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Abstract

A stylized model is considered: Two firms have one irreversible invest-
ment opportunity each. The firm which invests first can enjoy being the
sole producer in a market with uncertain demand, until the other firm
invests. A nontrivial game arises if both firms have incentive to exploit
that advantage.

Equilibrium investment strategies are found. If the equilibrium strate-
gies are played and the firms have equal unit cost, the smaller of the
firms will invest first. The equilibrium strategies might lead to earlier
investment than in the monopoly case.

1 Introduction

The classical attempt to explain investment behaviour is the present value prin-
ciple (See for instance Copeland and Weston for an overview [3]). Intuitively,
the present value principle is not an optimal investment rule except for the un-
real case of full certainty. When the expected reward from investing is zero,
one would be at least as well off not investing at all, and it therefore seems
reasonable to demand an expected reward higher than zero. In other words,
the value of having the option to invest later is strictly positive if there is any
possibility that conditions might turn out more favourable in the future.
These and related ideas are discussed in the literature on real options, which
treats the problem of how to take uncertain future price development into ac-
count when making investment decisions. The main body of the literature con-
siders the investment problem of a monopoly firm (for instance McDonald and
Siegel [8] or Kobila [7]). A broader discussion may be found in Dixit and Pindy-
ck [4]. According to the analysis conducted in most of these papers, investors




should postpone exercising their options to invest until expected reward has
reached a level which exceeds the option value of their investment possibility.
The real option approach seems to be more consistent with empirical obser-
vation than the classical attempts to explain investment behaviour, although
thorough statistical analysis of the matter has been difficult because of lack of
suitable data (see Abel and Blanchard [1]).

A firm waiting for a high expected reward, must in many cases be prepared
for the possibility that competitors might be tempted by the profit opportuni-
ties, and choose to enter the market at some time (slightly) before the time at
which the waiting firm intends to invest. This will alter the profit outlook for the
firm. Concequently, if entry is possible, the investor has to think strategically.

The purpose of this paper is to investigate strategic behaviour in this context.
The simplest possible case of only two firms each owning one exlusive investment
possibility is considered through a stylized model. The analysis will reveal that
an equilibrium solution is that the firm which has the lowest point of indifference
between investing first and secondly invests first, and does so at or before the
competitor’s corresponding point of indifference. In some cases, the problem
reduces to a triviality since one of the firms will always want to invest first,
and the other will always want to wait. If unit cost is equal, the smaller firm
invests first, and the first investment is not undertaken at a time later than the
time a monopoly firm owning both projects would choose. It might very well
be undertaken at some earlier point in time.

Since the recent development in real option theory is formulated in con-
tinuous time, it is natural to look to continous game theory for mathematical
tools. A discussion of zero sum stochasic games viewed as generalized stopping
problems may be found in Avner Friedman’s book on stochastic differential e-
quations [6]. Nash equilibria, however, which are the relevant solution concept
in most economic applications such as the one at hand, are not tackled in his
paper.

Dutta and Rustichini [5] discuss non zero sum symmetric stochastic games.
Their results are too restrictive for the present situation, since we want to consid-
er cases where the firms might have different payoff functions due to differences
in the investment possibilities. A simplification of the forthcoming model to
the case that the investment possibilities are identical has been considered in
an unpublished paper by Smets [10], cited in Dixit and Pindyck’s chapter on
industry equilibrium. Smets builds his analysis on Dutta and Rustichini.

2 The game model
Let Q; be the solution to the stochastic differential equation

dQ¢ = aQqdt + Q:dBs, Qo = ¢ > 0. 1)




Consider the following investment game involving two investors A and B, where
1=A,B,j=A,Band i #j:
o The set of strategies are taken to be all pairs of stopping times (7}, 72).

e Each pair of strategies [(7},7%), (75, 73)] has investment times given by

1 e 1 1
oy iy <7p
TA= { 2 if 74 > 74, (2)
and = 7'}3 if 7'}9 < T}l 3)
B= T3 ifth > 7.

e Player i’s expected payoff is given by
Heh bl =8| [ Esera-ce|, @
T3 t

where

— 7 is the discount factor

- St = SAXtZrA (t) + SBX:ZTB (t)
— s; is the constant production capacity resulting from player ¢’s in-
vestment

— C; denotes the cost of player ¢’s investment

For a strategy (7}, 772), the first entry is interpreted as the stopping time at
which investor i plans to invest if he is first, and the second entry the stopping
time he otherwise plans to choose. In order to simplify notation, it is tempting
to specify player i’s strategy space to be only all stopping times 7; and thereby
neglect his choice of stopping time in case he is not first. One might reason
that once one of the players has invested, the game is resolved, and the choice
of stopping time in case one is not first to invest is therefore superflous. A
priori, that is too restrictive, since player j’s choice Tf normally will influence
player i’s choice 7}. On the other hand, once one of the players has moved, the
other player can do nothing better than to optimize his behaviour given that he
cannot be first. In fact, we shall be interested in eliminating equilibria which
involve strategies which do not optimize behaviour out of equilibrium.

