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1 Introduction

The earliest statements of the principle of competitive exclusion can be track-
ed back to Darwin (1859, sixth ed. 1878), cf. den Boer (1980) and Hardin
(1960). Darwin (1859) connected the principle of competitive exclusion to
biodiversity, competition should always be most severe between allied forms.
Darwin (1859) had obviously limited mathematical tools available, but the
ultimate evidence for competition, he took from the fact, that any species
would grow exponentially in the absence competition. The simplest mathem-
atical formulations of this principle describe competition for a static limiting
resource. This case was modeled already by Volterra (1926). He concluded,
in the context of his models, that one of the two competitors drives the other
to extinction, under all reasonable biological assumptions. His analysis was
later improved by Lotka (1932). Gause (1934) took the results by Volterra
(1926) and Lotka (1932) as a basis for his experimental testing of the prin-
ciple. That is why the principle of competitive exclusion is referred to as
“Gause’s principle”, in the experimental literature. Utida (1957) tried to
construct a laboratory system showing violations of the principle of compet-
itive exclusion. Although the models analyzed by Volterra (1926) and Lotka
(1932) did not allow for coexistence of any form, Utida (1957), pointed out
that nothing in general excludes oscillatory coexistence of two species com-
peting for the same resource. By a proper choice of two parasitoids competing
for the same host, he reported experimental oscillatory coexistence for more
than 70 generations.

As the above remarks show, local stability is not enough, to ensure com-
petitive exclusion in general. Moreover, the assumption that the resource is
constant does not in general hold. The next step was to develop methods
giving possibilities to check under what conditions coexistence ensues, and
which do allow investigation of models with more complicated resource dy-
namics. The first mathematically rigorous study of this kind was presented
by Hsu, Hubbell and Waltman (1977). Here the supply of the limiting nutri-
ent was assumed to be constant, not the nutrient itself, as in Volterra (1926)
and Lotka (1932). Their conclusion was that the principle of competitive
exclusion holds, ie in this case we can have neither equilibrium coexistence
nor oscillatory coexistence.

In their next study, Hsu, Hubbell and Waltman (1978) introduced and




made a careful examination of the following model for competing predators
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Here s is the prey, o and z; are predators competing for the same prey.
The parameter r is the intrinsic growth rate of the prey, K is the carrying
capacity for the prey, ¢y and c¢; are the search rates, ap and a; the search
rates multiplied by the handling times, see e. g. Holling (1959), m¢ and
m; the conversion rates and dy, d; the death-rates of the predators zo and
x1, respectively. Most of the basic properties of the system (1), including a
detailed classification of the stationary points of the system, were examined
in Hsu et. al. (1978). Here the resource is not supplied or constant, it
reproduces itself.

However, as already noted by Hsu et. al. (1978), parameter values cor-
responding to non-equilibrium coexistence exist, so the ecological principle
of competitive exclusion was violated. In some works this was shown by the
singular perturbation argument, see e. g. Muratori and Rinaldi (1989) and
Osipov, Séderbacka and Eirola (1986). Keener (1983) used multi-parameter
bifurcation analysis to prove oscillatory coexistence for a certain parameter
range. R. McGehee and R. A. Armstrong (1977) showed by an elegant con-
struction in a slightly more general case than (1), that coexistence is possible.
On the other hand, it should be noted that the range of parameter values giv-
ing rise to coexistence is narrow and that the possibility for coexistence de-
creases with the number of predators competing for the same prey, cf. Coste
(1985).

Despite that the region of the parameter space, where oscillatory coexist-
ence is allowed for, is narrow in the model (1) it is difficult to verify extinc-
tion and global stability for large areas of the parameter space of the model
(1). Some answers to this question were given by Hsu (1978)[13], Hsu et.
al. (1978), Kustarov (1986), Lindstréom (1994)[21] and Lindstrom (1994)[22].
The above papers contain sufficient (graphical) conditions for global stability
or extinction of one of the predators in the model (1). This approach is con-
tinued in this paper. Sufficient criteria for global stability are stated, which
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are graphical and easy to use. Moreover, they are valid for considerably larger
regions of the parameter space than all corresponding theorems given earlier.

