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Abstract

We construct a typed hierarchy of effective algebraic domains with
totality of hight the first recursively Mahlo ordinal. The hierarchy
is based on the empty type and the domains for singleton, boolean
values and natural numbers, and it is closed under dependent sums
and products of effectivly parameterised families of types, and un-
der universes closed under any continuous operator that generates a
universe.

1 Introduction

Given a type theory, there are several ways to produce a semantics for the
theory. An important distinction will be between intuitionistic and classical
semantics. It is an understandable view that a classical semantics for an
intuitionistic type theory is of little value. On the other hand, if one con-
struct some natural, classical semantics for a type-theory, by interpreting the
type operators described in the theory, one gets an impression of the classi-
cal strength of these operators, even inside a constructive environment. In
[9] we constructed a hierarchy of domains with totality and density having
the complexity of Kleene-recursion in the functional 3E. Taking the hered-
itarily effective version of this hierarchy, the complexity will be that of the
first non-recursive ordinal w¢¥. In a sense this is the minimal complexity
of effective dependent sums and products, and corresponds to the minimal
model of KP-set theory.




If we introduce the W-type constructor, the corresponding minimal classical
model will be of complexity the first recursively inaccessible ordinal. This
is essentially established in Normann [10]. There are corresponding results
of equivalent proof-theoretical strength between certain extensions of KP-
theory and certain intuitionistic type theories, see Griffor and Rathjen [3]
and Setzer [15]. Type theory with one universe, but without the W-operator
corresponds to KP-theory with one admissible, while type theory with one
universe and the W-operator corresponds to KP-theory with one recursively
inaccessible ordinal. The correspondance between results on proof-theoretical
strength and on the complexity of the minimal models can not be a coinci-
dence. With this paper we will extend this pattern one step.

When we use the term minimal model this is not accurate. It is of course
possible to construct semantics of these type theories of semicomputable
complexity; we introduce formal interpretations of every type proved to exist
and every object proved to be of that type. Since the set of proofs is com-
putable, the model will be semicomputable. What we mean by minimal here,
is that we view the constructors used in the theory, we then make classical
interpretations of these constructors inside the category of effective domains
with totality, and finally consider the minimal hierarchies closed under these
constructors.

In this paper we will go the other way around. In the previous estimates of
complexity we have somehow viewed transfinite computations as transfinite
propositions, and we have used standard (and not so standard) propositions
as types translations to express termination and value of transfinite compu-
tations in the typed hierarchy. Here we will consider computations relative
to the functional known as the superjump defined by Gandy [2], and see what
sort of type constructors will be required in order to express these computa-
tions as properties of the typed hierarchy. A. Setzer on one hand, and E.R.
Griffor and M. Rathjen on the other, has given a proof-theoretical analysis
(unpublished) of Mahloness, and their results and the results of this paper
supplement each other.

Domains

The domains in this paper will be algebraic domains or Scott- Ershov-domains
as defined in Stoltenberg-Hansen, Lindstrom and Griffor [16]. We view a do-
main element as an ideal in a partially ordered set of finitary compacts. Thus




we use the symbol ”C” for the ordering relation on any domain, including the
domain of continuous functions. We will assume that the reader is familiar
with the theory of domains as presented in e.g. [16]
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2 The Mahlo-universe

In this section we will introduce a typed hierarchy of effective domains with
totality. We first introduce the underlying domains via a standard fix-point
construction. Following the format of the papers Kristiansen and Normann
[6, 7] and Normann [9, 10, 11] we will construct one domain T', being the
domain of type descriptions, and an interpretation map I(t) interpreting each
t € T as a domain. See also Berger [1] or Waagbg [17] for a discussion.

I will be a parameterisation in the sense of Palmgren and Stoltenberg-Hansen
[14]. As a part of our construction, we will give interpretations of universes.
Here we will follow ideas from Berger [1], though we will not be bothered
with problems of density.

