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Introduction

The theory of schemes, founded by Chevalley, (3], Serre, [12, FAC] and Grothen-
dieck, [5, SGA-EGA], is based upon the idea of a ringed space. The geometric
picture consists of a space of points, a topology, and a structure sheaf of rings of
”functions” on this topology. The space being, locally, the set of prime ideals of
a commutative ring, extending the Gelfand-Silov correspondence between maximal
ideals in the C*-algebra of continous complex valued functions on a compact space,
and the points of this space. The notion of localization in commutative rings, which
gives rise to the Zariski topology, also furnishes the structure sheaf of commutative
rings on this topology. This is the notion of affine scheme, the category of which is
dual to the category of commutative rings. Moreover, representations, or modules
of the ring we start out with, form a category equivalent to the category of sheaves
of modules (or representations) of the structure sheaf. The crucial point in this
equivalence is the Serre theorem, namely the vanishing of the higher cohomology
groups of a sheaf of quasicoherent modules on an affine scheme, and the identifica-
tion of the ring A with the ring of global sections of the structure sheaf. From this
affine starting point we may globalize, by glueing together affine pieces to obtain
the notion of scheme, a space with a topology and a structure sheaf of commutative
rings, locally isomorphic to an affine scheme. This made commutative algebra part
of a vast generalization of the classical, reduced, algebraic geometry dating back to
Descartes and Fermat. This also permitted the use of methods of differential ge-
ometry in algebra and algebraic geometry. Taylor series, infinitesimals, differential
operators, etc. got a natural algebraic foundation, and turned out to be of great
importance for the development of modern algebraic geometry.
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In his introduction to the work of the laureat, when Grothendieck got the Fields
medal, Dieudonné [4] stressed the importence of the notion of representable functor
in scheme theory. Moduli theory is based on this notion, and with it some of the
most spectacular discoveries of this century, together with a new and very active
collaboration between mathematics and physics. However, it seems to me that
this moduli theory now forces upon us a revision of the scheme theory, and the
introduction of a non-commutative theory, capable of including non-commutative
as well as commutative algebra in one Geometry, thereby completing Descartes
programme. In fact, it should now be obvious to anybody working in moduli
theory, that the notion of representability in scheme theory, is grossly inadequat
for the purpose of studying families of algebraic objects, their invariants and their
moduli spaces. There is little help in the introduction of algebraic spaces, stacks
or other notions of that sort. The reason, I claim, is that the theory of moduli is
really non-commutative.

Now, a non-commutative version of differential geometry has been around for
decades, spured by the needs of quantum mechanics and by the needs of invariant
theory. In fact, there is a flora of proposed non commutative geometries, see, e.g.
[2], [11], and [1]. The first ones were based on the notion of operator algebras.
Von Neumanns work on quantum mechanics created a geometry where points,
in some sense, were replaced by states or pure states in C* -algebras. Working
on foliations, Connes, [2] has, in a most convincing way, developed a theory of
quotientspaces, or orbitspaces, related to the theory of moduli, which trancends the
classical geometry. However, the basic notions of point, as prime ideal in a ring,
the topology, and the structure sheaf disappeare in this model. Even the Leibnitz-
Newtonian idea of infinitesimal neighbourhoods of the points vanishes. There is
also the super theory, brought forward by the russian school, where the essential
new ingrediant is the extension of the notion of symmetry group. Most of these
developements are within differential geometry, and are dependent upon differential
geometric techniques. However, there are also purely algebraic attempts at the
construction of non-commutative schemes, with the conservation of the notion of
a set of points, corresponding to some ideals, with topology and structure sheaf,
see e.g.[11]. The common aspect of these models have been that they do not
include non-reduced algebras, and therefore cannot treat 0-dimensional schemes,
and subsequently contain no infinitesimal theory.

Using the notion of non-commutative deformation of modules, worked out in [9],
we shall here embark upon a purely algebraic construction of a non-commutative
algebraic geometry, and show that it is, at least in some cases, usefull for the un-
derstanding of invariant- and moduli problems. The fundamental ideas are very
general and only dependent upon a reasonable abelian category of objects. Since
the process of generalizing to this case will be clear, I shall assume that we are
given a k-algebra A as above, and that we are considering the category C of right
A-modules. As a model we shall take the scheme construction Spec(A) when A is a
commutative finite type k-algebra. A closed point of Spec(A) is a finite dimensional
simple module of A, i.e. the residue field k(t) of a closed point ¢ considered as an
A-module. We know that the completion of A at ¢ is the hull of the deformation
functor Def(k(¢)). Thus the infinitesimal algebraic structure of the regular func-
tions of Spec(A) at t is completely determined by the deformation functor of k(t).
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Since moreover A and therefore Spec(A) are, morally, determined by the family of
completions at the different closed points, we shall try to copy this procedure for
the case of a general k-algebra A.

Consider first the 0-dimensional case. This is the subject of the paper A Gen-
eralized Burnside Theorem, see [10]. Let A be a finite dimensional k-algebra, k
algebraically closed, and V={V;} the (finite) family of (simple) modules . We shall
consider each module of this family as a point, and we shall consider the non com-
mutative formal moduli H(V) as the structure sheaf of the 0-dimensional scheme
V. The infinitesimal neighbourhood of a point of V, the analogue of the completion
of a commutative k-algebra A at the point t, see above, is the subalgebra H;; of
H(V), the hull of the deformation functor Def V;. However, here is a change, the
structure sheaf H(V) on V, defining the structure of our geometry, is not the sum of
the algebras H; ; corresponding to the points, as it is in the commutative case. The
infinitesimal interactions of the points translates into the components H; ; of H(V).
By definition of the ring of observables O(V), see Chapter 2, there is a morphism
of k-algebras

n:A— O(V):= (H;;  Homy(V;, V}))

and we have seen that if V is the family of all simple modules then this morphism is
an isomorphism. This is our Serre theorem in the 0-dimensional non-commutative
algebraic geometry. Notice that in the construction of H(V) we have only used the
structure of the abelian category (of A-modules) in which we consider our family
of objects V. To recover A, i.e. in the construction of the ring of observables, we
must also know the dimensions of the different ”points” V; of the non-commutative
scheme V, i.e. we must know the forgetfull functor 7 of A-mod into k-vector spaces.

This is now going to be the basis for the construction of a non commutative
scheme theory, generalizing the classical one. For each diagram c of C, and for each
forgetful functor 7, we associate a k-algebra of observables, O(c, ), a k-algebra of
geometric observables Oa(c, ), and a canonical homomorphism A — Oa(c, 7). In
particular, if A is a commutative k-algebra, the points of Spec(A) may be identified
with members of the family of irreducible modules V= Spec(A)={A/p|p a prime
of A}. Moreover, we shall consider this family of A-modules with their obvious
canonical morphisms, obtaining a diagram (really an ordered set) c=Spec(A), of
A-mod. Then the imbedding of the classical algebraic geometry (defined on a field
k), into the proposed non-commutative algebraic geometry, is taken care of by the,

Conjecture. (See paragraph 3) Let A be any commutative k-algebra, essentially
of finite type. Then the canonical morphism of k-algebras

n: A — Oa(Spec(A), )

is an isomorphism.

