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A VERIFICATION THEOREM
FOR COMBINED STOCHASTIC
CONTROL AND IMPULSE CONTROL
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Abstract

We formulate a general combined stochastic control and impulse control (sequential optimal
stopping) problem. A sufficient condition for a function and a strategy to be a solution is
given. The condition involves a quasivariational version of the Hamilton-Jacobi-Bellman
(HJB) equation.
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1. Introduction

Suppose that a person has M different — more or less risky — assets, in which he can
invest his money and that at any time he can — at a certain transaction cost — change his
portfolio, i.e. transfer some of the money from any of the investments to any of the others.
In addition he has at any time t the choice of a consumption rate ¢; > 0. The goal is to
maximize the expected total utility of this consumption up to the first time either ¢ either
reaches the future value T or the fortune X; reaches the value 0 (indicating that the person
is bancrupt). What consumption rate should he choose, at what times should he transfer
money, how much money and from where to where, in order to achieve this maximum?

This is an example of a “ combined stochastic control” — problem: The person has to

find an optimal continuous time control of the stochastic system as well as optimal times
(and corresponding optimal amounts) of interventions into the system. In other words,
the problem is a combination of a stochastic control and an impulse control (sequential
optimal stopping) problem. We call such controls combined stochastic controls for short.

The purpose of this paper is to prove a sufficient condition (a verification theorem) in
terms of quasi-variational inequalities for such a combined stochastic control to be optimal
and for a given smooth function to coincide with the corresponding maximal expected
utility (the value function). The result — and the theory — constitutes a synthesis of the
theory of stochastic control and the theory of impulse control. Our result may be regarded
as a quasi-variational extension of the familiar Hamilton-Jacobi-Bellman equation from
classical stochastic control theory.

There is a rich literature on optimal stopping and stochastic control separately. Impulse
control (or sequential optimal stopping) is discussed in detail in [BL]. A slightly extended
version with application to optimal starting and stopping of sections of an economy under
uncertainty is presented in [B@1]. A special case of a combined stochastic control problem
for piecewise deterministic processes is considered in [DF]. In this paper it is proved that the
value function is the unique viscosity solution of the corresponding variational inequalities.
The quasi-variational inequalities associated to combined stochastic control are studied in
[P1], [P2] in a Sobolev space setting. The conditions assumed there, however, are too
strong for many applications.

2. Combined stochastic control

Suppose that - if there are no interventions - the state X; at time ¢ of the system we
consider satisfies an Ito stochastic differential equation of the form

(2.1) dXt = b(Xt,’U/t)dt + U(Xt,Ut)dBt ; X() =z €eR"

Here b : R — R™ and ¢ : R"* — R™™ are given Lipschitz continuous functions,
B; = By(w); t > 0, w € , is Brownian motion in R™ with filtration 7; and probability
law PY when starting at y, and u; is an JFi-adapted stochastic process with values in a
given set U C RF. The process u; = us(w) is our stochastic control, whose value we are
free to choose (within U) at any time ¢ and for any w € Q. Here we will only consider
Markov controls, i.e. controls of the form u;(w) = u(Xi(w)) where v : R* — U is a
measurable (deterministic) function. (One can show that in general one can obtain just as
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good performance by Markov controls as one can by using the (larger) class of F;-adapted
controls. See e.g. [@], Ch. XI.)

Let U denote the set of Markov controls v : R" — U such that (2.1) has a unique weak
solution X; = X/

Suppose that we at state y € R"™ decide to intervene and give the system an impulse
¢ € Z € R, where Z is a given set (the set of admissable impulse values). Suppose that
the result of giving this impulse is that the state of the system jumps immediately from y
to a new state y(y, (), where v : R” x Z — R" is a given function.

An impulse control for this system is a double (possibly finite) sequence
(2.2) V= (T1, T2 5 Ty 3G Coy e oo, G ey (V< 00)

where 7, < 7 < --- are Fi-stopping times and (i, (s,--- are the impulses, (, € Z. We
interpret T, 7y, -+ as the intervention times, i.e. the times when we decide to intervene
and give the system the impulses (1, (3, - - -, respectively. Let VV denote the set of all impulse
controls. '

If w € U is a stochastic control and v € V is an impulse control, we call the pair w =
(u,v) €U x V a combined stochastic control.

If w= (u,v) €U XV, with v = (71,72, --;(1,{2,- - ), is applied to the system {X;}, it gets

the value { X"}, which inductively can be described as follows:

¢ ¢
X=Xy + [ (XY u)ds+ [ o(Xy,us)dBs; Tpo1 St <7 <T7

(23) Tk—1 Tk—1
XY = (X;vk_,(k) c k=1,2,..., m<T*

where we put 79 = 0. Here T* = T*(w) is the explosion time of the process X}*, defined by
T*(w) = Jim (inf{t > ; [X7(@)| 2 R}) (< o0).

