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Abstract

It is shown that, for a class of unital C*-algebras including purely infinite
simple C*-algebras, real rank zero simple AT algebras, and AF algebras, if
u and v are almost commuting unitaries where u has trivial Ki-class, and a
certain Kj-valued obstruction associated to the pair u, v is trivial, then u can
be deformed to 1 through a path of unitaries in the algebra almost commuting
with v, and the length of the path can be estimated by a universal constant.
This result is used to identify the obstruction with Loring’s Bott element
associated to the pair u,v and also to prove the more universal statement
that if (u;, v;), ¢ = 1,2, are two pairs of almost commuting unitaries with [u;];,
[vi]1, and Bott(u;, v;) each independent of i, then one pair can be deformed
into the other along a path of pairs of almost commuting unitaries in the
algebra, the length of the path being bounded by a universal constant.




1 Introduction

This paper originated in the course of the classification of purely infinite
simple C*-algebras obtained as inductive limits of direct sums of algebras of
the form M; ® O, ® C(T), where M, is the C*-algebra of k¥ X k matrices,
O, is the Cuntz algebra of order n [Cunl], and T is the circle; see [BEEK].
A similar (slightly less general) result was obtained at about the same time
by Lin and Phillips [LP]. A more general result was announced subsequently
by Kirchberg and Phillips ([Kir|, [Phi]). The present paper contains certain
results of independent interest which were used in [BEEK] (and also in [EIR]).

As usual, if p is a projection and u is a partial unitary in a C*-algebra
A, then [po, [u]; will denote their canonical images in Ko(A), K1(A), respec-
tively. If A is unital, (A) will denote the unitary group in A, and U(A)
the connected component of 1 in U(A).

If p is a projection in A, let d(p) denote its Murray—von Neumann equiv-
alence class, and let D(A) denote the local semigroup of such equivalence
classes with the preorder defined by d(p) < d(¢’) if there exist projections
p,q € A with d(p') = d(p), d(¢') = d(q) and p’ < ¢, [Zha2]. When A has
real rank zero, it follows from [Zha2], Theorem 1.1, that D(A) has the Riesz
decomposition property with respect to this preorder, i.e. if z,y,z € D(A)
and z < y + z, then there are elements z1,z5 € D(A) with z; + 22 = z,
z; < yand 79 < 2. If A furthermore is simple, any nonzero element in
D(A ® K) is dominated by a multiple of any other, i.e. D(A® K) is simple.
Here K denotes the C*-algebra of compact operators on a separable infinite
dimensional Hilbert space.

See [BP] for the definition and elementary properties of real rank zero
C*-algebras.

The class of C*- algebras we will be mostly concerned with in this paper
is the following.
Definition. A C*-algebra A will be said to be a K;-simple real rank zero
C*-algebra if A is unital and separable and

1. A has real rank zero.

2. Any two non-zero projections in A, or in a matrix algebra over A,
have the same Kjy-class if and only if they are Murray—von Neumann
equivalent.

3. For any k; € K;(A) and any non-zero projection p € A, there exists a
unitary u € A such that (1 —p)u =u(l —p) =1—p and [u}; = k.
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4. D(A® K) is simple, or K;(A) = 0.

The requirement 3 could more concisely be formulated as the condition
that the canonical map

U(pAp) [Us(pAp) — K1(A)

be surjective for each non-zero projection p € A.

Note that, since any separable simple C*-algebra is stably isomorphic to
its cut-downs by projections ([Bro]), we have K,(A) = K.(pAp), and for a
simple algebra it would therefore suffice to assume that the map

U(pAp) /Us(pAp) — K1(pAp)

is surjective for each non-zero projection p € A.

A useful fact that we will often use is that this last map also is injective
for any real rank zero C*-algebra A. To see this one first notes that pAp
is of real rank zero [BP], from which it follows that the map is injective by
[Lin1]. Also, by [Linl], the elements in Uy(pAp) with finite spectrum are
dense, and hence (by injectivity) any element u € U(pAp) with K;(u) = 0
can be connected to 1 in U(pAp) by a rectifiable path of length at most 7+¢.

Special classes of K;-simple real rank zero C*-algebras are

1. Unital purely infinite simple C*-algebras.
2. Unital real rank zero simple AT-algebras.

3. Unital AF-algebras (not necessarily simple).

Recall from [Cun2] that a simple C*-algebra is called purely infinite if ev-
ery non-zero hereditary sub-C*-algebra contains an infinite projection. Such
a C*-algebra has real rank zero by [Zhal], and the properties 2 and 3 hold by
[Cun2]. Recall from [Ell3] and [LR] that an AT-algebra is an inductive limit
of finite direct sums of algebras of the form M, ® C(T). The cut-down of a
simple real rank zero AT-algebra by a projection is again such an algebra,
and since K1(A) = U(A)/Up(A) for such an algebra A, the property 3 fol-
lows, while 2 is trivial. For an AF-algebra A, K1(A) = 0, and the properties
1 to 3 are straightforward. In the last two cases (but not in the first) the
property 2 is even true without the qualification “non-zero”.

Our main result states, briefly, that if v and v are two unitaries in a
K;-simple real rank zero C*-algebra A that almost commute, and [u] = 0 in
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K;(A), and a certain Kj-valued obstruction Bott(u, v) is zero, then v can be
deformed to 1 along a path u; in the unitary group of A of length less than
a universal constant in such a way that u; almost commutes with v along
the path. The precise statement is given in Theorem 8.1. The obstruction
Bott(u, v) is the Bott element associated to the two unitaries as defined by
Loring in [Lor]. It is defined whenever ||uv —wvul|| < &, where g is a universal
constant. It is defined as the Kj-class

10
Bott(u,v) = [X[%,m)(e(u,v))] - [( 00 )l ,
where e(u,v) is a self-adjoint element of M(A) of the form

[ fo) h(v)u+ g(v)
el v) = ( w*h(v) +g(v) 1-f(v) ) ’

where f, g, h are certain universal real-valued continuous functions on T.
The condition ||uv —vul| < § ensures that e(u, v) has a spectral gap near 1.
Bott(u,v) is a homotopy invariant within the class of pairs (u,v) where it is

defined, and it has the properties

Bott (@ uj, @vj) =Y Bott(u;,v;)
=1 j=1

i=1
whenever ||u;v; — vju;|| < do,
Bott(u,v) = —Bott(v, u),

and n
Bott(uits . . . un,v) = Y Bott(u;, v)
j=1
when |lujv — vu,|| < 6o/n; see [EIR].
The road to Theorem 8.1 is long and somewhat tortuous and leads past
a series of more special homotopy lemmas. In all of these the Bott element
occurs in the guise of a certain more concrete obstruction to the deformation.
Let us first give a rough description of this more concrete obstruction and
then proceed to specifics: In defining the obstruction, one may instead of
considering v consider the unital endomorphism A defined by A\(z) = vzv*,
z € A. One assumes that u has finite spectrum and that ||A(u) — u|| is small.
Let ¢, to, t3,t4 be a sequence of points of T numbered in counter-clockwise
order such that the distances |t; —t;_1| are much greater than ||A(u) —ul|. Let
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Q and E denote the spectral projections of u corresponding to the half-open
intervals (¢1,t3] and (ts,ta], respectively. Since ||A(u) — || is much smaller
than the distance between the t;’s, \(Q) approximately commutes with E,
and hence A\(Q) E is approximately a projection. Let [A(Q) El]o denote the
K,-class of that projection. For a general unital endomorphism A one now
defines the isospectral obstruction F'(\, ) as the image of [A(Q) E]o — [QE]o
in Ko(A)/Im(A\, — 1), but if A\ = Ad(v), then A\, = 1 and the isospectral
obstruction is just

Isospec(u, v) = F(X, u) = [A(Q) Elo — [@E]o -

We shall show that Isospec(u,v) is independent of the choice of the points
t1,ta,t3,t4, and is also a homotopy invariant for pairs of almost commuting
unitaries, in Theorem 4.1. We shall use the isospectral obstruction in proving
Theorem 8.1, and only afterwards identify the isospectral obstruction with
the Bott element, in Section 9.

Independently of all this we will, in Section 11, prove the so-called tail
lemma, stating that if {u:},{w}, ¢ € [0,1], are two continuous paths of
unitaries in a unital purely infinite simple C*-algebra A such that [us]; = [v¢]s
and all u;, v; have full spectrum, and € > 0, then there is a continuous path
{w;} of unitaries in A such that ||wyusw; — ve|| < € for all ¢ € [0,1], and if
up = vg = 1, then {w;} can be chosen with wy = 1. This is used in [BEEK]
and [EIR]. We emphasize that this is not true for a finite C*-algebra, not
even for a one-point path.

Huaxin Lin has pointed out an alternative proof of the basic homotopy
lemma, Theorem 8.1, in the purely infinite case. One first uses a theorem
of Lin to approximate the unitaries v and v by exactly commuting uni-
taries. This is always possible in a purely infinite simple unital C*-algebra,
by [Lin2]. Then one uses Lin’s [Lin3] and Dadarlat’s [Dad] classification
of injective unital morphisms from C(X) to A, where X is a closed sub-
set of T? and A is a purely infinite simple unital C*-algebra. In this case,
KL(C(X),A) = KK(C(X),A) = Hom(K,(C(X), K«(A))). Hence this clas-
sification states, in the present case, that two such morphisms ¢ and 1 are
approximately unitarily equivalent if, and only if, K.(¢) = K.(¢), where
approximate unitary equivalence means that there is a sequence {u,} of uni-
taries in A such that

[ungp(a)un — $(a)]| — O

for all a € C(X). Hence, in order to prove the basic homotopy lemma, it is
enough to prove it for some exact morphism model with the correct K-theory
data and the correct joint spectrum of u,v in T2. (By the K-theory data is




meant the classes K;(u), K1(v), and Bott(u,v) € Ko(A).) A model for which
the desired homotopy property holds within the class of exact morphisms is
constructed in [LS, Lemma 4.4].

Our proof of Theorem 8.1 has the advantage of being valid beyond the
purely infinite case. Our techniques (in particular, the concrete identification
of the Bott element) may be of interest in themselves—and in any case are
used in [BEEK] (and also in [EIR]).

We mention finally that the Basic Homotopy Lemma can be extended to
have the following more symmetric form:

Theorem 1.1 (The Super Homotopy Lemma) For any € > 0 there ez-
ists 6 > 0 with the following property: Let A be a Ky-simple real rank zero
C*-algebra, and let ug, vo, u1, and vy be unitaries in A with the properties

[Uo]l = [U1]1, [Uo]l = [711]1,
luovo — vouol|l < 6, |lurvr — vl <6,
Bott(ug, vo) = Bott(uy, v1).

It follows that there exist continuous rectifiable paths u(t), v(t) of unitaries
in A such that

w(0) = up, u(l) = uy,
v(0) = v, ©(l) =4,
[u()v(t) —v(@)u@)] <e,
Length(u(t)) < 187 + ¢,
Length(v(t)) < 187 + €.

This theorem follows from the Basic Homotopy Lemma by an argument
which will be given in Section 12. It should be noted that, strictly speaking,
the Basic Homotopy Lemma is not a special case of the Super Homotopy
Lemma, not only because of the estimate on the length of the paths, but
more importantly, because of the presence in the general case of two paths.
(In [BEEK] and [EIR], it is essential to keep one unitary fixed.)

