EQUISINGULAR DEFORMATIONS OF
SANDWICHED SINGULARITIES
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1. INTRODUCTION

In the study of normal surface singularities one attaches to a normal surface
singularity X, the dualgraph of resolution I'. Given such T' one may ask if this
determines X. H. Laufer gives in [L2] an answer to this question by listing all
dualgraphs with this property. However, generally there are families of normal
surface singularities with the same dualgraph. If we want to use deformation theory
to study such families, we are lead to a notion of equisingular deformations. A
foundation for such theory was given by Wahl in [W1]. In this work, the functor
of equisingular deformations, ESx, of a normal surface singularity X, is defined.
Moreover, it is proved that it is a subfunctor of the functor of all deformations.

The aim of this paper is to describe these equisingular deformations for sand-
wiched singularities.

A sandwiched singularity is a normal surface singularity which birationally dom-
inates a smooth surface. Sandwiched singularities are rational and include all cyclic
quotient singularities. More generally any rational singularity with reduced funda-
mental cycle is sandwiched. The sandwiched singularities were studied by several
authors, among others, de Jong and van Straten [JS] and Spivakovsky [SP2]. In [JS]
the deformation theory of sandwiched singularities is studied. Their results give
a good understanding of the versal basespace, but only up to “up to equisingular
deformations.”

Of importance is a particular construction of sandwiched singularities. It was
observed by Spivakovsky, [SP2], that a sandwiched singularity may be obtained
from an embedded resolution of a plane curve singularity by contracting rational
curves. This was used by de Jong and van Straten who considered one parame-
ter §-constant families of plane curves and showed that such corresponds to one
parameter families of sandwiched singularities. We restrict our attention to equi-
singular families of plane curves. Doing this, we get an even better correspondence:
We show that that to an equisingular flat deformation of a plane curve singularity
there corresponds an equisingular (in the sense of Wahl, see [W1]) flat deformation
of sandwiched singularities. Moreover all equisingular deformations of sandwiched
singularities may be obtained this way. To be precise we show that there is a
smooth map

ESC - ESX

between the two functors of equisingular deformations. This map is the composite
of a map
ESC — Defy,

where Y is a certain surface on which the sandwiched singularity X lies, with the
restriction map. We are also able to describe the kernels of these two maps.
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Thus we are able to find many surface singularities which are not determined by
their dualgraph. In fact we show (when the curve is irreducible) that if the embed-
ded resolution of the plane curve is sufficiently non minimal, all of the equisingular
moduli of the curve is transfered to the sandwiched singularity. This may be under-
stood in terms of series of surfaces singularities: All surface singularities in a series
come from the same curve singularity, the difference being only how non minimal
the embedded resolution is. Our results then imply that the generic member of
such a series has “the same amount of moduli” as the curve defining the series.
They also show that the moduli problem of irreducible plane curve singularities is
contained in the corresponding problem for rational surface singularities.

Central in our approach is what we would like to call equinumerical deformation
of complete ideals. The sandwiched singularity lies on the blowup of the plane in a
complete ideal, and the equinumerical deformation of complete ideals corresponds
exactly to deformations of the surface which induce equisingular deformation of the
singularities on the surface. It seems also that the connection between equisingular
plane curves and deformation of complete ideals has not been noted earlier. This
description of equisingularity of a deformation is interesting and particular useful
for our purpose.

The sections are summarized as follows. Some preliminaries are given in section
2. We start section 3 on equisingular deformations by reviewing the construction of
sandwiched singularities, and in subsection 3.3 we describe the different deformation
functors which are involved. The observations in 3.3 are central in this paper. In
3.4 we study the tangent spaces of the deformation functors introduced in 3.3, and
the relationship between them.

In section 4 we consider the generic case in the meaning described above. The
main result is that for the case when the defining plane curve singularity is irre-
ducible, there is a one to one correspondence between isomorphism classes of plane
curve singularities with a given semigroup and normal surface singularities with a
given dualgraph. In order to prove this we have to consider the possible dualgraphs
for these singularities and consider the groups of automorphisms of these graphs.
This is done in 4.1. In 4.3 we include the considerations on the tangent spaces in
the generic case.

I would like to thank my supervisor Jan Arthur Christophersen for his continuous
support and also Olav Arnfinn Laudal for his patient explanation of different aspects
of deformation theory.

2. PRELIMINARIES

The field C of complex numbers is fixed as the ground field in the whole of this
article.

2.1. Deformations. We are going to use the theory of deformation functors,
[SCH], so let C be the category of local Artin C-algebras, and let Cle] = Clt]/(t?)
be the ring of dual numbers. Recall that a deformation of a C-scheme Y over A € C
is a cartesian diagram

Yy — Y

l l

Spec C —— Spec A

where Y — Spec A is flat. We will also speak of deformation classes where the
the following equivalence is understood. Two deformations are equivalent if the
corresponding schemes are isomorphic over A by an isomorphism which induces
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the identity when pulled back to C. We denote by Defy : C — Sets the functor of
all deformation classes.

2.2. Rational surface singularities. Recall that a normal surface singularity
X = Spec B is said to be rational if for any resolution r : X X, H (X, Oz)=0.
The exceptional set £ C X is a union of irreducible components E; ~ P. There is a
fundamental cycle supported on E which may be constructed as the unique smallest
positive divisor Z = 5 m; E; satisfying Z - E; < 0 for all irreducible component E;.
The embedding dimension of X equals —Z2 + 1 and the multiplicity e — 1 = —Z 2,

Given a normal surface singularity we will often consider the minimal good res-
olution. A good resolution has the property that all exceptional curves intersects
transversally and when they intersect, there are only two intersecting in one point.
For rational surface singularities the minimal resolution is always the minimal good
resolution.

2.3. Dualgraphs for normal surface singularities. It is common to describe
the configuration of the exceptional curves in the minimal good resolution of a
normal surface singularity, by a graph. This is called the dualgraph of resolution.
This is an invariant of the singularity and accordingly one sometimes speaks of the
dualgraph or only the graph of the singularity. Before we recall the definition, we
fix some notations on graphs.