Let Q° = Q%" denote the law of the stochastic process X" starting at Xy = z.

We now describe the performance criterion for our system:

Let S C R" be a fixed domain and define

(2.4) T =T¢"(w) = inf{t € (0,T*(w)); X (w) ¢ S}.

(If X" (w) € S for all ¢t € (0,T*(w)) we set T'(w) = T*(w).)

We can think of S as our “universe”, in the sense that we are only interested in the system
up to the first exit time from S.

DEFINITION 2.1. The space W of admissible combined stochastic controls consists of
those combined stochastic controls w = (u,v) € U x V such that

v = (11,79, (1, (o, --) with {7} satisfying
(2.5) 1T as Q" forallzeR"
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Suppose that the profit/utility rate when the system is in state y and the control value is «
is f(y,a), where f: S x U — R is a given function. Let g : S — R be a bequest function
(0S denotes the boundary of 5).

Suppose the profit/utility of performing an intervention with impulse ¢ when the system
is in state y is K(y, (), where K : S x Z — R is a given function (S denotes the closure of
S).

Then the performance or total expected profit/utility obtained when applying the combined
stochastic control w = (u,v) € W, with v = (71,7, --; (1,2, - - +), is defined by

(2.6) T(a) = B[ O w)ds + 9(XF) - xirer + 3K (X o)

where E” is the expectation w.r.t. Q°.

The combined stochastic control problem is the following: Find the value function ® defined
by

(2.7) ®(z) =sup J¥(z); z €S
weW
and find an optimal admissible combined stochastic control w* = w*(z) = (u*,v*) € W
such that
(2.8) d(z) =J" (z); z€S.

We assume that
T

(2.9) B ([ 1£(X2, w)ldt] < o0
0

for all z € S,w € VW and that
(2.10) g:0S — R is bounded and measurable.

REMARK 2.2. Note that the impulse control part v € V of our combined stochastic
control is more general than what is usually considered in the literature, e.g. in [BL],
because we do not assume that the intervention profit K(y, () is non-zero. (See, however,
Remark 3.2.)

3. Quasi-variational HJB inequalities

In this section we state and prove sufficient quasi-variational inequalities for the problem
(2.7), (2.8). These inequalities contain as special cases both the quasi-variational inequali-
ties for impulse control (see [BL], [BO2]) and the Hamilton-Jacobi-Bellman (HJB) equation
for stochastic control (see e.g. [@], Ch. XI).
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First we introduce some notation and terminology. Let A" be the generator of the Ito
diffusion X}* obtained by applying the Markov control u and no interventions. Then A*
coincides on C2(R™) (the twice continuously differentiable functions on R" with compact
support) with the partial differential operator L* defined by

(3.1) L'p(z Zb( + Z( o")ij(z,u) 32?%,

1]1

for all functions ¢ : R™ — R for which the derivatives involved exist at z.

The Green measure G(z,-) of X* in a domain V' C R" (w.r.t. the starting point z € V) is
defined by

TV
(3.2) G(z, H) = GX"(z, H) = B / Xu(XP)dt] ; HC V. Borel sets
0

where
v =inf{t > 0; X’ ¢ V}.

A continuous function ¢ : S — R is called stochastically C* w.r.t. X, = X" if L*$(y) exists
for a.a.y w.r.t the Green measure G2 (z,-) and the generalized Dynkin formula holds for

o, i.e.
(3.3) B [p(X,)] = Bl (X,)] + B[ [ L9 g(X,)a

for all bounded stopping times 7,7 with 7 < 7/ < inf{t > 0; | X}*| > R} for some R < oo.

Remark. This concept was introduced in [B@1]. There it was proved that, under some
conditions, a function ¢ which is C' everywhere and C? outside a ’thin’ set (in a Green
measure sense) is stochastically C?. For details see [BO1].

Let H denote the space of all measurable functions h : R®™ — R. Define the intervention
operator (or switching operator) M : H — H by

(3.4) Mbh(z) = Sglelg{h(v(w, Q)+ K(,¢)}; heH,z € R".

Suppose that for each x € R™ there exists at least one ¢ = {(z) € Z such that the
supremum in (3.4) is attained and that a measurable selection ¢ = Ry (x) of such maximum
points { exists. Then we have

(3.5) Mh(z) = h(y(z, Ri(z))) + K(z, Ru(z)); z € R™.

We now formulate the quasi-variational HJB inequalities. They provide sufficient condi-
tions that a given function ¢ and a combined stochastic control w € W actually satisfies
¢ =® and w = w* in (2.7), (2.8). :




THEOREM 3.1 (Sufficient quasi-variational HIB inequalities)
a) Suppose we can find a continuous function ¢ : S — R such that
(3.6) ¢ is stochastically C* w.r.t. X}* in S, for all w € VW without interventions

(3.7) Leg(z) + f(z,a) <0 for a.a. z € S with respect to G(y,-), for all y € S and all
aecU

(38) ¢>MgonS
(3.9) ¢(Xy) — 9(Xr) - Xr<ry ast — T as. Q™" for all z € S,weW, and
(3.10) {#(X,)}r<r is uniformly integrable w.r.t. @**, for all x € S,w € W.

