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Entropy of C*-dynamical systems defined by bitstreams

1 Introduction

From his study of binary shifts on the hyperfinite II;-factor Powers [P] initiated a systematic
study of sequences of symmetries, i.e. self-adjoint unitary operators, which pairwise either
commute or anticommute. The problem was followed up by Price [Prl], and it was shown in
[PP] that the C*-algebra generated by the symmetries was the CAR-algebra when the sequence
was nonperiodic in a natural sense and of the form M,(C) ® Z with Z abelian in the periodic
case, see [E].

The sequence (s;)ien of symmetries is a natural representation of a bitstream, i.e. a sequence
of 0’s and 1’s, by the requirement that s; and s; commute if the | —j|’th element in the sequence
is 0 and they anticommute if it is 1. Thus the problem has potential applications to the study
of bitstreams.

In the present paper we shall change Power’s problem slightly by considering sequences (s;)
with 4 ranging over all integers Z. If o is the shift s; — s;41 we obtain an automorphism of
the C*-algebra A generated by the s;’s and thus a C*-dynamical system (4, o, 7) where 7 is a
canonical invariant trace. The system (A, o, 7) turns out to have a very rich ergodic theoretic
structure. For example, in [NST] it was used to give a counter example to the additivity of the
CNT-entropy [CNT] by exhibiting a sequence (s;) such that the entropy h,g,(c®0c) = log 2 while
hr(o) = 0. We shall in the present paper initiate a systematic study of the C*-dynamical system
(A, 0, 7). Especially we shall consider the analogues of several concepts from classical (abelian)
ergodic theory like K-systems, completely positive entropy, and computation of entropies. In
addition we shall study the nonabelian concept of asymptotic abelianness. It turns out that
for different choices of bitstreams (hence of the commutation relations) there is an abundance
of examples with different properties; for example, we shall get an analogue of the celebrated
theorem of Ornstein and Shields [OS] that there is an uncountable family of nonconjugate
dynamical systems with completely positive entropy having the same value for the entropy
hr(o). Our main emphasis will be on entropy calculations. It turns out that in many cases with
the sequence nonperiodic h, (o) = %log 2, while in the periodic case it is always log 2, and there
is no value strictly between %log 2 and log2. We have been unable to determine whether there

are values strictly between 0 and %log 2.

2 Basic results

If X C N we denote by A(X) the C*-algebra generated by a sequence (s, )nez of symmetries
satisfying the commutation relations
8i8; = (—1)g(li_j|)8j8i, i,j € Z,

where g is the characteristic function of X. Note that g identifies X with the bitstream (g(n))nez-
The canonical trace 7 on A(X) is the one which takes the value 0 on all products s;; s;, - - - si,




with 43 < i < --- < i and 7(1) = 1. We denote by o the automorphism on A(X) determined
by o(s;) = siy1. The entropy h(c) = h;(c) of o with respect to 7 as defined in [CNT] is the
same as the entropy in the GNS-representation 7 due to 7 of the finite von Neumann algebra
m(A(X))" as defined in [CS], see [CNT, Thm. VII.2]. Since A(X) is an AF-algebra generated by
the finite dimensional subalgebras A[—n,n] = C*(s;:i = —n,—n +1,...,n) we can, due to the
Kolmogoroff-Sinai Theorem [CS, Thm. 2], use the notation from [CS] freely on A(X) to compute
the entropy. By abuse of notation we say X is periodic (resp. nonperiodic) if —X U {0} U X is

periodic (resp. nonperiodic).

Proposition 2.1 If X is nonperiodic then the entropy h(o) < log2.