Definition 1 We let O, B and N be atomic, maximal elements of 7.
The interpretations will be

I(0) = {1}
I(B) = {L,tt, ff}, i.e. the flat domain of boolean values.




I(N) =N, i.e. the flat domain of natural numbers.

Ift € T and F : I(t) — T is continuous, we call (t, F') a T-parameterisation,
or just a parameterisation.
We then let II(¢, F') and (¢, F') be in T
The interpretations will be the corresponding dependent product and depen-
dent sum as defined in e.g. [14], in [6] or in [1].

If ®: T — T is continuous, we let (U, ®) € T
We define I(U, ®) and the map p : I(U,®) — T below. We let J be the
composition of p and I. J will be the interpretation map on I(U, ®).
p and J will be independent of ®.

O, B and N are in S with p being the identity

(S, J) are closed under II and ¥ in the same way as (T, I) is.
p(Il(s, F)) = I(p(s), p o F') and analogue for X.

If ¥ C ® and s € I(U,¥), we let o(¥, s) € I(U,®) with

p(o(¥, s)) = ¥(p(s)).
Here o is just a formal symbol, we could use (o, ¥, s) instead.

Remark 1 T is technically defined via the least solution of the set of equa-
tions above. It is clear that the domain T" and all parameterisations involved
will be effective in the sense that there is an enumeration of the compacts
such that the ordering, the consistency relation and the least upper bound
operator on compacts all are computable.

From now on we will restrict ourselves to effective objects in the domains,
i.e. objects where the set of compact approximations are r.e.

We are now ready to define the hierarchy of well-formed types and the
set of total objects in each well-formed type:

Definition 2 By induc_tion on the countable ordinal o we define T, C T
and the total elements I(t) for ¢ € T, as follows:

O, B and N are in T, for all a with the obvious set of total elements.
If o is a limit ordinal, then T, = Ug<q Tp-
Ifa=0+1 welet




S(t,F) € T, if t € Ts and F(z) € Tj for all z € I(2).
II(t, F) € T, if t € T and F(z) € Tj for all z € I(2).

In both cases the total objects are defined in the obvious way.
If ® : T — T we define I,(U, ®) as the union of the inductively defined sets
I, , for 7 < a as follows:

We perform the same inductive definition as for T, with one restriction
and one suplement.
The restriction is that we do not ad any element s to I,41,(U, ®) unless
p(s) € Tp.
The suplement is that if U C ®, s € I, (U, ¥) and ¥(t) € Ts for all t € Tp
with ¢ C p(s), then o(¥, s) € Iy o(U, ®) for all v/ with vy <+ < .

We then let (U,®) € T, if I4(U,®) is closed under II and ¥ and if
®(t) € T whenever t C p(s), t € Tg and s € I,(U, ®). In this case
I,(U,®) = I(U, ®).

Finally we let
T= T
a<wi

Remark 2 The intuition is that we ad a well-formed universe to our hier-
archy when we have an operator that maps well-formed types to well-formed
types; at least when the operator is restricted to its own closure. The def-
inition of totality of o(W,s) is as it is in order to ensure certain regularity
properties discussed in the next section.

Our main result will be that this hierarchy will have the first recursively
Mahlo ordinal pg as its closure ordinal. In our hierarchy there is no way to
‘tell in advance’ when we may form a universe from an operator, we can only
do so when it is established that we have a closure of the operator. This
aspect is in our view the essence of the Mahlo property, and any axiomatised
version of Mahlo type theory must take this into account.

Lemma 1 If s € Top1 \ Ta, then a < po.

Proof
Closure under IT and ¥ requires admissibility.
If ® : T — T is such that (U, ®) € T,+1\T,, we consider the ordinal function

A

® : o — « defined by
&(7) = ublVs € Lya(s € Tp)]
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By construction, o will be the least admissible ordinal closed under CTD, SO
a < pPo.