The Descartes program. The problem of defining the notion GEOMETRY is an
old one. Since we celebrate, this year, the 400*" anniversary of Rene Descartes,
it is maybe proper to link the above ideas to the ideas of the founder of algebraic
geometry. His main idea was to associate to the space, coordinate functions whose
numerical values characterise the points of the space and their free movements in
space. Now, this is taken care of in the scheme theory of today for the closed points.
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For the other points, the custom of today is to consider the different components
of the Hilbert space of the scheme in question.

The non-commutative algebraic geometry that I shall propose, is grown out
of this carthesian idea, considered in relation to the problem of moduli in algebra.
Given an algebraic object, we know via deformation theory what we should mean by
its (infinitesimal) movents, or change of states, and we would like to find an algebra
of coordinate operators, with the property that the eigenvalues of the different
representations of these operators characterise the possible states of the object, and
such that the local structure of the algebra, contains all the information about the
possible movements, or changes of states, of the algebraic object, including the
abrupt changes observed in families for which some discrete invariant jumps.

This is analogous to the set-up of quantum theory, where our algebraic object is
replaced by the (platonic?) idea of some reality out there, a fundamental particle,
or a hydrogene atom, say. The state space is a module, or representation, of a ring
of generalized coordinate functions, the observables operating on the state space.
If the simple modules of this ring had been all isomorphic to some field of numbers
we would have been able to extend the Descartes programme to our new space of
states of the reality. When, however, the algebra of observables is non-commutative
and the simple representations may be of infinite dimensions on the base-field, the
numerical trick of Descartes does not function. We are left with a new description
of the space of realities, in which measurement must be redefined, and time and
dynamics rethought.

I claim that the non-commutative algebraic geometry I am proposing, may con-
tribute to a better understanding of this situation, and that the basics of Descartes
program will prevail.

1.HOMOLOGICAL PREPARATIONS.

1.1.Exts and Hochschild cohomology. Let k be an algebraically closed field,
and let A be a k-algebra. Denote by A-mod the category of right A-modules and
consider the exact forgetful functor

m: A—mod — k —mod
Given two A-modules M and N, we shall always use the identification
o': Exty,(M,N) ~ HH'(A, Homy(M,N) for i >0
If L, and F, are A-free resolutions of M and N respectively, and if an element
¢ € Exty (M, N)
is given in Yoneda form, as

E={&} € HHomA(Lan—l)

then o!(¢) is gotten as follows. Let o be a k-linear section of the augmentation

morphism
p: LO — M
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and let for every a € A and m € M, o(ma) — o(m)a = do(x). Then,

ot (€)(a,m) = —p(&1())

where
pw:Fy— N

is the augmentation morphism of F,. Then,
o' (¢) € Dery(A, Homy(M,N))

and its class in HH'(A, Homy(M, N)) represents &.

Recall the spectral sequence associated to a change of rings. If 7 : A — B
is a surjectiv homomorphism of commutative k-algebras, M a B-module and N an
A-module, then Ezt’ (M, N) is the abuttment of the spectral sequence given by,

E%? = Exthy (M, Ext’, (B, N)).
There is an exact sequence,
0 — E3° — Exth(M,N) — Ey* — E3°
Which, for a B-module N, considered as an A-module, implies the exactness of
0 — ExtL(M,N) — Ext}(M,N)
— Homp(M, Homp(I/I? N)) — Ext}(M,N)

where I=kerm. The corresponding exact sequence,

0 — HHY(B, Homy(M,N)) — HH'(A, Homy(M, N))
— Hom agaor (B, Homy (M, N))

in the non commutative case is induced by the sequence ,

0 — Derg(B, Homy(M,N)) — Dery(A, Homy(M, N))
— Homagaer (B, Homi(M, N))

Notice that in general we do not know that the last morphism is surjective. This,
however, is true if B=A/rad(A), where rad(A) is the radical of A, and A is a
finite dimensional, i.e. an artinian, k-algebra. In this case, B is semisimple and
the surjectivity above follows from the Wedderburn-Malcev theorem, see e.g. [10].
Notice also that in the commutative case,

Hom agaor(B,Homp(M,N)) ~ Homp(I/I;, Homp(M, N))
as it must, since for ¢ € Homp(M,N), a € A, and b € I, ab=Dba, and therefore

(ag)b = ¢(ab) = p(ba) = (¢a)(b)
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This implies that for B = A/p, M = A/p, N = A/q, where p C q are (prime) ideals
of A,
Exty(Afp, A/q) = Homa(p/p*, A/q)

and, in particular
Ext}y(A/q, A/q) ~ Homa(a/q*, A/q) = Ny,
the normal bundle of V(q) in Spec(A). If ¢ C p and g # p we find,
Batl(Afp, A/a) =~ Extly;(Alp, A/a).

In [6], chapter 1., we considered the cohomology of a category ¢ with values in a
bifunctor, i.e. in a functor defined on the category mor c. It is easy to see that this
is an immediate generalization of the projective limit functor and its derivatives,
or , if one likes it better, the obvious generalization of the Hochschild cohomology
of a ring. In fact, for every small category c and for every bifunctor,

G:cxc— Ab

contravariant in the first variable, and covariant in the second, we may consider the
complex,

D*(c,G)

where,

DP(c,Q) = H G(co, cp)

co—C1 —Cp

where the indices are strings of morphisms v; : ¢; — ¢;41 in ¢, and the differential,
dP : DP(c,G) — DP™(c,G)
is defined as usual,
(dPE) (W1, - s Pis Yit1s -, Ypr1) = V1€(P2, -, Ppt1)
+ i(—l)iﬁ(iﬁl, oW 0 Pigty e Ypa) + (SDPTRE(, - Yp) U

=1
As shown in [6], the cohomology of this complex is the higher derivatives of the
projective limit functor liﬁl(*) applied to the covariant functor

mor ¢

G : mor ¢ — Ab.
This is the ”Hochschild” cohomology of the category ¢, denoted

H*(c,G) :== H*(D*(¢, @)).
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Example 1. Let c be a multiplicative subset of a ring R, considered as a category
with one object, then

H®(c, Hom(—,-)) = {¢ € R|¢s) = ¢ for all ¢ € c},

i.e. the commutant in R of c.

Example 2. Let A be a commutative k-algebra of finite type, k algebraically
closed, and let Spec(A) be the subcategory of A-mod consisting of the modules
A/p, where p runs through Spec(A), the morphisms being only the obvious ones.
There is an obvious functor Hom.,(—, —) defined on mor Spec(A), and it is easy
to see that the obvious homomorphism T

n(Spec(A),7) : A — H°(Spec(A), Hom,(—,—))
identifies A/rad(A) with H°(Spec(A), Homg(—,—)). If, however, A is a local k-
algebra, essentially of finite type, then this is no longer true in general. To remedy
this situation we shall in the next paragraph introduce, and study a generalization
O(Spec(A), ) of
Oo(Spec(A), ) := H(Spec(A), Homy(—,—))

defined in terms of the non-commutative deformation theory introduced in [9].

1.2. The category of A-G-modules.. Let A be any k-algebraandletg: A — A
be an automorphism. Given an A-module M;, i=1,2 consider an automorphism of
k-modules Vg : M; — M;, such that for m; € M; and a € A we have,

V_f] (mia) = Vi (ms)g(a) for i=1,2
i.e. such that V; is g-linear. Then there is an automorphism,
o7 = 68(V?',V?) : Exthy (M, Ma) — Exth) (M, M)
induced via the isomorphism,
Exth (M, Ms) ~ HHP(A, Homy (M1, M2))
by the g~ !-linear automorphism of bi-modules,
Cg : Homy(My, My) — Homy (M, Ma)

defined by,
¢|—+V;o'¢vovg_1.