Proof We modify an argument of Price [Pr2]. For each k € Z with k¥ < m put
Alk, m] = C*(sk, Sk+1,- - -, Sm)-

Then Alk,m] is a C*-algebra of dimension 2™*. Fix n € N and put A, = A[—n,n]. Since
U Ap, is norm dense in A(X) it suffices by the Kolmogoroff-Sinai Theorem ‘to show

n=1

. 1 1
H(Am U) = kh—grln k—-l-lH(An’ U(An)7 R ak(An)) < 5 1082-

Since 07 (Ap) C A[—n,n + k] for 0 < j < k, it follows by Property C in [CS] that
H(Ap,0(Ap),...,0%(An)) < H(A[-n,n +K)).
By [PP] A[—n,n+ k] is a factor for an infinite number of k’s. Then dim A[—n, n+ k] = 22n+k+1
it is a factor of type I J(antkin)> DENCE
H(A[=n,n +k]) = %(271 +h+1)log2.

It follows that for this &,

1
E+1

12n+k+1

T H(An 0(4n), -, 0" (Ap)) < 5 k+1

log 2,

and taking limits as k — oo

H(Ap,0) < llogQ.
2 QED

Corollary 2.2 If X is nonperiodic then h(c ® o) = log2.

Proof Since OLcj Ap ® Ay, is uniformly dense in A(X) ® A(X) and furthermore

n=0

k
C*(U o (4n) © 07 (4n)) = Al=n,n + k] © Al=n,n + K
j=0




the argument from the proof of Proposition 2.1 yields
H(A,® Ay,0®0) <log2,

hence by the Kolmogoroff-Sinai Theorem h(o ® o) < log 2. The converse inequality follows from
the proof of [NST, Thm. 4.2]. QED

The periodic case is much simpler than the nonperiodic. We conclude this section with a
discussion of this case. The results are independent of the following sections.
Suppose X C N is periodic with period p. If we write g(—n) = g(n), g(0) = 0 for the
characteristic function g of X then by periodicity
gi+np)=g(i), ne€Z, 0<i<p-1.
g(i) +g(p—i)=0mod2, 0<i<p-1L1

Let to = soSp. Then fori € Z
sito = (—1)7@OT90~g05; = tos;,

hence tp belongs to the center Z(A(X)) of A(X), hence so does t; = d/(tg) for all j € Z.
Furthermore, if j € Z then j =i+ kpfor 0 <i<p-—1, k € Z, so we have

85 = Sitititp* Livpk—1) = Sit(J)

with ¢(j) € Z —the C*-subalgebra of Z(A(X)) generated by the ¢;’s. If welet A = C*(so, ..., Sp-1),
then it follows that
AX)=A®Z.

We first compute the entropy of ¢ with respect to the canonical trace.

Proposition 2.3 If X is periodic then h(o) = log2. Moreover, if A, = A[—n,n] then
h(o) = Jim ﬁH(An).

Proof Let D;j = C*(t;). Then D; is isomorphic to the diagonal 2 x 2 matrices, and 7|D; is %
on each minimal projection. Furthermore 7(ab) = 7(a)7(b) for a € D;, b € Dj;, i # j. Thus the
restriction o|Z is the 2-shift, hence the entropy h(c|Z) = log2, and therefore h(o) > h(c|Z) =
log 2.

For the converse inequality we recall from the proof of Proposition 2.1 that

H(An,0(An),...,0%(An)) < H(A[-n,n + k)
with dim H(A[—n,n + k]) = 2"t¥+1. Thus we have

1
< i [ n+k+1 = .
H(An,a)_kh_{n k+1log2 log 2
QED




Since A(X) = AQ® Z, if 74 is the restriction of T to A, then 74 ® ¢ is a trace on A(X) for
every state ¢ on Z.

Let j1 < jo < - -+ < jg, and write jy, = iy +kep with 0 < iy < p—1, ky € Z. With the notation
introduced above sj, = s;,t(ig) with t(iz) € Z. Thus we have

Sjp -+ Sjp = Siy .- Sipt(i1) - . . t(ig),
so that
TA® @(Sjy -+ 85,) = TA(Si; - .. 83, )e(t(31) .. . t(3x)) = 0. 1)
We have o(sp—1) = sp = soto. Using this we find as in (1) that
T4 ® p(o(sjy ... 85,)) = 0.
If o is o-invariant then for t € Z, 74 ® (0 (t)) = p(o(t)) = @(t) = T4 @ ©(t). Thué TA® pis

o-invariant.