Remark 3 We might ad the W-operator as one of our basic operators inside
each universe. The closure ordinals of each universe would then be recursively
inaccessible, without this changing the argument.

3 Digression

The hierarchy investigated in this paper is an extension of the single-valued
version of the hierarchy from Normann [11]. Waagbg [17] uses a similar
hierarchy to give an interpretation of basic intuitionistic type theory.

In both these papers natural equivalence relations on the set of well-
formed type expressions and on the total elements of equivalent types are
constructed. These equivalence relations will correspond to objects having
the same extentional interpretation. In this digression we will indicate how
these equivalence relations and their characterisations can be extended to
the universes. We will not need this result for the characterisation of the
complexity. Thus we do not give all the details. A more general treatment
of the kind of results established here will be given in the forthcomming
Normann [13].

In this digression it is of no importance if we consider the effective hier-
archy or the full hierarchy. All arguments will hold in both cases.

We let D be the domain where each interpretation I(t) will be a subdo-
main of D. We will use the notation Dy, Io(t), Tp etc. for the set of compacts
in each domain.

Lemma 2 There is a partial map v : Dy — Ty such that for allt € T and
1) € Do.‘

If 6 € Io(t) then v(6) Ct and 6 € Iy(v(6)).

Proof

The proof of Normann [11] can be used in all cases except for the new universe
operator, and the extension to that case is simple by recursion on the possible
elements of I(U, ®), we simply collect the amount of ® used in the formation
of the compact.




Corollary 1 For each t; and ty in T we have that
Io(ty Nta) = Io(t1) N Io(t2).

Definition 3 Let X and Y be domains. We say that X is a full subdomain
of Y if X is a subdomain of Y and for all z € X and y € Y, if y C z in the
sense of Y, then y € X.

Lemma 3 Let ® C ®,. Then I(U,®) is a full subdomain of I(U, ®1).
The proof is trivial

Definition 4 a) If s C ¢t € T and z € I(s) we let ¢ be the minimal
extension of z to an element of I(t)

b) If s Ct € T and y € I(t), we let y; be the restriction of y to an element
of I(s).

Theorem 1 a) Ift €T andt Ct1, then
i) teT.
ii) Ifz e I(t), then atr € I(t1).
iii) Ify € I(t1), then y; € I(¢).

b) Ift, and ty are in T and {t1,t2} is bounded, then t; Nty € T.

c) Ift, and ty are as above, 1 and z, are total in I(t1) and I(t2) resp. and
{z1, 24} is bounded, then z1 Nz is total in I(t; Nta).

Proof
We prove the theorem by simultanous induction on the rank of ¢ and the
rank of the bound on ¢; and t,. Sufficient methods are given in Normann
[11] or in Waagbg [17] in all cases except the formation of universes, so let
us consider this case.

We first sketch the proof of a). Let ® C ®.
We prove ii) and iii) by recursion on the formation of the universes. As a
consequence of iii) we obtain that the construction of I(U, ®,) will be closed,
so (U,®;) € T. Thus i) will hold.




In the proof of ii) and iii), the only new case is the use of the operator.
For ii) this case is trivial, since I(U, ®) is a full subdomain of I(U, ®;) and we
actually prove that every total object in I(U, ®) also is total as an element
of I (U , @1)

In order to prove iii) we need the following

Claim
Let U; and ¥, be bounded and let s; € I,(U, ¥;) and sg € I,(U, ¥;). Assume
that {s1, s} is bounded. Then

s1Msy € Ia(U, ¥inN \Ifg)

Proof of claim:

We prove this for I, o (U, ¥) by induction on y uniformly for all ¥, with
a=0+1

For all cases but the use of the operator, we can use the methods from
Normann [11].