2 Some spectral theoretic lemmas

Lemma 2.1 Let € > 0, and let I, I, be two closed intervals in T (resp. in
[—1,1]) such that I, is contained in the interior of I;. Then there exists 6 > 0




with the following property : If uy, us are unitary operators (resp. self-adjoint
operators of norm at most 1) on a Hilbert space such that

lug — ual| < 6

then
| PL(I1) Po(L2) — Pa(I3)|| < €

where P;(+) is the projection valued measure on T (resp. [—1,1]) defined by
u; by spectral theory.

Proof. We prove the statements for unitaries. The proofs of the statements
for self-adjoints are very similar.
Define a continuous function g : T — [0, 1] by

1 when =z € I,
g(z)={ 0 when 2z¢ I,
linear interpolation in I\ Is.

By the Stone—Weierstrass Theorem, there exists a trigonometric polynomial

h(z)= ) an2"

In|<N
such that
€
5

6=s/(g%%mu%0

and choose u;, us as in the statement of the lemma. Then, by spectral theory,

lgtu) = hw)] < &

”g - h”oo <
Set

for i = 1, 2. Furthermore,

Ih(ur) = h(ua)ll = || 3 an(ul —u3)

In|<N
n—1
< N el |0 uh (ur — ug) ug T
|n|<N k=0

< Y lanlns <e/6.
In]<N




Thus,

llg(u1) — g(ua)|
< |lg(ur) = Alun)ll + 1h(u1) = hlug) || + [1h(uz) = g(ua)|
< 3e/6=¢/2.

Since

Pi(L) g(u1) = g(ua),
g(ug) Py(Io) = Po(Iy),

we obtain

|1 P1(11) Po(Lo) — Po(L2)|
= [|Pu(11) g(u2) Pa(I2) — g(uz) Pa(L2)|l
< |1Pu(fa)(g(u2) — 9(u1)) P (L)l

+ || Pi(11) g(u1) Pa(I2) — g(uz) Po(I2)||
<e/2+ |lg(w1) Pa(I2) — g(uz) Pa(L2)|l
<e/2+¢e/2=¢€. O
Lemma 2.2 There ezists a positive function 1(61,82) defined for 61,60 > 0
such that n is increasing in &, decreasing in by, and lims, o n(61,62) = 0,
with the following property : If It, I are any two closed intervals in T = R/Z
(resp. in[—1,1]) such that the 6;-neighbourhood of I 1s contained in I, and
if u1, ug are unitary operators (resp. self-adjoint operators of norm at most

1) such that
||u1 - Uz“ < 51

then
| Py(11) Po(L2) — Po(Ia)|| < m(61, 62)

where P;(-) is the projection valued measure on T (resp. [—1, 1]) defined by
u; by spectral theory.

Proof. By compactness (or elementary considerations), there exists a fi-
nite number of closed intervals I1,, I, with the property that the /2-
neighbourhood of I, is contained in I, for any n, and if I, Is is any pair
of intervals satisfying the hypotheses of the lemma, then there exists an n
such that

LChLhpnChyClh.
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For given € > 0, let §(¢) denote the minimum of the finite number of §’s
obtained in Lemma 2.1 by letting I, I, there range over I, Iz, for the
finite number of n’s. We may assume that 6(g) is a decreasing function of
6, and inverting this we obtain the function & = 7(61, 82) referred to in the
lemma. From

Py(I ) < Pi(Lh),
Py(I) < Py(Iay),

follows
|P(11) Po(Iz) — Po(L)|| < |Pi(lin) Po(Izn) — Pa(lon)|l <€ . a

Lemma 2.3 Let e,p be projections in a unital C*- algebra A, and assume
that

1
llep — pl| Se<sy.

Then there exists a unitary element u € A such that

[l — 1| < 6¢,
upu* < e,
and
|lupu* —p|| < 2.
Proof. This is a restatement of Lemma 2.1 of [ElL2]. |

Lemma 2.4 Let e, p, q be projections in a unital C*- algebra A. Assume that

g<e,

lep—pl <e <3,

and
lpg —qll < €.

Then there exists a unitary element uw € A such that

g<lupu*<e,

and
lupu™ — p|| < 8e.




Proof. By Lemma 2.3, there is a unitary u; € A such that
”U1 - 1” S 68)

p1=u1pu;‘§e,

and
llp1 — pl| < 2.
Now p; and g are projections in the unital C*- algebra eAe, and

Ipig —all < l(p1 —p) gl + |lpg — ql|

<2+e=3¢.

Thus,
(e —a)(e —p1) — (e —po)ll = llgpr — gll < 3e.
Applying Lemma 2.3 again, we obtain a unitary u, € eAe such that

ug(e —pr)us <e—gq,

lug —el] <6-3e=18¢,

and
l|us(e = p1) us — (e —p1)|| £ 2 3e =6e.
Hence,
q < ugp1y
and
|ugprus — pil| < 6e.
Thus, with

u=(uz+(1—e))u,
u is a unitary element in A with
lu =1 < fluz — el + [lua — 1

< 18¢ + 6e = 24¢,

and
q < ugprus = upu* < e

and
|lupu* — p|| = ||ugprus — pl|

< Nuaprus — pall + |1 — pl|

< 6e+ 2 =8¢.

10




Lemma 2.5 Let A be a unital C*- algebra and let po,...,pn and eg, ..., €x
be two families of mutually orthogonal projections in A with

n n
So=1=)e.
k=0 k=0
Assume that

Ik —exl| <e <1.

It follows that there exists a unitary element u € A such that
upRu® = eg

fork=0,...,n, and

lu—1]| < (n+1)2.
Thus, if € < 1/(n+ 1), there is a continuous path us in the unitary group of
A of length at most (n + 1)7e with up = 1,u; = u.

Proof. By [Eff, Corollary A8.3] there are partial isometries uy in A with
Uply = €k, UpUk = Dk

and
lwr — prll < 2lex — pell < 2e.

Put

n
U= u.
k=0

Then u has the desired properties. The last statement follows from spectral
theory. We have u = e'* where h = h* € A and

el — 1| = lu—1]| < 2,
Al < 7w — 1| < (n+ 1)27me < (n+1)7e. O

Lemma 2.6 Let A be a Ky-simple real rank zero C*-algebra. If p,q, e1, €2
are projections in A withp S €; S q and Ko(e1) = Ko(ep), then there exists a
path u; € U((q—p)A(g—p)) of length at most 8.15 such that Ad(u;) connects
e1 — p with eg — p.
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Proof. We may assume p = 0, ¢ = 1 by replacing A by (¢—p)A(¢—p), and
then ey, e, are unitarily equivalent by the property 2 among the properties
of A listed in the Definition in Section 1. So there is a w € U(A) with
eq = wew*.

By the property 3 there is a unitary v € A such that v(1—e;) = (1—e1)v =
1 —e; and Ki(v) = —Ki(w). Replace w by wv. Then we;w* = es and
Ki(w) = 0. By [Linl], w may be approximated by a unitary with finite
spectrum, and so there exists a path u; in the unitary group of A of length
slightly larger than 7 such that up = 1, uy = w. (Cf. Section 1.) O

Lemma 2.7 Let q,p be projections in a C*-algebra A that approzimately
commute: '

llgp —pq|| <e<1/6.

Then there exist projections q1,p1 € A and a partial isometry u € A such
that

q1 S q,
D1 S D,
uu=q ,
uu* = D1,
1—+1-—4¢
“‘h - qpqn < ——7—“— <2,
1—+/1—4¢
Ipy = pgpll € ————<2¢,
lp1 — a1l < 6¢e,
lu — @] < 12e .
Proof. We have
(qpg)® — apq
= qpgpq — qpq
= q(pq — qp)pa

and so

ll(apa)® — qpall < e < 1/4.
Applying a continuous function which is 0 on [O, l@] and 1 on [1+\/21——4e ’ 1]
to gpg we obtain a projection ¢; near gpq such that ¢; < ¢ and

1—+1—4e

<2.
5 <Ze

llgr — gl <

12




The projection p; is obtained by applying the same function to pgp and then

lp1 — papl| < 2¢ .
Thus,

llp1 — @]l < |lpr — papll + llpap — apall + llapg — a1

< 2+ ||(pg — qp)p|| + lla(gp — po)|| + 2¢
< 6g .

Since 6¢ < 1, the existence of the partial isometry u now follows from [Eff,
Lemma A8.2]. O

Lemma 2.8 Let N € {2,3,4,...} and let 0 < & < 1/12. Let A be a unital
C*-algebra, and let g, p; be two families of projections in A indexed by i €

Z/NZ. Assume that
Ya=>p=1,

and that g; is approzimately contained in p; + Piy1, i€,
(s + pir1)a — aill <€,
and that p; is approzimately contained in gi—1 + ¢, i€,
I(gi-1 +a)pi —pil < €.
Also assume that each pair of projections pi, q; approzimately commutes, i.e.,
lgipi — pigsll < € .
It follows that each g; and each p; has a decomposition as a sum of two
projections,
4% = Q1T 2,
Di Pin + Pi2

in such a way that
llgin —pall < 6e,
llgiz — Pita2ll < 12e.

Furthermore, there ezists a unitary operator u € A such that

ugaut = Di1,
UQiz’U* = Pi+12
fori € Z/NZ, and
: |lu—1|| < 36Ne.
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Proof. Using the approximate permutability of p; and ¢;, by Lemma 2.7
there exist for each i € Z/NZ projections ¢;1,pi1 in A such that

i1 < ¢,
Pi1 < Di,
g — aipsaill < 2¢,
P — pigimill < 2¢
lpix — qunl] < 6e .
Now put
Q2 = G —dqi1,
P2 = Pi—Di1 -
The elements g;o and p;o are projections, and

¢% = gintd2,
Pi = DPiatDhi2-
Let us check the estimate on p;+12 — gio. We have
Dit1,2— Qiz2 = Di+1 — Pit1,1 — ¢ + Qi1
= pit1 — Pir1(@ + Gi41)Pir1 + Pir1 (G + Gi1)Pi
—DPi+1,1 + Dit14i+1Pi+1 — Pi+19i+1Pi+1
—gi + qi(pi + piv1) & — G(Pi + Pir1) @
+qi — GiDigi + 4iPiGi

and so

IN

pi+1 — Pig1(@ + Gig1)Piva I
+|pi+1,1 — Pig1Gis1Pitall

+lgi — qi(pi + pira)aill

+llgin — @il

+||Pit16iPit1 — @GP+l
Ipitall 1(@ + Gir1)Pigr — Pisall
+|pis1,1 — PitrGig1Pirall
+lall | (i + piv1)a — all
+lgi — gipigil|

+|Pit18ipit1 — GPi1 Gl

£+ 2 + &+ 26 + ||pis1@iPir1 — GPi+14il|
= 6¢ + ||pir1¢iDit1 — GPin Gl -

||P1+1,2 - (Iizll

IN
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To estimate the last term, note that as

(i + piv1)ai — Gill < €5

and thus
llgi(pi + pivs) —all < €,
we have
gi> pi + piga]ll < 2¢.
But as ||[g;, pi]|| < €, we obtain

lgipir1 — Pinraill < 3e.
Thus,

lpi+19iPis1 — QipH—IQiH
< ||pis1¢ipier — Gpitr |
+|gipi+1 — GiPir1Gill
= ||[pi+1, Glpisall + llgilgi, pisalll
< 3e + 3¢ = 6e.

