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Abstract

Suppose a fluid is pumped into a heterogeneous medium in R? at a known rate
and that there is a known initial wet region D(0) (region filled with fluid) at time
t = 0. What is the wet region, D(t), at a later time ¢ and what is the pressure, p(t, z),
at this time and at the point z € D(t)? We propose a mathematical model for this
problem when the region is stochastic, i.e., has a stochastic permeability represented
by some (positive) white noise functional. The model has the form of a family of
stochastic variational inequalities. We show that there is a unique stochastic, weak
(in Baiocchi sense) solution of this problem and we discuss its properties.

1 Introduction

The flow of an incompressible fluid in a heterogeneous, isotropic porous medium is described
by the following two equations (a) and (b).

(a) Darcy’s law
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where ¢ = §(t,z) is the (seepage) velocity at time t at the point z € RY,
p = p(t,z) is the pressure of the fluid, p is the viscosity, and K = K(z) > 0 is
the permeability of the medium.

(b) The continuity equation

00 .
i —div (pq) + &, (1.2)
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where § = 6(t, z) is saturation of the fluid, £ = £(¢,z) is the source rate of the
fluid, and p is the density of the fluid.

Combining (1.1) and (1.2) we obtain

% — div (KVp) + ¢, (1.3)
where we have let p = pu = 1.

This equation and its various interpretations have been studied by many authors as a
moving boundary problem in some form. See e.g. [2], [3], [11], [13], [14], and [15] and the
references therein.

The purpose of this paper is to discuss a model for fluid flow in the case when the
explicit values of the permeability is not known, only its probabilistic distribution. It is
then natural to represent K by some random quantity and try to solve the corresponding
stochastic moving boundary value problem (see Section 3).

The problem of this paper may be regarded as a generalization of the problem of solving
the stochastic pressure equation in a fixed region. Consult [5], [7], and [16] for discussions
of this equation.

We begin in Section 2 by defining the spaces involved and providing some results. In
the following section we give a stochastic interpretation of (1.3) and show that this leads to
a family of stochastic variational inequalities. We also prove these variational inequalities
have a unique solution. Finally, in Section 4 we discuss a few properties of the solution.

2 Basic Definitions and Theorems

Let . := #(R?) denote the Schwartz functions on R?, endowed with the usual Fréchet
topology, and let ¥’ := .%'(R?) be its dual endowed with the weak-* topology. Then the
Bochner-Minlos theorem ensures the existence of a probability measure p on the Borel sets
B = B(S") of &' satistying

/ P dp(w) = e 29 for every ¢ € ., (2.1)
where ||¢||> = [zs #(2)? dz. The triple (%', %, 1) is called the white noise probability space.

By applying (2.1) to the inverse Fourier transform of the Fourier transform of a function
f € C§°(R) we obtain the identity

B (- 8))] = WW i@ exp(—ﬁ;'z) d. (22)

If f(z) = 2? is approximated from below, on an increasing sequence of compact sets whose
union is R, then (2.2) yields the isometry

E[(-, )" = lll” (2:3)
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in the limit. Using (2.3) we may extend the action of w to ¢ € L?>(R%) by defining
(w, ) := lim (w, ¢;) (limit in L?(p)),
1—00

where {¢;}2, C .# is any sequence of functions converging to ¢ in L?(R?).

Let i

hi(z) = (-1)@'61"’/2?6%2/2, ieNy:={0,1,...}
:L-’L
denote the Hermite polynomials and define the Hermite functions by
&(z) = V46 = D)) V2 2h 1 (V21), i e N:={1,2,...}.