Proposition 2.4 Let notation be as above. Then the entropy hu®tp(‘7) of o with respect to the

o-invariant trace 7, ® @ 1s given by
hg@p(f’) = hy(0|2).
Proof Since Z C A(X), and hr, 0y (0|Z) = hy(c|Z) we have
hq@w(a) 2 hy(0]2).
Note that for n € N large enough
A, = Al-n,n+p] = A® Z[-n,n],

where Z[—n,m] = C*(t;: —n < t < 'm). Since

HQ@@(gm U(gn)’ Tty o.k—l(A'n)) < HQ@‘P(C*(’?{M Tt Uk—l(An)))>

and
C*(An,..., 0" Y(Ap) = A® Z[-n,n+k — 1],

we have, using that dim A = 2P,

1 ~ 1,7 1
%Hutxup(An) ce 7Uk 1(An)) < E(plogz + HQO(Z[_n’n +k- 1]))

Since in the limit

.1
dim 2 H(Z-n,n+k — 1)) < hy(o]2),

we have
H‘IA®<P(AMU) < hSO(UIZ)'

Since this holds for all n, hy, @y(0) < hy(0]Z). QED




3 Asymptotic abelianness

We shall in this section consider the case when the C*-dynamical system (A(X),0) is asymp-
totically abelian. The following two versions will be of interest, see [DKS].

Definition 3.1 Let (A,a) be a C*-dynamical system (so o is a *-automorphism of the C*-
algebra A).

(i) We say (A, «) is asymptotically abelian if
Jim |[e™(a),b]]| =0  foralla,be A.

(ii) We say (A,a) is proximally asymptotically abelian if there is a sequence (n;)iey with

n; — 00 as i — oo such that

lim ||[@"(a),d]]| =0  for alla,b € A.
1—00

In our case the concept of proximal asymptotic abelianness will be most important. This is due

to the following result.
Proposition 3.2 (A(X), o) is asymptotically abelian if and only if X is finite.

Proof Suppose (A(X), o) is asymptotically abelian. Since

2 forne X

[I[s0, a™ (s0)]ll = Il[s0, sn]ll = {0 forn e N\ X

it is immediate from asymptotic abelianness that there is ny € N such that n € N\ X for n > nq.
Thus X C {1,2,...,n0}.
o
Conversely, suppose X is finite, say X C {1,2,...,n0}. Since |J A[—n,n] is uniformly dense

n=1

in A(X), in order to show (A(X), o) is asymptotically abelian, it suffices to show
. n _ _
Jim I[c"(a),b]| =0  for a,b € A[—m,m].

Since A[—m,m] is generated by s;, —m < i < m, it suffices to consider the case when a = s;,
b=s;, -m <14, 5 < m. Let n > 2(m+ ng). Then 0"(s;) = Sijtn, so it suffices to show
14+ n —j > ng. But this is obvious since i — § > —2m. QED

If £ < m we denote by [k, m| the interval {k,k+1,...,m} CN.

Theorem 3.3 (A(X),0) is prozimally asymptotically abelian if and only if N\ X contains
intervals of arbitrary large lengths, i.e. there exist intervals [kn,mn] C N\ X with Jim (mp —

kn) = 0.




Proof Assume (A(X), o) is proximally asymptotically abelian, and let (ng) be a sequence such
that ||[c"*(a), b]|| — O for all a,b € A(X). Given m € N choose ko such that [0"*(s;), s;] = 0 for
k > ko and 4,j € [-m,m]. Then ny+i—j € N\ X, so the interval [-2m +ng,2m+n;] C N\ X.

Conversely, if [k;,mj] C N\ X with m; — k; arbitrarily large put n; = —%(m] + k;). Given
m € N choose j so large that 4m < m; — k;. Then for all 7,5 € [-m, m] we have nj + 7 — s =
%mj + %kj +r—se€ [%’- + %’L —2m, %’L + I-CQ-L + 2m] which by choice of j is contained in [k;, m;].
Thus as in the proof of Proposition 3.2, if a,b € A[—m, m| then [0™ (a),b] = 0. It follows that
(A(X),0) is proximally asymptotically abelian with sequence (n;). QED

Remark 3.4 In [NST] it was presented an example of a shift o with zero entropy. It is possible
to prove that this shift is proximally asymptotically abelian.