Thus we obtain the desired estimate
lpiz12 — Gial| < 6 + 6 = 12¢.

Now, as 12¢ < 1, it follows from [Eff, Lemma A8.2] that there exist partial
isometries w1, uio for ¢ € Z/NZ with

U Ui = Git,
UirUj; = Pi1,
UjpUiz = Gi2,
Uiglin = Pit1,2)
luir — ga|| < 12¢,
iz — gio|| < 24e.

Put
u= Y (ua+u)
i€Z/NZ
Then w is unitary,
ugau® = DPi,
ugeu" = Dit1,2,
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and
flu—1f < Z llwir — ga |l + |lwiz — gal|
i€Z/NZL
< (12+24)Ne = 36Ne. o

We will also need the following variant of Lemma, 2.2.

Lemma 2.9 There exists a positive function 1'(61,02) defined for 61,62 > 0
such that i is increasing in 61, decreasing in 63, and ahmo 7' (61, 62) = 0, with
11—

the following property: If I1, I are any two closed intervals in T such that
the distance between any endpoint of I and any endpoint of Iy is at least 63,
and uy,us are unitary operators such that

lluy — us|| < 61,

then
| Pu(11) Pa(I2) — Pa(I) Pi(I)|| < 7'(61,62)

where Pi(+) is the projection valued measure on T defined by fdi by spectral
theory.

Proof. The proof is similar to those of Lemmata 2.1 and 2.2. The details
are left to the reader. O

3 Local connectedness of the unitaries with
finite spectrum in a C*-algebra

If A is a unital C*-algebra, let Ur(A) denote the set of unitaries in A with
finite spectrum. Clearly Ur(A) C Up(A). In this section we will prove that
Ur(A) is locally connected in the following sense:

Proposition 3.1 For any € > 0 there exists a 6 > 0 with the following
property: If A is a unital C*-algebra and vo,vy € Ur(A) are elements with
llvo — v1|| < 8, then there ezists a continuous rectifiable path t € [0,1] — v, €
Ur(A) connecting vy and vy, of length < e.
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Proof. Given € > 0 we first choose an N € N such that

s &

N 2
and then set

e = 2
T2N7 '’
so that 3
T
N + w36Ne’ < €.

We may assume that the functions n and 7’ given by Lemmata 2.2 and 2.9
are the same (by taking the maximum of the two functions), and let us then
choose 6 > 0 such that .

n(65) <

Let us show that 6 has the desired property.

Denote gx by the spectral projection of vy corresponding to the half-open

interval [2%’“7, —2%“%11) in T = R/Z, and by pj the spectral projection of v,

corresponding to the interval [%}—1, %J\E,l)
Lemmas 2.2 and 2.9 then imply that

(i + piz1)@ — al| < €
|(gi—1 + ¢i)pi — pill < e,
lgips — piail| < €.

Hence by Lemma 2.8, we have decompositions into projections

QG = Qi+ G2,
Di = DPi+Di2

and a unitary u € A such that

ugau* = pi,
UCIi2U* = Di+1,2
and .
u—1|| < 36Ne' = —.
Ju—1] < =
Consequently, u has the form
u=¢h

where h = h* € A and ||h|| < §. We shall now construct the path v; from o
to v; in five steps.
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N ]
Step 1. Deform v, to the unitary v 1= kz_:l e2mi% qx by keeping the spectral

projections fixed and moving the eigenvalues in [2%’%, 2(’;;“,1)) linearly to the

one point 2. Thus the path v; between ¢ = 0 and t = 1 has length at most
™

N

Step 2. Deform v 1 to the unitary

N
o dktl onidkt3
— 4N 4N
v -—E (6 qk,1 t+€ qk,2

k=1

(318

by moving the one eigenvalue inside each projection gg,;. This path has
length 5%

Step 3. Deform v2 to the unitary
N
2 __:I'_ i dkt3
vs = z (6 & pk1+€ e Pk+1,2)
k=1

by applying Ad(eB¢=") to vz and letting ¢ run from 3 2 to £. This path has
length at most 2||h|| < £.

Step 4. Deform vs to
n ik
Z "N

by moving the eigenvalue within each Dr,j- This path has length 5%.

U‘lwk

Step 5. Deform vs to v by moving 2™ to the approprlate eigenvalue on
each elgenprOJectlon of v;. This path has length at most

Of course, Steps 4 and 5 are more or less the reversal of Steps 2 and 1,

respectively.
In this way we have deformed vy to v; in Ur(A) along a path of total
length at most X + 3 +5+ 5y +§ <€ O
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4 The isospectral obstruction of a unitary
operator with respect to an endomorphism

This is defined by the following theorem. Note that if the C*-algebra A is
not of real rank zero, the obstruction F'(A,u) can nevertheless be defined on
unitaries v of finite spectrum with || A\(u) — u|| < €9, and still have properties
1 and 3. This follows from the proof.

Theorem 4.1 There is a universal constant &g > 0 and a function D :
(0,&0) — Ry such that lim. o D(e) = 0 with the following property:

If A is a unital real rank zero C*-algebra, \ is a unital endomorphism of
A and u is a unitary in Up(A) with

[A(u) = ul| < o
then there exists an element
F(\u) € Ko(A)/Im(A — 1)
with the following properties:

1. uw~ F(\u) is invariant under homotopy of u among the allowed u’s in

Up(A).
2. Ifuy,...,u, are unitaries with f} [IM(w;) — wi]| < eo then
' i=1
F\up...up) =Y F(\w).
i=1

3. If u has finite spectrum, ¢ = |[A(u) — u|| < €, and {t1,...,ts} is a
sequence of points of T in counter-clockwise order such that

Iti — ti_1| > D(&)
fori=1,...,4 (with ty = t4), then, with Q (resp. E) the spectral projection
of u corresponding to (t,ts] (resp. (t2,t4]), AMQ)E is close to a projection,
and, with [\(Q)E]o denoting the class of that projection in Ko(A),

F(\u) = g([MQ)E]o — [QE]) ,
where q : Ko(A) — Ko(A)/Im(A\, — 1) is the quotient map.
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Proof. We will use the property 3 to define F(A,u) when u has finite
spectrum. Using Lemma 2.9, it is clear that we can find & and D(e), with
D(e) — 0 as ¢ — 0, such that A(Q)E in 3 is close to a projection. The
distance to a projection will be small if 7'(e, D(¢)) is sufficiently small, where
n' is the function given in Lemma 2.9. The Ky-class of this projection is
independent of the choice of projection—for given ¢y, ... , t4—since two close
projections are equivalent. (There is no need to ensure that 7’ (e,D(g)) = 0
as ¢ — 0, only that it be less than a certain universal constant.)

In order to verify that F'(\,u) defined in this way has the desired proper-
ties, we must choose D(g) is such a way that (¢, D(€)) — 0 as € — 0 where
n is the function given by Lemma 2.2. This requirement is compatible with
the preceding one.

Provided that |t; — t;_1| > D(e), a variation in ¢, does not affect QE at
all and, by Lemma 2.2, affects A(Q)E almost not at all; hence the definition
3 of F()\,u) is invariant under variations in ¢;. Similarly, the definition is
invariant under variations in ¢4, which affect E but not QE. If t3 is increased
from t3 to t3 + 6, one obtains

F(t1,ts, t3 + 6,t2) = F(t1,ta,t3,t4) + [AMA)]o — [Ao

where

F(tlat27t37t4) = [A(Q)E]O - [QE]O

and A is the spectral projection of u corresponding to (ts3,t3 + 6]. Hence the
class of F within Ko(A)/Im(\. — 1) is not affected by variations in ¢3. A
similar calculation shows that F' (itself) does not depend on t;—because the
change in E coming from a change in ¢ is contained in Q, and approximately
contained in A(Q).

We have proved that for a given u with finite spectrum, the definition 3
is independent of ty, .. .,ts, provided that |t; — ;1| > D(e).

Now, let u; be a continuous path of unitaries with finite spectra and
IA(u) — || < €o. Then F(A ug) is constant around any ¢ such that the
spectrum of u; is disjoint from £1,...,%s, which we fix. If one of the eigen-
values of u; crosses one of the points 1,2, t3, ts, then one of the projections
E or @ will make a jump, but the two terms in

MQ)Eo — [QE]o

will then each jump by an equally large amount in Ko(A) at the points ¢y, £,
and t4, and an equally large amount up to Im(A. — 1) at ¢3. Thus, F(\ u)
is independent of ¢ in any case with ||A(u) — ul| < €o.
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Now, a general u € Up(A) can be approximated arbitrarily well by a
v € Up(A) with finite spectrum by [Linl]. Do this, and define

F(\u) =F(\v).
To verify that this definition is consistent, we have to show that
F()\, ’U()) = F()\, ’Ubl)

whenever vy, v; are two such finite spectrum approximations to u. But if
v, V1 are two such approximations, there is a path v; of unitaries with finite
spectrum connecting them such that v; is a good approximation to  for all £,
by the local connectedness of Ur(A) given by Proposition 3.1. Hence, by the
previous argument, the definition of F'(A,u) is independent of the approxi-
mant v € Up(A) if the approximation is good enough. Also, the property 1
in the statement of Theorem 4.1, that u — F'(A,u) is homotopy invariant,
is now clear. It remains to establish the property 2, and by induction it is
enough to do this for n = 2. For this, note that

F(\uug) = F (/\ ® 1, (“10“2 (1))) ,

where 1, is the identity automorphism of Ms. Now define
(9)_(11,1 0) ( cosf sin@)(uQ O) (0080 —sinH)
Y=o 1)\ —sind cosé 0 1/ \sinfd cosf

for0<6< 71'/2 and note that
Ul — = ,

' U1Ug 0
uo) = (52 7).
and that

A ® 12(u(8)) — w(@)]| < 1M (u1) — wl + [ A(u2) — ual| < &0

for all 6, since A\ ® 1, acts trivially on the rotation matrix. By the already
established homotopy invariance it follows that

F(A\wug) = F <)\ ® 1, (ul()u2 2))

= ren (s )

= F(\u)+F(A\ug). 0O
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5 The isospectral homotopy lemma in the case
of a large spectral gap

In this section we will consider the case that u has finite spectrum with a large
gap somewhere, or, equivalently, the case that u is replaced by a self-adjoint
operator h with finite spectrum. In this case the obstruction discussed in
Sections 1 and 4 is not present.