Suppose 6® = (5§i),6§i), e ,6‘5;)) is multi-index number ¢ in some fixed ordering of all
§=(61,...,0q) € N satisfying 62 + -+ 6% <9 ... 4+ 89 if i < j. Throughout this
paper {e;}2, C .# denotes the orthonormal basis for L*(R?) given by

e = fagi) ® 5551') ®-® f,;g‘)-

Define
Ho(w) = H ha, (0;(w)) (2.4)

for all @ € I, where
I'={a=(o,0,...) € ()N : a; =0 for all but a finite number of i}
and 6;(w) := (w, €;) for 1 € N. It is shown in [4] that
{Ho(w) : 0 € I}

forms an orthogonal basis for L?(u) := L*(&', B, p), with E[H,Hpg] = 040!, where ol :=
[1;2; @;!. Observe that the notation in [4] differs somewhat from ours.

We now turn to the definition of the Kondratiev Hilbert spaces. For —1 < p <1 and
k € R we consider the inner product spaces (%), defined by

(Lo ={f= ZfaHa : fa € R and ||f|lox < 00},

where || - ||,x is the norm associated with the inner product
(f,9)p =D faga(e) T (2N)**, | (2:5)
In (2.5) we have used the notation
o0
2N = [ (20)
=1

for « € I. It is not difficult to verify the following proposition:
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Proposition 2.1 For every pair (p, k) with -1 < p <1 and k € R, (), x equipped with
the inner product (2.5) is a separable Hilbert space.

Remark 2.2 When p € [-1,0) and k < 0 an element in (%), is a formal sum, i.e., the
sum Y. foHa does not necessarily converge in L' (u).

The reason these spaces are not considered for |p| > 1 is that in this case it is not
possible to define the #-transform (see [9]).

From the definition of (%), we see that (#)oo = L?(u). Moreover, if 0 < p < 1,
(y)p,k C (y)p,l C (5’),,,0 c (5’)_,,,0 C ('7)-—;0,—@ - (y)—p,—k (2.6)

for every k > £ > 0. The following proposition shows (#)_, _j is the dual of (), .

Proposition 2.3 If0 < p <1 andk >0, then (¥)_, — is the dual space of (#), %, where
the action is defined by

(F.f) = Fafac!

for F=Y FoH, € ()—pi and f =X, faHa € (F) .
Proof: ¥F =% F,Hy € ()_p_rand f=>"_ foHa € (F)p, then

(F, 1) < ST [F2(a) N2 [£2(al) +2 (2N < |F—pill -

Hence any element in (.#)_, _x defines a continuous linear functional on (%), .
Conversely, if F' is a continuous linear functional on (%), s, Riesz’ theorem implies there
isag=>,09.Ha € (&), such that F(f) = (g, f),x- It is easily verified that

F(f) = (9, )pk = (G, f)

where G =Y, ga(a!)?(2N)** H,, € ()_, k. Therefore (.#)_, _y, is the dual of (#),4, as
claimed. a

As usual we let () = N ()1, endowed with the projective limit topology and
(&) =1 == UL () -1,k endowed with the inductive limit topology, denote the Kondratiev
spaces. We refer to [17] for a comparison between the spaces (#)+; and (V)i used in
[9] and [10].

We now introduce a family of Hilbert spaces which has turned out to be useful when
stochastic partial differential equations are investigated. Fix an open set D C R? and let
(*s*)m,p, or simply (-, -)m if D is clear from the context, denote the usual inner product on
the real Sobolev space H™(D) for m € Ny. We define the inner product

(f, DpkirnD) = D _(far Ja)m,p ()T (2N)F (2.7)

a

on the set of functions of the form

f(fl?) = Zfa(x)Ha;

where f, € H™(D) for every a € I.




Definition 2.4 Let (%) x,mmD) (resp. (F)pk,am(D)) denote the set of functions

=Y fa(@)Hy : fo € H™(D) Ya (resp. Hy*(D) Vo), and

[f1lp,e, ) = (f )pk‘ am(D) < oo}
equipped with the inner product (2.7).

Recall that H*(D) is defined as the completion of C§°(D) with respect to the || - ||, p-
norm and that L?*(D) = Hg (D). Hence (), x,amp) and (F),k,am(p) are equipped with
the same norm and (&), m9p) = (*)pr,r2p)- The latter simplifies the statements in
some of the propositions that ensue.