So, let

s1=0(¥},t1) € L41,4(U, V1)
89 = 0(11’12,152) € I7+1,a(U, \112)

where {¥;, U5} is bounded and {s1, s2} is bounded.
Then the t’s and the ¥’’s are bounded and we may use the induction hy-

pothesis to obtain
t1 Nty € I, o(U, T NTY)

and thus that p(t; Ntg) € Tp.
By assumption ¥} (p(t; Nts)) € T and Uy(p(t1 Nt2)) € Tp, so
(U, NT,)(p(t1 Nt2)) € Tp. It follows that

S1 N8y = 0(‘11/1 N \11’2’ t1 N tz) € Ify+1,a(U, ‘Ill N \I’z)

This ends the proof of the claim.

We now prove iii) in this case.

Let t; = (U, U,), t = (U, ¥) and y = o(¥1, ), where ¥; C ®;.

Let ¥ = ® N ¥;. By the claim ¥ is total and o(¥,zww) C ¥ By the
induction hypothesis, o(¥, zw,v)) is total, so g € I(U, ®;). This ends the
proof of a).




The proofs of b) and c) follow the same pattern and are omitted. All cases
except the universe formation are as in Normann [11] and the remaining case
is mainly taken care of by the claim. This ends the proof of the theorem.

Definition 5 We define two binary relations ~ on T and =~ on (¢t € T)I(t)
as follows:

O ~ O etc. for atomic elements of T'.
(N,17) =~ (N, 17) etc. for atomic total elements of atomic types.

S(s,F) ~ Z(t,G) if s ~ t and for all z € I(s) and all y € I(¢), if
(5,2) ~ (t,3), then F(z) ~ G(y).

In this case (Z(s, F), (z,u)) = (Z(t,G), (y,v)) if (s,z) = (t,y) and
(F(z),u) = (G(y),v).

(s, F) ~ I(t,G) if s ~ t and for all z € I(s) and all y € I(t), if
(s,z) = (t,y), then F(z) ~ G(y).
In this case (Il(s, F), f) = (II(¢,G), 9) if (F(z), f(z)) = (G(y),9(y))

whenever (s,z) = (t,y).

In the case (U, ®) we first define a relation =& between elements of
I(U,®;) and elements of I(U,®,) for arbltrary ®; and P, (omitting
some indices on & ) as follows

For base types we define = as the identity.

We let X(s1, F1) & X(s2, Fy) if s1 & s, and whenever z; and z, are
total in I(p(s1)) and I(p(s2)) resp., and (p(s1), 1) = (p(s2),22), then
Fl(.’El) & Fg(mz).

We define & for II-types in the analogue way.

o(U1, 81) R o(Wy, s9) if 81 % 52 and for all ¢ C p(s1) and t; C p(s2), if
t1 ~ t2, then \Ifl(tl) ~ \Ifz(tz).

We then let (U, ®1) ~ (U, ®o) if for all s1, so, t1 and ty, if 51 = s,
t1 C p(s1) , ta C p(s2) and t1 ~ tg, then @q(t1) ~ Do(t2).

Remark 4 The idea is to define the obvious notion of extentional equality by
recursion on the inductive definition of T. We will prove that these relations
indeed are equivalence relations. A consequence will be that every object
(function, parameterisation ) will be extentional.




Theorem 2 a) Given s, € T we have

81N82<=>81082€T

b) Given s;,s2 € T, T, € I(s1) and x5 € I(s3) we have

(81,:1,‘1) ~ (82,932) &S 81~ S AT NTy € f(sl n 82)

c) ~ and = are equivalence relations.

d) Ift; ~ tp then rank(t;) = rank(t).

Proof

We prove a) and b) by induction. c¢) follows as in Normann [11] and d) is
proved by a simple induction.

The cases Base type, X-type and II-type is handled as in Normann [11]. In
order to handle the last case we need the following

Claim

Let s; = (U,®;) and s, = (U, ®s) be total, and let = be the relation
between elements of I(s;) and I(s;) given in the definition.

Then for each t; € I,4(s1) and t3 € I, (s2) We have

t1 ~ to &t Nty € I,Y,a(sl N 32)

Proof of claim

We use induction on 7. The basic types, 2-types and II-types are handled
as in [11].