Remark 3.5 There is a third definition of asymptotic abelianness which is more general than
the two we have considered. Namely, one asumes that for a C*-dynamical system (4, e, G), G
a group, a: G — Aut A a representation, then for each a € A there is a sequence (gn(a)) in G
such that

Jim lleg, a)(a),b]] =0  forall b€ A,

see [DKS]. In our case this generalization gives nothing new, since it is equivalent to proximal
asymptotic abelianness. Indeed, applying the definition to a = sq there is a sequence (n;) such
that ||so, sn;]|| — O as i — oo; in other words there is ip € N such that n; € N\ X for 1 > 4.
Since we also have that
lls0; sn;+1lll = ll[s0, ™ (s1)]ll = 0,

it follows that n; +1 € N\ X, hence [n;,n; + 1] C N\ X for i > i1 > 4o for some i;. Repeating
the argument we can therefore for any ¢ € N find an interval [k, m] C N\ X such that m —k > t.
Hence by Theorem 3.3 (A(X), o) is proximally asymptotically abelian.

4 K-systems

In classical ergodic theory the concept of a K-system is very important. Narnhofer and Thirring
[NT] extended the notion to the noncommutative case, the definition being as follows.

Definition 4.1 Let (A, a) be a C*-dynamical system with an invariant tracial state 7. We say
(A,a) is an entropic K-system if for each finite dimensional C*-subalgebra B C A (or rather
B C 7:(A)") we have

lim H(B,o") = H(B).

n—oo

As was the case for the asymptotically abelian situation entropic K-systems are rare in our

case.

Theorem 4.2 Suppose X is nonperiodic. Then (A(X), @) is an entropic K-system if and only
if X is finite.




Proof Assume X is finite, say X C [1,7], r € N. Suppose B C A[—n,n] is a *-subalgebra,
and let t = 2n + 1+ r. Then for a € B and b € 0/¢(B), j € N, we have ab = ba, and from the

construction of 7, 7(ab) = 7(a)7(b). Thus
%H(B, ot(B),...,c* DY B)) = H(B) forkeN,
so that in the limit
H(B,o") = H(B). (2)

If B is a general finite dimensional C*-subalgebra of A(X) we can approximate B by a finite
dim subalgebra By belonging to some A[—n,n], and then apply [CNT; Prop. IV.3] to conclude

(2).

Conversely assume (A(X), o) is an entropic K-system. Considering A(X) in its imbedding
in the hyperfinite II;-factor R via the GNS-representation due to 7, we assume A(X)” = R.
Using strong approximation and [CNT, IV.3] one can prove that for any finite dimensional
von Neumann subalgebra B of R we have (2), where o is the extension of o to R. Then [BN,
Thm. 3.13] states that R is strongly asymptotically abelian with respect to o, hence in particular

Az 7" (s0), soll2 = 0,

where ||z||z = 7(z*z)'/2. But

i Il = 2 ifneX
smoolle =10 £nen x.

Thus as before we conclude that X is finite. QED

It follows from the work of Choda [Ch] and Price [Pr2] that if X # () is finite then h(c) =
%log 2. Our next result shows that the entropy of ¢ is obtained as the mean of the entropies of

the algebras A[—n,n].
Proposition 4.3 Let X # () be finite. Then

. 1
h(o) = Jim 2n—+1H(A[—n,n]).

Proof We follow the arguments of Choda [Ch]. By the Kolmogoroff-Sinai Theorem, which can

be used by the arguments of our previous proof,
h(c) = nll»nolo H(A[-n,n],0).

Since H(A[—n,n],0) < h(o), given € > 0 we have for large enough k and n,

1 kp
WH(A[ 'n,'n],O'(A[ n,n]),...,(f (A[ n,n])) < h(U)+€,
where p =2n+ 1+t and X C [0,t]. Consequently
1
- — D(A[— kp( Al—
kp—l—lH(A[ n,n],o?(A[-n,n]),...,a?(A[-n,n])) < h(c) +¢.