Notice that we compose morphisms in the natural order. For a € A we compute,

Go(g(a)p) = Vg ogla)yp o Vi1 = a(Vg oo Vi) = aly(t)
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Ca(g(a)) = Vg0 9g(a) 0 Vi = (Vg oo Vi)a=((¥)a.
This implies that there is an automorphism of Hochschild cohomology,

¢?: HHP(A, Homy, (M1, M3)) — HHP(A, Homy(M, Ms))
defined on cochain form by,

€ {(a1,02, -, ap) > V20 £(g(ar), ., g(ap)) o V2.1 }.
In particular the automorphism,

(3 Extl(My, My) — Exty(My, My)

is induced by the map

C; : Derg(A, Homy (M1, Mz)) — Dery(A, Homy(My, My))

defined by
G(6)(a) = Vg06(9(a) 0 Vj

gt

When p C A is a g-invariant ideal of A contained in the annihilator of Mz, we know
that the restriction of the derivations of Derg(A, Homy (M7, Ms)) to p induces an
isomorphism,

Homa(p/p?, Homa(A/p, Ms)) ~ Extly (A/p, Ms)

such that the automorphism Cgl takes the form,

L)) = Vi ((g2)) for @ € p/o?.
Suppose ¢ € Extl (My, Ms) is represented by the exact sequence of A-modules,
(%) 0— My —E— M; —0
Since the g-linear automorphisms Vg : M; — M; correspond to an A-linear isomor-
phism, '
V; : Mz — Mz ®g_1 A

we deduce from (x) the exact sequence of A-modules,
(%) 00— My®-1A—E®;-1A— M ®-14-—0

which represents the element ¢} (£) € Extly (M1, My). The ¢j-invariant elements &
of Extl (M, M>) therefore corresponds to the extensions (x) for which there exists
an isomorphism

(% * %) Vg: E—EQ®41 A
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compatible with the Vé, for i=1,2. Another way of viewing this is to look at 53 &)-¢
as an obstruction for the existence of such an isomorphism (*x).

Given one Vg : E — E ®,-1 A compatible with the Vg, another V,* will differ
from the first one by the composition I'y of the homomorphism £ — M; and some
A-linear map o : My — My ®y-1 A, and any such Ty added to (* * ), will again be
compatible with the V;, for i=1,2. In the category of (A-g)-modules, we therefore
find,

Exty_,(My, M) ~ Exty (My, M2)% & Homa(My, Mz ®4-1 A)/ ~

The equivalence ~ identifies (E,V4‘) and (E“, V4 “) if there exists an isomorphism
of extensions ¢ : E ~ E“ compatible with the V's. Since

VZ: Homa(My, My) ~ Homa(Mi, Mz ®g-1 A)

the equivalence relation ~ is trivial.
Now, suppose G is a group acting on the k-algebra A, i.e. suppose there exists
a homomorphism of groups,

p: G — Autg(A).

Consider A-modules M;, i=1,2, with G-actions compatible with p, i.e. homomor-

phisms ‘
V' : G — Autp(M;)

such that for g € G, m; € M;, and a € A,
Vi(mia) = Vﬁ,(mi)g(a) for i=1,2

where we denote by g(a) the action of p(g) on a € A.
Given an invariant ¢ € Extl (M, M;) under the action of the group G, as
explained above, there exists for every g € G an isomorphism

Vg:E—E®,1 A

Since
(£ ®g1_1 A) ®gz_1 A=FE B (g1g2)~1 A
we find an obstruction for the existence of a homomorphism of groups,

V:G — Auti(E)

compatible with the V¢‘s which is a 2-cocycle of G with values in the G-bimodule
Hom 4 (My, M2),
(91’92) —_ (vgl © vgz - vglg2)'

When the corresponding 2-class,
o¢ € H*(G,Homa (M, My))
vanish, there exists a V and the set of such will be a torsor under

HY(G, Homa(M1, M>))
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Proposition 1.2. Suppose H(G, Hom (M1, M3)) = 0 for i=1,2, then,
E$t}4_G(M1, M2) =~ ECI)ti‘(Ml, M2)G.
Notice that a 1-coboundary of the form
g— (ga—o0)

corresponds to an automorphism 6, : E — E inducing an automorphism of
(E,Vg).
1.3. The category of A- g-modules. Suppose

p: g — Derg(A)

is a Lie-Cartan pair, i.e. an A-linear map and a k-Lie homomorphism. We shall
treat this as the tangent map of a Lie-group action p studied in the previous section.
Let M;, i=1,2 be A-modules with g-integrabel connections

Vi:g — Endgp(M;),
and consider for every § € g and every ¢ € Homy(My, M2) the map
61— V5t — Vg

This defines a Lie algebra homomorphism,

p:g— Endig(Homy (M, My))
such that p(éa) = ap(6) — p(6)a. Let D € Dery(A, Homg (M, Mz)). The map

a+— Vs(D)(a) := D(§(a)) + V5D(a) — D(a) V3

is a derivation, and we obtain a connection

V : g — Endg(Exty (M, My))
As above, every ¢ € Extl(Mi, M,)® is associated to an obstruction,

o(€) € H*(g, Homy (M, M))

which vanish if and only if there exists an integrabel connection on the middle term
E of the exact sequence representing &,

0—>M2——>E—-—>M1—>0

compatible with the connections V* on M;. The set of isomorphism classes of such
(¢,V) is then a torsor under

Hl (ga HO’/TLA(M:[, MQ))
Proposition 1.3. Suppose
H'(g, Hom (M, My)) = 0 for i=1.2

then,
Exty_ (M, Ms) = Exty (M, My)®
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2.NON-COMMUTATIVE SCHEMES.

2.1. Trivializations and observables.. Let C be any abelian category with
Massey products. The last proviso is satisfied if C' has enough projectives, but
there are other cases where Massey products exist even though projectives are
scarce. See [13] for an exposition of the Massey product structure in the category
of all Ox-modules for X a scheme defined on some field k. Let ¢ CC be a diagram.
Assume there exists a functor

m:C — B
such that
1) Btextisabelian
and
2) Batp(—,—) =0

Definition 2.1.1. Any such functor 7 will be called a trivialization of c.
Example 1. The obvious example of this set up is the following: Let A be any
k-algebra, k a field, and let C= A-mod and

w: A—mod — k — mod.
the forgetful functor. Then 7 will be a trivialization for any diagram

cCC = A—mod.

Given any trivialization 7 of ¢ CC, consider the k-algebra
Oo(c,m) := H®(c, Homy)

defined in Chap.1, where
Homy : mor ¢ — Ab.

is the functor defined by
Homg (1) = Homp(r(c1),7(c2))

fory:ci — coine.
Definition 2.1.2. Og := Og(c, ) is the k-algebra of immediate observables
It is clear that Og acts on each object 7(c) € B, ¢ € ob ¢, in the sense that there

is a canonical k-algebra homomorphism

09 — Endp(w(c))
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such that the image diagram
imw|.C B

becomes a diagram of Oy -representations.