So let tl = O(Wz,tll) € I»y+1,a(U, @1) and tz = 0(‘1’2,#2) € I7+1,a(U, (I)z) .

First assume that ¢t; & to. Then ¢} & ¢}, and by the induction hypothesis,

th Nty € L, 4(®1 N Dy). It follows that t; Nt5 € I,(¥1 N Ty).

Let ¢t C p(t; Nty) with ¢t € T (@ = B+ 1). Then ¥1(t) ~ Wy(t). It follows
that (U3 NW2)(¢) € Tp, and as a consequence we obtain

0(\111 NWw,, tll N tlz) € I7+1,a(U, P, N @2)
Conversly, assume that

O(\Ifl Nw,, t,1 N t’z) € I7+1’a(U, o N ‘192)
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Then t) Nty € I, o(U, &1 N ®y), so by the induction hypothesis ] = t5.

Let sy C p(t}) and sy C p(t;) be such that s} ~ s5.

Then s} N sy € T and p(t) Nty) € Tp. These two objects are consistent, so
by Theorem 1 we have that

s’ =38 NsyNp(ty Nty) € Tp.

By assumption, (¥; N Ws)(s") € Tj, since o(¥y N Wy, t) Nty) is total.
Clearly
(‘I’l N \112)(8/) - \111(8/1) N ‘If2(8/2) € Tﬁ

50 Wy (s)) ~ Wa(t}).
This shows that o(¥1,t]) & o(¥s,t5), and the claim is proved.

We now prove a). b) will be a direct consequence of a) and the claim.

1. Let (U, (I)l) ~ (U, (I)z)
Let t; € I_(U,(I’l) and ty € I_(U, q)g) with ¢; & to.
By the claim t; Nty € I(U, ®; N ®y).
We then argue as in the case o(¥,t) in the proof of the claim and see
that if ¢ C p(t; Nty) with ¢ € T we have that (®; N ®)(t) € Tp. This
establishes =-.

2.  Let (U, &; N ®,) be total.
Let t; & to, and let ¢} C p(¢1) and ¢}, C p(t2) with ¢] ~ 5.
Then, as for the corresponding case in the proof of the claim,

(@1 N D) (ty Nty) € T
This establishes <.

End of proof.

4 Simulation

In section 6 we will be simulating computations in the functional S, The
Superjump, which will be defined in section 5. This will involve the simulation
of natural numbers obtained as the result of transfinite computations.
There are of course various formats that we could choose for the simula-
tion of such computations. In Normann [9, 12] we have used the so called
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representations. The representation technique will require that the total ob-
jects in each type is dense, a property that we certainly do not have.

Here we will use the same method of simulation that was introduced in
the unpublished [8] and reused in [10].

Definition 6 a) Let t € T and let v : I(t) — Ny be continuous.
We say that (t,v) simulates the number n if I(t) # 0, v is total and
constant n on I(t).

b) Ift = (U,®) € T and s € I(t), we say that (s,v) t-simulates n if (p(s), )
simulates 7.

We will in reality be working with operations on simulations, but technically
we can only deal with operations on T'. In this section we will see that any
operator on the set of simulations can be translated to an operator on T'
First we translate a simulation to an element of T'.

Definition 7 a) If ¢t; = ty and t; = tyy are two elements in T, we let
t) &ty = X(B, )

b) We let Ny = B, and recursively we let Nyy1 = Ni © B be elements of T

c) Let t € T and let v : I(t) — N1 be continuous.
We let [t,v] be II(¢, F), where F(z) = Ny(g).

Lemma 4 There is a continuous map C (for collapse) such that for any
teT

i) C(t) is of the form [t,V].
ii) Ift = [t1,v], then C(t) =1t.

Proof

If ¢t is not a product, we just select some code for a simulation, e.g. the
product of the constant B over N.