By the same arguments as in the proof of Theorem 4.2 the left side of the last inequality equals

kE+1

Thus in the limit as £ — oo )
I—)H(A[—n, n) < h(o) + ¢,

or since p = 2n + 1 + ¢, and € is arbitrary.

Jim T 1H(A[—n,n]) < h(o).

Conversely let ¢ = 2(n +t). Since 0/ (A[-n,n]) C A[—n,n + kq] whenever 0 < j < kq, we have
H(A[-n,n],0(A[-n,n]),...,0"(A[-n,n]) < H(A[-n,n + kq]).

By choice of ¢ and translation invariance of H

H(A[-n,n+kq]) = H(A[=(n+ t)k —n, (n + 1)k +n]),

sowithm = (n+t)k+n

H(A[—-m,m]).

. . 1
h(a) = n%}gloo H(A[_ma m]a U) < Tr%l—r»noo om+ 1

QED

By [NST] the tensor product formula does not hold in general for (A(X), o). However, when

we have results like the above theorem, it can be proved.

Corollary 4.4 Suppose X; C N are finite, i = 1,2. Denote by o; the shift on A(X;). Then
(A(X1) ® A(X2),01 ® 09) satisfies

h(o1 ® 02) = h(o1) + h(o2).

Proof Applying the above arguments we find

lim

1 2y __
n—oo 2n + 1H(4n ® An) - h(al ® 02),

where A% = A;[-n,n] C A(X;) in obvious notation, i = 1,2. By the theorem

. 1 1 1 2Yy —

H(A, ® A7) =lim

2n
QED

Let a be the automorphism of A(X) defined by «a(s;) = —s;. Let A(X), denote the fixed
point algebra of a and A(X)odq the spectral subspace of —1. Then A(X), is the C*-algebra
generated by the unitaries s;s;, 4,7 € Z, and A(X)oqq is the closure of the linear span of products
8i18ip =+ + 8i;, With k odd and 41 < i < -+ <ig. We call A(X)e the even subalgebra and elements

in A(X)oaq for odd elements. 1t is evident that A(X). is globally invariant under 0. We denote
by o, the restriction of o to A(X)e.




Proposition 4.5 Suppose N\ X is finite. Then we have:
(i) (A(X)e,0¢) is an entropic K-system.

(ii) If AS = C*(s;is5:4,5 € [-n,n]) C A(X)e then

1
H(AY) = h(oe) = 5 log2.

|
(iii) If X; CN, i=1,2, and if N\ X; is finite, then in obvious notation

h(o; ® 02) = h(ae) + h(o)-
Proof Choose t € N such that N\ X C [0,¢]. Thus s;s; and sgs, commute whenever
mln{lk - i') |k - .7|a |£ - i|, |€ _jl} >t

Thus by the arguments of the proof of Theorem 4.2 (A(X),,0.) is an entropic K-system. Also

by repreating the arguments from Theorem 4.3 we find

lim

0y _
n=00 2n + 1H(An) - h’(ae)’

Now it follows just as in Corollary 4.4 that the product formula (iii) holds. In particular when
X;=X,i=1,2, then
h(oe ® o) = 2h(0).

But, since the elements s;s; ® s;5; and sisy ® sgsy pairwise commute for all 4, j, k, £, we have
1

E+1

where Ag is the abelian C*-subalgebra of A(X). ® A(X). generated by the s;s; ® s;s;. Thus

H(Ap, 00 ® 0e(Ap),...,0° @ 0¥ (4p)) =log2, k€N,

h(oe ® g¢) > log2,

hence h(ce) > 1log2. By Proposition 2.1, h(c) < 3log2 since X is nonperiodic, so that
h(oe) < h(c) < %log2. This completes the proof. QED

In particular we have shown (as also follows from [Pr2], since the assumption implies X is

eventually periodic).
Corollary 4.6 IfN\ X is finite then h(o) = 5log2.