For a given strategy pair, the investment times indicate when each of the
investors will invest if they stick to their strategies. Note that the game is
specified so that simultaneous action cannot happen. If 7} = 72, we postulate
that only one of the players can invest, and we label the investors such that it
is investor A who invests first in case of a tie. This way to tackle the problem
of ties is the same as in Friedman [6].




The fraction & is interpreted as the market price at time ¢. The process

Q: therefore 1nd1cates market demand level. The payoff is in other words the
integral of the discounted cash flow, minus the discounted cost which occurs
only at the time when the investment is undertaken. We shall suppose that
a<r.

We shall use the following solution concept:

Definition A stochastic game Nash equilibrium (at ) is a strategy pair

[(rA" 720, (73] (5)

such that i
Talrhm2), (s 8 S TR 730, (T, 78 )] (6)

for all strategies (74,73), and
TRIA 720, (73] < JBIrT 720, (76, 78] (7)

for all strategies (75, 73).

A Nash equilibrium is nothing but a strategy combination which none of
the players has incentive to deviate from, given the competitor’s strategy. As
pointed out above, there might be many Nash equilibria which are not credible
in the sense that they depend on one of the players having a strategy which
implies irrational behaviour in out of equilibrium play. In other words, there
are equilibria which depend on one of the players threatening to play in a way
which would be counter to his own interest, given the opportunity to play in
the way he threats. In our case we shall require so called subgame perfection
in order to rule out such equlhbrla More presicely, if for some stochastic game
Nash equilibrium [(TA , T2 ) ( AR 1nvestment times for player A and B
respectively are TA and TB , then We requlre TB to be optimal for player
B conditioned that player A plays TA , and TA to be optimal for player A
conditioned that player B plays 75". In other words, if A plays 73" which
would be an out of equilibrium action, then B can gain nothing from changing
strategy. Similarly, if B plays 7'};* which also would be an out of equilibrium
action, then A can gain nothing from changing strategy.

Definition Let
o Qt —rt -
A o J Ik — s I - C; O ,
fi(9) sgp [/U Py sie” "t dt — Cie (8)

and let the optimal stopping time that solves the maximization problem be
denoted by 72. Furthermore, let

* Qt —rt
l;(q) = B? / ————g;e dt — C;| . 9
W=F], s+ ©)




We shall call I;(q) the value of investing first at g, or leader’s payoff at q.
The function f;(g) is called the value at g given that the opponent has already
invested or follower’s payoff at q. Note that subgame perfection is implicitly
assumed in the definition of follower’s payoff. The functions /;(g) and f;(q)
will play a central role in characterizing subgame perfect stochastic game Nash
equilibria to the game.

In appendix 1 it is shown that

o () ~ 2
OB { 5 (3) L oelse (10)
GiFs)r—md Vi Hd=0i
where
5 _ ¥ _ S+ 85 )
i = —se-a) (25 o, 1)
and
2
'62—2—a+\/(ﬁ2—2—a) +26%r
v= iz > 1. (12)
Furthermore,
vy
9 .2 —-C; if 2
1i(q) :{ e (Tzqf) nesg (13)
G~ G ifg=g

Finally, if it is predetermined that firm 7 shall invest first, and that firm j will
invest at ¢ > q?, then if I;(¢}) > 0, the unique optimal trigger level of firm i is
given by

¢t = —L=(r-a)C. (14)

3 Analysis of the game

Recall that I;(q) is the value of investing first at the starting point ¢, while
fi(q) is the value of ¢’s investment possibility at g, given that player j has
already invested. The number ¢} is the leader’s optimal trigger level if it is
predetermined that he shall be the leader.