2 Model

We consider the following model for competing predators

s = h(s)—zofo(s) — z1fi(s)
o = zo%o(s) (2)
i‘l = .’E11/)1(S).

Here s denotes the prey density, zo and z; are the densities of the specialist
predators feeding on the same prey s. This is a generalized version of the
model treated by Hsu et. al. (1978).

We shall analyze the model (2) qualitatively under the following general
conditions, which will be assumed throughout the paper:

(A-T) The functions h, fo, f1, o and ¢; are C'[0, 00).

(A-II) There exists a constant K, K > 0, such that & satisfies h(s) > 0
if0<s< K and h(s) <0if s<Qors>K

(A-IIT) The functions fp and f; are increasing and have unique zeros
at s =0.

(A-1V) The functions 9o and ; are increasing and there exist A; such
that 1; satisfy 1;(s) < 0if 0 < s < A; and ¢;(s) > 0 if s > X; for

i = 0,1. Moreover, we assume that Ay < A\; < K.

Remark 1 We note that the most usual specific forms of the functions in-

cluded in the model (2) are h(s) = rs(1 — s/K), fi(s) = 5=, ¢i(s) =
m; fi(s) — di, 1 = 1,2. The functions f;, ¢ = 1,2 as given in this remark are

specialist predator functional responses, cf. Holling (1959).

If (A-I)-(A-IV) are valid, the solutions remain positive and bounded, see
e. g. Lindstrom (1994)[21]. Put

h(s)
fo(s)

Fo(s) = and Fi(s) = (3)




We deduce that exactly four equilibria exist, and they are given by (0,0, 0),
(K,0,0), (Ao, Fo(X0),0), (A1,0, Fi(A1)), i.e. no interior equilibria exist, hence
this model excludes equilibrium coexistence of the predators. The origin is a
saddle point and the equilibrium (K, 0,0) is a saddle point. If F{(Ao) < (>)0
then some neighborhood of the point (Ao, Fo(Xo),0) in the (s, zo)-coordinate
plane belongs to the (un)stable manifold of the equilibrium (Ao, Fo(Ao),0). If
F{(M) < (>)0 then some neighborhood of the equilibrium (Aq, 0, F1(A1)) in
the (s, 1)-coordinate plane belongs to the (un)stable manifold of the equi-
librium point (A1,0, Fi(A1)). The equilibrium (A, Fo(Ao),0) has at least
a one-dimensional stable manifold in the interior of R3. The equilibrium
(A1,0, Fi(A1)) has at least a one-dimensional unstable manifold in the interior
of R3.

3 Extinction

According to the principle of competitive exclusion, one of the predators goes
extinct for large regimes of parameter values in the system (2). The most
important theorems giving sufficient conditions for extinction of one of the
predators can be stated as follows:

Theorem 1 Let (A-I)-(A-IV) hold and assume that there exist « > 0 and
B > 0 such that

Bip1(s) — onpo(s) < 0 (4)
when 0 < s < K, is satisfied, then the specialist predator 1 becomes extinct,
except for initial conditions in the (s,x1)-co-ordinate-plane and the (zo,x1)-
co-ordinate-plane.

The above theorem was originally proved by Kustarov (1986). A shorter
proof than the original one is presented in Lindstrém (1994)[21]. In fact, if
we consider the model (1) and put a = % and § = %, it can be seen that the
above theorem contains the preliminary extinction results, theorem 3.4 and
theorem 3.6, in Hsu et. al. (1978).

The above theorem implies that it is possible to reduce the system to a two-
dimensional predator-prey model of the form (5) provided that the conditions
given in the theorem hold, but not that the cycles disappear. Then we can
make use of the results presented in section 4.