’Propos1t10n 25 If-1<p<1andk€R, then (&) ppamp) = (F)pr ® H™(D) and
() om0y = (L) pr ® H (D) for m € No. Moreover, ()p5,mm) and () p i, (D)
are separable Hilbert spaces.

Proof: Fix -1 < p <1,k € R, and m € Ny. Since H™(D) is a separable Hilbert
space, it has an orthonormal basis {b;}32,. We claim {J,b;} is an orthonormal basis for
(L) p.k,m (D), Where J, = (al)~(+9)/2(2N)~*e/2 H,, for every multi-index c.. {J,b;} is clearly
an orthonormal set, to show completeness let f = Y foJa € (F)pk,mm(p) and suppose
(f, Jabi) p,u,am(p) = 0 for all o and 7. For each fixed a, we obtain (fa, bi) am(py = 0 for every
i which implies || fo||gm(p) = 0. Hence || f|| o5, zm(py = 0 and {J,b;} is an orthonormal basis.
Define
U : Jabi = Jy @ b,;,

then U maps a countable orthonormal basis for (), s zm(p) onto a countable orthonormal
basis for (%), ® H™(D). Since U extends uniquely to an isomorphism from (), zm(p)
onto the Hilbert space (), ® H™(D), we have proved the proposition for (), mm( D)
The proof for (&), k,mp(p) is similar.

If m € Ny we recover the inclusions (2.6)

(Lo mm(p) C (F)pm(p) C (L) p0,5m(D)
€ (F)=p0.amD) C (L) p-t,m(D) C (F)=p,~,Hm(D)
when p € [0,1] and k£ > ¢ > 0. For fixed p and k&
(L) ok m1 (D) C () pp,Hma (D)
if my, my € Ny and m; > my. Combining these results we see that
() prkr,am1 (D) S (F) bz, 12 (D)

when p; > pg, k1 > k2, and my > ms. Moreover, (%), k,,mm1 (D) iS & proper subset of
(%) pa.ka,mm2(p) if and only if one of the inequalities are strict. Similar results hold for

(%) p e, 7 (D)-




So far we have constructed the Hilbert spaces (), ,5m(p) and (&), mm(p)y and con-
sidered basic relations between the spaces. We now turn to study properties and define
operations on elements from them.

One of the reasons for introducing (), x,am(p) and (&), uamnp) for m > 1, is that
elements from these spaces can be differentiated.

Definition 2.6 Let D C R? be an open set and m € N. For B € N¢ with |8] < m we
define

- aﬁ - - - aﬂfa - -
8xﬁf(x) T - axﬂ (.’B)Ha,

for any f =3, foHa € () pp,mm(D)- 0° fo/0zP is interpreted in the usual L*(D) sense.
We often write 08 or 88 for 8% /0.

With this definition
35 : (y)p,hH"‘(D) - (y)p,k,H"l-lﬁl(D)

is a continuous linear operator, if |5] < m.

Example: The smoothed white noise process is usually defined as

W(¢7 x? w) = <w7 ¢$>7
where ¢,(-) := ¢(- — z) and ¢ € L%(R¢). For each z € R? we obtain from (2.3) that

o0 o0

(s ba) = (0, Y ($2, €:)opeei) = Y (Bz, €:)oraHe, (w) (equality in L2(1) = (#)o,),
=1 =1
where &; = (0,...,0,1,0,...) denotes the multi-index whose only nonzero entry is a 1 in

the 7th position. Lebesgue’s monotone convergence theorem implies

1w, 62l k0 = ij fD (62, €5)g e do (2N)* = /D [Z(asz,ei)ﬁ,w (2N)’°fiJ da.

i=1

Since 2, (dz, €)oga = ||¢]|2ge < o0 for every z € R?, the sum on the right hand side

cannot converge for all ¢ € L*(R?) unless (2N)** is uniformly bounded in i. Hence, if we
define

o0

We, = (¢ €:)opeHe,,

=1

then Wy, € (&), —k,2p) for all ¢ € L*(R*) if =1 < p <1, k >0, and D is a bounded
open set in R%. Moreover, Wy, (w) = W (4, z,w) in (#)o 0 r2(p)-