In order to state the lemma we need some notation. Let h = h* € A be
an element such that 0 < h < 1, and assume that h has finite spectrum. Let
N € N, and let p; denote the spectral projection of h corresponding to the
interval

[N—k+1

N ,1] for k=

1 3.5 1
5,1,5,2,5,...,N+§,N+1.
(We will need the half-integer values of k in the course of the proof of Lemma

5.1.) Then

0=p1<p1<ps<...<pnv<Pyyi SPvn1 =1,

=

where the first inequality is strict if 1 € Sp h, and all the others are strict if
h has no spectral gap larger than or equal to ﬁ in [0,1]. Put

1N
hN) =+ ’;Pk :
It follows from spectral theory that hA(N) € C*(h) C A,
b= BV <
and the spectrum of A(NN) is contained in {0, IR TR %}
Lemma 5.1 Given e > 0 and N € N with € < 1—@\:[,—“3 choose 6 > 0 such

that I
n (6 "—‘) <e
’ ZN -

where 1(-,-) is the (version for self-adjoint elements of the) function defined
in Lemma 2.2. Let A be a K;-simple real rank zero C*-algebra. Let h = h* €
A be an element with finite spectrum such that 0 < h < 1. Let w be a unitary

element in A such that
|lwhw* — h|| < 6.
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It follows that there exists a continuous path t — u; in U(A) of length at
most 6.3 + 101(N + 1) € such that

Up = 1a
uh(N)u = wh(N) w*,

and
6
|luth(N) uy — h(N)|| < N +64(N+1)e+26

for all t.

Proof. For notational convenience, assume that N is even and that 1 €
Spec (h). (The remedies to remove these conditions are left to the reader.)
Consider first the case that h has no spectral gap longer than or equal to

§1ﬁ in [0, 1]. We have the strict inequalities

0

PLSP1ISPsEP2E-- SPvh =1

from the spectral gap assumption and 1 € Sp (h). Put

N
k(N) = wh(N)w* = Z
where
e = wp;w”,
and, consistently, put
k = whw*.

As ||k — h|| < 8, it follows from Lemma 2.2 that
”pkek—% - ek——%” <n ( ’ QN) <e,

llexpr—z — Pp_2ll <7 (67 2%\/) €

for k =1, -3—, 2,...,N+1. Tt follows from Lemma 2.4 that there exist unitaries
ug, Vg in A such that

*
€p_1 < UpPpUp < €ppd

1
2

aIld
<wv ’U* <
pk_% S UgCrUp > pk.;._;.
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for k=1,2,...,N, and such that, with

/ *
Dy = UrPrUy

and
€ = UkCrUj
we have
llpx — Pl < 8e
and

llex — el < 8e.

Now, introduce

1
h’(N)=N(p1+e’2+p3+eﬁl—l—...+e§v),

1
k/(N)=N(P'1+62+10§+64+--.+6N)-

We shall find a continuous path wu; of unitaries such that Ad(u;) deforms

1
h(N) = N(pl +po+ps+pa+...+DN)

into 1
W(N) = N(p1+e’2+p3+eﬁ;+~-+63v)

when 0 <t < %, and further into

1
k'(N)=]—V-(p'1+ez+p§+e4+...+eN)

when § <t < 2, and further into
1
kE(N) = N(61+62+63+64+...+6N)
when 2 <t < 1. Let us start with 0 <¢ < 3 Since

/ * *
€or = V2k€akUgp = UgpWP2k ('U2k'w)

we have Ko(eh,) = Ko(pax), and it follows from Lemma 2.6 that there exists
a path in U ((pak+1—P2k—1)A(Pok+1—Pak—1)) of length at most 3.15 connecting
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. / . .
Dok — Pok—1 With ey, — eox—1 provided the differences pogt+1 — P2k, Pak — P2k-1,
Dojet1 — €y, € — Pak—1 are all non-zero. The first two are so, and

Pok—1 < Pog—1 < e < Poksl < D2kl

and S0 poj41 — €, and ehy, — Pog—1 are also non-zero. Hence Lemma 2.6 applies
to give a path of unitaries in (pog41— Pak—1)A(Pak+1 — Pak—1) of length at most
3.15 connecting pox to €y,. Since the projections pogy+1 — Pok—1 are mutually
orthogonal for the permitted k’s, we obtain by addition a unitary path of
length at most 3.15 connecting h(N) to h'(N). (Note that it is at this point
that the full weight of the assumption that A is a K;-simple real rank zero
C*-algebra, is used.)

k'(N) is connected to k(NN) in a similar manner, so it remains to connect
R'(N) to K'(N). To this end we use the estimates

IPh—1 — Por—1]l < 8¢,
llear — eqill < 8

to deduce
l|(e2k — Pog_1) — (egr — Pak—1)|| < 16¢

and
| (Phr1 — €2x) — P2kt — eor) || < 16¢.

Thus, by Lemma, 2.5, there exists a unitary u € A such that
eak — Pog—1 = U(€y — Par—1) u*

and
/ _ / *
DPopy1 — €2k = U(P2k+1 - ezk) U,

and for k=1,...,N/2
|lu—1]| < (N +1)2-16¢.
Thus u can be deformed from 1 along a path of length at most
m(N +1)-32 <101(N +1)e.
Thus, altogether, we obtain a path u; of length

3.15+ 101(N + 1) +3.15
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connecting h(N) with wh(N)w*. This proves the existence of a path u; with
the properties required in the statement of Lemma 5.1 except for the estimate
of ||ush(N)uj — h(N)||. To verify this, note that by construction,

1
uh(N)u; = = (p1+eae+ps+eas+...)
N

when 0 <t < %, where the elements eg; are projections such that

Dok—1 < €2kt < Pok+1

fork=1,...,N/2,0<t <3 Thus, if

2
K'(N) = N(pl +p3+...+pN-1)

then h”(N) commutes with uh(N)u; and by spectral theory

llueh(N)u; — h"(N)|| <

2=

Thus (first putting ¢ = 0 above)

llueh(N)u; — B(N)|| <

2w

for 0<t< 3 If 3 <t <% then

[SU
wiN

e — s || < 32(N +1)e

and hence

lueh(N)ui = M(N)I| - < [lush(N)ui — ugh(N)ui]]

+[lugh(N)ui — h(N)]
<64(N+1)e+ 2
- N
when % <t < 2, Finally, if % <t<1, then

2

lusk(N)us — k(NI < 5
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by the same reasoning as for A(IN) when 0 <t < 3, but as
[B(N) — K(N)| < |A(N) = kil + |k — k|| + 1|k — E(N)]|

1 1 2
< — _— = —
_N+(5+N N+5
we obtain

" 2 2 6
luch(Nyut = V)| < = +2 (5 +6) = 5 +28

for -g— < t < 1. Assembling the three estimates, we have

6
lueh(N)u; = B(N)|| < & + 64(N + 1) e+ 26

for0<t< 1.
Now let us remove the assumption that every spectral gap is of length
longer than or equal to ﬁ in [0,1]. In this case, certain of the projections

p1, P, ... may be equal. Suppose, for instance, that p; = py +1 for some
k=1,%...,N+3. Then also e = 441, and as
||Pk+%ek —el <e, ”%+%Pk —pll S,
we have
Iprer —exll <&, llewpr —pell <€

Hence by Lemma 2.4 with g = e,
[Pk — exll < 8 .
Of course, also, for such k,
lprs1 — exsall < 8¢ .

It follows that the proof may be completed as before, with pj, = e, when k
as above is an odd integer, and e}, = py when k as above is an even integer—
and the applications of Lemma 2.6 which are no longer possible are in fact
unnecessary, as the projections to be connected are equal. a
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6 The isospectral homotopy lemma

In this section we will consider the case that u has spectrum without large
gaps. (For completeness, we shall consider the other case, too—to verify that
it reduces to Lemma 5.1 above.) If w is another unitary element such that
|lwu — vw|| is small, we define the isospectral obstruction of u with respect

to w as

Isospec(w, u) = F(Ad(w),u) € Ko(A)
where F' was defined in Theorem 4.1. Since u has no large spectral gaps,
Isospec(w, u) may be non-zero.

The following lemma could be proved by using triviality of the isospectral
obstruction to split u into two parts, with spectra contained in two large
disjoint arcs of T with union T, thus reducing the problem to the large
spectral gap situation covered by Lemma 5.1. However, we prefer a more local
approach, dividing the circle into a large number of arcs, which nevertheless
have great length compared to the distance between u and wuw*.

Lemma 6.1 For any € > 0 there exists a 6 > 0 with the following property:
Let A be a Ki-simple real rank zero C*-algebra, let u,w be unitaries in
A, with [u]; =0, and assume that

lwu —uwl|| < 6 .
Assume that
Isospec(w,u) =0 .
It follows that there exists a unitary v’ € A, and a continuous path t — z; in
the unitary group of A of length at most 7, such that
20 = 1,
zu'zf = wu'w®,
lu — ]| <e,
and
|z 2z — || < e

for allt € [0,1]. If u has finite spectrum, we may take v’ € C*(u).
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Proof. Since the set of unitaries with finite spectrum is dense in Up(A)
[Lin1], replacing € by £ we may assume at the outset that u has finite spec-
trum.

Now, choose N € N so large that

4r < €
2N " 27
and set
f=_ 5
2-36NT

Then choose § > 0 so small that

/ m '
(A (6’4N) =€,

where 1 V 1’ denotes the maximum of the function 7 of Lemma 2.2 and the
function 7’ of Lemma 2.9. If u has a spectral gap greater than or equal to
1 in length, say from 1 — 5% to 1 in T = R/Z, choose § so that in addition
||whw* — hl| is small in the sense of Lemma 5.1, where 0 < h < 1 — 2 and
e?™h = y. The conclusion of Lemma 6.1 then follows from Lemma 5.1.

We may suppose, therefore, that u has no such spectral gap. Let g;,
i € Zsyn = Z/2NZ denote the spectral projection of u corresponding to the
spectral interval [5}—\,-, %) in T, so that ¢; # 0, and put p; = wg;w*. Next,
define

Qi = @i + Qit1, 1€ Ly,
P, = poi1 + pai i1 €Ly .

Thus, @; is the spectral projection of u corresponding to the spectral in-

terval ]—%, % and P; is the spectral projection of wuw* corresponding to
2i—1 2i+1

T o ) As ||lwuw* — ul| < 6 it follows from the choice of § and Lemmas
2.2 and 2.9 that

(P + Pi1)Qi — Qill < €,
(Qi-1 + @i)P— P < €,
|QiPi — PQi|| <€ .
(From these estimates and Lemma 2.8, it follows that each @;, P; has a
decomposition as a sum of two projections,
Qi = do; + Gaip1
Py =phi_1 + 1y
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and there exists a unitary operator v € A such that
vgv* = p;

for all i € Zyy, with .
lo— 1] < 36Ne' = = .
2

We may suppose that = < 2. Furthermore, g for example is constructed as
an approximant of PyQo ~ QoPy. But since F(Adw,u) = 0 by assumption,
it follows (cf. Theorem 4.1) that

Ko(gp) = Ko(go) -

Similarly, the vanishing of the isospectral obstruction implies that
Ko(g;) = Ko(a:)

and
Ko(p;) = Ko(p:)

for all i € Zsy.

Note that, as well as assuming that each g; is non-zero, we may also
assume that each ¢} is non-zero. For example, g, which is approximately
PyQy is non-zero because not only is gy non-zero, but the subprojection p
of qo corresponding to the right-hand half of the interval [%, %) to which
go corresponds is non-zero, and because, furthermore, p is approximately
contained in P,, to within &', by the choice of 6.