Definition Let
¢ = min{q : li(q) = fi(9)}- (15)

Examining the functions I;(g) and f;(g), it is clear that there is a least point
g; of intersection, that is, there is a point where player ¢ is indifferent between




investing first and secondly. For starting points ¢ less than g, it is a disadvantage
to invest first, while for starting points ¢ bigger than g, it is advantageous to
invest first.

Observe the following: If [(7}",737), (75", 73")] is a Nash equilibrium at
some starting point § and § < ¢y Agk”, then [(75",737), (5", 737)] is a Nash
equilibrium at all ¢ < ¢4* A ¢k”. Therefore it is sufficient to examine whether
(74", 737), (757,73™)] is a Nash equilibrium at ¢, A gk" to establish whether
(74", 737), (757, 73™)] is a Nash equilibrium at g € (0,¢4" A ¢4"]. But since

J510,73), (75, 78)] = la(a) (16)

if 75 > 7, and

J:Zl[(T}b Tfl)v (o, 7-123)] = fa(q) (17)
if 74 > 7, and 7% and 7% are optimally chosen, and likewise for I5(g) and fz(q),
this can be done comparing the functions I;(¢) and f;(q).

Theorem 3.1 Choose labels A and B such that g > Ga. For all starting
points q € (0,q}4 A @g] there exists a unique subgame perfect stochastic game

Nash equilibrium
1 * 2 * 1 * 2 *
[(Ta 74 ), (7,75 )]
g . . * * s _
with investment times 7" and 13" satisfying 75" = 74 AT and 73" = 73.

Proof We shall use that the stopping time 7} which player would choose if he
were sure to invest first, is given by a trigger level ¢} such that 7} = gy (see
proposition 6.3).

First of all, it cannot be optimal for player B to choose Té* < 7. Therefore
a subgame perfect equilibrium satisfies 75" > 7p. Let B’s strategy be (7g,73).
Since g4 < {dp, A’s best response is investing at T or at some time before
7p and preferably at 75. Suppose that ¢} > gg. Then since the value at the
starting point g of investing first at 73,

wa (4) (18)

is increasing in § for all § < gp (see the proof of Proposition 6.3), A’s best
response is to invest at 7p.

Suppose that B’s strategy is (75, 73) where gg < §g < ¢% and let ¢4, Agp =
@g. Then by the same argument as above, A’s best response is 7'}1* =714 ATB.
But then by the same argument, B’s best response is some 75" satisfying ¢k* €
(@B, q% A Gs) which implies that (7p,7%) cannot be an optimal strategy for B
if ¢4 > g5-

Suppose that A’s strategy is (74 A 75,74), where G4 satisfies Ga > ¢4 A 5.
Then obviously it cannot be an equilibrium strategy for B to invest before A,
and B’s best response is 73. a




3.1 High starting point levels

The main theorem states a possible solution if the starting point ¢ satisfies
q € (0,44 Agg], that is, the game is entered at some starting point which allows
for the equilibrium solution stated above. The question is, what if ¢ > ¢4 Agg?
In order to answer this, we need to examine the geometry of the functions I;(g)
and f;(q) more closely.

Lemma 3.2 Suppose that ¢ > q*. Then there is ezactly one point, §; < q2
j i j

such that
<filg) ifqe(0,@)
li(q) =file) ifa=qorqg>q; (19)
> filg) ifq € (@, q3).

Further, we have that l; equals f; in exactly two different points g; and §,
satisfying G; < § < q?, or l; equals f; in fewer than two points. In case both g;
and § exist, then

<file) ifqe(0,&) orqe (§,q3)
i(e)y =file) fa=qGorg=qorqg>q; (20)
> fJ(Q) qu € (‘j't7qA)’

otherwise 1;(q) < f;(q) for all positive g.

Proof The lemma follows directly from considering the expressions for the
functions /;(¢) and f;(q). |

There are two cases: Either [; equals f; in exactly two different points g;
and ¢, q; < ¢ < qf, or l; equals f; in no points or only in one tangency point.
In the last case, the game is of course trivial since player j has no incentive to
invest first.

In light of the lemma above, it is clear that 0 < ¢; < g¢. This follows from
the fact that if [;(¢) and fi(¢) meet in one tangency point, that point is g7

It is natural to ask whether ¢7 > ¢7 implies that ¢; < g;. That may be
concluded if the additional condition C; < yCj is fulfilled (see theorem 3.6 and
lemma, 7.1).