4 Two-dimensional global stability

In section 3 some sufficient conditions for extinction of one of the predators
in system (2) was given. In this case the system (2), reduces to the following
two-dimensional system:

$ = fo(s)(Fo(s) — o)
g0 = otbo(s)- (5)

Here Fy(s) = h(s)/fo(s), as in (3). That is, a three dimensional global
stability problem has been reduced to a two-dimensional one. Since 1980, the
global stability problems of the system (5) have been considered in a large
number of papers. Loosely speaking, systems like (5) possess global stability
when Fp decreases enough. A trivial result, which usually is contained in the
more advanced global stability results states that, if Fy is decreasing, then
the system (5) is globally asymptotically stable in the positive quadrant. In
order to obtain this result, the first integral

? 1/)0(31) ds' + /mo 506 — FO(AO) dCIJ6 (6)

Fo(Mo) $6

Ao fo(Sl)

of the separable system

$ = fo(s)(Fo(Ao) — zo)

To = xO’QZ)O(S)a
can be used as a Lyapunov function. Similarly, one conclude, that if

(Fo(s) — Fo()\g)) (S — )\0) < 0, S ;é /\0,

then the system (5) is globally stable in the first quadrant. This result
was already included in the early results by Hsu (1978)[14]' and Harrison
(1979) and and can be regarded as an extension of the classical Rosenzweig-
MacArthur graphical criterion for local stability, cf. Rosenzweig and MacAr-
thur (1963).

The first remarkable extension of this result, was the mirror-image cri-
terion, by Cheng, Hsu and Lin (1981). This theorem can be stated as follows.

1See Hofbauer and So (1990) and Kuang (1990), for essential corrections regarding other
results in this work




Theorem 2 (Mirror image criterion) Consider the system (5). Let Fy
be given by (3), let (A-I)-(A-IV) hold and assume

i (7) <

h(2Xo — s) < h(s)
fo(2Xo —8) = fo(s)
for all s, max(0,2X — K) < s < Xg.

(M-I) We have

forall s, Mg < s < K,

(M-II) and

(M-III) Moreover, o(s) = mofo(s) — do and
do dO

—— — Mg > My —

fo(s) Jo(2Xo — )
for all s, Ao < s < min(2X, K)

Then (Mo, Fo(Xo)) is globally asymptotically stable for the system (5) in the
interior of the first quadrant.

A small error can be detected in the first condition, (A-I), of the original
formulation of the theorem. This is followed by a false conclusion in one of
the examples, see e. g. Arnold (1973), pp 14-15, and Ardito and Ricciardi
(1995). The error was removed in the next formulation of the theorem, Liou
and Cheng (1988). The characteristic assumptions of the theorem are the
assumptions (M-I), (M-II) and (M-III). Condition (M-I) states that F must
be decreasing in the region Ao < s < K. The geometric meaning of (M-II) is
that, if we take the mirror image of Fj in the region Ao < s < K with respect
to s = Ao, then Fj in the region 0 < s < Ag is above the mirror image of Fp
in the region Ag < s < K. The condition (M-III) can be replaced by a more
restrictive condition, that is, fo(s) is concave. Hence the theorem works well,
if the functional response is of the type given in remark 1.

The theorem is proved using comparison of the system (5) to a refer-
ence system which has the same prey isocline in the region Ay < s < K
and the mirror image of this prey isocline as prey isocline in the region




max(0,2)g — K) < s < Ag. Some improved variants of this theorem were
presented in Liou and Cheng (1988) and Kuang (1990) and these proofs were
based on comparison to a corresponding reference system with closed tra-
jectories. The problem with these extensions is that the conditions are not
easy to verify, but the authors prove that their extensions contain the mirror
image criterion, Theorem 2. The “mirror image criterion” works badly if
the functional response is not of concave type. An alternative criterion for
global stability was therefore presented in Cheng et al. (1981). Here, another
technique of proof was used. Possible limit cycles must enclose (Ao, Fo(Xo)),
and since the divergence integrated along the limit cycle is negative, it cannot
exist, since (Ao, Fo(Xo)) is locally stable. The theorem follows, because the
solutions are positive and bounded. '

Quite recently, Ardito and Ricciardi (1995) made an essential contribution
in unifying these two-dimensional global stability theorems. Their idea was
the use of the Lyapunov function,

_ eXp(’)’CIJo) SQPO(S/) ’
Vi) = SRESe (1 %) -
s exp(y20) | exp(vFo(Mo)) (7)