A weighted graph I' is an ordered triple (v,e,w) such that e is a subset of
unordered pair of elements in v and w is a map w : v — Z. We assume that v and
e are finite sets and we refer to v as the vertices and to e as the edges of I'. The
map w gives the weights.

If T is a graph we write v (') for the vertices, e (T') for the edges and w(T) :
v (T') = Z for the weights. We further write zy € e (T') for an edge with z,y € v (T').
Two graphs I' and I’ are isomorphic if there is a bijection ¢ : v (I') = v (I'") such
that ¢(z)¢(y) € e(I”) if and only if xy € e (T').

A subgraph IV C T is an inclusion v (T') C v (T) such that zy € e (I") if and only
if zy € e (T) and such that w (I') = w (T') (v - A subgraph y C T is called a path
inTifv(y) ={xo,...,z;} and e (y) = {zox1,x122, . ..,xl_}vx,}.

Now let X = Spec B be a surface singularity and let = : X — X be a resolution.
Let E = U™ E; be the decomposition of the exceptional set into is irreducible
components. We define a graph I' = I'(7) as follows: Set

() ={E1,...,En}
and define e(I') by the condition that
E;E; € e(T)
if and only if i # j and E; N E; # @, Finally define the weights by
w(T)(E;) = EZ.

Definition 2.1. The dualgraph of X is I' = I'(X) = I'(r), where 7 is the minimal
good resolution of X.

2.4. Plane curves. By a plane curve singularity we will mean a scheme

C = Spec C[[z, y]]/(f)-
To an irreducible plane curve singularity there corresponds a semigroup S = S(C) :
Let
_ A=C[=,y]l/(f) C A=C][t]]
where 4 is the normalization of A. On the quotientfield of A, K, there is a canonical

valuation
v: K\ {0} - Z.
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The semigroup S is now the subsemigroup v(A4 \ {0}) of Z.

By a good embedded resolution of C' we mean an embedded resolution such that
the reduced total transform of C is a normal crossing divisor. In particular there
are at maximum two irreducible components intersecting in a point.

3. EQUISINGULAR DEFORMATIONS OF SANDWICHED SINGULARITIES

A subclass of the rational surface singularities are the sandwiched singularities.
A normal surface singularity X = Spec(B) is said to be a sandwiched singularity if
there exist a birational map X — S to a smooth surface S. Cyclic quotient singu-
larities and more generally rational surface singularities with reduced fundamental
cycle are sandwiched singularities, see [SP2], [JS]. As remarked by Spivakovsky, see
[SP2], there is however a general method of constructing sandwiched singularities
from plane curve singularities as follows.

3.1. Construction of sandwiched singularities. Let

C = Spec ([[z, y]]/(f)

be a plane curve singularity, and let

~

Sp —— Sp-1 y So= Spec C[[z, y]]

(3.3.1) T T T

Cn—)Cn—l > e >Co =C

be an embedded (possibly non-minimal) good resolution of C, obtained by blowing
up closed points, and where C; is the strict transform of C' in S;. Given 3.3.1, there
is a canonical sequence of blowups

Tpn—1

(332) Z =2, L} -1 > e y Zo = Spec C[xvy]

which induces the first row of (3.3.1) by the base change
Spec C[[z, y]] = Spec Cz, y].
Let m be the composition of the maps in (3.3.2), and let
E=n"10) = U™, E;

be the decomposition of the exceptional set into its irreducible components. Assume
Ey,...,Ep are those with E2 = —1. Now the intersection matrix of F1, ..., Er_1
is negative definite, so we may blow these curves down to obtain a surface Y. This
surface is in fact algebraic, see [SP2]. Moreover, if (3.3.1) does not give the minimal
good embedded resolution for any of the branches of C, Y will have a unique singular
point, and one may show that up to analytic equivalence, this singularity depends
only on the analytic equivalence class of C. In particular we may assume that that
C is defined by a polynomial f. Thus we have C! = V(f) C Zo and we define
C C Z to be the strict transform of ¢’. Put X = Z \ C. Then X is the minimal
good resolution of an affine X C Y which contains the singular point.

Let k be the number of analytic branches of C. We take a € N* and let a; give
the number of extra blowups needed in each branch to get 7 : Z — Spec Clz, y]
from the minimal good resolution. The fact that a; > 1for ¢ =1,..., k corresponds
to the assumption that that the embedded resolution is not minimal for any of the
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branches of C. We are in the following situation:

5(. VA D

C'—— Spec(lz, y]

Finally, it is also possible to realize Y as the blowup of Spec C[z, y] in a complete
(see [ZA] and [ZS]) ideal q : Let C* denote the total transform of C’ in Z. Then

C* = D+ C, where
D= miE;.

Now let g = H%(Z,0z(-D)) = H’(m.Oz(—D)) C Clz,y]. Then Y is the blowup
of Spec Clz, y] in g. For a proof of this, see [G].

Definition 3.1. We define Z(¢ q) := Z, X(c,0) := Y and X(c,q) := X, where X, Y
and Z are constructed as above. Also we set q(c,q) 1= d.

Remark 3.2. All sandwiched singularities may be obtained as X(c¢ q) for a plane
curve singularity C' and a choice of the integers a, see [SP1],[JS]. Note that the a;
used here are the same as [(i) — M (%) in the notation of [JS].

Remark 3.3. It is perhaps abuse of notation to speak of the sandwiched singularity
X(c,a) as we rather should call Spec of the complete local ring in the singular point
of X(c,a), for the singularity, as we did for curves. However in order to be compatible
with the notation of [W2] on curves and with [W1] on surface singularities we will
use this inconsistent notation. Also, an other reason to consider formal and not
algebraic plane curve singularities, is that we need to speak about irreducible plane
curve singularities, and this will always mean analytically irreducible.

We give an example of a sandwiched singularity.
Example 3.4. Let
f=2%+y° e R=Cz,y),
C = V(f) C SpecR, a = 2. Then
m1(0) = US_, E;.