More generally, viewing (¢, €;)oge as the convolution of a tempered distribution and a
Schwartz function gives

35 (¢x, ei)O,Rd = (35%7 ei)O,Rd




for every 8 € N¢, and Definition 2.6 implies

o0

afW% = Z(8£¢z’ ei)O,RdHEi .

i=1

Since 8¢ € S (R%) C L?(R?), summation over all |3] < m shows Wy, € (&), _,gm(p) for
all -1 < p<1,k>0, méeEN,, and bounded open sets D C R?. 5 3

Suppose ¢ € .# and let ¢(z) := ¢(—=z), then (w, ¢,) = w * #(z). Since w * ¢(z) is a
C*°-function with polynomial growth, Wy, cannot in general belong to (#), i r2(p) for
unbounded sets D. For the same reason Wy, does not generally belong to (.-#),, -k, am(D)-
We recall the following result from [18].

Lemma 2.7 Y (2N)™* < co if and only if k > 1.

Thus, if D C R? is unbounded, Wy, € (#)p—kampy when —1 < p <1, k>1, me N
and ¢ € .. Hence the above results can be extended to unbounded open sets D C R? by
requiring £ > 1. Note also that

W) = 2060 = Lo(w# (@) = # (P°9)(2) = (-1, 820)

for every w and ¢ € .. This means that the derivative of Wy, in the sense of Definition 2.6
coincides with the usual one.
A closely related process is the singular white noise

Formally, W, is Ws_ where 6, is Dirac’s point mass at . It is easily seen from Lemma 2.7
that W, € (#),,—k,12(p) for any open set D CR?, -1 < p<1,and k> 1.

We would also like to compute the expectation of elements in (), um(p) for general p,
k, and m € Ny. Inspired by [5] we observe that if f ="  foHa € (#)o0,02(p), then

E[f] = E[f-1] = Z faBlHo-1]=_ faE[Hy - Hop,.)] = fo0,.) € L*(D),

using E[H,Hg| = 6o pa!. It is therefore reasonable to define:

Definition 2.8 For f = Y, foHs € (&)pr,amp) (Tesp- (F)prmpD)), we define the
(generalized) expectation to be the deterministic function

E[f] = foo,.(z) : D —C,

which belongs to H™(D) (resp. H*(D)).




We use the term generalized expectation since an f € (&),k nm(p) Dot necessarily is
integrable with respect to the measure p.
Before we can proceed further we need the Wick product.

Definition 2.9 If f =) foH, and g =), 9oH, are two formal series, we define their
Wick product, f ¢ g, to be the formal series

fog:=) fagsHars =) (Y fags)H,
o8 7 atf=y
Some useful properties of the Wick product are:
() f,9€(Pn=fofe (P
(il) f,9€(F)a=foge (S

Recall that L?(p) is not closed under Wick multiplication. To see this let, for example,
f = H,, then g — f o g is a densely defined unbounded linear operator on L?(u). If
[y 9 € (#)o,02(p)y we have the additional problem that fogs need not belong to L*(D).
To provide conditions on f such that g — f ¢ g gives a continuous linear operator on
() =1,k,22(p) We introduce the Banach space %#;. For open D C R? and ¢ € R we let

Fi(D) :={f(z) = Z fa(z)Hy : fo(z) is measurable on D for every o and

7l = esssup(3 @) (2)) < oo},

We suppress the set, D, in the notation whenever it is clear from the context.

Proposition 2.10 (Proposition 5 in [16]) Let D be an open subset of R? and £ € R.
Then f € Z, defines a continuous linear operator on ()_1xr2(py by g — f o g when
k < 2¢. Moreover

I f o gll-1k,c20) < N1 llk2llgll=10,20) < N Fllesllgll-1x,22(0) for g € (L) -1x,220)-

Corresponding results for the ordinary Kondratiev Hilbert spaces with no z dependence
can be found in [17].