In the example above, we obtain for every diagram ¢ C A — mod, a k-algebra
Oo(c, ) acting on every A-module in ¢ such that ¢ becomes a diagram of Og(c, 7)-
modules. Moreover there is a canonical homomorphism of k-algebras

no : A — Og(c, )

which is, in an obvious sense, a universal ”extension” of the algebra A, with respect
to the diagram c. Since we have,

¢ C Op — mod
and since the trivialization 7 induces a trivialization,
7o : Og — mod — k — mod
we may performe the construction of trivial observables, once more. We obtain,
Oo (e, m) = Og(e, m) = Og

This implies that the operation of constructing trivial observables, is a closure
operation.

Example 2. Consider any commutative k-algebra A of finite type. Recall from
paragraph 1., that if ¢ = Spec(4), then

no : A — Oo(Spec(A), )
induces an isomorphism,
A/radA ~ Oy(Spec(A), )

provided k is algebraically closed. Now, let Ind(A) be the full subcategory of A-mod
fefined by the indecomposible modules and let Prim(A) denote the diagram of the
form A/q, where q is a primary ideal, and where the included morphisms are the
obvious ones. It is easy to see that the canonical homomorphism

no : A — Op(Prim(A), )

is an isomorphism. Notice that there is a generalized Zariski topology on Prim(A),
defined as follows. Let a € A and consider the full subdiagram D(a) of Prim(A) de-
fined by the objects V for which a is not a zerodivisor. Obviously D(a)ND(b)=D(ab)
and D(a) is simply the localization of Prim(A) at a. There are canonical isomor-
phisms

Oo(D(a),m) = Ay = Os(D(a)|spec(a))
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where S is the affine scheme Spec(A), and where Og is the structure sheaf. This
shows that there exists a ringed space (Prim(A), Op), and a continous map

S = Spec(A) — Prim(A) =P
inducing isomorphisms of the structure sheaves .
OS ~ Q0 P.

The problem with Prim(A) is that it is too big, that the topology is too coarse,
and that it has unsatisfactory functorial properties. On the other hand, Spec(A)
seems to be too small, since the trivial observables for Spec(A) omit the nilpotents
of A. These problems stem from the trivial nature of the trivial observables. In the
construction of Oy, we use only the trivial categorical structure of A-mod, restricted
to c¢. To get to the goal, we have to take into account the infinitesimal structure
of the category A-mod, i.e. the abelian structure of A-mod, and, in particular, the
family of multiple extensions of the objects of c.

The goal is to construct, for every diagram c as above, two extensions of Op(c, ),
which we shall denote O(c, ), respectively Oa(c, ), a canonical homomorphism

O(c,m) — Oale,m)

and an extension of 7,
na : A — Oale,m)

with good functorial properties, extending the notion of structure sheaf into non-
commutative algebra, providing us with a generalized, non-commutative, algebraic
geometry, in which the presently unsolvable problems in invariant theory, and mod-
uli theory, find solutions. We shall be guided by two ”principles”:

(2.1) Given any diagram c of some category of A-modules, we shall consider the
objects of c as points, and the morphisms as incidences between these points. ¢ may
be provided with an action of a Lie group or Lie algebra, and there may also exist
internal operations, like tensor products, defined in ¢, or some other reasonable extra
structure. This is a geometry, and we want to construct an algebraic representation
of the geometry. Such a representation should include an algebra O(c, 7) extending
A, and to which the diagram c extends, with all its geometric properties. Moreover,
O(c,7) should contain all the parameters needed to describe the dynamics of the
geometry, as f.ex., all deformations of the objects and the morphisms within c.

(2.2) If classical quantum theory is concerned with realities, for which there exist
a mathematical model, one should consider the algebra of observables (in quantum
theory) as the moduli space of these realities.

So consider a general diagram ¢ in C=A-mod, trivialized by the functor 7. As-
sume first that c is finite. Let V =: |¢| = {Vji=1,2,..r, be the family of objects, and
construct the non-commutative formal moduli H(V) = (H;;) as in [9]. Let V be
the versal family and consider the k-algebra

O(|¢|,m) == Endg(V) = (Hi; ® Homx(Vi, V5))
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and the k-algebra homomorphism,
n:A— O(|C|,7T)

defined by the action of A on V', which, by construction, commutes with the action
of H. Recall that for an artinian algebra A, and for the family V of all the simple A-
modules 7 is an isomorphism, (see [10]). In this paper, O(|c|, ) was denoted A(V)).
Notice that, by definition of the terms, there is a unique morphism of k-algebras,

p: O(lc,m) — Oo(lcl, 7)

which, together with 1 and 7y form a commutative diagram. Therefore c is, in an
obvious sense, a diagram of O(|c|, w)-modules. Notice that if ¢; C ¢, there exist a

canonical homomorphism
H(|ea|) — H(jeal)

which is easily seen to have a section. If ¢ is infinite we put

O(lel, ) = lim O(|¢'|, )

c'Ce

where ¢ runs through all finite subdiagrams of c¢. The k-algebra we are heading for
is now a subalgebra of O(|c|, ), singled out by a set of conditions, induced by the
7 — incidences of our geometry, i.e. by the morphisms ¢ of our diagram for which
7(¢) is not an isomorphism.Let

(2.3) $ij: Vi—V;

be a morphism of c. Since Def(V}) = H({Vi}), it follows that there are canonical
surjective homomorphisms

Hyy — Def(V1),l =1, .

Here Def(V) denote the formal moduli of the A-module V, in the non-commutative
sense, see [9]. Now, the morphism ¢;,; induces maps

Hij — Hy,l=14,7
These are, respectively, left and right linear on Hyj, for 1=i,j. Both morhisms are
defined in terms of Massey products with ¢; ;, see [8,10,11]. Moreover, it follows

from the construction of [6], properly generalized to the non-commutative case,
that the formal moduli for the diagram (2.3) is

(2.4) H(¢i;) = Def(¢s,;) = Def (Vi) ®n, ; Def(V;)
In particular, there exists a universal lifting of ¢; ;,

®; 5 H(pi ;) ® Vi — H(gij) ®Vj
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and morphisms,
v : Hiy @ Endr (Vi) — H(¢s5) ® End-(V1), 1 =1,j.
which, in its turn, induce morphisms,
(2.5) v, : Hyy ® End (Vi) — H(¢i ;) ® Homg(V;, V;), 1 =14,j.

The first condition to be imposed on O(e, 7) is that the element {4} of O(c, )
be such that oy, for 1=i, j maps to the same element in H(¢; ;) ® Hom.(Vi,Vj).
This amounts to the the condition,

(Di,;) @5 005, = a0 By

where oj; = y(ay,;). Moreover, the conditions (D; ;) should be satisfied for all
choices of liftings ®; ; of of the morphisms ¢; ; of c.

Obviously, the set of elements of (H; ;(|c|) ® Hom.(V;, V;)) satistying these con-
ditions form a sub k-algebra. Now, more generally, the morphism ¢;; induces

morphisms
Hp’j — Hp)i and Homﬂ' (‘/1'7’ ‘/;) — Homﬂ'(%’ V7)

The first morphism is left linear with respect to Hj,. These morphisms induce
morphisms,

(2.6) Hp,;i ® Homz(Vp, Vi) — Hpi ® Homx(V, V;) «— Hp; @ Homx(Vy, V;)
The second sets of conditions to be imposed onO(e, 7), imply that for oo € O(e, 7),

the ”coordinates” a,; and ap ; maps to the same element for the morphisms in
(2.6), i.e.