The dualgraph I'(r) is given in figure 1. The configuration of exceptional curves

FIGURE 1. The graph I'(m).
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has intersection matrix

corRrowo o
|
oo WO RO

OO NOMFROO

O N =OOO

=N O OO OO
[l S e B e B e B I B

OO OO OO N
OO OO = O W

0 0

and the negative of the inverse intersection matrix is

-

1 2 3 5 5 5]
2 4 6 10 10 10
3 5 8 13 13 13
5 10 15 25 25 25
8 15 24 39 39 39
10 13 25 39 65 65 65
10 13 25 39 65 66 66
10 13 25 39 65 66 67

SR NN =

T OU U GO N b= = =

From this matrix one may read off the multiplicity sequence for curves in Spec R
such that 7 : Z — Spec R gives an embedded resolution, see [LIP], and in particular
we get that

D =5E;+10E+ 13E3 + 25F4 + 39E5 + 65 F¢ + 66 £ + 67Eg.
The simple complete ideal ¢ = H°(Spec R, m.Oz(—D)) is
(°, z9°, 2y, 258, 192, wtly, 21, 213 + oF) |

see section 4.2. Embedding Y into Pg,..g = Proj (R[T1,...,Tn]) by 90z gives
n = 7 and one finds that Y is given by 49 elements in R[T},...,T,]. Calculating
the fundamental cycle one finds that the embedding dimension of X is 6, so we do
not get a minimal embedding this way.

3.2. Equisingular deformations. Oscar Zariski started the study of equisingu-
larity. For plane curve singularities, equisingularity is well understood. In general,
however, it is not easy to give the right definition. In this article we will only study
plane curve singularities and rational surface singularities, and here Wahls defini-
tions of equisingular deformations seems to be correct, see [W1] and [W2]. For the
convenience of the reader we now recall these definitions.

3.2.1. Plane curves. Let C = Spec C[[z,y]]/(f) be a plane curve singularity, and
let

S=S, —— Sn_1 > e y So = Spec ([[z, y]]
(3.3.3) T T ]
C, — Ch1 > Co=C

be a good embedded resolution of C, obtained by blowing up points. Let s;; :
Spec C — S; define the points which are blown up. Let also ¢; : Spec C — S define
the ordinary double points of the reduced total transform of C. Then we define
a deformation of C over A € C with simultaneous embedded resolution, to be a
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deformation C of C, a commutative diagram

§=§n—)§n_1 AR y So
(3.3.4) T T T
S = Sn, e Sn_l > oo y So

and A-sections 3;; : Spec A — S; inducing s;;, A-sections #; : Spec A — S inducing
t; such that
1. (3.3.4) gives an embedded resolution of the deformation C of C.
2. all the obvious diagrams commute and all sections are compatible
3. all A-sections are normally flat (i.e. they are defined by an ideal ™ such that
m" is A-flat for all n > 0.)
4. S;41 is the blow up of S; in the sections 555

Two such deformations,
{6, _S_,', Sij, fj } and {6, ?i , ?,'j , %_7}

are said to be isomorphic if there is an isomorphism (of deformations) of Sy and
So such that it

1. sends C to C _
2. induces an isomorphism of (3.3.4) and the corresponding diagram for So
3. the sections are compatible with the isomorphisms.

The functor of equisingular deformations of C is defined as follows. Let for

Aec,

Set of isomorphism clases of deformations C of C

ESc(4) = with simulatanous embedded resolution

This definition coincides (up to isomorphism of functors) with the definition
given in [W2], see [W2, 2.7, 2,12, 3.2, 7.3]. In particular is ESc independent of the
choice of embedded resolution, 3.3.3.

The functor of equisingular deformation of a plane curve possesses the following
property:

Theorem 3.5 (Wahl, [W2, 7.4]). ES¢c C Def is smooth subfunctor and has a
hull.

It is also possible to give another description of the functor of equisingular de-
formation, see 3.11, using complete ideals. This will be useful.

3.2.2. Normal surface singularities. For normal surface singularities the concept
of equisingular deformations is more difficult than for plane curves. Wahl, [W1],
tries to define equisingular deformation of normal surface singularities trough spe-
cial deformations of the minimal good resolution. In the case of rational surface
singularities the definition reduces to the following simple one.

Let X = Spec(B) be a rational surface singularity and let X be its minimal
good resolution. Let E = UE; be the exceptional set. The functor of equisingular
deformations of X, is defined by for A € C letting

ESx(A) = Set of isomorphism clases of deformations } of
X to which the E; lifts

This is also (for rational surface singularities) the functor of simultaneous res-
olutions along normally flat sections, see [W1, Th. 5.16]. It has the following
properties.
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Theorem 3.6 (Wahl, [W1, 4.6]). Let X be a rational surface singularity and let
X be the minimal good resolution with exceptional set E. Then ESx C Defy is
a smooth subfunctor and has a hull. Moreover ESx (Cle]) = HY(X,6(log E)) C
Hl()?, 6) where 8(log E) is the dual of the sheaf of one forms with logarithmic poles
along the exceptional set.

3.3. The deformation functors. Let

C = Spec ([[z, y]1/(f)

be a plane curve singularity. We assume that f is a polynomial and consider f
also as an element of R = C[z,y]. Choose a > 0 and let q = q(c,q)- Also let
C' = V(f) C Spec R. We will define several deformation functors, so again let C be
the category of local Artin rings. The first functor to be defined is closely related to
ESc described above. It corresponds to deformations of the target of embedding
disregarding the curve. When comparing with ESc note also that the schemes
involved in the following are of finite type.

Let
(3.3.5) Spn —— Sn-1 y oo » So= Spec C[[z, y]]
be obtained from an embedded resolution of C. We fix this once and for all. Let
(3.3.6) Z=0p —2y Zpoy 274 > Zo = Spec R

be the canonical sequence of blowups which induces (3.3.5) via the base change

Spec ([[z, y]] = Spec C[z, y].
Assume that ‘

so : Spec C — Spec R
define the origin in Spec R and let
835 : SpecC — Z;

define the other points which are blown up in (3.3.6). Choose A € C. Let

5o : Spec A — Spec R®c A
be a normally flat A-section lifting so. Then this section is defined by

mMCRcA

such that ™' is A-flat for all 7. Blow up Spec R ®¢ A in m;
71 = Proj @ .
i>0
Then Z; is a flat deformation of Z. We way may now speak about normally flat
A-sections
515 : Spec A — Z1,
lifting the s1; and which are compatible with 5p, that is, the composition with the

blow down map to Zg is So. Now blow up these sections to obtain Z,. Continuing
to choose liftings of s;; and blow up we get a deformation of 3.3.6:

Zn > Zn-1 Yoo y Z1 y Zo =Spec R@y A
(3.3.7) T T T T
Zn > D1 > e y Z1 sy Zop = Spec R.