W,, belongs to Z(D) for arbitrary ¢ € L?(R?), open set D C R, and £ < —1/2. To
see this note that by Schwarz’ inequality and Lemma 2.7

00 1/2
Wo.lles = essesll)lp Z (b2, €:)omre| 2N < || ]o e (Z(2N 25“) < 00,

=1 «a

when 2¢ < —1. Using 22.14.17 in [1] to obtain |e;(z)| < (Cn~Y/4)4 for z € R? and i € N,
where C' =~ 1.086435, it can be shown that the singular white noise W, € %, if £ < —1.
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When we turn to consider the stochastic moving boundary value problem it will be
important to be able to determine when the bilinear form b(g1, g2) = (f © g1, 92)—1.%,22(p) 18
strictly positive, that is, if there exists C' > 0 such that b(g,g) > C|| g||2_1’k,L2(D) for every

9 € (&) -1k,Lxp)- Let
Py(D) = {f € Z(D) : A > 0 such that (f(0,.)9,9)o,0 = Allgll§ , Vg € L*(D)}.

Note that f € %, ensures b(-,-) is continuous on (#)_y1; 2y for & < 2¢. The second
condition is necessary, otherwise b(-,-) would fail to be strictly positive on the subspace
{9(z)Hy,.): g € L*(D)} of (#)—1,4,2(p)- The following proposition shows the conditions
are also sufficient, provided k is small enough.

Proposition 2.11 (Proposition 6 in [16]) Let D C R* be open and f € (D) for
some real £. Then there exist constants L = L(f) < 2¢ and C = C(f) > 0 such that

(foy, g)—l,—k,LZ(D) > Cllgllz—l,—k,LZ(D) for every g € (y)—l,—k,Lz(D)’
when —k < L.

A useful result for what follows is:

Proposition 2.12 (Proposition 7 in [17]) Let D C R? be open and ¢ € R.

(i) If f, g € Zu(D), then || f o glles < [|Fllesllglles-

(i) Suppose G(y) = Y ooy Cay™ is analytic for —R < y < R where R > 0. If
f € Zy(D) with ||f|les < R then

G°(f) =Y caf™ € Fu(D)
n=0

and N
1G°(Fllee <D leall 117 < oo.
n=0
(i) If f € Fo(D), then exp® f := > ooy fo"/nl € Py(D).

Remark 2.13 Similar results are readily obtained for the ordinary Kondratiev Hilbert
spaces () -1k-




3 A Stochastic Interpretation of the Moving Bound-
ary Value Problem

Before we begin our treatment of the stochastic moving boundary value problem we discuss
the concept of positivity for a generalized stochastic process.

Definition 3.1 We say h € (%)_y_j ui(p) is positive on D and write h > 0 if
(h(z),¥) >0, a.e. z €D,
for any v € ()1 such that ¥ > 0.

From [9] any ¢ € (&); has a version which is defined pointwise. In the definition we
assume such a version is chosen and 1 > 0 means that 1(w) > 0 for every w € &'

If X € (&), is positive in the sense of Definition 3.1, then by the main result in [10],
X can be represented by a positive measure vy on (%'(R%), %), in the sense that

@)= [ 9w dvx(o) for v € (P
&' (R4)
Moreover, in this case we have
E[X] :/ ldvx(w) = vx (S (R?)) < 0.
! (Rd)

Hereafter we assume that U C R? is open and bounded. Whenever we write spaces or
inner products without mentioning the underlying set, we have the set U in mind.

Suppose K € &, for some real £. In applications as, for example, oil flow in porous rock
one usually assumes K (z) is independent, lognormally distributed, and stationary. In [5]
it is shown that K (z) = exp® W, has these properties and that K(z) = exp® W, satisfies
a weak independence in addition to being lognormally distributed and stationary. Recall
from Proposition 2.12 that &, contains exp® W, and exp® W, for £ < —1 and ¢ < —1/2,
respectively. Hence &, contains the most interesting examples of stochastic permeability
from a physical point of view.