Theorem 3.3 Let § be the point g4 Agp found in theorem 3.1. Now choose the
labels A and B such that ¢4 < g% and let lp equal fp in ezactly two different
points g and §. If the starting point q satisfies § < q then all subgame perfect
stochastic game Nash equilibria at g,

1¥ 2%y (1% 2%
[(TA ' TA )’ (TB »TB )])
. . * * . . * *
have investment times T3 and 73" satisfying Ty =14 and 73" =1,V T3.

Proof There are three cases to be considered:




e If the starting point g satisfies § < g < ¢, the result follows by the same
type of argument as in the proof of Theorem 3.1.

e Suppose that the starting point ¢ satisfies § < ¢ < ¢%. First, B has
no incentive to invest in the region § < ¢ < ¢%. Let B’s strategy be
(5 ANT%,7%). If ¢ > ¢k, it follows from the argument in the proof of
proposition 6.3 that the best response from A is to invest immediately. If
q < ¢%, A must weigh the value of waiting against the reward of investing
right away. But since the reward function is concave and the value of
waiting is a convex function combining two points on the reward function,
the reward from investing right away is strictly higher than the value of
waiting. Therefore, A’s best response to B’s strategy is to invest at q.
Obviously, firm A’s best response if firm B invests first at ¢ is 73 if ¢ <
a3, else 7,. If A’s strategy is (74,73 if ¢ < ¢% else 7y), it is easily seen
that the strategy (3 A 75,75) is optimal for player B.

o If the starting point ¢ satisfies ¢ > ¢% the result is trivial.
O

Note that if the game is entered at demand levels exeeding ¢} A g5, where
the labels A and B are chosen as in theorem 3.1, it is no longer the least points
of indifference which is relevant to which firm will invest first, but rather which
firm has the least trigger level in case it is second to invest.

3.2 The trivial case of no conflicting interests

It is of interest to single out the case where one of the firms has no incentive to
invest first, since the game then reduces to a triviality. Intuitively, that might
happen if one of the firms has so high cost relative to production capacity that
very high demand levels are needed in order that the investment be profitable.

Proposition 3.4 The inequality 1;(q) < fi(q) holds for all nonnegative q if and

only if
¥ ¥
Sj Cj C,;Sj
“+1) —y= =) <1
<$i " ) e, (Cj5i> B (21)
Proof The proof may be found in appendix 2. m]

We may conclude that if the fraction g—] is sufficiently large, or g—; > 1 and

2 is sufficiently large, the expression is less than or equal to 1. Put differently,
if one of the firms has sufficiently higher cost than the other firm, or higher cost
and sufficiently low production capacity relative to the competitor, the firm
which has the higher cost has no incentive to invest first. In other words:




Proposition 3.5 Let l; < f; for all ¢ > 0. Then for all starting points ¢ > 0
there is a unique subgame perfect stochastic game Nash equilibrium

[(T,:}x*aTA )s (TB ) T B*)]

which has investment times 7" and 73" satisfying 7" = T4Vq and 73" = T3 Vq.

3.3 Comparison of the characteristics of the firm which
will invest first to the characteristics of the other firm

It is natural to ask what characterizes the firm which has the lowest point of
indifference between being first and second to invest and thereby, by theorem 3.1
which firm will invest first, in terms of cost and production capacity compared
to the other firm.

Theorem 3.6 IfC; < vC; and Cl < 2, then g; > @i, and by theorem 3.1 firm
1 will invest first.

Proof The proof may be found in appendix 2. a

Intuitively, the greater firm will plan its investment more independently of
the smaller firm, since the smaller production capacity will have lesser impact
on the product price than the bigger. If the difference in size is sufficient, it
will be relatively profitable for the little firm to be alone in the market, while
the bigger firm will plan its investment almost as if the smaller firm did not
exist. Therefore, one would suspect that the smaller firm will invest first. On
the other hand, if the firms are more equally sized, both will have a strong
interest in being first. Intuition suggests that in this case the bigger firm might
be able to exploit lower cost-production capacity ratio to invest profitably at
lower prices than the smaller, and thus manage to be first. Theorem 3.6 implies
that both views may be correct.

3.4 The case of equal unit cost

It turns out to be possible to deduce sharper results if unit costs are equal:

Theorem 3.7 Suppose that ——;} —A Then Cg > C4 if and only if G > qa,
and by theorem 3.1 firm A will mvest first.