By Lemma, 2.6, there exists a path of unitaries in Q); AQ); of length at most
3.15 connecting go; to ¢y;, and thereby goi1 to gy, ;. Adding these unitaries,
we get a path of unitaries in A of length at most 3.15 connecting g¢; to ¢;
for each i € Zoy. Similarly there is a path connecting p; to p;. Finally, as
lv—1]| £ & < 2, v has the form v = " where h = h* € A and ||A]| < §,
and the path t — e t € [0, 1], of unitaries connects ¢; to p; for each ¢, and
has length ||h|| < £. Let 2 denote the composition of the three paths, so
that

&

£ 7
=1, 21q;21 = ¢; ,
3 3

/

£ 3
z q,-z% =D 219i2y = Pi -

Wi

The path z has total length less than 3.15 +¢/2+3.15 < 7.
Now, put

omi 2L
ro__ 4N
u = E e Qj B

je€lon
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Then

2r €
12
U—1u — < =<e¢
el < e < 5 <
and
;2441
ww* =Y TN Dj
j€lan
= zu'zf.
For 0 < t <  we have
#Qizy = Qi -
Thus, putting
2j+1
o = Z 2miSN Q;
j€Lsn
we have ||u” —u/|| < 2% < £, and
zeuzf = u”
for0<t< %, whence
€ €
|z 2 — || < 2—8— =1
for those t. Now, since the length of the path ¢ — z; between ¢t = % and t =
is at most £, we obtain
3
/% /
2z, — U < 2—

Finally, putting
u”/ — Z 27I"LL P

i€Zan

and

u" = 27“‘L

Z € Q2J 1 +QQJ) )
j€Zan
we have
thu////z;a: ——
for 2<t<1,and
”ulll _ ul” S %, ”ullll _ u/“ < _;; .
Hence,
3 1

lzew' 2 — || < yihayiiatd

for 2<¢< 1.
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7 The basic homotopy lemma in the case of
trivial K

This lemma is

Lemma 7.1 For any € > 0 there exists a 6 > 0 with the following property:
If A is a K;-simple real rank zero C*-algebra and u,v are unitaries in A with

[up = [v]i =0,
luv —vu|| < 6,
Isospec(v,u) =0,

then there ezists a continuous rectifiable path u; of unitaries in A with

u =1, U =1u,
||[’U,Ut]” S €,

and
Length(u;) < 4w +1 .

An important property of Kj-simple real rank zero C*-algebras needed in
the proof is the approximate decomposition of the following lemma.

Lemma 7.2 If A is a Ki-simple real rank zero C*-algebra, and u is a partial
unitary in A with full spectrum (or approzimately full spectrum), and k €
K;(A), then u approzimately has a decomposition as an orthogonal sum u; +
uy of partial unitaries such that [ui]; = k.

Proof of Lemma 7.1 from Lemma 7.2. By the isospectral homotopy
lemma (Lemma 6.1) there exists, for sufficiently small, but universal, 6, a
finite spectrum approximation v’ to v and a path ¢ — 2 in the unitary group
of A of length at most 7 such that

=1,

2’ 2f = w'u*,
€

lb-l<f,

lzev'2 — || <

wlm

for all t € [0,1]. In particular, if

w = 2ju
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then w commutes with v/, and since v/ has finite spectrum, w has a decom-
position
W1 0

0 Wh,

over the spectral projections of v'. We know that
wii+...+wi=[wh =21 +[up=0+0=0.

If now each w; had K;-class 0, then u could be deformed to 1 in the approx-
imate commutant of v as follows:

uw— zju — u=w—1

where w is deformed along a path of length 7 + ¢ in the exact commutant
of v/. This always works if K;(A) = 0, for example if A is an AF-algebra, so
we may replace 47 + 1 by 37 + 1 in that case.

If, however, not every w; has trivial Kj-class, this argument has to be
modified as follows: First, if some of the w; have trivial K;-class, their spectra
may not be the whole circle, but by deforming each w; along a path of length
7 + € inside the appropriate spectral projection of v/, we may assume that
each w; has full spectrum. Such a deformation is possible by Lemma 7.3,
below, and the condition 3 in the definition of K;j-simple real rank zero
C*-algebras. The total deformation of w then takes place along a path of
unitaries commuting with v’ of length at most 7 + €.

After this we modify w along a short path as follows: Let e; denote the
spectral projection of v’ where w; lives, and define a decomposition e; =
eq + e of e; and partial unitaries wi1, wip With wjwi; = wi;wj; = ey; as
follows: Put ej;s = ey, e;1 = 0, wip = w;. When the pair e;, wis has
been constructed, proceed as follows: Let w;t11 + wit1,2 be an approximate
decomposition of w;; as in Lemma 7.2, with [w;y11]1 = —[wiz2]1. Proceed
in this way until 4+ 1 = n; then, as [w]; = 0, we necessarily have [wy 2]; = 0.
After this small deformation, each w; 2 + w;y11 is a partial unitary of trivial
Kj-class, and can therefore be deformed to e; 2 +e;41,1 along a path of length
at most 7 + €. But since e; 5 + €;+1,1 < €; + €;41, all the unitaries along this
path will approximately commute with v’, and thus with v. Summing up, we
can deform u to 1 along a path of length 27 + 7 + 7 + € in the approximate
commutant of v. This proves Lemma 7.1 apart from

Proof of Lemma 7.2. If K;(A) =0, Lemma 7.2 is trivial, so we may as-
sume K;(A) # 0. Then, by hypothesis, D(A ® K) is simple. Thus the set of
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nonzero elements in D(A) is downward directed. Let now u be the (partial)
unitary given in the statement of the lemma. Since u has (at least approxi-
mately) full spectrum, we may approximate u by another partial unitary v
with spectrum the nth roots of unity,

ol ok
v=§ e e
k=0

where the projections e; # 0. By downward directedness of the non-zero
part of D(A), choose a non-zero projection p which is equivalent to part of
each of the n eigenprojections ey of v, i.e., such that there exists vy € A with

vV < ek, VpUk = P.

By simplicity (of D(A ® K)) and real rank zero, there is a projection q € A
such that ¢ # 0, ¢ < pand p — g # 0. Let k € K;(A) be given as in the
statement of the lemma, and choose, using the property 3 in the definition,
a partial unitary w; inside ¢ with [wq]; = k and a partial unitary w, inside
p — q with [ws]; = —k. Then w = w; + w, is a partial unitary inside p with
[wq] = 0. Thus, by [Linl] again, we may approximate w by a partial unitary
ws with the same support p as w and spectrum contained in the nth roots
of 1,

ol omik
Wz = Z e " fr
k=0

Define a partial isometry V between p and part of 3 ex by
k

n—1
V=> wfe
k=0
and put
’lTJi = Vw,V*

for i = 1,2,3. Then Ky(w;) = k, K;1(@2) = —k and @3 ~ W; + We. Further-
more, if £ =VV?* then
Ev=vFE =113

since v, fxv; < vgpvy < e;. Hence w;, which is an approximate direct sum-
mand of W3, is an approximate direct summand of v and thus of . a

Lemma 7.3 Let A be a unital C*-algebra containing unitary v with [v]; # 0.
Then A contains a unitary u with full spectrum and [u]; = 0.
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Proof. As [v]; # 0, v has full spectrum. Let f:T — T be a continuous
function of winding number 0 such that f is surjective, for example f(z) =
exp(n(z — z)/2). Then u = f(v) does the job. O

8 The basic homotopy lemma
We are now ready to prove the main result of this paper.

Theorem 8.1 For anye > 0 there exists a 6 > 0 with the following property:
If A is a K;-simple real rank zero C*-algebra, and u,v are unitaries in A with

[’U]1 =0 5
|lvu —wv|| < 6,
Isospec(u,v) =0,

then there exists a rectifiable path vy of unitaries in A with

w=v, v1=1,
fw, ve]ll <€,
Length(v;) <b5m+1.

Remark. If K;(A) = 0, then this is also true with the estimate Length(v;) <
37 + 1 because of Lemma 7.1 (and its proof).

Proof. By Lemma 7.1, we may assume [u]; # 0. In particular, K;(A) # 0,
and so D(A ® K) is simple by definition. By Lemma 8.2, to follow, for any
e’ > 0 there exists § > 0 such that with » and v as above—with § > 0 to be
specified—, there is a projection E € A and unitaries u;,v; € A with

Ju—wl <&, Jo-ul<é,

[ulv E] = O’ [vl)E] = 01

ulle = ’Ul’ulE,

Kl (UlE) =0 and Spec(ulE) + (0, 8') = T,
Spec(vy) s finite.

Next, applying Lemma 7.2 to u; E, with € small relative to a fixed § > 0
(to be specified), we find a projection E, < E and an approximant us to uy,
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commuting with Es, such that us(1—E) = u(1— E) and Ky (ugE,) = —[ul;.
Putting 1 =1 — E, E3 = E — E,, we have

lu—wu| <6 Ju—usl <8, Jv—w| <6,

Ei+Ey+E;3=1,

[U2, Ez] =0,

[vi, E1] =0, [w, Eq] =0,

[U2E1]1 = [U]l )

[ug Bl = —[u]1 ,

viuy (B + E3) = wv1(Ee + E3)

Spec(ui(Ea + E3)) is finite ,

Spec(vi(Es + E3)) is finite.

It follows from the last three properties that Isospec(ui(Es + Es),vi(E2 +
E3)) = 0. Hence Isospec(u;Eq, v1E1) = 0, and since u;,us are norm close
one has that Isospec(usE; + ugFa,v1E; + Es) = 0. Thus by Lemma 7.1
applied to the pair us E1 +us Es, v1F1 + Es, for a given € > 0, choosing 6 > 0
sufficiently small one obtains a path wt(l of unitaries such that

wt(l)E3 = E3 )
w = v,By + By + Es
w =1,

H [’U2E1 + uzs By + E, wil)] H < % )

Length(wél)) < A4rm+ % .

It follows from the finiteness of Spec(v;(E2+F3)) and the equation vyuy (Ea+
E3) = uyv1(Ey + E3) that there is a path w,§2) of unitaries such that

w?E = E,
w((,2) = Ul(Ez + E3) + E1 5
wi =1,

[u1(Es + Bs) + By, w®] =0,
Length(wt(z)) <.

Hence w; = wgl) wt(g) satisfies

£
s il = W bl + P, i)l < £ 426,
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Wo = V1,

w1=1,

1
Length(w) < 57 + 3

Since ||v —v1]| < 8 we can find a path connecting v and v; of length at most
76/2, and approximately commuting with u to within 25. Choose ¢ in such
a way that also § < g and 76 < 1. O

Lemma 8.2 For any € > 0 there exists a 6 > 0 with the following property:
Let A be a real rank zero C*-algebra. For any two unitaries u,v € A with
Spec(u) = T, [v]; =0 and ||[u,v]|| < §, there exist unitaries uy,v; € A and
a projection E € A such that

lu—wl <e, [v—ul|<e,

[ui, E] =0, [v,E]=0,

mnE =vu F,

Spec(uy E) is finite and Spec(u1 E) + (0,e) =T,
Spec(v1) is finite.

Proof. By [Linl], we may suppose that Spec(v) is finite.
Choose a sufficiently large n € N. Let a and b be continuous functions
on Tsuchthat 0<a<1,0<b<1,and

n2-1

Z a(62m‘k/n2.) =1,

k=0

Supp(b) C (e—2m"/n2’ e2m’/n2),
ab=a.