If ¢ is a product II(¢;, F'), we construct the parameterisation G that for each
z € I(t;) is F(z) if F(z) = Ny for some k, and is B if F(z) is inconsistent
with all N, undefined otherwise.

Lemm_a 5 Let C be as above.
IfteT, thenC(t) e T.
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The proof is left for the reader.

Definition 8 A pre-simulation will be a pair (¢,v), where ¢t € T and
v: I(t) — N is total.

It is clear that there is a bicontinuous 1-1 correspondance between pre-
simulations and products of total parameterisations with values of the form
N,. From now on we will work with pre-simulations and simulations, but
consider all operators constructed as operators on T', composing with C' for
objects t that do not directly correspond to pre-simulations.

Our next step will be to transfer all pre-simulations to simulations, not
altering the simulated value in case the input already is a simulation.

Lemma 6 There is a continuous total map ¢ from the set of pre-simulations
to the set of simulations such that if (t,v) simulates n, then ¢(t,v) simulates
n.

Proof

Let (t,v) be given. For z and y in I(t), let
B(z,y) = Bifv(z) =v(y) EN
B(z,y) = O if v(z) €N, v(y) €N, but v(z) # v(y).
B(z,y) = L otherwise.

Let C =1I(z € I(t))I(y € I(t))B(z,y), and let ¢, be a code for

(I(t) x Q)@ ((I(t) x C) = N.))

Let vy (left(21, 22)) = v(21) and let vy (right(2)) = 0.

It is easy to se that the left hand side contains total elements if and only
if the right hand side does not. The left hand side contains total elements
if and only if both C' and I(¢) does so, and this is the case exactly when
I(t) # 0 and v is total and constant on I(t).

This ends the proof of the lemma.

As a consequence of this lemma we will operate on simulations and pro-
duce new simulations, blowing the operators up to operators from the set of
total pre-simulations to the set of simulations by composing with ¢. In the
sequel we will do so without further explanation on what is really going on.

We may extend the notion of simulating a number to simulation of a
function:

13




Definition 9 Let f : N — N be a function. A simulation of f will be a
family {(tn, V) }nen Where (tn, V) is a simulation of f(n) for each n.

Remark 5 We will show that the functions f that can be simulated by
objects in T will be exactly the functions that appears in Godel’s L before
the first recursively Mahlo ordinal py. The easy inclusion is given by
Lemma 1.

5 The Superjump

Our method for proving the main theorem will be by simulating computations
in the type 3 functional S known as the superjump. Kleene [5] gave a general
definition of computations {e}(¢) ~ n where e is a natural number, and & is
a sequence of total functionals of pure finite type. The definition is given as
an inductive definition with 9 clauses, S1 - S9, and for each clause we give
an index coding the clause, the signature of the arguments and the indices of
the immediate subcomputations. Below we will give the definition without
specifying the construction of each index. For a more complete definition,
we refer to the original paper [5] or to any textbook on the subject. We omit
clause S5, covering primitive recursion, since this clause can be reduced to
the 8 other clauses. Here z will denote a natural number

Definition 10 The relation {e}(¢) = n is inductively defined as follows:
S1 {e}(z,¢) =z +1

s2 {e}() =4

S3 {e}(z,d) ==

S4 {e}

$) = {e1}({e2(9), 9)
¢

(

56 {e}(

S7 {e}(z, f,9) = f(2)
(
(

) = {e1}(7($)) where 7 is a permutation.

—

89 {e}(z,4,9) = {}(9)
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Remark 6 Non-terminating computations will be introduced via S9. In S4
we will assume that {e;}(4) terminates and gives a value y, and then that
{e1}(y, 5) terminates. In S8, ¥ must be of type k + 2 and £ will range over
the total objects of type k. We will assume that {e;}(€,%, #) will terminate
for all &.