Proof The proof may be found in appendix 2. a

In other words, if the firms have identical unit costs, the intuition that the
greater firm will plan its investment more independently of the smaller firm
than vice versa holds. The smaller production capacity has, when realized,
lesser impact on the product price than the bigger. The smaller firm invests
first, and thus achieves an extraordinary profit.




3.4.1 The firms are equal

If the firms are equal, we may write I; = I, f; = f;, & = g; = ¢. In this case
g4 AN@B = g5 Ada = q. Since the firms are indistinguishable, it is impossible to
say which firm will invest first. If ¢ = @, reward from investing first at ¢ is equal
to investing secondly at ¢. The prediction is in other words that the firms will
have equal expected profit unless ¢q already exeeds ¢ when the players enter the
game.

4 Comparison with the monopoly case

In this section, investment times chosen by the participants in the game is com-
pared to the investment times chosen by a monopolist owning both investment
projects. The case when the two investment projects in question have equal
unit cost, but are not equal, is considered. We shall se that competition might
lead to earlier investments and thereby lower product prices.

Theorem 4.1 Suppose that %ﬁ- = fg and that C4 < Cp. Suppose also that
a monopoly firm owns both investment projects A and B. Then the monopoly
firm will exercise the smaller investment project, A, first at T4, and the biggest
investment project, B, at T3 = T%.

Proof It follows from the discussion in chapter 1 that the monopoly firm will
invest at either 75 or at 5.

Since %‘; = 24 then by lemma 7.1, ¢y = ¢} = ¢?, and the monopoly firm
will realize the second investent at 7,2 no matter which investment project will
be realized first. The project that will yield most profit before time 7,2 will
therefore be realized first. Profits from the two projects before time 7,2 is given
by

Tz 7'2
Eq/ &sAe_Ttdt and Eq/ Q—tsBe_”dt. (22)
1 SA rl SB
Since the integrand is the same in the two expressions, clearly the investment
that is expected to be undertaken at the earliest time will be most profitable.
But if g—g = z—;, then by theorem 3.7 and theorem 6.3,

C4 < Cp if and only if Ga < g if and only if ¢4 A ¢k = ¢}.

5 Conclusion

The analysis has revealed that within the frames of the stated stylized model,
it is the firm which has the lowest point of indifference between investing first
and waiting to be second which invests first.

10




It is tempting to try to single out the underlying principle guiding optimal
timing behaviour more generally in order to give investors some rule of thumb
for making investment decisions in practice, and social planners some idea of
what such strategic decisions might be. The analysis suggests the following
principle the validity of which might be a topic for further research:

Act at or before the time at which the competititor is indifferent
between acting first and secondly, if you thereby can achieve higher
payoff than if you act secondly.

The underlying intuition is the following: Both players will want to invest
first at the point which would be optimal if the competitor were certain to invest
secondly. They will do so unless the competitor in that case has an incentive to
invest first. To prevent that the competitor does so, the player must invest at
the (first) point where the competitor is indifferent between investing first and
secondly, or before that point. He will of course not do so unless his own (first)
point of indifference comes before the competitor’s point of indifference.

In the case that unit cost is equal for the two investment projects, and the
investors play the equilibrium strategy, we have the following interesting results:
A monopoly firm owning both investment projects will exercise the two projects
in the same order as would result in the competitive case. Furthermore, a
competitive solution sometimes, but not always, implies that the first investment
will be undertaken at an earlier time than in the monopolist case.

6 Appendix 1: Some stopping time and bound-
ary value calculations

We solve the problem of finding I;(q) and f;(¢) backwards, by first calculating
the value of the firm which invests secondly, and thereafter the reward of being
first, using techniques from optimal stopping theory and the theory of stochastic
boundary value problems (see for instance @ksendal [9]).

6.1 Follower’s payoff

Proposition 6.1 The value at q of waiting to be second to invest, fi(q), is

given by
G (g)" ;
fil =9 "} (5%) fo<a
Grde—a1—Ci ife=d,
where

v Si + 55
= 2e-a) (21 e,
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and

2
'32—2—a+\/(ﬁ2—2—a) +28%r

v = ,32 > 1.
Proof The reward from investing secondly at ¢ is given by
hi(q) =
E? [/00 e pysidu — Ci] =2 /00 e "B Quldu — C; = K; [q - éz’] ,
0 S; + S5 Jo
(23)
where (5 + 5, )
~ sit+s;)r—a S;
= AT T 0 and Ky = i
C o C; an Gits)r—a) (24)