Note that a(1) = 1. Since the self-adjoint element

2-1
nZ a(e27ril/nu)a(e27rik/n2,U)a(eQm'l/nu) _ a(e2m'l/n,u)2
k=0
has norm 1 for [ =0,1,...,n — 1, there is a k; such that the element

T = a(eZm‘l/nu)a(e27rikl/n2v)a(627ril/nu)
has norm at least 1/n?. Set

e = b(62ml/nu)b(€27rik’/n2’v)b(62ﬂl/n’u,) )
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Then
”61.’1}1 - C)Sl” < &g

where
go = sup [|[b(Mv), a(pu)]|| -
M\ueT
Note that &¢ is dominated by the value of a function at § = ||[v,u]|| which
converges to zero as ¢ | 0.
Since

1
g0 > ||lm(1 — ezl > (1 — [leal)lll* > ﬁ(l — lexll)
it follows that
lledl > 1 — nZeg.

We shall assume that n2eq is sufficiently close to zero.

Denote by E; the spectral projection of v corresponding to the inter-
val (le—2m(k,/n+1/n2), e—27ri(kl/n—1/n2)). Then “b(e27ril/nu) Elb(e27ril/nu)” >1-—
n2cy. Denote by B; the hereditary C*-subalgebra of A generated by all
h(b(e2mi/my) Eyb(e?™/my)) with h satisfying

supp h C [1 — (n? + 1)go, 00) .

- Since By is a non-zero C*-subalgebra of a C*-algebra of real rank zero, by
[BP] there is a non-zero projection py € B;. Then

prb (2™ u) (e /™ u)p, > (1 — (n? + V)eo)pr,
and so

lpe = b w)pi]|* < lpi(1 = 2b(e* /M) + b(e*™ ) )|
< [Ipa(1 = b(e¥™mu)?p|| < (n® + 1),

o — Epill* = llpe — piEpi|
< ||pz _ plb(e%zl/nu)Elb(e.‘hrzl/nu)pl”
+2(lp — b(e*™ u)py|

< (n? 4+ 1Deg +2¢/(n? + 1)gg = €1 -

Let f be a continuous function T onto T such that

fl[e21ri(l/n—1/n2) , e2m’(l/n+1/n2)] — e271'1’l/'n.
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for | = 0,1,...,n — 1. With a suitable choice of f, u; = f(u) satisfies

lu — w1|| < 27/n?. Note that uip, = e~ 2*¥"p; and {p;;! =0,...,n — 1} are

-1
mutually orthogonal. Set E = nz pi- Then
=0
n—1 )
wE = FEu; = Z e~ 2mil/ "o
1=0

-1 , .
Set I = nU (e 2milkit)/n? | o=2mi(ki=1)/n*) " Define a function g on T as fol-
1=0

lows: g(A) = XA for A € I and g()\) = €™(®*®) on a connected component
(e?mie e2mB) of I. Then v' = g(u) satisfies ||v —v'|| < 2n(n +1)/n?, since the
length of a connected component of I is less than or equal to 2m(n + 1)/n?

Let {I;} denote the set of connected components of I. Denote by F; the
spectral projection of v corresponding to I;. Set

Gi= Y. m

e—2mil/n el;

Then it follows that
|G — EGi|| < ny/er .

Denote by U; the partial isometry obtained from the polar decomposition of
F,G;. Then

Ui = Gill = |FGi(GiFG:) ™ - Gil

1
< e+ —e—— 1

- 1-nyE1
< 2n4/er

(if n4/€1 is sufficiently small). Set Vo = Y. U;. Since V} is a partial isometry
-1
close to the initial projection Y G; = nz pi, we have a partial isometry V;
with initial projection 1 — V'V and final projection 1 — VV* such that V; is
close to 1 — ViV, up to a constant multiple of 2n?,/g7. Set V = V5 +V; and
set
v =V'V
Then ||v—v|| < 2m(n+1)/n*+ Cn?, /g1 for some constant C, and Spec(v;)
is finite.
If e—2m‘l/n el, = (621ria, €2M'B), then

vp = em@tPp, .
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Thus it follows that v;F = Ev; and
wnklE =vuE.

On taking n € N sufficiently large and then taking 6 > 0 sufficiently small,
the conclusion follows. O

9 Identification of the isospectral obstruction
with the Bott class

If A is a unital C*-algebra, and u,v are unitaries in A with |lvu — wv|| <
€0, Where g is a certain universal constant, we described the Bott class
Bott(v,u) € Ko(A) in Section 1. If in addition A has real rank zero and
u € Up(A), or if u simply has finite spectrum, we have defined the isospectral
obstruction of u with respect to v as

Isospec(v, u) = F(Ad(v),u) € Ko(A) ,

where F is as defined in Theorem 4.1. We will now prove that these two Ky
valued invariants coincide whenever the basic homotopy lemma, Theorem 8.1
(or even just Lemma 7.1), is stably valid, i.e., valid for any matrix algebra
over A. (Note that this holds if A is K;-simple, as then any matrix algebra
over A is also K;j-simple.)

Theorem 9.1 There exists a universal constant €9 > 0 with the following
property:
If A is a K;-simple real rank zero C*-algebra, and u,v are unitaries in A
with [u]; =0 and '
lvu — wv|| < &
then
Isospec(v, u) = Bott(v, u) .

To prove Theorem 9.1 we need a lemma which we first state in a form

that will be used in Section 10.

Lemma 9.2 Assume that A is a purely infinite simple unital C*-algebra. Let
ko € Ko(A) and let u € A be a unitary with [u]; = 0 and Spec(u) = T. Then
for any sufficiently small € > 0 there is a unitary v € A such that

lvuv* —u|| < €

and
Isospec(u,v) = ko .
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Proof. Let n € N be such that 2;“ < £. Then there is a unitary u; € A
with Spec(u;) = {€*™*/™ k = 0,1,...,n — 1} such that ||u — uy| < /2. If

n—1
U = Z e21rik/npki
k=0
is the spectral decomposition of u;, choose a non-zero subprojection e of pg
such that lex]o = ko, and a partial isometry wy such that

* *
Wy W = €k, WrWy, = €k41

for k=0,1,...,n—1 with e, = . (Cf. [Cun2].) Set
n—1 n—1
V= Zwk+1—Zek.
k=0 k=0
Then v satisfies the required properties. O

Note that Lemma 9.2 only holds in this form when A is purely infinite.
When A is an AF-algebra, the degree € of commutation of u and v will
impose restrictions on the range of Isospec(v,u), and in general this range
will be a small subset of Ky(A) of the form D, — D, where D, is a hereditary
subset of the dimension range. However, to prove Theorem 9.1, we just need
a version of Lemma 9.2 where the unitaries are allowed to lie in a matrix
algebra M,(A) = M, ® A over A.

Lemma 9.3 Let A be a unital C*-algebra, let e > 0, and let kg € Ko(A) and
ki € K1(A). Then there exist n € N and unitaries u,v € M,(A) such that u
has finite spectrum, [v]; = ki,

louv® —u|| < e
and

Isospec(v, u) = Bott(v, u) = k.

Proof. Find projections e;, e; in a matrix algebra M,,(A) over A such that

ko = [61]0 - [6’2]0~

Let I € N be large and denote e;;, by the projection in M;,(A) which is
represented by a diagonal | x [ matrix over M,,(A) with e; in the kth entry
on the diagonal and 0 elsewhere, k =0,---,1—1,i=1,2. Set

-1 -1
U=y emk/lei,k + (1= eix)
k=0 k=0
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for i = 1,2, and let v; = vy denote the unitary shift matrix in M; ® 1 C
Mim(A) such that
Vi€ikV; = €ik+1

for 1 = ]_, 2 [VOI] Then
Isospec(v;, u;) = [ei]o

for i = 1,2. But by [ExL, Theorem 4.1] we also have
Bott(v;, u;) = [ei]o-

Set n = 2lk. Then M, (A) contains M, (A)® M;,(A) as a unital subalgebra,
and we may define unitary operators u,v in M,(A) by

U = uy O vy,
V=V D Us.
Then
Isospec(v,u) = Isospec(vi,u;) + Isospec(ug, v2)
= [ei)o — [ea]o
kO’

and, correspondingly,
Bott(v, u) = ko.

Furthermore,

v'uv —u = (vuvr —uy) B (ugvoug — vs)
(e = Du) @ (2™ = 1)wp)
and so o
-
Thus, on choosing ! large enough that 2% < ¢, and that Isospec(vy,u;)
and Bott(v, u;) are defined, the conclusion of Lemma 9.3 follows. O

vhuw —ull < le” 2 1] <
| <]

Proof of Theorem 9.1. Let u, v be the given pair in the theorem (with €
sufficiently small), and Isospec(v,u) = ko € Kj. By Lemma 9.3 there exists
an n € N and unitaries v1,u; € M,(A) with Bott(vi,u;) = Isospec(vy,u;) =
—ko, [w]1 =0, [v1)1 = —[v]s = —k1, and |jviwv] — w|| < e.
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Now put u,v into the upper left hand corner of M,1(A), and u;, v,
simultaneously into the remaining block, to obtain unitaries

Uy = U D Uy ; Vg =VDnN

such that

”’UQ’UQ — ’UQ'UQ” < Eo,

[u2]1 = [U]l + [U1]1 =040= 0,

[va]: =[] + [v1]1 = [v]y — [v]1 = 0,
and

Isospec(vg, ug) = Isospec(v,u) + Isospec(vy,uq)
= ko - ko = 0.

By Lemma, 7.1, us can be connected to 1 by a continuous path of unitaries
which all almost commute with v,. But since both Bott and Isospec are
invariant under homotopy of almost commuting unitaries, it follows that

BOtt(’U2,’LL2) = BOtt(’Ug, ].) =0
and
Isospec(vg, uz) = Isospec(vq,1) =0,
and as, furthermore,
Bott(ve,uz) = Bott(v,u) + Bott(vi, u1),

Isospec(vg, ug) = Isospec(v,u) + Isospec(vi, u1),
Bott(vy,u;) = Isospec(vy,u1),

it follows that
Bott(v, u) = Isospec(v, u),

which is the conclusion of Theorem 9.1. O

10 The tail lemma for trivial K;

In this section and the following one we will prove a result which is inde-
pendent of the basic homotopy lemma, and which is used in [ElIR]. Note
that this result definitely does not hold for an AF-algebra. The reason is
that two unitaries with full spectrum in such an algebra are not necessarily
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approximately unitary equivalent. In order that two full spectrum unitaries
u, v should be approximately unitary equivalent we would have to assume
that the “distribution of Ky over the spectrum” of the two unitaries is ap-
proximately the same, as formulated more precisely in [Ell1].

Lemma 10.1 (The tail lemma when Kj is trivial.) For anyé > 0 there
exists € > 0 with the following property: Let {u:},{v:}, t € [0, 1], be two con-
tinuous paths of unitaries in a purely infinite simple unital C*-algebra A such
that [us]; = [vs)1 = 0 and such that Spec(u;) = T and Spec(v;) is 6-dense,
for allt € [0,1]. Then there is a continuous path {w:} of unitaries in A such
that ||weusw} — ve|| < € for all t € [0,1]. If ug = vo, {we} can be chosen with
Wy = 1.