We will say that two such deformations,

{_Z—iygijygo} and {7ia§ijy§0}
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are isomorphic if there are isomorphisms (of deformations) ¢; : Z; — ?i such that
we have commutative diagrams
—— Zi

¢i-1l

—

Nl

®
—

XN
N

i-1
and such that
¢i 055 = gij .
We now define the deformation functor G by letting

Set of isomorphism clases of deformations
(with sections) as above.

G(A) =
There is an alternative description of this functor. Namely we define ESy by for
A €C, letting

Set of isomorphism classes of deformations Z of Z
to which the E; lift

and claim the following;:

ESy(A) =

Proposition 3.7.
G = ESy

Proof. See also [W2, Lemma 4.7]. The sections guarantees that the E; lift so there
is clearly a map G — ESy. Now let A € C and Z be a lifting of Z to Spec A to which
the Ej; lifts to E; C Z. Let m = (z,y) C R. There is a cycle D = Y . r;E;, on Z
such that mOz = Oz(—D) and m® = H°(Oz(—nD)). Further H(Oz(-nD)) =0
for all n by [LIP, 12.1]. Let D = 5 rE; and put m = H°(Oz(—D)). Then
W = H°(Oz(—nD)). By [W1, 0.4.4 and the proof of 5.13] @" is A-flat for all
n > 0. So, ™ defines a normally flat A-section, 5p : Spec A — Spec R ®¢ A. Blow
up 5o to get Z;. One proves easily that M0 = O(—D) and in particular is MO
invertible, so Z dominates Z;. Now we may continue in obvious manner until we
reach the following situation

N

o
—

N

n

N —
N —

But since « lifts the identity, it must be an isomorphism. Thus we have produced
an element of G(A) which maps to the class of Z, so the map G(A) — ESy (4) is
surjective. To prove injectivity, assume that

$:2" 7%
is an isomorphism of deformations. One proves that if the E; lifts, they lifts

uniquely, so that ¢ takes the lifting of the —1-curves in 7(1) to the liftings of

the —1-curves in 7(2). Thus the isomorphism ¢ “blows down” to isomorphisms

¢ 7 570

and gives an isomorphism of the whole diagrams in which 7" and Z% sits. Now
it is also clear that
piosy =3,

so we have proved that the map is injective. O
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To clarify the relationship to complete ideals, we define a third deformation
functor F. Let D be such that qO0z = Oz(—D). If the E; lift, then so does D and
its lifting is D = Xr; E;, where D = Xr; E;. So for A € C we may define

Set of isomorphism clases of flat liftings § C R®¢ A of g
such that §= H°(Oz(—D)) where Z € S(4).

Remark 3.8. This functor could be called the equinumerical deformation functor
of complete ideals. As in [SP1] one may define numerical invariants of complete
ideals. Then deformations as above are exactly the deformations which keep these
invariants fixed.

F(A) =

We will need the following lemma a couple of times.

Lemma 3.9. Assume Z, and Zo are liftings of Z to Spec A, A € C, such that the
corresponding deformation classes are in ESy (A) and assume we have

7 2

Lo

Y, — Y,
over Spec A where Y| and Y, are deformations of Y. Then there exist a morphism
71— Z4
making the diagram commutative.

Proof. The proof uses the vanishing result, [W3, Th. C], and is analogous to [W1,
Prop. 1.12]. O

We claim:

Proposition 3.10.
ESy = F

Proof. There is a morphism ESy — F sending Z to § which is surjective by
definition if we know that q is a flat lifting. But H!(Z,0z(-D)) = 0. By [W1,
0.4.2] then also H'(Z, O5(—D)) = 0. From [W1, 0.4.3] it follows that H°(O%(—D))
is A-flat. In fact §* = H%(Oz(—nD)) is A-flat for all n > 0.

Next we must show that the map is injective. Let Z; and Z, be liftings giving
the same §. Let Y be the blow up of Spec R®¢ A in §. Then Y is a deformation of
Y and we have

71’ — 7

Y «—Y
for i = 1,2, since Z, domigates Y. Thus both Z; and Z, blow down to Y. From
3.9 it follows that Z; and Z, are in the same deformation class. (]

Assume we have a deformation C of C' and that this has a simultaneous embedded
resolution (with sections):

Sn y Sp—1 > > So
(3.3.8) | | |
?n > §n_1 > o > go

Let 5o be the first section. This is defined by an ideal
m= (.’B - ml,y_mZ) C C[[(L',y]] ®(CA
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where m; are in the maximal ideal of A. Clearly we may lift this to give a section
Spec A — Zy = Spec R ®c A.

Blowing up this section and continuing, we get a corresponding (algebraic) simul-
taneous resolution of C”. By forgetting we get an element of ESy (A). In fact, in
this way we define a transformation of functors

p:ESC-—)ESy.

This is a smooth map of deformation functors, but before we prove this, we con-
nect equinumerical deformation of complete ideals to equisingular deformations of
plane curve singularities. Recall that we are assuming that the defining curve
C = SpecC|[z,y]l/(f) is defined by a polynomial f so that we may consider
C’ = Spec R/(f). Now consider a lifting C’ of C’. Then, by pulling back, we
get a deformation C of C.

Proposition 3.11. In the notation above, C € ESc(A) if and only if the to c
corresponding f € § for a § € F(A). Moreover the to q corresponding element in
G(A) gives the simultaneous embedded resolution for C".