Corollary 4.7 Let N\ X be finite. Then

1
—H(Al-n, n)). (*)

Moreover, if N\ X; is finite i = 1,2, then

h(o1 ® o2) = h(o1) + h(o2).




Proof By our previous arguments it suffices to show (*). Since s;s; = £s0sis0s;, it follows

that
A = C*(s08j: 7 € [-n,n]).

Since so(s0s;) = s; it follows that
Al-n,n] = C*(s0, A%),
which by the commutation relations is contained in M5(C) ® AY. Thus we have
H(AY) < H(A[-n,n]) < log2 + H(A}),
hence the corollary follows from Proposition 4.5 (ii) and Corollary 4.6.
QED
5 Completely positive entropy

Definition 5.1 We say (A(X), o) has completely positive entropy if H(B,o) > 0 for all finite
dimensional C*-subalgebras B of A(X).

In the classical case this is equivalent to (A(X),o) being an entropic K-system. It is imme-

diate from our next lemma that an entropic K-system has completely positive entropy.
Lemma 5.2 Let B C A(X) be a finite dimensional C*-algebra. Then

1
EH(B,O’“) < H(B,o0), n € N.

Proof The lemma follows from the inequalities

1 n _ l : L n nk
nH(B,a ) = nklirgok+1H(B,a (B),...,0™(B))
< — lim H(B,o(B),...,a"™(B))

n k—oo kn+n

QED
We shall in the present section show that not all systems (A(X), o) with completely positive
entropy are entropic K-systems. Then we shall exhibit an uncountable family of nonconjugate

systems (A(X), o) with completely positive entropy for which h(o) = 1log2, and thus obtain
the analogue of the similar result in the classical case by Ornstein and Shields [OS].

Lemma 5.3 Suppose X is nonperiodic and either X C {1,3,5,...} or X D {1,3,5,...}. Then
h(c) = % log2.

10




Proof Assume first X C {1,3,5,...}. Let Ao = C*(sp), so Ap is isomorphic to the diagonal
2 X 2 matrices. Since sg;s2; = s2;52; for all 4, j € Z, the algebras 0% (Ap) and 0% (Ag) mutually
commute, and o2 acts as the 2-shift on the abelian C*-algebra D they generate. Thus h(o?|D) =
log 2. Hence
h(o) = %h(a2) > —;—h(02|D) = %log 2.

The converse inequality follows from Proposition 2.1.

Suppose X D {1,3,5,...} and put t; = s3j_152;, j € Z. Then a straightforward computation
shows that the t;’s commute and that o2 acts as the 2-shift on the abelian C*-algebra they

generate. The proof is then completed as above. QED

Lemma 5.4 Let ¢ > 1 be an odd integer. Suppose X C {q™:n € N}. Suppose a € A[0,q" — 1]
and b € A[2mq™, (2m + 1)¢" — 1], m € N. Then ab = ba and 7(ab) = 7(a)7(b).

Proof We have
A2mg™, (2m + 1)q" — 1] = *™" (A[0,¢" — 1]).

Thus there exists ¢ € A[0,¢" — 1] such that b= 0?™"(c), hence a and b commute if
2mq" +z—y & X whenever z,y € [0,¢" — 1],

or rather
qun_|_w7éq"+t+y forallt € Z, z,y € [0,q" — 1].

Assume on the contrary that we have equality for some ¢t € Z. Then x # y since ¢ is odd. If
x > y then
0<z—y=q"(¢"—2m).

If t > 0 then ¢ — 2m € N, which means z — y > ¢", which is impossible since z,y € [0,¢"™ — 1].
If t < 0 then ¢* — 2m < 0, which is contrary to  — y being positive.
Suppose next x < y. Then similarly

0<y—z=q"(2m—q"),

and again we obtain y — x > ¢, contrary to assumption.

Finally, since 7(s;, ... si,) = 0 whenever i1 < --- < ik, and the linear span of such products
of s;’s and the identity 1 is dense in A(X), it is immediate from the first part of the proof that
7(ab) = 7(a)7(b) whenever a € A[0,¢"™ — 1] and b € A[2mg", (2m + 1)¢" — 1], m € N.