(Rp,irj) (idEp,i @ i) (api) = (B7; ® 1dHom, (v,,,v;)) (Op,5)

It is easy to see that these conditions also define a sub k-algebra of (H;;(|c|) ®
Hom(V;,V;)).

Definition 2.1.3. The k-algebra of geometric observables Oa(c, ) of the diagram
¢, is the sub algebra of (H; ;(|c|, 7) @ End.(V;)) defined by the conditions (D) above.

s Clearly, the morphisms,

(2.7) A — (Hy; ® Hom(Vi, Vy)) — (s ® Ende (Vi)
induce a canonical homomorphism of k-algebras,

(2.8) na : A — Oale,m)

We now define the notion of observables in general,
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Definition 2.1.4. The k-algebra of observables O(c,m) of the diagram c, is the
subalgebra. of (H; ;(|c|) ® Hom(V;,V;)) for which the conditions (D), and (R) are
satisfied.

We have already shown that
O(e,) € (Hij(le) ® Homa(Vi, V5))-

is a sub k-algebra. Therefore there is a canonical homomorphism of k-algebras,
pa : O(c,m) — Oa(c,m)

which composed with the morphism
k: Oa(e,m) — Op(c, )

is the obvious morphism
po : O(c,m) — Og(c, ).

However, the morphism
na : A — Oa(e, )

cannot necessarily be lifted to a morphism,
n=n(e,m): A— Ole,m) C (Hi;(Ic]) ® Homx(Vi, V).

The reason is that in the construction of the versal family V, in ‘particular in
the definition of the right action of A on V, we made some choices of derivations
representing the classes of Ext} (V;,V;), see the Remark 1. below. And there are
no reasons why these choices should behave properly with respect to the actions of
the morphisms (2.6). In fact there are obstructions for this to be true.

Definition 2.1.5. The diagram c is called conservative or Mittag Leffler if
(i) 7 considered as a presheaf on c is flabby
i.e. if for any saturated sub diagram cg of ¢, the canonical morphism,

lim(r) —> lim(r)
c Cco
is surjectiv.
Theorem 2.1. Suppose c is a conservative subcategory of A-mod. For every object
V; of ¢ there is a sequence of obstructions,
o€ EIEt?:(EiL‘ti(V;, —)7 HOmA(V;', _))
of(4,¢) € im™M (Bzty (Vi, -))

[
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such that if these are zero, for n > 1, there is a morphism,
n(e,m) i A — Ole,m) C (Hiy ® Homa(Vi, V;)

lifting na. Conversely, if there exists such a morphism n(c, ), then all obstructions
vanish.

Proof. To understand the relations D and R, in the definition of O(c, ) above, one
has to go back to the construction of the non-commutative deformations of a family
of A-modules. The formal versal family V = (H; ; ® V;), is a left H-module, and a
right A-module. The right multiplication by an element a € A, commutes with the
action of H. This induces the homomorphism

(e, ) : A— Endp((Hi; ®V;)) = (Hi,; ® Homa(Vi, V)
Recall that the action of a at the tangent level of (H; ; ® V;), is given by,
vi.a = via + g it (1) ® ¥, (1) (a, v;)
where {1; ;(1)}1, is a family of derivations, v; ;(I) € Dery(4, H omy(V;,V;) repre-

senting a basis of Extl(V;,V;), and where {t; ;(I)}; is the dual basis of E; ;.
If ¢ip : V; — V} is a morphism of ¢, then there are maps

bip: Beta(Vi, V) — Baty(Vi,Vy)
mapping ;,;(1) to ¥;,;(1)¢;p. This map and its dual
| Eij e Eip

induce maps,
Ei,p ® Hom,,(Vi, V;,) — Ei’j ® HO’m,r(Vi, %)

and
E;; ® Homx(V;,V;) — E; ; ® Hom(V;, Vp)

such that the elements
Elti,z’(l) ® 1/’71,1?(0 (0” Ui) € E'i,p ® Hom,(V;, Vp)

and
it i (1) @ i, (1) (a,v5) € By j ® Homg(Vi, V)

map to
(2.9) itip(D) ) @ Yip(l)(a,vs) respectively Yt (1) ® ¥s,5(1)(a, vi)Bj,p

in E; ; ® Homx(V;,V,). The elements of (2.9) are not necessary equal, the differ-
ence being sums of tensor products, in which the right hand side factors, are trivial
derivations. In fact, consider for any V; € c, the functor Homyu(V;,—), on c. In
the construction of V, we picked for every base element v; ;(1) of Exty(V;,V;) a
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representative denoted v; (1) € Dery(A, Homy(V;, V;)). If we pick another rep-
resentative, the difference will be a trivial divisor, i.e. given by a linear map
ki; € Homy(V;,V;), such that a € A maps to a o Kij — Kij © a. So consider
the exact sequences,

(1) 0 — Homa(V;, —) — Hom(V;,—) — K(Vi,—) — 0
and the exact sequence,
(2) 0 —s K(V;, —) — Derg(A, Homy(V;, —)) — Bty (V;, =) — 0

as exact sequences of presheaves on c.
What we really want is a section of the last epimorphism. Le. we want the exact
sequence (2) to split. This however is the same as saying that the corresponding

element
€ S EfEtc(Exth(Van _)7 K(‘/;7 _))

vanish. Since we have the general lemma,

Lemma 2.1.6. Let F be a flabby presheaf of k-vectorspaces defined on c. Then F
is injectiv.

Proof. Let G C H be presheaves on ¢, and assume given a morphism

7:G— F

Consider the set of extensions 7, : Go — F of 7, G, € H. There exists a
maximal extension 7o : Go — F. In the usual way we prove that if Go € H., then
we may extend it further, say by picking an object V; such that Go(V;) € H(V;)
and an element h; € H(V;) but such that h; ¢ Go(V;). Extend 70(V;) arbitrarily,
by picking a value 71 (V;)(hs), and consider the subset co of those objects V of ¢ for
which there exist a morphism ¢ ; : V; — Vj such that g; := H(és,5)(hi) € Go(V;)-
The family 70(V;)(hj) — F(¢i,;)(71(hs)) obviously defines an element of im F. By
Co

assumption there is an element f; € F(V;) mapping onto this family. Now correct
the definition of 71(h;) by adding f;, and we have found an extension 71 of 7o,
proving that Go = H, thus proving that there exists an extension of 7 to H, i.e.
that F is injectiv. O

Now, by assumption, Hom(V;, —) is flabby, therefore injective, which implies
that

Ext!(Exty (V;, —), Homg(V;,—)) = 0.