Proof. Assume C € ESc(A). As above, there is a corresponding embedded simul-
taneous resolution of C :
Z=Zp — Zpy — -+ — g
C, ——Cha > s Co=C"

Let C" be the total transform of C7. From [W2, Prop. 1.6] one easily shows that
T" = C,+D where D is such that § = H%(O(~D)) is in F(A). Thus Ox(—C") C
O5(—D). Since, 71'*07(—6*) = (f), f €4. Conversely if f € § then by proposition
3.10 and 3.7 there corresponds to § deformation as in (3.3.7). We only need to show
that this is a simultaneous embedded resolution of C’. The total transform of C’
will be of the form C~ = C,, + D where again D is such that § = H°(Oz(-D)) and
C,, is alifting of C,, in Z = Z,,. Blowing down we get a lifting C; of C; at each step

and C have to be C7. Lastly from [W2, 1.9] the last sections (the ;) are uniquely
determined by the lifting. The last part of the proposition is now clear. O

Remark 3.12. The proposition shows how equisingularity of a plane curve may be
described in terms of equinumerical deformations of complete ideals.

Theorem 3.13. The map p is smooth.

Proof. See also [W2, Prop. 4.9, Th. 4.2]. Let A, — A; be a small morphism in
C. Assume p(A;)(C1) = Z1. Assume 7, € ESy(A2) and maps to 7. We must
prove that there is Co € ESc(A2), lifting C1, such that p(4,)(C2) = Z2. But the
total transform C’_; C Z; may be lifted locally trivially to a divisor D C Z5. By the
identification of ESy with the functor G, there is a map 7 : Zo — Spec R ®¢ As.
Then 7.0z, (—D) gives an ideal a which one may show is a principal ideal which
gives a lifting C'y of C;. Now proposition 3.11 (and its proof) shows that a C § and
that Cs is in ES¢(A2), and that Cy maps to Z3. O

3.4. The tangent spaces. We first turn to the understanding of the kernel of the
map p of the previous section. Let K denote the kernel of p(Cle]), and recall that

750(Cld) © T4 = Clle, i/, 5 50,

see theorem 3.5. We claim the following:
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Proposition 3.14. K C T} is given by the image of d(c,a) N TL.

Proof. Let C € ESc(Cle]). Clearly, up to infinitesimal automorphism, we may
assume that C' comes from a deformation C” of C’. Assume that C' = V(f) C
Spec R and that C7 corresponds to a lifting f € R®c Cle] of f. By proposition 3.11
we get f € § C R®c C[e] and from the proof of 3.11 we see that § is the lifting of
q induced by p(C[e])(C). Now assume that this is the trivial deformation. By the
identification of ESy with F, g is the trivial lifting of q. So if f = f + g we must
have g € q. This shows that K (C[e]) is contained in the image of q in T¢.

On the other hand assume g € q and consider the lifting f = f+e€g of f. First from
proposition 3.11 this corresponds, by pulling back, to a C € ESc(Cle]). Also by
proposition 3.11 we see that the corresponding simultaneous embedded resolution
is the trivial one, so C is mapped to the trivial deformation Z x Spec C[¢] by p. O

The tangentspace for the functor ESy itself is described by a cohomology group.

Let again
7 : Z — Spec R
and let E = n71(0) = U™, E; be the decomposition of the exceptional set in
irreducible components. Let § = 6z be the tangent sheaf on Z. And let
6(logE) C @
be the subsheaf of derivations taking the idealsheaf of E into itself. This is also the
dual of the sheaf of one forms with logarithmic poles along E. Then from general
theory we know that there is an identification
ESy (Cle]) = HY(Z,0(log E)).

We now want to connect ESy to ESx of the singularity X C Y. We do this first on
tangent level. First let T§ be the tangentspace of Defy, and let T be the tangent
space of Defy . Now, Y blow down to an affine so all H? are zero, so in our situation
we have from the local global spectral sequence, see for instance [LAU], the short
exact sequence

(3.3.9) 0— HYY,0y) - Ty = Tx — 0.
Here H'(Y,0y) is the subspace of Ty corresponding to the locally trivial deforma-
tions of Y. We claim that there is a similar sequence involving the tangent spaces for
ESy and ESx . In fact, let E' = U] E; (again E,, .. ., E, are those with E? = —1)
then from theorem 3.6
ESx (Cle]) = HY(X, 6(log E")).

Here X C Z is the minimal resolution of X. We have the following:
Proposition 3.15. There is an exact sequence

0— HY(Y,0y) > H'(Z,0(log E)) — H'(X,0(log E")) — 0.

Proof. Recall that there are exact sequences

0— 0(log E) = 07 - D Ng, » 0
i=1

and
r—1

0 - 0(log B') = 0z = P N, =0
i=1

of sheaves on Z. See [W1, Prop. 2.2]. We have H°(Ng,) = 0 for all i, so

r—1
HY(Z,0(log E')) = ker (Hl(z, 0z) - P H' (2, NE,.)>

i=1
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and

HY(Z,6(log E)) = ker (Hl (2,02) = é HY(Z, Ng, )) .
i=1

By Riemann-Roch we have
X(NEi) = X(OE';' (El)) =E;-E;i+1.

Thus if < i < m we have H'(Z, Ng;) = 0. This shows that H(Z,0(log E)) =
H'(Z,0(log E')). From the long exact sequence of (local) cohomology, we have:

0 0

L

HY(Z,0(log B')) —— HY(X,0(log E')) —— HZ(Z,6(log E')) —— 0

!

H\(z,0) L EH'(X,0) —— @ HL(Z0 ——0

!

®H'(Z,Ng,) —— oHY(X,Ng) —— OHL(Z,Ng) — 0

0 0
We claim that all the modules on the right are zero. For example to show that
HZ(Z,0) = 0 we use that

HZ(Z,0) = imExt*(0,5,6).

Taking Hom(—, #) of
0— Oz(—né) -0z — Oné —0
we get
o= Ext}(0g,0) 5 Ext'(Oz(-nC),0) = Ext*(0,5,0) = 0

since

Ext?(0z,0) = H*(Z,0) = 0.
Considering the exact sequence

00z > Oz(né) — Ona(né) —0

we identify the first map in

HY(Z,0) —— HY(Z,0 @ O(nC)) —— HY(Z,0® O, z(nC)) —— 0
with p. But the support of § ® (’)na(né) is C, the normalization of C and is affine,
so HY(Z,0 ® (’)ng(né)) = 0. It follows that Ext*(0, 5,0) = 0.

