® V2)(h1, h2) (€1 ® &2) [|=]| Vi(h1)é1 ® Va(ha)éa ||

= Vi(h1)&1 [l1 - || Va(h2)&e l2<cr-ca || &illa- | &2 l2=cr-c2 || &1 ®@ &2 ||

it results that Vi ® V4, is a bounded representation of the group H; x Hy on the Banach
space B1RE,.

™
Now, let G; be a locally compact group and X; be an (H; —G;) intermediate space (which is
second countable), i = 1,2. The Radon measure on X; is denoted by m; and its multiplier
by A;, i = 1,2. It is appearent that X; x X3 become a (H; x Hy — G1 X G2) intermediate
space if we define in a natural way the left and right actions of G; X G4, resp. Hy X Ha:

(91,92)(x1,22) = (9121, 92%2), Vz1 € X1,22 € Xo,h1 € Hy,he € Hy

(z1,22)(h1, he) = (z1h1,22h2) Vo1 € X1,22 € X2,91 € G1,92 € G2

We can consider on X7 X X5 the measure my X mg which is clearly H; X Hs invariant and
G1 X G5 quasiinvariant with the multiplier A;As.

Theorem 2.2. (The Tensor Product Theorem)

The representations ind Vi ® ind 72V, and ind X1xXay, @V, are isomet-
H, /Gy Hy /G2 H;xHy /"G1xXG2

rically equivalent.

The proof of this theorem is in essence the same as in [17] because the compactness of
the groups Hi, Hs did not intervene in any of the arguments. For this reason we shall give
here only a sketch. We preserve all our previous notations.

Proof. (Sketch) We need to find an isometry @ from By* (X1, E1)®B}?(Xs, Bs) and
BY*®V2 (X, x X,, E;®E,) which intertwines ind
p H, /G

ind K2y @ V.

H, XH2/\G1 X G2
Let us consider

X1V1® ind £V, and
Hs /G2

1

Q={fA®f| fi €Cl*(X1,EL), f» €C*(X2,E2)} C BYI(XLEI)?BYQ(X2>E2)

and ¢ defined on 2 by
?(f1® f2) = fr2

where f12: X X X3 — E1§>E2, fi2(w1,22) = f1(71) ® fa(z2)-
It suffices to prove that the mapping ® on {2 has the following properties:
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) ®(Q) is total in BY*®Y2(X; x X5, E1QE,).
T

(That is clear if we use: ”®(Q) C CY*®"2(X;® X, E1§>E2)”, Yev,ovs (012, E&1Q8&) (T1,22) =

vy (01,61) (71) ®ev, (02, &2)(22), 0; € Co(X5),&i € By, (i = 1,2), 612(21, T2) = 01(z1)-02(22)”
and Lemma 1.1).

(2

) ® is an intertwining operator on €.

(It is a short computation).

(3

) The extension by linearity of ® to BY* (X1, E1)®BY?(X;, E,) is an isometry between
T

B (X1, E1)®BY2(X,, Ez) and BY'®V2(X1 x Xy, E1&QEs)

(That is appearent by the definition of ® on (2, if we use Theorem 3 and the result of [10]
(see page 170)).

w

(2

10.
11.
12.
13.
14.
15.
16.
17.

18.
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