Using the exact sequence (1), and denoting o(A,c), the image of ¢ in
Ext?(Exty (Vi, —), Homa(Vi, —))

we see that ¢ vanish if o(4,c) = 0. Thus there exists a section of (2). This proves
that the action of A on V is compatible with the action of the morphisms of c,
at the tangent level. Since for every vanishing Massey product, the choice of the
corresponding lifting, n(i1,i2...,1r), see [7-9], is only determined up to a cocycle,




NON-COMMUTATIVE ALGEBRAIC GEOMETRY 19

the corresponding problems on the higher order levels, will lead to similar problems.
For each level the choice of coherent 7‘s is met by an obstruction

0" (4, c) € lim™W (Bxty (V;, -))

c
the vanishing of which makes it possible to define the action of A on V compatible
with the action of the morphisms of ¢. O

Remark 2.1.7. If ¢ is conservative then
H?(e, Homy(—,—)) = Extl(m,m) =0,for p > 1

Example 3. (i): Let A be a commutative k-algebra, and put ¢ = Spec(A). The
projective system (Hom,(V;, —) is flabby on Spec(A), i.e. for any finitely generated
saturated subset A of Spec(A), smaller than an element V;, the natural map of V;
on the projective limit of Hom,(V;,—) on A, is surjective. It follows from Lemma
(2.1.6) that although H°(c, Homx(—, —)) = A/rad we find H"(c, Hom,(—,—)) =0
forn>1. )
(ii) By [9] we know that the exact sequences of A-modules (1) and (2) defines

an element of,

Ext?(Extl (Vi,—), Homa(V;, —))
(2.10) = H%(c, Homa(Exty (V;, =), Homa(V;, —))
Picking a free resolution of V;, and considering the two spectral sequences of the
double complex

D*(c, Homa(Homa(Lx, —), Homa(V;, —)))

= D*(Ca L, ®a HOTTLA(—‘, HomA(‘/ia _)))

we see that if

(2.11) Lim® ) Tord) (V;, -)

c

vanish, then so does (2.10).
In particular we find the following,

Corollary. If A is an irreducible commutative k-algebra, then there exists a mor-
phism,

1(Spec(A),m) : A — O(Spec(A), ) C (Hi;; ® Homr(V;, V;))

lifting na.

Notice that the construction of O(c, ) is functorial, in the following sense: Let

gi):Cl——)Cz
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be any exact functor relating two abelian, admissible categories. Let ¢; be a diagram
of C;, for i=1.2, such that ¢ restricts to a functor between ¢; and cs. Moreover,
assume given trivializations m; of (Cj, ¢;), commuting with ¢. Then there is a
natural commutative diagram of k-algebras,

0(62, 71'2) L) 0(01,71'1)
((+)) le pll

Oo(ca,m2) b, Oo(c1,m1)
In particular, when cp is a subdiagram of ¢, there is a canonical projection morphism,
¢ : O(c,m) — O(co, o)

The construction of O(c, 7) and the morphism 7, is unique, up to isomorphism.

Notice that the discrete diagram |c| is a subdiagram of ¢, inducing the canonical
injection,

O(e,m) — O(lc|, ) = (Hi,; ® Homx(V;,Vj))

2.2. Non-commutative schemes.

Let ¢ be diagram of A-mod. Above we considered the objects of ¢ as points,
and the morphisms as incidences in our geometry. This is in tune with the general

setup, see the Introduction. The first invariant of such a geometry is the dimension.
There are several possible definitions, in particular the obvious,

Definition 2.2.1. The Krull dimension of ¢, denoted dim ¢, is the maximal length
of a chain of composable morphisms of c.

Then we consider the most general notion of scheme,

Definition 2.2.2. Let A be any k-algebra. A conservative diagram of A-modules
¢ is called a scheme for A, if the the obstructions of Theorem (2.1) vanish, and the
morphism

77(0, 71') A — O(Ca 7T)
is an isomorphism.

Example 1. According to the Gerneralized Burnside Theorem, the family of sim-
ple modules V form a (0-dimensional) scheme for any finite dimensional k-algebra,
when k is algebraically closed.

It turns out that in many applications, it is convenient to work with the mor-
phism category M (c) = mor c.It is then natural to extend the notion of points of
our geometry to include the morphisms of ¢, the incidences. Let M(c) be all the
objects of mor ¢ and let ¢; ; € M(c), and consider the

Definition 2.2.3. The local k-algebra of our geometry at the point ¢;; is the
algebra O(¢; ;,m) := Def(¢i ;).
It is clear that there are localization morphisms,
O(c,m) — O(¢i5,7)

and
Oa(e,m) — O(ds,5,m).
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Definition 2.2.4. Let A be any k-algebra. A diagram of A-modules c is called a
geometric scheme for A, if the morphism

nale,m) : A— Oale,m)
is an isomorphism.

Example 2. We shall see, in paragraph 3, that Spec(4), Prim(A), and more
generally, any quiver in the sense of Auslander-Reiten, is a geometric scheme for A.

In general we may prove for Oa (¢, 7) as well as for O(c, 7) the following property,

Theorem 2.2. Let A be any k-algebra, and let ¢ be any diagram of A-modules such
that the conclusion of Theorem (2.1) hold. Then c may be considered a diagram of
O(e, m)-modules. Let Vi and V, be two objects of ¢. Then,

(i) HomO(c,r)(Vla VZ) c HomA(VlaVQ)
and

is a surjection. If these morphisms are isomorphisms, then c is a scheme for O(c, ).

Proof. Since by assumption, there is a natural morphism,
n(e) : A — O(e,m) C (Hyy ® Homa(Vi, Vy)).

There is therefore a natural homomorphism of r-pointed k-algebras,

v:H— H(O)
where H(O) is the formal moduli of |¢| as a family of O = O(c, 7)-modules. More-
over, since (H;; ® V;) is a family of O-modules (from the right), the action of O
commuting with the action of H (from the left), it is clear that there exists a natural
morphism

v:H(O)— H
inducing this family of O-modules. Naturality implies that the composition of + and
v is an isomorphism, and in particular, the identity on the tangent level. But this
is (ii). Since (i) is trivial, we just have to notice that if (i) and (ii) are equalities,
then ¢ will be a surjection, as well as an injection, therefore an isomorphism, and
the formation of O(c,7) for ¢ as a diagram of O-modules will be the same as the
formation of O(c,) for ¢ as a diagram of A-modules. The proviso that (i) be an
equality, is there to make sure that the conditions (D) in the definition of O(c, )
for ¢ as a diagram of O-modules, are the same as (D) for A. In particular we need
that the lifted morphisms ® in the first case are the same as those used for the
construction of O. O

It follows from this theorem that, for any finite family V of finite dimensional
A-modules, V is a scheme for O(V, 7). In particular V' becomes the family of simple
O(V, mr)-modules.

By construction, the ring of observables O(—, ), is a presheaf on the ordered
set of diagrams of A-mod. It follows that there are no problems in globalizing
the notions of schemes for an algebra A, introducing toplogies in the classical way.
In particular, the construction of the observables Oa(—, ), applied to the obvious
diagrams of the category Ox — Mod, where X is a k-scheme, gives us a globalization
procedure.
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2.3 Infinitesimal structures on schemes. Let ¢ be a diagram of A-mod. Put
X = mor ¢, and consider a point x=¢;; : V; — V; of X.

Definition 2.3.1. Given a point z € X, we put
Tx,s = kGT{ECBt}q(V;, V;) X Ewt}‘l(vj’%) - Ewt}ﬁ(Via V])}

and we shall call it the big tangent space of X at x.

There is a canonical map
(2.11) Derg(A,A) — Tx ¢
the composition of the natural map,
Dery(A, A) — Dery(A, Endy(V;)) x Dery(A, Endg(V;))
and the surjection
Dery(A, Endi(V;)) x Dery(A, Endg(V;)) — Extly(Vi, Vi) x Exty (V;,V;)

It is clear that this composition ends up in T'x ;.