Gandy [2] introduced the type three functional S defined as follows

Definition 11 Let F be a total functional of type 2, and let e be a natural

number.
S(F,e) =0 if {e}(F) = 0, otherwise S(e, F') = 1

We call S The Superjump since it is a jump operator for arbitrary functionals
of type 2.

Harrington [4] showed that a function f is computable in S if and only
if f € L,, where py is the first recursively Mahlo ordinal. We will show that
any function f that is computable in S can be simulated by an element of
T, and thereby show that every f € L,  NN" can be simulated. The other
way around follows from Lemma 1.

6 Simulating computations

The aim

In this section we will use the notation {e}5(fi,..., fa), or simply the nota-
tion {e}( f) for a computation relative to S. Here each f; will either be a
function or a number, which sort will be clear from the index.

Our notation for computations relative to a type two functional F' will be
similar, {d}¥ (7).

Uniformly in each index e for a computation {e}%(f) we will construct a
continuous operator ®, : T™ — T such that if t € T™ are simulations of f,
and {e}5(f) = m, then ®,(f) € T and &,(f) is a simulation of m.

We will define the operators using the fix-point theorem for domains, but
we will simultanously give the induction steps needed in order to prove that
our construction works.

We will use the following notational conventions: When ¢ is an element
of T representing a simulation of a number, we let the simulation be the pair
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(¢',v) where this notation will commute with the use of indices. Similarily,
the operators ®, will be split into two operators ¢, and p. giving the object
and the function of the simulation ®,(%).

We will only use this notation when it simplifies our construction.

Basic computations

There are four clauses giving the basic computations.

{e}S(z, f) = £ + 1. If (s,v) is a simulation for z, we use (s,v + 1) (with the
obvious meaning of v + 1) as a simulation of z + 1.

The cases S2 and S3 are even more trivial.

In the case S7, we let (s, v) be a simulation of z, and {(s;,%;) }ien be a simu-
lation of f. Then ¢ = £(s, Sy(z)) and pu(z,y) = V() (y) will be a simulation
of f(z).

It is trivial to show that our constructions of simulation for basic computa-
tions work.

Composition, permutation, enumeration

The three cases S4, S6 and S9 are fairly simple.

S {e}(f) = {er}({ea} (), )-

We assume that we have constructed ®., and ®,,

We might then simply use the composition ®,, (®,,(t), ), but it will be
an advantage to code in the subsimulations more explicitly.

Let c(n) be some canonical simulation of the number n. We then let

$e(f) = Bz € I(dea(£))) ey (c(btes (B)(2)), F)

and we let
/f‘e(ﬂ (37’ y) = ey (c(:uez (7?) (:I))), t-)(y)

S6  {e}(f) = {ex}(7(f))- Let
(I)e(a = (I)el (T(ﬂ)
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89 {e}(e,f,5) = {}(F). Let
¢e(t)i:;7_") = Z(m € I(t,))¢u(w) (ﬂ
pe(,Y) = @) (B) ()

Application

{e}s(d7 f) = S(da )‘g{el}s(g1 f))

We let F(g) = {e1}5(g, f) in this section.

Recall that S(d, F) = 0 if {d}(F) = 0, while S(d, F) = 1 otherwise.

We will do the final proof by induction on the length of the computations
in S, so we may assume that F'is total and consequently deduce from the
induction hypothesis that if ¢ € T and ¢ are simulations of f , then

(I)(t) = P, (ta i)

will also be an element of 7. ‘Here © will depend continuously on the choice
of t. We then have (U, ®) € T.

Our first step will be to construct simulations s of {d} (%) inside I(U, ®)
uniformly in simulations for 7 in the same universe. By this we will mean
that p(s) is a simulation in 7.

For each d being an index accepting a type two functional and k£ numbers
as inputs, we construct a continuous function ¥, : (I(U,®))* — I(U,®)
transforming a simulation & of 7 to a simulation of {d}¥ (%) whenever the
latter terminates.