QED

Lemma 5.5 Suppose ¢ > 1 is an odd integer and X C {¢™:n € N}. Then for each finite
dimensional C*-subalgebra B of A(X) we have

lim H(B,o") = H(B)

n—oo

11




Proof If B C A[ — 1" -1),3(¢" - 1)] then in view of Lemma 5.4

1

2" (B),...,o*m™d" =
m+1H(B)U (B)y..-y0 (B)) = H(B), m €N,

hence
H(B,0%") = H(B). ‘ (%)

Now suppose B ¢ U3_; A[-m, m] with m = 2(¢" — 1). Then we can as before consider
A(X) as a strongly dense subalgebra of the hyperfinite II;-factor R. For every m as above we
can construct a completely positive map 7yy: B — A[—m,m| such that yn(a) — a strongly as
m — oo (see proof of [CNT, VIL4]). Now it follows from (%) and [CNT, VI.3] that

Jim H(B,0™") = H(B).
QED

Summing up we have:

Theorem 5.6 Suppose q > 1 is an odd integer and X C {q":n € N}. Then we have:
(i) h(o) = 3log2
(i) (A(X),0) is prozimally asymptotically abelian.
(iii) (A(X),0) has completely positive entropy.
(iv) If X is infinite then (A(X), o) is not an entropic K-system.

Proof (i) follows from Lemma 5.3. (ii) from Theorem 3.3, and (iii) from Lemmas 5.2 and 5.5.

Finally, (iv) is a consequence of Theorem 4.2. QED

We conclude this section by showing the analogue of the result of Ornstein and Shields
alluded to in the introduction to this section. We recall that if (A4, ) and (B, ) are C*-
dynamical systems then they are conjugate if there is a x-isomorpism 7 of A onto B such that

B=yoaoy™h

Theorem 5.7 Let ¢ > 1 be an odd integer and X; C {¢™:n € N}, i = 1,2. Let o; be the
corresponding shifts on A(X;). If the set {n € N:q" € X; N (N\ X2)} is infinite, then the
systems (A(X1),01) and (A(X2),02) are nonconjugate.

Proof. Denote by {ni, no,...} the set of n € N with ¢" € X; N(N\ X3) and assume n; < ng <
ng < --- Then ¢"™ ¢ X, for i € N, and hence

[¢" 1+ 1,¢" ! — 1] C N\ Xs.

Since
Y-+ 1l=¢"" g1 +1— 0 as 1 — 00,
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and ¢"™t! — ¢ — 1 — 0o as i — oo, it follows that

08" (@), 9]l =0 asi—oo
for all z,y € A[-n + 1,n] C A(X2) with n fixed. Thus for all z,y € A(X2),

lim (08" (2), ]l = .

On the other hand, since ¢" € X; we have

llof™ (s0), solll = ll[3,n; » 50| = 2.
It follows that o1 and o9 are nonconjugate. QED

Combining Theorems 5.6 and 5.7 we have

Corollary 5.8 There is an uncountable family of pairwise nonconjugate systems (A(X), o) with
completely positive entropy and entropy h(c) = %log 2.
6 Shifts without completely positive entropy

It was shown in [NST] that there are shifts with zero entropy, hence in particular without
completely positive entropy. We shall now exhibit examples when the entropy is positive, but
the system does not have completely positive entropy. For this the following result is useful.

Theorem 6.1 Let k € N and suppose X C kN is nonperiodic.
(i) If k is even then h(c) = log2.
(ii) If k is odd then h(o) > &L log?2.

(iii) If kN\ X is finite then h(o) = 3log2.

Proof If k=1 then (ii) is obvious, and if X = N then (iii) follows for example from Corollary
4.7. We shall therefore assume k > 2. Put

A; = C*(sgpyjin € Z), i=0,1,...,k—1.

If ¢ # j then
kn+j—km—i=k(n—m)+j—id¢kZ.