For every § € Deri(A,A), let §(z) € Tx 5, be the image of 6 in T ;. Thus
Derg(A, A) is a right A-module of vector fields defined on X. Suppose now that c
is a scheme for A, then;

Definition 2.3.2. Given a point x=¢;; : V; — V; of X = mor c, we shall say
that x is non-singular if the map (2.10) is surjective

3. THE COMMUTATIVE CASE.

3.1. The main Theorem. To show that the non-commutative algebraic geom-
etry, introduced above is a bona fide extension of classical algebraic geometry, we
have to prove that, for commutative k-algebras A,

(S) na(Spec(4), ) : A — On(Spec(A), )

is an isomorphism. This is still a conjecture in general, having been checked in
many cases, see below.

Moreover, we have to show that the construction of the observables O(c, ),
applied to the obvious subcategories ¢ of the category Ox — Modules, where X is
a k-scheme, gives us a globalization procedure.

According to paragraph 2 above, the globalization procedure is a consequence of
(S), so we are left with (S).

Notice that in this paragraph we shall assume that A is a commutative k-algebra
essentially of finite type on an algebraically closed field. The extension of the theory
to include schemes on general base rings, seems difficult.
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Theorem 3.1. Let A be any commutative k-algebra, essentially of finite type.
Then the canonical morphism of k-algebras

na : A — Oa(Spec(A), )

is an injection.
Proof. We have already seen that the natural morphism,

p : O(mor Spec(A), ) — Oo(Spec(A), ) = A/radA

is surjectiv. Moreover, for any closed point z € Spec(A), let, as above, k(z) be the
corresponding simple A-module, and consider the k-algebra homomorphisms,

n: A — Oa(Spec(A), )

and
oz : Oa(Spec(A), ) — O(k(x), )

The composition is the map of A into the completion of A at x.
A — O(k(z),m) 2 A,

Since this is true for all closed points of Spec(A), na must be injéctive. a

Theorem 3.2. Let A be any irreducible reduced commutative k-algebra, essen-
tially of finite type. Then the canonical morphism of k-algebras

s+ A — Oa(Spec(A))

is an isomorphism.

Proof. The composition of the natural morphisms,
A — Oa(Spec(A)) — Oo(Spec(A), ) = A/radA
is an isomorphism. Moreover, for every V; = A/p; it is clear that the morphism
Boi:Vo=A— Alp;

induces maps
End,(A) — ii ® Homy (4, A/ps)

and
H;; ® End,(A/p;) — H;; @ Homg (A, A/p;).

Since the last one is obviously injective, and since the coordinate ring at Vp is A,
represented as right actions on A, it is clear that na is an isomorphism. O
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4. INVARIANT THEORY AND MODULI

Consider a k-algebra A, and for the purpose I have in mind now, we may assume
A to be commutative, k to be algebraically closed, and the ring of observables
associated to a diagram c of A-modules to be the Oa(c, 7) defined above.

Suppose that there is a Lie-algebra g of vectorfields (i.e. derivations), acting
on A. Consider the category, C of A-g -modules, i.e. A-modules with integrable
g-covariant derivations. In this category we define the trivialization functor,

7 :C — k —mod

by
T‘-B(V) = Ho(gv V)

Recall that when g is semisimple then 7y is exact. Moreover, Ext, in this cate-
gory, is then simply the g-invariants of the Ext in A-mod. The exactness of 7y, is,
however, not neccessary for the construction of the ring of observables. Therefore,
given any diagram c of C, say Spec(A — g), corrsponding to the ordered set of
g-invariant prime ideals of A, we may consider the ring of observables Oa(c, 7g) In
particular, we pose,

Definition 4.1. The quotient of Spec(A) with g, denoted by Spec(A)/g, is the
presheaf of k-algebras of observables,

OA(Spec(A - g)? 7T9)

There is now a notion of moduli for singularities, in this non-commutative, sense.
In some easy cases, one gets exactly what one would expect, see paragraph 6. The
computations rely heavily on the computations of Massey products for modules,
and on the computations of cohomology of Lie algebras.

Notice that in the above formalism, I might have considered, instead of the Lie-
algebra g, any group G, and for that matter, any other reasonable superstructure
on the category of A-modules.

That this invariant theory fits with the classical invariant theory, is shown by
the following result,

Theorem 4.1. Let A be any irreducible and reduced commutative k-algebra of
finite type, and g a semi-simple Lie-algebra of vectorfields (i.e. derivations), acting
on A. Assume that the geometric quotient of Spec(A) with g exists, and is affine.
Then it coincides with the Spec(A)/g, defined above.

Proof. By assumption, the diagram Spec(A%) induces the diagram Spec(A — g).
Moreover the trivialization 7; maps the diagram Spec(A — g) onto the diagram
Spec(A$), or rather, to the image of this diagram under the canonical trivialization
7. But then the exactnes of 74 and the smoothness of the morphism of the geometric
quotient, proves that the formal moduli of the family |Spec(A—g)| in the category of
A—g-mod is isomorphic to the corresponding formal moduli of the family |Spec(A—
g)| in the category of A8-mod. Since the trivializations coincide, the Theorem 3.3
shows that
On(Spec(4 —g),mg) = A3

which is exactely what we wanted. O
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5. TENSOR PRODUCTS AND QUANTUM GROUPS

Let ¢ be a subcategory of A-mod, with a trivializing functor w. Suppose given a
tensor product on the category ¢, i.e. bi-functor

®:cXec— ¢

consistent with 7, which is a faithful imbedding, with some extra structure. In
particular there should exist natural isomorphisms,
a - ()0 )= (-0(-®-)

satisfying the Mac Lane pentagon,

idx Q@ ay,z,w © ax,yez,w © ax,y,z ® idW
= QX,Y,ZW © AX®Y,Z,W

Consider the exact functor,
A:c—cxeg,

defined by A(V) =V x V. Then there exist homomorphisms of k-algebras,
(1) O(c,m) = O(c®¢,m) — O(c x ¢,m) — O(c, )

such that,
O(cx ¢,m) ~ O(c,m) ® O(c, m)

and the last morphism of (1) is the multiplication morphism of the k-algebra O(c, 7).

The Mac Lane pentagon garanties that the first morphism of (1) becomes an
associative co-algebra structure on O(c, 7). Clearly any extra functorial symmetry
one may want to consider on ¢, will show up in the corresponding k-algebra O(c, 7).

6. EXAMPLES

6.1. The non-commutative projective line. Let A = k[z,z1], and consider
the usual k*-action. We shall compute the space Spec(A)/k*. The subcategory
Spec(A-k*) of A-k*-modules consists of the origin V3, the lines through the origin
Va(1), and the generic point V;. The trivializing functor (see paragraph 4),

7:A—k* —mod — k — mod

has the values,
(Vi) =k, n(Va(l)) =k, n(Vs) =k

Therefore there are no m-incidences, and the non-commutative orbit space is given
by the hull of the deformation functor, i.e. by (H; ;). Since HP(k*,—) = 0 for p>1,
we may use the Proposition (1.2), and we obtain,

Exta_i(Vi,V;) = Exta(Vy, V).
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It is easy to compute the different ext-groups, we find:

Exty (V;, V;) = 0, for i=1, j=1,2,3.