In the stochastic version of (1.3) we regard 6(t,z), and p(t,z) as (&) _1 _x m3(01)xv)"
valued stochastic processes and get

00 .
5 =div (K o Vp) + &, (3.1)
where o denotes the Wick product and & € (%) _1 _k,r2((0,1)x0)-

We refer the reader to [5] and [6] for discussions on the use of the Wick product in
stochastic differential equation models like this. Here we just remark that the spaces (%)_;
and (#)_1,_; seem well suited as general solution spaces for stochastic partial/ordinary
differential equations, and that on these spaces the Wick product is a well-defined and
well-behaved operation in the sense of Proposition 2.10.
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It turns out that the positivity concept defined in Definition 3.1 is too strong for equa-
tions of the type (3.1). Even in the static case when £, and hence 6 and p, do not depend
on t, Hu [7] has shown that the (unique) solution found in [5] not necessarily is positive,
but only weakly positive. In view of this we shall consider a weaker positivity concept than
the one in Definition 3.1, also for the more general equation (3.1). Our positivity concept,
pseudopositivity (defined below), is different from Hu’s weak positivity.

The following operator will play a crucial role: If

F = ZC’YH’Y € (y)_l,
Y

then we define

F=FO=) c,(2N)"H, (3.2)

v

for all £ € R. Note that F'® ¢ (.#)_; for any real number £.

Example 3.2 Suppose F(w) = exp®(w, ¢) for some ¢ € F(R?), then

F(w) = exp®(w, Z akek),

k=1

where ar = (¢, ex)r2way for k € N. Hence
A on
Fl@) = Yo (;akﬂskw))
21 n! "o
= Z ! ( Z RWCH ay "'H7161+72€2+~--(w))

PAYa =

> 1
= Z aa’nyy(W)

where a = (a3, az, . ..). Therefore

FOW) = 3~ (2) 1 Hy ) = exp°(,), (33)

Y

where

oo

(@) = 9 (z) = Y an(2k) “er(a). (3:4)

k=1




Similarly, if
F() = op* Wy () = exp® (i w0, (w>) ,

then —
FO) = exp® (i(zkﬂek W), (w)) yeR (5.5)

A similar notation is applied to elements of the spaces () _1,_k um(D)-
We now define the positivity concept we will apply with in this paper:

- Definition 3.3 (a) We say that n € (&)—_1 is strongly positive and write >0
if

7O (w) > 0 for all £ € R.
The same notation is applied to elements of (7)_1,12(p)-
(b) We say that X € (F)_1 _y my(p) is pseudopositive and write X > 0 if
(X,n)-1,-k12>0
for alln € (&) _1,—k,ce(p) such that n> 0.

Example 3.4 From Ezample 3.2 we see that the Wick exponentials n(w) = exp®(w, @) are
strongly positive.

Remark 3.5 In the setting of generalized Wiener functionals the concept of strongly pos-
itive elements was first introduced by Nualart and Zakai in [12].

3.1 The Deterministic Moving Boundary Value Problem
A useful property of the Wick product is that

E[X oY] = E[X] E[Y]

forall X, Y € (#)_1, where E[-] denotes the generalized expectation (see e.g. Definition 2.8,
[5], and [6]). If X, Y, and X oY are p-integrable functions on .#'(R¢), the generalized
expectation coincides with the usual expectation.
Suppose we have found a solution p(¢, z) € (%) _1,—k,m3(0,)xv) of (3.1) with p(¢,z) = 0.
Taking the generalized expectation we get the equation
96,

=7 = div (KoVio) + &, (3.6)
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where 0y = E[0(t, z)], po(¢t, ) = E[p(t,z)] > 0, etc. This is a classical, deterministic moving
boundary value problem, which we now briefly discuss.