We need the optimal stopping time 77 and the expression for f;(g) such that
the equations

Q.3 ~
fila) = E# [e‘"f B ] K, (sup pl(e-c)er]) e
hold. A solution to this problem may be found for instance in chapter 5 of Dixit

and Pindyck [4]. Using their results, we get that Q.2 = ¢? which is the level
that triggers investment is given by

@ = %é’i, (26)
and : Y
Al = { K- () fa<d 1)
Kilg - Ci] if ¢ > ¢,
which simplifies to the formulas asserted in the theorem. |

6.2 Leader’s payoff

Since the trigger level of the second firm q]2~ is known, we are able to compute
the expected present value of the leader’s cash flow.

Proposition 6.2 The value of investing first at q, 1;(q), is given by

’y .
li(Q)z{ fza_cjﬁ(f?) “Goila<g
G =~ G ifq>q;
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Proof Suppose ¢ > qu‘ Then the second firm will invest immediately once the
first firm has invested, and the reward of the first firm is qualitatively equal to
the reward of the second firm. In other words,

li(q) = -G (28)

s
Gt s —a)
for all ¢ > ¢5.

Suppose ¢ < q?. Then the second firm will postpone its investment, and
the reward [;(¢) of the firm that invests first is the sum of the reward at the
stopping time 7'J2 when the second firm invests, and the value of the production
in the period untill the stopping time 732 is reached. Therefore

li(q) = Eq/ %sie_”dt—(;’i (29)

= F1 / —81 —Ttdt-l-/ its-sie_?‘tdtl - C; (30)
T J

2 S+
J

- p[[faeran [ (0- 2oa) el o

— q —rtg, S5 = —rt et
= E /0 Qe Mdt Iy /T'2 Qe mtdt| — C; (32)
= 4 __ % p / Qee~"tdt| — ¢, (33)
r—ao sz+s]
where
—7rt —'r‘r szzq? * —rt q.? —prr2
Qte dt| = Bte= " E Qse~"tdt| = Eq[ T].
0 r—a
(34)
Let
¢(q) = E* [e777], and ¥(t,q) = e " p(q). (35)

The theory on boundary value problems, for instance in @ksendal [9], gives that
the differential equation

oY 6’#) 23 ¢
5 T 52 =0 (36)

must be satisfied for all ¢ < ¢2. This equation can be written

e (56" @)+ aad @) - rol0)) 0. (37)
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Solving this equation and applying the boundary conditions limg o ¢(g) < oo,
and ¢(q3) = E% [e_"fz] =1, gives

$(q) = ((]i) (38)

for ¢ < qu, and it follows that I;(¢) is equal to the asserted expression. ]

6.3 Optimal trigger level of the firm which invests first

Once the leader’s reward-functionis determined, the problem of finding his op-
timal investment time is reduced to an ordinary optimal stopping problem.

Proposition 6.3 Let it be predetermined that firm i shall invest first, and that
firm § will invest at ¢ > qJQ.. If l;(q}) > 0, then the unique optimal trigger level
of firm i is given by

a = Zl(r—a)Ci.

Proof. Like in proof of Proposition 6.1, the problem is to find the optimal
stopping time 7} such that the equation

11(g) = B* [e7 7 1(Qu)| = sup B [7771:(Q-)] (39)

holds.
Let ¢(q) = I7(q), and suppose that ¢; is a fixed boundary. Then the same
reasoning as in the proof of Proposition 6.2, gives that the differential equation

—r ﬂ2 1" !
e (508 @+ oad' @ -rot)) =0 (40)
must be satisfied for all ¢ < q}. Solving this differential equation and applying
the boundary conditions lim, o ¢(q) < oo and ¢(g}) = l;(q} ), gives that

¥
q
o) =10 = 1at) (&) (a1)
for all ¢ < ¢}. The derivative with respect to g} of this expression is zero at
¢ =T (r-a). (42)
7 ,Y _ 1

According to Brekke and @ksendal [2], this (high contact) is a sufficient condi-
tion for optimality in the continuation region 0 < g < ¢}, and we conclude that

Q.,.il = q}.
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Ifq > q?., the dominant strategy for firm ¢ is to invest immediately. There-
fore, if ¢} < ¢ < ¢}, waiting can only decrease i’s profit since

q Y
w@ (%) (43)
q
is decreasing in § > ¢}. Concequently, there are no other continuation regions.
Finally, if I;(¢}) < 0, the optimal stopping time of 7 is 772. O