Then

(3.11) ¢(x) > J¥(z) forall weW,zeSb.
b) Define

(3.12) D = {=z; ¢(x) > Mg(z)}.

Suppose that, in addition to (3.6)-(3.10) above, there exists a function @ : D — U such
that

(3.13) L@ () + f(z,0(x)) =0 forall ze€D

Define the impulse control o
0= (%h%%' ";C17C27" )

inductively as follows: 7o = 0 and

(3.14) es1 = inf{t € (7, T*); X{¥) ¢ DY AT,
(3.15) Cost = m(x%’i) if A < T,

where Xt(k) is the result of applying the combined stochastic control

W = (@ (P T oo, G)).
Put @ = (u,v) and suppose
(3.16) lm7 =T as. Q¥ for all z € R™
Then
(3.17) ¢(z) = 2(z)

and the combined stochastic control w* = w € W is optimal.
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t=T

Proof. a) Assume that ¢ satisfies (3.6)-(3.10). Choose w = (u,v) € W, where
v = (7_177-27"';<17C27' )

For R > 0 put
Tr = R A inf{t > 0;|X}°| > R}

and set
0k ZQI(QR) :Tk/\TR,Xt:th.

Then by the generalized Dynkin formula and (3.7)

Ok+1

Eﬂ(wﬂ—WW&A+WUAW%XMﬂ

(3.18) -
< B*(p(Xg)] - B[ | £ u(X)d).
O
Or, ;
B [3(Xe,)) — Bl9(Xep, )] = B[ [ (X3, u(X0))dt].
Ok

Letting R — oo we obtain

Thk+1

N2 B[ £ u(X)dd.

Tk

(3.19) E*[¢(Xq)] — E*[9(X,

k+1
Summing from k£ = 0 to kK = m gives

¢(x) +ZEZ [6(Xn) — ¢(X)] = B [P(Xc- )]

(3.20) -
> B [ F(Xu(X0))dd].




Now

(Xn) = p(V(X;r, &) S MP(Xo) — K(X,G) i 7 <T

B2 g% = 60X,) = 9(Xn) - xaper) £ 7= T,

and therefore

1)+ 3 FF(MO(X, ) — §(X,)  Xner]
(3.22) e

> B [ (X u(X0)dt + $(X..., +ZK( G

0

By (3.8)

(3.23) My(X,) — $(X,.) <0

and hence

(520 o0) 2 B | SO+ 00, )+ 32K O Gl

0
Letting m — N (N < oo) we get, using (2.5), (2.9), (3.9) and (3.10),

(325) o) 2 B[ £ u(X0)dt+g(Xr) - xirary + 2 K (Xor, Gl
k=1

0
Hence ¢(z) > J*(z) as claimed in (3.11).

b) Next, assume that (3.13) also holds. Define ¢ = (71,73, -; i, Co, - -) by the formulas
(3.14) and (3.15) and put @ = (@,9). Then repeat the argument in part a) for w = @: We
see that in all the inequalities (3.18) - (3.24) we now get equalities. So we conclude that

Fm1 m
(3260  ¢(a) = B [ (X, 0(0)dt+ (X)) + Y K(X5 )] for all m.
0 k=1
By (3.16) we have that & = (4,9) € W and by letting m — oo in (3.26) we get
(3.27) o(z) = J?(z).
Combining this with (3.11) we obtain

o(z) > sup JU(z) > J¥(z) = ¢(z)

Hence ¢ = ® and w* = @ is optimal. O




REMARK 3.2. Condition (3.16) in Theorem 3.1 will hold automatically if the inter-
vention profit K (y, () satisfies the following condition:

For all 7y € S there exists § > 0 such that |z — zy| < § = |K(z,{)| > 6

2
(3:28) for all ¢ € Z.

(In other words, K (z, ) is locally bounded away from 0.)
To see this assume that (3.28) holds and define

k—oo

Then 7 < T. Let Qy = {w;7(w) < T}. For w € Qy we have that

lim X; (w) = Xs-(w) € S

m—00 m

and so there exists by (3.28) §(w) > 0 and kg(w) < oo such that
K (X (w),G)| > 6(w)  for all k> ko(w).

Therefore we get a divergent series on the right hand side of (3.26), for all w € €)y. Hence
Q*[%] = 0 and (3.16) is proved.

REMARK 3.3. In [M@] Theorem 3.1 is applied to the problem of controlling optimally
the currency exchange rate under uncertainty.

In [W] the impulse control part of Theorem 3.1 is applied to the stochastic rotation problem
in forestry.
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