Eath (Va(1), V1) = Va(l) = A/(azo + fz1)

Exty (Va(1), V2 (1) = Va(l)
4
1
A
1
A

Exty (Va(l), Va(l)) =0 if L #1¢
Exty(Va(l),V3) =Va =k
Exty(V5, V1) =0

Exth (Vs,Va()) = Vs =k

Bt (V3,Va) = K

Using the results of paragraph 1.2. we obtain for the invariants

Bxty(Vi, V;)F" =0, for i=1, j=1,2,3.
Extly(Va(l), V1)*" = k represented by & =1
Ewth(‘@(l),‘@(l))k* = k represented by { =1
Exty (Va(l), Va(l))¥ = 0if L £ ¢
Exthy(Va(1),V8)¥ =0

Eathy(V3,V1)* =0

Extl(Vs, Va(l))¥ =0

Extl(Vs,Va)F =0

The corresponding quotient becomes the infinite matrix algebra of the form,

k 0 0
Spec(A)/k* := O(Spec(A— k"), m) = (k[[tz(l)]]t2,1 k[[t20(l)]] 2)
0

where 1 runs through all the points in the ordinary projective line. We observe that
the special point, corresponding to the isolated orbit, i.e. the origo, stays isolated,
even infinitesimally. There are, however, adjacencies between the formal points
corresponding to the lines through the origo, and the generic point corresponding
to the generic point of the ordinary projective line.

Suppose that we localize, say in Zo, i.e. that we restrict to the

Spec(Agmey — k%) = {Vi = Agzo}, V2(l) = Ao}/ (D}

then we find,
m(Vi) = k[z1/zo], m(V2(l)) = F

and therefore the m-incidences,

m(V1) — w(Va(l))
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for all 1. The exts in the new category looks like,

Extal,; (Vi, Vi) =0, for i=1, j=1,2.
EastA%zo}(Vz(l), V1)*" = k represented by £ =1
ExtAho}(Vg(l),Vg(l))k* = k represented by £ =1
Bataly (Vo) Vo) = 0 L £

With this we find,

Spec(A{mo})/k* = O(Spec(A{m} - k*aﬂ') = <¢(sz§:ai>/nggt27l f(:Dlo/xo)]>

where 1 is some derivation of Dery(k[z1/xo]) and f runs through k[z1/z0] in,

<Endk(k[x1/aso]) 0 )
klfw1/zollt2  Kllt2(D]]

as expected, see the Theorem (4.1).

It is therefore clear that the non-commutative version of the projective line con-
tains the geometric projective line.

If we consider, instead of the action by the group k*, the action of the Lie algebra
~ g generated by the Euler vectorfield 6o = o 50 +x1%1, we get a different picture

steming from the fact that g has cohomology. The subcategory Spec(A-g) of A-g-
modules consists of the origin V3, the lines through the origin Vs (1), and the generic
point V. The trivializing functor

w:A—g—mod — k—mod

has the values,

(V1) =k, 7(Va(D)) =k, 7(Vs) =k

Since there are no m-incidences, the non-commutative orbit space Spec(A)/g is given
by the hull of the deformation functor, i.e. by (H,,j), as above. However, here we
cannot use the result (4.1), since for most g-modules V, H g, V) =V/6V #0. In
fact we get,

Emt}ﬁl—g(vi’ VJ) = Ewth(Vi’ V])g & Hl(g’HomA(Vi, VJ))
Ext?A—g(Via V}) = Hl(ga Emt}ﬁl(‘/iv VJ))
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This implies that

Exty_,(V1,V;) = H' (g, Homa(V1,Vj)) = k for j=1,2,3.
EBxty_(Va(l),V;) = Eaty(Va, V;)* @ H' (g, Homa(V2, V;))
=k a0 for j=1

=k &k for V; =Va(l)

=00 for V; =Vo(l) I #1

=0®k for j=3

Batl_(Va,V;) = Exty(Va, V;)* ® H' (g, Homa(Vs, V;)
=060 for j=1

=060 for j=2

=06k for j=3

Ext}_o(Vi,V;) = H' (g, Bata(Vi, V7))

=0 for i=1, j=1,2,3.

=k for i=2, j=1

=k forV; = V5(1), V; = Va(l)

=0 for V; = W(1),V; = Vo(lY), 1 # 1

= k for i=3, j=3

It follows that Spec(A)/g is given by the rather complicated looking k-algebra,

generated by,
k{[t1]] t1,2(0) t1,3(1)
ug,1 () Klft2(D),u2(D]]  t2,3(0)
0 0 k[[ts]]

with some relations.

6.2. The moduli space of simple singularities, the A, case.. We shall
consider the Weierstrass family F := F'(to,t1,%,y) = 23 —y2+t1x+to, parametrized
by the k-algebra A := k[to,t1], and the corresponding Kodaira-Spencer kernel g C
Dery(A), generated by,

d ]
(50 = 3toa—to + 2t13_tl
8, = 2t? o 0

= _Oty—
9t ot

We claim that the moduli space consisting of the three singularities in the family F,
is given as the quotient space Spec(A)/g. We must therfore consider the diagram
Spec(A — g), consisting of the 3 A — g-modules,V1 = k[to,t1], Va = k[to,t1]/(A),
where A = 27t2 + 4¢3 is the discriminant of F, and finally V3 = k coresponding to
origo.

As above we find that

w=H%g,—-): A—g—mod — k—mod
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defines three points,
(V1) =k, n(Va) =k, n(Vs) =k
with no incidences. Since it is easy to see that
H2(g, Homa(V;,V;)) =0
we find,
Ext}y_ (V;,V;) = Ho(g, Bxty (Vi, V;)) ® H' (g, Homa (Vi, V)
which implies,
Exty_ (W, V;) = H'(g, Homa(V1,Vj)) = k for j=1,2,3.
Baty_,(Va,V;) = H'(g, Exty(V,V;)) © H' (g, Homa(Va, V;))
=k &0 for j=1
=0k for j =2
=06 k for j=3
Exty_o(Vs,V;) = Exty(Vs,V;)® © H' (g, Homa(V3,V;))
=060 for j=1
=060 for j=2
=06k for j=3
Moreover,
Ext}_y(Vi,V;) C H (g, Bxt} (Vi, V) ® H' (g, Extp(Vi, V5))
=0 for all i,j=1,2,3.
The moduli space is therefore given by the k-algebra freely generated by,
E[[t1a]]  ti2 t1,3
0 klftz2l] a3
0 0 K[ltss]]

which has a reduced quotient, given by the matrices of the form,

k ktip ktl‘g@kt1,2t2,3
0 k kta s

0 O k

which is the k-algebra of the non-commuting adjacency diagram corresponding to
the Weierstrass family, see [Laudal [10]],

to3 : cusp — node
t12 : node — ellipt
t1,2t0,3 : cusp — ellipt

t1,3 : cusp — ellipt
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Notice that g is a rank 2 A-module, such that we may expect to find exact

sequences of A — g-modules,

0—A—g—A—0
0— A/(A) — g®4 A/(A) — A/(A) — 0
0 —>A/(t0,t1) — g ®a k(o) —>A/(t0,t1) —0

explaining the diagonal tangent structure of the quotient space,

10.
11.
12.

13.
14.

Elltra]]  ti2 t13
0 Kk[ftao]] to3
0 0 k[[ts 3]
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