If we assume that for all ¢ and each point z expected saturation 6(¢,z) is either 0 at
(the point z is “dry”) or maximal A\g(z) > O (the point z is “wet”), we can define the wet
region at time ¢ by

D(t) :=A{z; 0o(t, z) = do(2)}-

Then one can show that a natural interpretation of (3.6) is the following set of three
equations in the unknowns pqy(t,z) > 0, D(¢) C R%:

div (Ko () Vpo(t,z)) = —&(t,2), z € D(?) (3.7)
po(t,z) = 0, z € 0D(1) (3.8)
Do(2) %(BD(t)) — _NTKo(2)Vpolt,z), = € AD(2) (3.9)

where N is the exterior unit normal to dD(t) at z € 8D(t) and N7 is its transposed.
The deterministic moving boundary value problem is: Given the functions Ky(z), Ao(z),
and &(t,z) and the initial domain D(0) C R%, find po(¢,z) > 0 and {D(¢); t > 0} such
that (3.7), (3.8), and (3.9) hold, in some (weak or strong) sense. We refer the reader to
the discussions in [2], [3], [11], [13], [14], and [15] regarding various weak concepts and
their solutions. The weak stochastic solution concept we will develop below, is a natural
stochastic analogue of the deterministic weak solution of type (D1) defined in [14]. We
mention the following result.

Theorem 3.6 (Theorem 2.6 and Theorem 2.13 in [14]) Assume that D(0) is a non-
empty bounded domain in R? and that \o(z) and &(t,z) are bounded positive functions on
R?. Moreover, assume

supp & (t,-) € D(0) for allt >0
and that there ezists q € (1,00) such that
Ko(z) is a g-admissible weight.

Then there exists T > 0 and a bounded domain U C R? such that a unique positive (D1)-
weak solution ug(t,z) € Wy (U; Ky) exists for t € [0,T]. This solution ug(t,z) is related
to the solution {po(t,z), D(t)} of (3.7), (3.8), and (8.9) by

t
uo(t,z) = / po(s, ) ds (the Baiocchi transformation)
0

and
D) =D0)U{z : up(t,z) >0} CU for0<t<T.
Moreover, s <t implies D(s) C D(t) for 0 <s,t <T.

Remark 3.7 The set of p-admissible weights includes the set of Muckenhoupt A, weights
(with the same p). In particular, all bounded measurable functions which are bounded away
from 0 are p-admissible for all p € (1,00).
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3.2 The Stochastic Moving Boundary Value Problem

We now discuss an interpretation of the stochastic moving boundary value problem (3.1),
ie.,

06 .
5= div (K ¢ Vp) + &. (3.10)
To avoid working on unbounded sets we fix T < oo, a bounded open set U C R?, and
regard (3.10) as an equation in (&)_y g3 = (&)-1,m3(0.1)xv)- We assume that there exists
ko € N such that

the stochastic permeability K(z) € (F)_1,_ko,m1(v): (3.11)
the stochastic source rate {(t,z) € (F)_1,_go,m3((0,r)xv), a0 (3.12)
the stochastic mazimal saturation A(z) € (F)_1,—o,Hi(v) (3.13)

are given, in addition to an initial wet region
D(0) cc U. (3.14)
We seek the following two quantities
the stochastic pressure p(t,z) € (%) _1,—ko,Hi((0.0)xV)> (3.15)
and
the stochastic saturation 0(t,z) € (F)_1,_ko,H1((0,1)xV)- (3.16)
We make the following assumptions:
(Assumption 1) K € Z(U) for some £ € R
(Assumption 2) u(t,z) = 0 for all (¢t,z) € [0,T) x U

where u(t, z) is the stochastic Baiocchi transform

u(t,x):/o p(s,x)ds. (3.17)

In addition it is necessary to postulate a relation between the saturation 0(¢, z) and u(¢, z).
In the deterministic case it is assumed that

either 0(t,z) = A(z) or O(t,z) =0
and that
suppu(t,-) € D(t) := {z; 0(t,z) = A(z)}.