Hence g(|kn + j — km —i|) = 0, and therefore
Skn+jSkm+i = Skm+iSkn+j -

Thus the C*-algebras A;, j € [0,k — 1], commute pairwise. Now Ag = C*(tp,n € Z) with
tn = Snk. Since [tn,tm] = 0 if and only if |m —n| ¢ %X, Ap is of the form A(Y) with
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Y = %X C N. Since X is nonperiodic, so is Y. Hence Ag, and therefore A; = 07(4y) is
isomorphic to the CAR-algebra [PP] and so

k-1
AX) = Q 4,
3=0
and o* leaves each A; globally invariant. Thus

k—1
of = ®ak|Aj .
j=0
Suppose first &k = 2m is even. Then
AX) = (A ® A1) ® (A2® A3) ® -+ ® (Ag(m—1) ® Aam-1)
Denote by
Ci = C*(skn+2i ® Sknt2i+1:1 € Z) C A2 ® Agiy1,
i € [0,m —1]. Then C; is abelian, and o* restricted to C; is the 2-shift, hence has entropy log 2.
Thus
1
h(CT) = %h(O'k)

1
> —h(ak|00®~-®0m_1)
= ¢ 2. MoTIC)

=0

1 '
= Emlog2

1
= 510g2.

By Proposition 2.1, h(0) = 1 log?2.
If £ = 2m + 1, then similarly

A(X) = AO ® (Al ® A2) Q- Q® (A2m—1 ® A2m)

hence by [SV, Lem. 3.4]
h(0) > ;h(o®]Ao) + § X1y h(0F|Azj—1 ® Asj)
mlog2 (%)
1 log2.

Finally, if kN \ X is finite with k odd, say k = 2m + 1, then as above

AX)=A0® (A1 ® A2) ® -+ ® (Aom—1 ® Aop,)
In this case Ao is the CAR-algebra and h(c*|A4o) = 3 log2 by Corollary 4.7. Thus by (*)

h(o) > léogQ—l— 1mlog2— 1log2,

completing the proof of the theorem. QED

Theorem 6.2 There exists a nonperiodic set X such that o has positive but not completely

positive entropy.
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Proof. Let Xy, C N be a set such that the corresponding shift ¢ has entropy zero, see [NST].
Put X = 2Xo = {2n:n € Xo}. By Theorem 6.1 h(c) = 3 log2. With Ao and A; as in the proof of
the theorem, Ay = A(Xp) and 0|4y = 09, and similarly for A;. Thus h(0?|Ag) = 0 = h(c?|A1).
In particular, for all finite dimensional C*-subalgebras B C A;, i = 0,1, H(B,0?) = 0. Let now
B = C*(sp) and B; = 0(B) = C*(s1). Then we have by subadditivity of the entropy function
H [CS, Property B]

H(B,o(B),...,0°™(B)) < H(B,d*(B),...,0*™(B)) + H(B1,0%(By), ...,0°™ %(By)).

Hence 1 .
H(B,o) < ;H(B, o?) + SH(B, o) =0.

Thus o does not have completely positive entropy. QED

Remark 6.3 In analogy with the classical situation if h(c) > 0 we say a o-invariant C*-
subalgebra A, of A(X) is a Pinsker subalgebra if it satisfies the following conditions:

(i) h(o]Ax) =0
(ii) If B is a finite dimensional C*-subalgebra of A(X) such that H(B, o) =0, then B C A;.
It is clear from (ii) that a Pinsker subalgebra, if it exists, is unique. The classical result of
Pinsker [ME] states that there exists a nontrivial Pinsker subalgebra in the classical case when
the transformation has positive entropy. In our case, however, this is false. Indeed, a counter
example is provided by the situation in Theorem 6.2, since by its proof each C*-subalgebra
C*(s;) would belong to the Pinsker algebra A if it exists, hence A D C*(s;:i € Z) = A(X), a

contradiction.

Remark 6.4 We used in the proof of Theorem 6.2 a system (A(Xp),09) with h(cg) = 0. A
refinement of the argument in [NST] yields an uncountable family of such systems which are

nonconjugate. We omit the rather technical proof.
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