Fy(h)  Zp 0 vFo(Ao)

One of the key ideas in the next section is to multiply the Lyapunov function
(7) with Fo(Xo) and rewrite it as

o 2136 — Fo()\o)

Viswo) = [ S0 m explyah)dah +
zo+ s 1/10(:“,,)‘18/
[ eyt )
o

This Lyapunov-function reduces to the Lyapunov function (6) when v = 0.
Global stability results based on (8) are better than the mirror image criterion,
Cheng et. al. (1981), and its improved variants, Liou and Cheng (1988) and
Kuang (1990) because of three reasons. First it removes the somehow non-
essential condition, (M-III). Secondly, the total time-derivative of (8), with
respect to (5) is given by

V= exp(yzo) exp (’y /\Z 11/22((5:)) ds’) Po(s) (Fo(s) — Fo(s)) , (9)
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where

Fo(s) = Fo(Mo) exp (—'y /\: %ds’) , (10)

so the basic criterion for global stability is that there exists a v < 0 such that
(Fo(s) — Fo(s))(s — Xo) <0, s# Xo.

This is a purely geometrical criterion, which is much easier to check than
the criteria in the improved variants of the mirror-image theorem, Liou and
Cheng (1988) and Kuang (1990). Thirdly, the Lyapunov function is explicit
and not implicitly given by the strictly two-dimensional comparison method.
Therefore, this Lyapunov function can be extended into three-dimensions,
although it is not too evident how this should be done. In the next section I
shall show how this extension was made.

5 Main theorem

The main theorem of this paper is stated as follows.

Theorem 3 Let Fy be given by (3) and Fo be given by (10), let (A-I)-(A-IV)
hold and assume there exist a >0, f > 0 and v > 0 such that

(L-T) (Fo(s) — Fo(s)) (s = do) <0, s # Ao

(L-II) abi(s) fo(s) — Bibo(s) fi(s) + avh(s)iho(s) <0

holds for 0 < x < K. Then the equilibrium ()Xo, Fo(Xo),0) is globally asymp-
totically stable, except for initial conditions in the (s,zy)-coordinate plane
and the (zo,1)-coordinate plane.

Remark 2 In Lindstrom (1994)[21] and Lindstrém (1994)[22] I proved the
above theorem in the special case ¥ = 0. This theorem was proved using a
three dimensional variant of the Lyapunov function (6) and LaSalle’s exten-
sion theorem, cf. LaSalle (1960) and Hale (1969). In Lindstrom (1994)[21],
I showed that this theorem contains the first partial answers given by Hsu
(1978)[13], as alluded to in section 1. Furthermore, I showed, that there exist
parameter values of the system (1), such that Kustarov’s theorem, theorem
1, does not apply, but theorem 3 applies.




Proof The key idea is to extend the Lyapunov function (8) and write the
extension in the following form

zo zh — Fo( )
Viomna) = [0 exploay 220 dat +
0 0
zo+ 8 1/’0("3ll)dsl
[ gty + (11)

0

¥o(s)
“’°+f>\0f(’)ds+ ©1 "'
s Pgl(s’) eXp(’yxo) a:O

Ao fol(s))

o+

This Lyapunov function is positive. Moreover, by (A-I), it is radially un-
bounded with respect to (Ao, Fo(Xo),0) in all directions essential after that
boundedness of solutions has been proved. The total time-derivative with
respect to the system (2) is given by

= zoo(s) exp(’ymo)g@-l-
zotols) exp(7o) (exp (7 A: ;fz((j)) ds’) . 1) +
zot(s) exp(y2o) exp (7 ; 1;2((38)) ds'> (2 —1) +

_I_

fols) (Fo(s) e xlj;l)(z)) exp(YTo) exp (’7 A: Iﬁg(j)) dS') Eﬁ%

) (
fols) (Fo<s) — w0 - wlﬁ( ;) exp(720) exp ( s wa()) ds’) |

TET to(s) x s)exp(yzo) ex * Yo() s =
(e )fo( ) + z191(s) exp(Yzo) P( N fo(s’)d )