Now consider the map 7. Since Ng; has support on E; and the sum is taken over
E; C X, it follows that ~ is an isomorphism. It follows that ker o ~ ker §, we show
that ker 8 ~ H(Y,9).

Let m; be the restriction of 7 to X. From the Leray spectral sequence we get

0= HY(Y, (m1)«0) = HY(Z,0) = H°(Y, R*(m1).0) — 0.
[BW, prop 1.2] states that (71)«0z = y, so we only need to show that

HO(Y,R'(m).0z) = H'(X, 0).
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But R!(m;). has support on the singular point so
HO(Y, RY(m1)40z) = H*(X, R*(m1).0z).
From [HAR, Prop. 111.8.2] this equals to H(X,6). O

Now we have the following diagram

0 — HY(Y,0y) —— T, — TL — 0

0 — HYY,0y) —— HY(Z,6(log E)) —— H(X,6(log E')) — 0.

From theorem 3.6 it follows that all vertical maps are injective.

Remark 3.16. From lemma 3.9 it follows that ESy is a subfunctor of Defy . Given
a deformation Y of Y, we may always restrict to get a deformation X of X. It is
clear from the definition of ESy and ESx that if Y corresponds to a deformation
for ESy, then X corresponds to a deformation for ESx . Thus ESy is is the functor
of deformations of Y inducing equisingular deformations on the singularity X C Y.

3.5. The map ESc — ESx. It is now easy to see that there is a smooth map
ESc — ESx.

The “restriction” map ESy — ESx is smooth since from proposition 3.15 the map

ESy(Cle]) — ESx(Cle])

is surjective, see [BU]. So, we have:

Theorem 3.17. There is a smooth map
ESc =+ ESx

of deformation functors.

We should now give some examples.

Example 3.18. Let
C = Spec C[[z, y]l/(+* + °)
be three lines intersecting in a point. This has
ESc(Cle]) = 0.

Thus for any a = (a1, as, as) € N3 we have from 3.17 that X = X(c,a) is equisingular
rigid. Indeed X(c q4) has the dualgraph

[}
(53
o
B
-
o
>
i
Ll
"

- 1 vertices -1 vertices
q g

and is known to be taut, see [L2].




EQUISINGULAR DEFORMATIONS OF SANDWICHED SINGULARITIES 15

Example 3.19. Let .
C = Spec ([[z, ]]/(=* +y*)
be four lines intersecting in a point. Letting a = (1,1,1,1) we get a singularity
X C Y with the following dualgraph:
.
This is a cyclic quotient singularity and is know to be equisingular rigid, that is
dim¢ H(X,0(log E')) = 0.
However, one finds (see section 4.2) that the corresponding complete ideal g(c,q) is
(a:4 +ut, 28, ey, 232, :czya,a:y4,y5) .
Also z2y? is a basis for
ESc(Cle]) C Tg = Clle, 4]}/ (=°, ).
This is not in the image of q so from 3.14,
ESy(Cle]) = H'(Z,6(log E)) = 1.
This shows that (proposition 3.15)
dim¢ H*(Y,0) = 1.

This could be understood as a cross ratio between four exceptional curves in Y.
Now, if we let a = (2,2,2,2), we get a singularity with the following dualgraph:
2

This is known to have _
dime HY(X,0(log E')) = 1,
see [L2]. The corresponding complete ideal q(c q) is
(z* +y* 2% 2%y, 2%, 2%, 2%y 2y, o)
Thus we see that still, Sy (C[e]) has dimension 1. So the moduli is now “swallowed
up” by the singularity.

Example 3.20. Let
f=2"+y®eR
and choose @ = 3. The graph of X(c q) is given in figure 1. Using proposition we
see that
ESy (Cle])
is one dimensional. From [L2] we know that X is not equisingular rigid, thus it
follows that H'(Y,6) = 0. We have a one dimensional miniversal equisingular family

X

l

Spec C[[{]],

and there is a C*-action on this family and there are two orbits for this action. It
is known, see [LP], that all curves with semigroup (5, 13) is obtained as a equisin-
gular deformation of f. It follows that all normal surface singularities with given
dual graph are in this family and hence that there are to isomorphism classes of
singularities with the given dual graph.
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Remark 3.21. We have seen how the kernel of ESc — ESy is nicely related to
the curve and the complete ideal. It would be nice to have a similar description
for the kernel of ESc — ESx. This however seems to be difficult. Assume Y is
a deformation of Y over Spec Cle]. This induces a deformation of X of X. Now
there may be an infinitesimal automorphism of X which allow us to trivialize X.
Since Y blow down to Spec Clz, y] ®c (e, also X does. However, the infinitesimal
automorphism that trivializes X might not blow down. That is, it might not be
possible to trivialize X over Spec C[z,y] ®c Cle]. Thus to understand the kernel of
ESc — ESx one must understand the infinitesimal automorphisms of X very well.
We have done some calculations in this direction, but we are not able to discover
a pattern. However the results of the next section shows that if the defining curve
singularity is irreducible and a is large the smooth map of 3.17 is an isomorphism
on tangent spaces.

4. RESULTS IN THE CASE OF LARGE a.

In this section we will assume that the defining curve C' is irreducible. Under
this assumption we show that there is an a*, which depends only on the topological
type of C, such that if the a in the definition of X = X 4 is taken to be larger
than this a*, the moduli of the plane curve singularity C' coincide with the moduli
of the normal surface singularity X. To do this we need some notation and results
concerning graphs of sandwiched singularities and complete ideals.

4.1. Graphs of sandwiched singularities. The possible dualgraphs for sand-
wiched singularities were classified by Spivakovsky, [SP2]. We will only consider
the case when C is irreducible. Then the possible graphs may be well known, but
to fix notation we give a review, following [SP1]. Let again C be an irreducible
plane curve singularity and let a € N be given. As in section 3.1 define

m:Z = Z(¢c,q) — Spec Cz, y].
We denote by T'* = I'(¢,q) the dual graph of this (non-minimal) resolution of “the
smooth singularity.” It is clear that the dual graph of I' = I'(X) of X = X(¢ q) is

contained in I'* and that I'* \ T’ consist of one vertex corresponding to the unique
—1-curve in Z.