Proof. First choose 6y > 0 such that if two unitaries u,v € A are such
that [u]; = [v]1 = 0, |lvuv* — u|| < &, and Isospec(u,v) = 0, then there
is a continuous path {v;} of unitaries in A such that vo = v, v; = 1, and
lveuwvy — u|| < /2. We may suppose that 8y < £/4. Let § € (0,80/127) and
let {us}, {v:} be as in the statement of the lemma. There exists an n € N
such that if |s — t| < 1/n, then ||us — u|| < 6o/3 and ||vs — v4]| < 60/3. As in
[Ell1] (using [Linl]) one obtains a unitary zo € A such that

|Zowozs — vol| < 4m6 < 6/3.
(If up = vp we may choose zo = 1.) Set w, =z for t € [O, %] Then
lwiuswy — vl < do < €
fort € [0, %] Now suppose that we have defined w, for t € [O, %] such that

< 6p. There is a unitary z; € A

2

lwiusws — v]| < € and
such that

k
n

WrULW) — U
n n g

WeU

. [ do |
AU S
<m1n{3,0 '

”xkuﬁwZ—v& EUEWE — Vk
n n n n n n

Note that
<dboy.

”w’ixkuﬁx};w’; — Uk
n n n n

By Lemma 9.2 we can choose z so that Isospec (u k,WE :ck) = 0. Then there
is a continuous path {y;t € [0,1]} of unitaries such that yo = 1, y1 = wizk

and Hytuﬁy;‘ —u%H <egf2. Forte [—’9 Eil] set

n’ n

wy = wﬁynt—k .
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E_’H-_l]
)

Then w; is continuous at t = % and for t € [ .

24
lwiusw; — vy < =

3
<260+8+H’w UrWy — v
3 9 UEVE T TR

2(50 £
<—3-+§+5o<€

+ ”wtugwf — Uk
n n

and

11 The tail lemma for non-trivial K;

Assume throughout this section that A is a purely infinite simple unital C*-
algebra. We first need

Lemma 11.1 Let B be a hereditary C*-subalgebra of C[0,1] ® A such that
B(t) # 0 fort € [0,1]. Then for any ko € Ko(A) there is a non-zero
projection e € B such that [e(t)] = ko.

Proof. TFor each ty € [0,1] there is a non-zero projection p € B(to) such
that [p]o = ko and p # 1. There is a positive z;, € B such that z;,(to) = p.
Since z4,(t) is close to a projection for ¢ around t,, we may assume that
there is an open interval [;, containing ¢y such that z,(t) is a projection for
t € I,. Hence there exist t{p =0 < t; <ty <...<t, =1and z; € B,
i =0,1,...,n — 1 such that z;(¢) is a non-zero projection of class ky with
.’El(t) 7é lforte [ti,ti+1].

Fix i. Since [z;(ti+1)] = [Zi+1(ti+1)], there is a unitary w € B(t;41) + Cl1
such that wz; q(tiy1)w* = z;(tir1). We may suppose that [w;]; = 0. Then
there is a unitary @ € B + C1 such that @W(ti+1) = w and @w(t) = 1 for
t> ti+2. Set ii‘i+1 = ’lﬂxﬂ_l’w*, and let .’f}o = Tg. Note that fi'i € B.

Define e € A by

e(t) = i),(t), te [ti, ti+1] .

Since e(t) € B(t), it follows that e € B. Thus e is as required. O
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Lemma 11.2 For k = 0,1,...,N — 1 let ek,pk € C[0,1] ® A be non-zero

projections such that [ex(t)] = [pk(t)] and Z ex(t) S 1 and 2 pe(t) S 1.

Then there exists a unitary w € C0,1] ® A such that wekw = py, for
k=0,1,...,N —1. If ex(0) = px(0), w can be chosen with w(0) = 1.

Proof. We may suppose that the exs are constant and that eg(t) = pi(0).
Then we have to find a unitary w € C[0,1] ® A such that w(t)pr(0)w(t)* =
pi(t). For t close to zero set

z(t) = ipk(t)m(o)
k=0

where py(t) = 1— E pi(t). Since z(t) is close to 1 the unitary u(t) obtained

from the polar decomposnzlon of z(t) has the properties that u(t)px(0)u(t)* =
pi(t) and ¢ — u(t) is continuous where u(t) is defined. We just repeat this
procedure. O

Theorem 11.3 (The tail lemma when Kj; is non-trivial.) Let A be a
purely infinite simple unital C*-algebra. Let {u;},{v:}, t € [0,1] be two
continuous paths of unitaries in A such that [u]; = [v]1 # 0. For anye >0
there is a continuous path {w;} of unitaries in A such that ||wyuww; —vl| < €
for allt € [0,1]. If up = vo, {w:} can be chosen with wo = 1.

Proof. Weregard u = {u;} and v = {v;} as elements of C[0, 1]@ A. We may
suppose that u is constant and u; = vo for ¢ € [0, 1], since any two unitaries
ug,vo € A with [ug]y = [vo]s # 0 are approximately unitarily equivalent

[ElL1].
For £ > 0 choose § > 0 as in Lemma 10.1 and let N € N be such that
L < 6. Let wy = e*™*/N for k =0,...,N—1. Let f; be a non-zero continuous

function on T whose support lies in a small neighbourhood of wy, and let
B denote the hereditary C*-subalgebra of C[0,1] ® A generated by fi(v).
By Lemma 11.1 there is a non-zero projection ey of By with [ex(t)]o = 0.
By making supp(fx) sufficiently small one obtains a unitary 7 € C[0,1] ® A
such that ||v — || < € and

f)kek(t) = wkek(t) .

Set ey =1— Z ex. Choose non-zero subprojections Fj, F5 of 1 — en(0)
such that Fj —|— Fg < 1 —en(0) and [Fi]o = [Fa)o = [l]o, and set G =
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1 —en(0) — F; — Fy. Choose partial isometries V3, V5 such that V;V* = F;,
V*V; =1 — en(0). There is a unitary we € C[0,1] ® A such that

wyer(0)wo = ek,
where we regard an element of A as a constant function in C[0,1]® A. Hence

’U.)o’l?’U)S=.’I)+D,

N-1
where D = Y wgei(0) is a unitary in (1 — en(0))A(1 — en(0)) and z(t) is a
k=0

unitary in ex(0)A en(0). Consider the unitary element
y=Viz(OW + Vo'V’ + G

of C[0,1] ® (1 — en(0))A(1 — en(0)). Since [y]s = 0, there is a unitary
w; € C[0,1] ® A such that wien(0) = en(0) and

|wi(z + D)wi — (z@y)|| <e.
Set wo = V4 + Vi* +1 —en(0) — Fi. Then

wa(z + y)ws = wo(z + Viz(0)V) + Vo' V5 + G)wy
= z(0) + VizVJ* + Vaz*' V' + G = z(0) + z.

There is a unitary ws such that wsey(0) = en(0) and
lws(z(0) + z)ws — (2(0) + D)|| <& .
Set w = wswowiwg. Then
lwow* — 5(0)|| < 2e,

and hence
||lwvw* — v(0)]] < 4e.

Now we want to make w(0) = 1. First, we may assume that wp(0) =
1. Second, since wien(0) = en(0) = wsen(0) and Adw;(0)(D) = y(0),
Adws(0)(y(0)) = D, we may assume that w;(0) = ws(0)*. Third, since
Ad ws, interchanges z and Viz(0)Vy*, and z(t) + Vi2(0)V}* is almost diagonal
for ¢ close to 0, we may assume that we(0) = 1, allowing at most an error

[wa(z + y)w; — (2(0) +2)|| <e

Hence we may choose w such that w(0) = 1 and ||lwvw* — v(0)]|| < 5e. O
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12 Proof of the Super Homotopy Lemma

In this section we will prove Theorem 1.1.

Case 1. [ug]; = 0 = [vg]; and Bott(vg, up) =0

Let us first assume that [ug]: = 0 = [vg]; and Bott(vg, ug) = 0. If we choose
5 > 0 as in Lemma 7.1, there exist rectifiable paths «'(t), v(¢) of unitaries in
A with

v'(0) = o, /(1) =1, [|fuo, ' ()]l <&,
Length(v/(t)) < 47 + £’
(for a given &' > 0), and
w(0) =1, /(1) = uy, |[W'(t),v1]ll <,
Length(u'(t)) < 47 + €.
By [Linl1] there exist paths «”(t),v"(t) of unitaries in A such that
u"(0) = up, u'(1) =1
Length(u"(t)) <7+ ¢,
and
v"(0) =1, v"(1) = vy,
Length(v”(t)) < m+¢'.

Now compose these paths, as follows:

(u for 0 <t <1,

1 2
U”(4t—1) for 1 Stf_ )

u(t) = <

2 3
1 forZStSZ,
|/ (4t - 3) for 3 <t <1,
(' (4t) for 0 <t <1,

1 2
1 forzﬁtgz,

v"(4t—2) for 2 <t <3,

& for 2 <t <1
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One checks that the paths u(t),v(t) satisfy the conditions of the conclusion
of Theorem 1.1 with

Length(u(t)) < 57 + 2¢/,
Length(v(t)) < 5w + 2¢’.

Case 2. [y]; = 0 = [vg]; and Bott(vy, ug) arbitrary

Next, let us assume that [ug]; = 0 = [vo]; but make no assumption on the
Ky-obstruction Bott(vg, up). Let us show that the pair ug, v is homotopic
to the direct sum of three pairs, the first and second of very special form—
Voiculescu pairs as considered in the proofs of Lemmas 9.2 and 9.3, with
obstructions z and y where z and y are positive in Ky(A) and z —y =
Bott(wg, up) (so the third pair has zero obstruction)—and all three pairs with
trivial K. (The proof will be then completed by putting the pair u, v; also
in the standard form, and making a simple comparison of the two standard
forms.)

First of all, using the Riesz decomposition property for Murray—von Neu-
mann equivalence classes, somewhat in the manner of the proof of Lemma
7.2, let us show that if a Kjy-class can be expressed inside finitely many
projections—as the difference in each case of the Kj-classes of two subpro-
jections—to be assumed, for technical reasons, to be non-zero—then it can
be expressed simultaneously inside all, using the same Murray—von Neumann
equivalence classes (now no longer required to be non-zero). By induction,
it is enough to consider the case of two given projections, provided that only
inside one of them is the expression of the given Kj-class assumed to be in
terms of non-zero projections. Let, then, e and f be projections, let e; and
es be subprojections of e, and let f; and fs be non-zero subprojections of f,
and suppose that

[61]0 - [62]0 = [fl]o - [f2]0 .

By the property 2 in the definition of K;-simplicity, as e; @ f, has the same
Ky-class in My(A) as ey @ f1, and since neither of these projections is zero,

d(e1) + d(f2) = d(ez) + d(f1) ,

where d(p) denotes the Murray—von Neumann equivalence class of projection
p € A. Hence, by the Riesz decomposition property, there exist Murray—von
Neumann equivalence classes of projections in A, z;;, 1,5 € {1, 2}, such that

dler) = znn+z12,
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d(f2) = xa+2a2,
dlea) = z11+Za,
d(fi) = Ti2+ze0.