We reorganize this expression and get,

- exp(m)exp( 9ol ;d')-((Ff)(s)—Fo(s)) ols) +

zotbo(s) (€15% = 1) — ;12 i%( $) + Fo(s) (€15 = 1) gofs) -

0 (€78 = 1) ols) = e 2O (€18 = 1) ol + mata(9) e
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= exp(yzo) exp (’r /M z(( ,, ) (( o(s)) wols) +

Y51 — fl(s) s)eTE ( T§TL _ s
vt (5075~ gy ML (5 1) o)
= exp(yzo)ex Yo(s) s’
= exp(y2o) p( AO (s ,)d ( )¢o( )+
T (o) ~ BA(sIls) + &Lt

IN

exploan)ex (7 [ S8 as) - ( (i) = Fofo) vt +

. (afo(S)%bi(S) - BA(Sls) + 2b(s)in(s)) ) <0

Equality holds in the last inequality if and only if s = Ao and z; = 0. On
this line, only the equilibrium point (Mg, Fo(Ao),0) is invariant with respect
to the flow (2). In the second last inequality we used the fact that

"F™ — 1 < e

2,75~ B
and in the last inequality we used the conditions, (L-I) and (L-II), of the
theorem. The theorem follows by LaSalle’s extension theorem, cf. LaSalle

(1960) and Hale (1969). O

6 Example

In this section we apply the theorem to some specific parameter values in the
system (1). It was pointed out Lindstrom (1994)[21], that condition (L-II) is
always satisfied for the system (1), if ¥ = 0. In Keener (1983), it was shown
that the system (1), with sequence of linear transformations, can be rewritten
as

G = mo ( - AO) 0 (12




T = my (S - )\1) L1,
S+ ay

hence only six parameters can be important. We choose these six parameters
as ap = 0.1, a; = 0.6, mg = 1.0, m; = 3.0, Ap = 0.5 and A; = 0.6. In this case
theorem 1 cannot be applied, since ¥o(s) and 1(s) intersect at two points in
the interval 0 < s < 1, see figure 1(a). This means that the extinction results
in Hsu et. al. (1978) do not apply either. The expression Fy(s) — Fo(Xo)
changes sign twice in the interval 0 < s < 1, too, so the results in Lindstrém
(1994)[21] and Lindstrom (1994)[22] do not apply either, see figure 1(b). Since
the results in Hsu (1978)[13] were included in the above results, they do not
apply either. However, if we choose v = 1.8, the expression Fy(s) — Fo(s)
changes sign once in the interval 0 < s < 1, figure 1(c). The choice a =1 and
B = 3 shows that o and 8 can be chosen so that the conditions of theorem
3 still are valid, figure 1(d). Hence the equilibrium point (Ao, F'(Ao),0) of
system (12) is globally stable in the positive octant if ap = 0.1, a; = 0.6,
mo = 1.0, my = 3.0, Ao = 0.5 and A\; = 0.6.

7 Summary

We have stated and proved a new theorem for global stability of the model (2)
in this paper. The starting point was the two dimensional Lyapunov function
(7), originally presented by Ardito and Ricciardi (1995). The Lyapunov
function (7) is rewritten in a specific way, so that it is easy to see the geometric
meaning of it. After this, it is extended into three dimensions and applied
to (2). The result is two basic sufficient conditions for global stability of the
system (2) in the positive octant. These conditions are purely geometrical,
hence easy to check. At the end of the paper we apply the result to a specific
example.
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Figure 1: The system (12) is considered and the parameters are given by
ao = 0.1, a; = 0.6, mo = 1.0, m; = 3.0, Ao = 0.5 and A\; = 0.6. (a) The
functions & = (s) (solid) and = = v,(s) (dotted) intersect at two points.
(b) The functions z = Fy(s) (solid) and z = Fy(A) (dotted) intersect at two
points, too. (c) If v = 1.8, then the functions z = Fy(s) (solid) and Fy(s)
(dotted) intersect each other once. (d) If y = 1.8, @ = 1 and 8 = 3, the the
function = = afy(s)P1(s) + f1(s)Yo(s) + yah(s)o(s) is strictly negative in
the unit interval.
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