Remark 4.1. Given T, then I'* is not always uniquely determined, see [SP1, 2.4.8].
We will see, however, that if a is large enough, I'* is uniquely determined by I'.

It is not difficult to see that I'* must have a form as described in figure 2. Each
of the T'; for 1 < i < g are described in figure 3 and 4 depending on the parity of
m;. In both cases all vertices where the weight is not given, is taken to have weight
—2. Further the integers g, m; for 1 <i¢ < g and agz) ye .,aﬁ,’;{ are defined from the
graph. The I'gyq is a line graph, where all vertices has weight —2 except the last
(to the right) which has has weight —1. We define myy; = 1 and a&gH) to be the
length of this minus one.

So given an irreducible plane curve singularity, we have a collection of integers

() |
7 1gigm1<i<g4

These integers (together with g and my,...,mgy1) are equivalent to I'* = T'(¢,q).
They are also equivalent with the semigroup of C together with the number a. In
fact we have the following. Put for every 1 <i < g+ 1,

1

ﬂf::a&i)+ 1
(@)
a +.+—
2 ag,){+l
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F1GURE 3. T'; for m; odd.

Write §; = B, p;j,n; € N, and (pi,ni) = 1. For 0 < i@ < g, set ¢; = Y_; g,
eg = eg+1 = ng = fy = 1. Now define

(4.4.1) Bo = ¢€o

(4.4.2) Bi= (B —1)ei—1+ B;i_1ni—1 for 1<i<g+1

The semigroup S(C) of S is then the subsemigroup of Z generated by S, . . ., ﬁg.

Example 4.2. Assume that C is a curve with semigroup S (C') generated by two
numbers p and ¢ in N, (p,¢q) = 1, p < ¢. Also let @ € N be given. Then g = 1,
ms =1, By = p,B; = ¢ and B, = a + pg. We also have

(1)
a +...+
2 ag3+1

and agz) =a.
The following is an important observation.
Proposition 4.3. In the notation above, consider I' C T*. Let
{a}
I J1gigmiigi<gtt
be the integers as defined from I'*. If

(a #+ agg) ormg # 2) and (a # agl) ormy # 2)
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@ @
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'—u
(o] g ]
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. 1
- I
: >
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N
e «I
<
' w
5
2
© > 5
>

H- 'y
(i)
a,

FiGuRrE 4. I'; for m; even.

then there are no nontrivial automorphisms of T.

Proof. There are g stars in I'. Only the leftmost and the rightmost stars have
two arms containing an endvertex of I'. So, an automorphism of I' must preserve

or interchange these stars. If they should be interchanged, it is clear from the

description of I' given above, that m; = 2 and agl) = a§g+1) =a.

If the leftmost and the rightmost stars are not interchanged, it is easy to see
from the description of T' given above, that the only possibility for a non-trivial
automorphism, is to interchange the two arms of the rightmost star which contains

end vertices, and that this only may be done if my = 2 and a = a9t =49 O

4.2. Complete ideals. We review some results on complete ideals to be found in
[SP1]. First some notation. If B is any Noetherian domain, [ is any ideal in B and
S C B is a subset, we set

mult; S = max{n|SCI"}.
Set R=C[[z, y]]. Assume that
C = Spec C{[z, 4]1/(f)
is an irreducible plane curve singularity, where f € R.

Theorem 4.4. Keep the notation above, and let a € N be given. Define now the
integers g, 3, - - -, Bgy1, and ng, ..., ngy1 as in section 4.1. Then there exist

Q(})”')Qg-l-l ER

with the following properties

1. Qo and @y are parameters for R.
2. Qg1 defines C
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3. d(c,a) n R is generated by the following set

g+1 g+1

- _
[T QY D85 = B
j=0  |j=0

Now let a be the ideal generated by the set

g g
[1@7 > %8 2 By
Jj=0 j=0
and set f = Qg41 to be the defining element of C. Then we have q(c,q) = (f) + a.
From [SP1] we also have that

j-1 g

g
(4.4.3) multy, a = min Z’)’j H n; Z YiB; 2 Bgs1

j=0 1=0 j=0

and since Bg+1 = (a—1)eg +Bgng and ey, By, - - .,Bg and ng do not depend on a,
we see that the multiplicity of a only depends on the semigroup of C and on a.
Further more the multiplicity of a increases with a, that is, we may increase the
multiplicity of a beyond any limit, be increasing a.

4.3. The tangent space of ESy when a is large. We have the following:

Theorem 4.5. Assume C is irreducible. Then there exist an a* which depends
only on the topological type of C, such that ifa > a* and Y = Y(c,q), then

ESc(T]d) = ESy (C[e)).

Proof. From, 3.14, we know that ESy (C[e]) is the image of ESc(Cle]) C T4 in
Clz, y]/(f, %5, %5) + q. Here f defines C' and q = q(¢,q)- We will prove that there
exist an a* such that a > a* implies

Defining a as section 4.2 we must prove a C (f, g—i, g%). But it is easy to see that

(z,y)* C (%,%5), and from (4.4.3) we may choose a¢* such that a > a* gives

a C (z,y)". It is known that p is an topological invariant of C. O

This gives us, at first sight, information on the moduli only of the surface Y. But
in fact, in the next section we will prove the following;:

Theorem 4.6. Assume C is irreducible with semigroup S, and let T' be the dual-
graph of X(c ). Then there exist an a*, depending only on S, such that if a > a*
the isomorphismclasses of plane curve singularities with semigroup S are in one
to one correspondence with the isomorphismclasses of (the complete local ring of)
normal surface singularities with dualgraph T, by the construction in section 3.1.