Then the equivalence classes x15 and x9; provide the desired representation
of the given Ky-class inside both e and f. (z12 and zg; are both less than
d(e) and d(f), and the difference z17 — 22 in Ko(A) is the given Ko-class.)

Let us now construct a pair ug, vj of the special form described above, to
which the pair ug, vo is homotopic. As in the proof of Lemma 6.1, we may
suppose that both uy and u; have finite spectrum.

Note first that, if § is sufficiently small, the Ky-obstruction Bott(wg, up)
fits inside the spectral projection of ug corresponding to an arbitrarily small
interval, in the sense of being the difference of two subprojections of this
projection. This follows directly from the definition; see Theorem 4.1. If § is
sufficiently small, both of the subprojections may be chosen to be non-zero,
as shown in the proof of Lemma 6.1. By the preceding paragraph, it follows
that the obstruction may be represented simultaneously inside the spectral
projections corresponding to finitely many intervals—by pairs of projections
belonging to the same pair of Murray—von Neumann equivalence classes (now
possibly zero)—if § is sufficiently small in a way depending only on the size
of the smallest interval.

Now, as in the proof of Lemma 6.1, with uo and vy in place of v and w,
with N and €’ as in that argument, and with § both as small as there and as
small as required above, with respect to intervals of length §1ﬁ, let Q;, P, gi,
Di, ¢, , Pi, and v be as constructed in that argument. We may suppose that
5 < 2, s0 that v = eth with h self-adjoint and of norm at most 5- Replacing
vo by v*vg, then, which involves an initial homotopy of vy along a path of
length at most £, we may suppose that v = 1, so that p; = q;, provided that
we include this amount in the total length of the path. Note then that

Qi = Qi+t = o+ g,
P = pac1+Dpa = Qo1+ -

(Recall that p; = vogivg.) With  and y the equivalence classes of projec-
tions such that the difference, x — y, of the images of  and y in K is
Bott(wvp, up), and members of  and y may be found inside the spectral pro-
jections of uy corresponding to all the standard half-open intervals of length
Elﬁ—namely, the projections g;—choose a projection eg;_; < go;—1 belonging
to the Murray—von Neumann class x and a projection es; < go; belonging

to the class y. For any choice of partial isometries wg;—; from eg;_1 to egiy1
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and woy; from ey; to egit2, the pair ug(Y e€s—1), Y wo;—;1 has obstruction z,
and the pair uo(3 es;), > wa;, which is orthogonal to it, has obstruction —y.
Let us now show how to choose the partial isometries wy in such a way that
the pair ug, vo is (manifestly) homotopic to the sum of these two pairs and
a third pair—necessarily with obstruction zero. The sum of all three pairs
then satisfies the requirements for wg, vg.

First, deform the projection g5;, within Q;, to go; — e2;+e€2i41, and thereby
also the complementary projection gy, ;, also within Q;, to gai1 — €2i41 + €2
(using the method of Lemma 2.6). This may be done by a path of unitaries
of length at most 3.15, which should then also be used to deform wp, by
multiplying on the left. (Note that then vy takes the projection go;—1 + go;
onto the projection

(goi—1 — €2i—1) + €2i—2 + (goi — €2:) + €2it1 -

After multiplying vg on the right by a unitary connected to 1 by a path of
length at most 3.15 (again as in Lemma 2.6), we may assume that vy takes ey;
t0 e9i_o and eq;_1 to e9;11. The restriction of vy to e, now has the properties
required of wg. Note that ug has remained fixed so far; let us deform it by a

oaN
short path to a linear combination of the projections gx: vy = kgl e2mik/2N g,

The total length of the deformation of vy to vj is at most two times 3.15 plus
1>

Similarly, the pair u;,v; may be deformed to a pair u},v] in what might
be called standard form—the direct sum of two Voiculescu pairs, with ob-
structions x and —y respectively, and a third one.

We do not know that all three summands are non-zero in each case, but we
do know (as a consequence of our assumption that the classes z and y in the
two cases are the same) that the projections determining the first summands
in the two cases are Murray—von Neumann equivalent, and similarly for the
projections determining the second summands. We may also easily ensure
in the construction that the third summand is non-zero in each case, by
choosing the projection e; to be a proper subprojection of g for each k.
(Recall that e could be chosen inside the spectral projection corresponding
to an arbitrarily small interval, and in particular a subinterval of the interval
determining gx.) Hence as in the proof of Lemma 2.6, there is a path of
unitaries of length at most 3.15 transforming the projections determining
the direct summands of uy, v; onto the corresponding projections for wug, vg.

Thus, if we allow the total lengths of the deformations of ug, vo and u;, v;
to ug, vy and uj,v) to be 4(3.15) + £, we may suppose that the direct sum-
mands of the standard pairs ug, vy and u),v] are determined by the same
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projections.

By the case of zero Ky-obstruction, considered above, the two third sum-
mands are homotopic, by a path of length at most 57 + 1. Let us consider
the question whether the two first summands are homotopic. In fact, they
are unitarily equivalent; they are both described in terms of the standard
matrix units of two full matrix algebras of the same order with equivalent
minimal projections. It would be desirable to choose a unitary with trivial
K;-class tranforming one pair onto the other; however, such a unitary exists,
inside the unit of this summand, if, and only if, the K;j-class of a unitary
which does make the transformation is divisible by the order of the matrix
algebra.

Accordingly, we must first homotope the third summands, in each case, to
the trivial pair, 1, 1; this involves two paths of length 57 + 1. Remembering
that these amounts must be added later, we may assume that the third
summands of ug, vy and wj,v; are the trivial pair 1,1, inside a non-zero
projection. This gives us enough room to carry out the needed homotopies
between the two first summands, and the two second summands. Breaking
the third projection up into two non-zero components, and adding the first
projection to the first summand and the second to the second, we may add
a unitary to each of the unitaries carrying out the transformation between
the two pairs—using the property 3 of Section 1—in the first and second
summands to make it have trivial K;-class. As A has real rank zero, and so
also any cut-down of A, the unitaries making the transformation in the two
enlarged first summands may now be connected by a path of length at most
3.15 to 1 (cf. proof of Lemma 2.6).

Thus, the standard pairs ug, v and w}, v} may be connected by a path of
length 117 + €.

In fact, the preceding case may be realized—by continuation of the in-
duction, the equivalence classes z and y may be chosen to lie inside the
appropriate spectral projections of u; as well as those of uy—and so to enter
simultaneously into the construction of the standard pairs ug, vj and uj, v}.

Case 3. [ugl1, [vo)1, Bott(vg, ug) all arbitrary

It is now enough to reduce the general case to the case that the unitaries of
both pairs have trivial K;-class.

As in the proof of Lemma 7.1, we may assume that K;(A) # 0, so that
D(A® K) is simple, and the set D(A) of Murray—von Neumann equivalence
classes of non-zero projections is downward directed in the natural order.
Hence, passing to subprojections, we may suppose that the projections Ey
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and F; given by Lemma 12.1, below, applied to the pairs wug, vy and uy, v,
are equivalent. Since we may also assume that they are proper (i.e., # 1), by
Lemma 2.6 they are connected by a path of unitaries of length at most 3.15.
Transforming the pair u;, v; by this path reduces us to the case Fy = Ej, at
the cost of a homotopy in u; and v; of length at most two times 3.15.

Perturbing both pairs ug, vg and u;, v1 by a small amount, we may suppose
that they commute with the projection Fy = F; =: F, and that inside E all
four unitaries are scalars. Since A is K;-simple with K3(A) # 0, A has no
minimal non-zero projections. Since, as above, D(A) is downward directed,
it follows that E contains four orthogonal equivalent projections, Fy, Fy, F3,
Fy, and replacing E by Y F; we may suppose that E = 3~ F;. By the property
3 of the definition of K;-simplicity, there exist unitaries w and z in F3AF3
and F,;AF), respectively with

[wli = [uolr (= [wi]1) , [zl = [wolr (= [vi]1) -

1

Put copies of w™! and 27! inside F; and F, respectively, and note that the

unitaries .
w~ 1

commute, have trivial Ky-obstruction, and trivial K;j-classes, and hence by
Lemma 7.1 are homotopic via a path of approximately commuting pairs to
the pair 1, 1, of length at most 47 + . Note that the restrictions of the pairs
ug, Vo and uy,v; to £ = > F; are also homotopic to 1,1 by such a path, of
length at most w. Therefore, keeping track of these path lengths, we may
assume that the pairs ug, vo and uz, vy restricted to E are both the pair above.

Next, consider the restrictions of the pairs ug, vo and u,,v; to the projec-
tion (1 — E) + F; + F». They fulfil the hypotheses of the theorem (with A
replaced by its cut-down to (1 — E) + F; + F3), and belong to the case of
trivial K considered above, and so are homotopic each other through a path
of such pairs inside this projection, of length at most 187 + ¢. Since, inside
the complement of this projection, namely, F3 + F}, the pairs are equal, the
desired homotopy has been obtained. ]

Lemma 12.1 For any e > 0 there exists a 6 > 0 with the following property:
Let A be a Ki-simple real rank zero C*-algebra. For any two unitaries u,
v € A with

|luv —vul| < 6
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there exists a non-zero projection E € A and scalars A\, p € T such that
[(w—NEl|<e, |(v-—pE|<e.

(Necessarily, u and v then approzimately commute with E, to within 6. )

Proof. The proof is similar to that of Lemma 8.2. (And the present result
may be used in place of Lemma 8.2 in the proof of Theorem 8.1.)

If (f;) is a partition of unity consisting of continuous functions of w,
and (g;) a second partition of unity consisting of functions of v, then, for
sufficiently small 6, (fig;) is close to being a partition of unity also: the
relation 0 < f;g; < 1 holds approximately and the relation ¥ fig; = 1
holds exactly. With fi, fs,... chosen to be supported on adjacent, slightly
overlapping subintervals of T, we may suppose both that || f;]| = 1 and that
uf; is close to a scalar multiple of f; for each i. Similarly, we may suppose
that ||lg;|| = 1 and vg; is close to a scalar multiple of g; for each j.

Fix i, and note that, for sufficiently small §, the sum }°; g;/ 2 f,;g; /2 is close
to f;. Since only adjacent terms in this sum (labelled cyclically) are not

orthogonal, and the product of two adjacent elements g;/ ? has norm at most

1, and since || f;|| = 1, it follows that at least one of the elements g;/ 2 f,-g;/ 2
7 =1,2,..., must have norm at least %—at least if the number of j’s is even,

as we may suppose. (We may divide the elements g; /2 fi g; /2 into two groups
consisting of even and odd terms, the members of each group being then
mutually orthogonal. The sum of the elements of both groups, being close
to f;, having norm close to 1, and in particular at least %, the sum of the
elements of at least one group must have norm at least %, and this norm is

attained by at least one element in this group of orthogonal elements.) Set

g;/zfig;/z = h with i and j as above, so that ||h|| > 1. If § is sufficiently
small, then u and v are both close to scalars on h. Since A has real rank
zero, there exists a non-zero projection E in A such that h is arbitrarily close
to ||k|| on E. Hence, as ||h|| > 3, u and v are arbitrarily close to scalars on

E, as desired. O
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