S7 does not apply here, and all cases exept S8 is handled exactly as in the
major construction.

88: {d}* (@) = F(Am{d1}" (m, 7))

By the induction hypothesis it is trivial to construct a simulation s for

g = Am{d;}(m, @), i.e. p(s) is a simulation of g in T.

By the grand induction hypothesis and the construction of ®, ®(p(s)) will
be a simulation of F'(g). We then use o(®, s) as a simulation of

F(g) = {d}(F,7) in I(U, ®).

This ends our construction.

The second step will be to use this to construct a type that contains total
elements if and only if {d}(F) = 0. The idea is to take any element z in
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I(U,®) and ask if z is a simulation of {d}(F') constructed as in the first step.
The reason why this will work is that I(U, ®) is inductively defined, and by
recursion on this induction we can compare the object with the ones used to
simulate the results of computations.

Lemma 7 There is a continuous function o defined on sequences of the form
(d, 7, s) where s € I(U, ®) such that o(d,, s) is a simulation of 1 if s can be
estended to a simulation of {d}F () obtained from a simulation in I(U,®)
for @i, and o(d, 7, s) is a simulation of 0 otherwise.

Proof
We define o by the 7 cases corresponding to S1-4, S6, S8 and S9, but the
proof that o fullfills the lemma will be by induction on the rank of s in
1, o).
We will not give all the details. In section 4 we established how the use
of quantifiers or boolean combinations can be transfered to continuous op-
erations on simulations. Thus when we in the construction below ’check’
something, we mean that we construct a simulation of the truth value of the
statement.

We now give a scetch of the argument, noticing that the constructions
will be by recursion on the inductive definition of I(U, ®).
Si: {d}f(z, @)=z +1
We simply have to check if s is a simulation of z + 1.
S2 and S3 are equally simple.
S4: {d}F() = {di}* ({2} (7), )
In this case, s’ has to be a sum (s}, F') where s, is a simulation of {d}* (%)
and for each total z, F(z) is a simulation of the appropriate {d;} (m, ).
This can be checked.
In the case S8, {d}¥ (7)) = F(Am{d;}¥ (m,)), we must have that
s = o(®', s1) for some ® C @, where s; can be extended to a simulation of
Am{d; }¥ (m, 7). By the induction hypothesis, this can be checked.
The other cases are also easy, we can first check if s is locally of the correct
form, and then use the induction hypothesis to check if the subtypes are the
simulations we want them to be.
This ends the proof.

The third stage will be to use this to construct a simulation of
{e}°(d, ) = S(d, Ag{e1}* (9, F))
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in the case S8. But we simply have to ask if there is any element s of I(U, ®)
such that o(d, -, s) is a simulation of 1 and s is a simulation of 0. If this is the
case, the simulation we construct should be a simulation of 0, otherwise it
should be a simulation of 1. We have already developed standard techniques
to do this inside T.

The Main Theorem
We are now ready to state our main result:

Theorem 3 We use the notation from the paper.
The first recursively Mahlo ordinal py is the least ordinal oo such that
Ta+1 = Ta.

Proof

By lemma 1, po is an upper bound for this least a.

On the other hand it is easy to see that T € Ly4p41 for all 3, and if f has
a simulation in T, then f € Lyigtw-

If f is computable in S, then by our main construction, f can be simulated
in T. By Harrington [4] po is the least a such that f € L, whenever f is
computable in S. The theorem follows.

Remark 7 In this proof we have used Harrington’s result because it was
available. The advantage was that we would never have to worry if the
operators ® considered in the construction actually defined universes. If we
were to use some other system for the first recursively Mahlo, say viewing
S as a monotone partial operator defined on any d and partial F' containing
at least enough information to determine S(d, F'), we would have to be more
careful.

The use of Harrington’s result indicates that we might form a Mahlo-
hierarchy in an impredicative way; it is sufficient for our purpose to construct
universes from operators that will remain total at the end of the construction.
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