Remark The proof of Proposition 6.3 gives that

) = hl@) fr7 if g <qj
o= { M (e o< “

7 Appendix 2: Some technical proofs

Proof of proposition 3.4: The inequality 1;(q) < fi(q) holds for all nonnega-
tive q if and only if
¥ v
Sj Oj O,L'Sj
S} () <.
<5i - ) 7(/3(03'81‘ -

Proof If the curves f;(q) and l;(¢) meet in one point, then that point is a
tangency point. In other words, there is high contact in that point, which by
the proof of Proposition 6.3 implies that the point is equal to the optimal trigger
level ¢}, and l;(q}) = fi(g}). Therefore, I; < f; for all nonnegative ¢ if and only

if 1;(¢}) < fi(g}), which holds if and only if %f)j <1. But

Li(g}) _ @ (V_ZT - 1) B v%lcj(%s@'ijw)v = (5—3 + 1>’Y - g(c"sj)7
fi(qg) B C; (ﬁ_:l) (ﬁf;“)hy S; FyCz' Cys; .
i J (45)

O

Proof of theorem 3.6: If C; < vC; and
theorem 8.1 firm 1 will invest first.

g, < g—;, then @; > §;, and by

Proof The condition f;(q) = l;(¢) may be written

LSi(q) = TEG_Cj%I(%)v_O":Ci (7_1_1_ ) <%>":Rsi(q)-
(46)
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Equality is obtained for ¢ = ¢;. If ¢ < ¢ < §, where § = § or § = ¢,
LS;(q) > RSi(q). If ¢ < @, then LS;(q) < RS;(g). Observe that C; <
7C; implies that C; 25 > Cj (ﬁ - 1), and %— < f—; implies that ¢ > ¢3.
The supposition that § > g; together with C; < yCj; and C; < z_;:Cj leads to
the conclusion that LS;(g;) < RS;(g;) which is a contradiction since LS;(q) =
RS;(q) is fulfilled for ¢ = g;. O

Proof of theorem 3.7: Suppose that %g- = j—g Then Cp > Ca if and
only if g > qa, and by theorem 8.1 firm A will invest first.

We shall need the following lemma:

2 _ 2, ; i — Si
Lemma 7.1 ¢i = g if and only if & = o

Proof of lemma: g7 = ¢} if and only if -27(r — ) (3‘:75’—) Ci = 5(r-

a) (%’-) Cj if and only if g, =%, ]

85

As a concequence, we may write ¢7 = ¢F = ¢° if g—; = f*. By symmetry,
li = fi at ¢*.

Proof of theorem: The point §p satisfies the equation fg(q) = Ip(g) which is
equivalent to

0l v
vy (a\ _ a v a\"
¢ 7—1<Qﬁ> BT (7—1 1) (q%) Cp  (40)

A

Since ¢ = ¢4 = ¢%, we may write

r—aoa

LS(q) = —1— —C3 (1 - (q%y> = ﬁ(oB +Ca) (q%)v = RS(q). (48)

Since &€& = 2B

Ca = 54’
o[ v 7\ v
! —_ —_ =
RS @o=g = dq [7 —1(% +CA)(<12> L=q2 r-a’ “
and
[ ¢ qa\’ 1 7Cp +Ca
! — _ —_ —_ =
L8/ @omrt = 5 [T_a Cs (1 (q) )]: (r_a) o+,
(50)

We conclude that
RS'(q)q=q2 > LSl(q)q:qz, (51)

since if RS'(q)g=g2 < LS'(q)g=q2, then v < 1, which is a contradiction.
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Recall that RS = LS in two points, ¢°> and gg. Both RS and LS are
continuous functions in ¢ with continuous first derivatives. Therefore, since
RS"(q)q=q2 > LS'(q)q=¢2, we conclude that RS'(¢)g=z5 < LS'(q)q=g5-

Equation 48 above holds for ¢ = G4, when Cp is replaced with C'4 and C4
is replaced with C'p. Suppose that Cp > C4 and let g < §4. Then

“__¢, (1 - (‘2—’3)7) > 7%(CB +CA)(Z_2>7» (52)

r—oa

which is a contradiction. Consequently, Cp > C4 implies that §g > Ga.

For the converse, suppose Cp < Cy4 and let §g > §4. By symmetry, it is
sufficient to consider the case when C'g = C'4, which in the same manner leads
to a contradiction. m|
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