Now assume C' is given and that @ > a*. Let Y = Y(¢ 4. We claim that it
follows from the theorem that H!(Y,6) = 0. In fact, assume H'(Y,6) # 0. Since
H?(Y,0) = 0 there is a nontrivial deformation of Y. So in the analytic category
there is a nontrivial flat family Y; where Yo = Y. There must be a Y in this family
which is not isomorphic to Yy, since if all fibers are isomorphic, the family is trivial
by a result of Fisher and Grauert, see [FG]. But since the singularity on these
are the same, it follows from the preceding theorem that the defining curves are
isomorphic. But this is not possible unless Yy and Y, are isomorphic. Thus from
proposition 3.15, we also have
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Theorem 4.7. Assume C is irreducible. Then there exist an a* which depends
only on the topological type of C, such that if a > a* and X = X(c,q), then

ESc(Te) = ESx (Clé).

4.4. The proof of theorem 4.6. We introduce some notation. Let C' be an
irreducible plane curve singularity, and let £ € X = X(¢,q4) be the singular point.
Then we define R

P(c,a) = Spec Ox -
By pulling back via

Spec ([, y]] = Spec C[z, y],
leaving P(¢,q) unchanged, we may assume that Z(c,q), Y(c,q) and X(¢,q) blow down
to Spec C[[z,y]]. In the following we will keep to this view, so let R = C[[z, y]].
Thus defining a = a(¢,q) as in section 4.2 and letting a1, ..., an generate a, we find
that X(c,q) = Spec A, where
a an

amnfn,
and where f defines C. Thus Pc,q) = Spec A. A main part is to prove the following
statement:

Proposition 4.8. Let S be the semigroup of an irreducible plane curve singularity.
Then there erist an a* such that if C' and D are irreducible curve singularities with
semigroup S, a and b are greater than a* and P(c,q) and P(p ) are isomorphic then
a=1b and C and D are isomorphic.

Proof. Assume P(c q) and P(p ) are isomorphic. Thus:

(V] ——

Pc,a) == Pp )

wll lpl

P(,a) —~ P(p 1)

nol Lpo

SpecR SpecR

Here, m; and p; are minimal resolutions. These are products of quadratic transfor-
mations. Let T' be the dualgraph of Pi¢ q). Then T' is also the dualgraph of P(p q).
Since C' and D have the same semigroup, I'(c ;1) = ['(p1). But ['(¢,q) and T'(p )
must have the same number of vertices. It follows from section 4.1, that ¢ = b and
that I'(c q) = I'(p,p). Let I'* = I'(¢,a). We may view ¢ as giving an automorphism of
I' C T*, but from proposition 4.3, by choosing a = b large, this must be the identity.
This means (in the notation of section 4.1) that the curves corresponding (via the

construction of section 3.1) to the endvertices of I't C I'(¢,q) in P(¢,q) are mapped
by 9 to the curves corresponding to the endvertices of 't C I'(p ) in P(p ).
Let Py = Specfi as above, and let F(p 4) = Spec B, where

B:R[b—l,...,bﬂ}.

9 g
Here g € R defines D and q(p ) = (9)+b where b = (b1, ..., byn) and multy, , b may,
as in section 4.2, be made arbitrary large by choosing b = a large. Let @ denote the
isomorphism A — B induced by ¢. Consider now, in the notation of section 4.1,
the subgraph I'y C I'*. We may assume that the parameters ¢ and y of R are such
chosen, that the strict transforms in Z(¢,q) respectively intersect the exceptional
set in the irreducible components corresponding to the end vertices of 'y C I'*
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and no other components of the exceptional set. Thus the the strict transforms
of the curves in P(p ;) defined by the images ®(x) and ®(y) must respectively
intersect each of the curves corresponding to the endvertices of I'y C I'(p ) in

];(_;7(,/). From this, it is easy to see that ®(z) = wip; and ®(y) = uaps where u
and uy are units in B and where p1 and py are regular parameters for R. Let

c= (%, e b—;‘-) . Then we may write u; = u} + v; (for i = 1,2) where u; are units
in R and v; € c¢. Choose fi € q(c,q—1) generic, that is, such that the strict transform
of V(f1) in Z(¢ q) intersects the exceptional set only in the irreducible component

which in turn intersects the component with selfintersection —1. It follows that the

strict transform in f,(';;) of the curve in P(p ;) defined by the image h = ®(f1)
intersect the irreducible component of the exceptional set with the same property.
It follows easily that h = usg; where g1 € q(p,a—1) C R and u3 is an unit in

B. Define an automorphism § : R — R by z — uip1,y — uHps, and consider
0(f1) — g1 = 0(f1) — h+h — g1. By definition of @ it is clear that 6(f;) —h € ¢ C B.
Write uz = u§ + vs, where u5 € R is a unit and vs € ¢. Thus h = ufg1 + vag:.
Redefining g; we may assume h = g; + ¢, where ¢ € ¢. This gives h —g; = ¢ € ¢.
Hence 6(f1) — g1 € cN R. Since it is clear that multy, ¢N R > multy,, b—multy, g,
it follows by choosing a = b large, that 6(f1) — g1 € mf, where p is the Milnor
number of f, fi,g and g;. (These have all the same Milnor number since they have
the same semigroup.) From Mathers theorem it follows that R/(f(f1)) and R/(g1)
are isomorphic. We also get f — fi € mf, and g — g1 € mf, so that it follows that
R/(f) and R/(g) are isomorphic. O

Remark 4.9. In the notation of the proof, we may take a* such that a > a* gives
multy, b — multy, ¢ = multy, a — multy,, f > g,

and from section 4.2 it follows that this depends only on the semigroup S. It also
follows that we may choose a* such that if a > a*, the hypothesis of proposition 4.3.
Clearly this only depends on the numbers {ag.')} and hence only on the semigroup

S.

In order to conclude the proof of theorem 4.6 let S be a semigroup for a plane
irreducible curve. Let I' be the graph obtained form I'* = T'(¢ 4) by deleting the
vertex with weight —1. From the proposition and the remark above, it remains now
only to show that any sandwiched singularity with dualgraph I' may be obtained
from a irreducible plane curve singularity with semigroup S. This is however clear
from, [SP2, Prop. 1.11].

Example 4.10. In general the number a* which make the proof work, will be
large. If we take the semigroup S to be generated by 5 and 13 as in example 3.4,
the proof gives a* = 612. The actual bound is probably much smaller.
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