As a stochastic analogue of this, we propose the following two assumptions:
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(Assumption 3) (A(-) — 0(t,-),%(-))-1,~ko,r2 > 0 for all ¢ = 0, all £ > 0, and
(Assumption 4) (A,(-) — 04(2, "), uy(t,-))r2 = 0 for all y, all £ > 0.

The stochastic wet region will then be parameterized by the strongly positive test func-
tions > 0, n € (#)-1,—x and defined by

V(t,n) ={z; (A=) — 0(t,z),m) 1,4 = 0}. (3.18)

(Intuitively, V'(¢,7) is the wet region at time ¢ if the system is “observed” by applying the
stochastic test function 7).)
In general, if F' € ()1 we write

F=> F,H,

it

for the chaos expansion of F' (with H., as in (2.4)).

We will now deduce a natural weak/variational interpretation of (3.10) in terms of a
family of stochastic variational inequalities for u(t,z): The time space variational form of
(3.10) is that for all k¥ > ko we have

00 .
(g; 'U)—l,—lc,L2((0,T)><U) = (div(K ¢ VP),U)—1,—k,L2((o,T)xU) + (&, 'U)—l,—lc,Lz((O,T)xU)a

for every v € (&) _; —k,Cs°(RxRY)- Integration by parts gives
00,
Z( T, 6, () (2)) (2N)
= —Z > KoV, 6(t) Vi, (2))(2N) ’“”’+Z(£7,¢,, )by (2)) (2N) 7, (3.19)

7 atB=y

where we have used the notation (with H, = H,(w) as in (2.4))

ot x) = 20 (t,2)H,, K(z)=3.,K,y(z)H,,
) = Z py(t,3)H,y, E(t,z) =3, &t 5)H
b
and the test functions v € (#)_1,_¢,cse(rxre) are represented by
= Z & ()0 (2) Hy.
vy

Now

Ay = (%a%(t)%(w))ﬁ((om)xv) = — (0, 9., ()91 (2)) L2(0,m)x0)
= - [([ oo @an) g0a = [ 5( [ oteaieis)s,ma
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By a standard approximation procedure we may put ¢,(s) = x[o,4(s), which gives

a= [ ([ ontssapinyan) ds= [ (062) 0,002 (a) o

Substituting into (3.19) we obtain

Z( Z KoVug, Vi) (2N)_k77 = Z(g'y(t> z) — 0,(t,z) "’ 0,(0,2), %(2))(2N)7*7,(3.20)

v atB=y vy

where u = u(t, z) is given by the (stochastic) Baiocchi transform (3.17) and

t
£t ) = ds.
&(t,) / (s, ) ds
Now define

g9(t, ) =Y (&(t,3) — 0,(t,7) + 0,(0,2)) H, = £(t, z) — 8(t, z) + 0(0, z)
and
f2) = (&t 2) = \y(x) + 0,(0,2)) Hy = £(t,z) — A() +0(0, ).

Note that f(t,z) does not depend on (¢, z) and that
9(t, ) — f(t,2) = Mz) - 0(t, 2).

Therefore by Assumption 3, we have

(g(ta Z‘) - f(t, x)7'¢)(x))—1,—k,L2 >0 (321)
for all 9 € (#)_y g such that ¢) = 0. Moreover, by Assumption 4 we get
(g(t,z) — f(t,z),u(t,z))-1,—kr2 = 0. (3.22)

Define the stochastic bilinear form & (-,-) on (F)_1,_,m by

Ee(v,w) = (Ko Vo, Vw)_1 2= > (Y KoVug, Vu,)2N*, (3.23)
v atB=y

for v, w € (&)_1,—¢,m3- Then (3.20) can be written, with u(Z,z) as in (3.17),

éﬂk(u(u )7¢) = (g(t7 ')7'(/))—1,—k:,L2; w € (y)—l,—k,Hé (324)
and combining this with (3.21) and (3.22) we get

&u(ult,-),¥) > (f(t, ), %) -1,-k,r2 for all Y € (F)_y 4 gz with 1 = 0
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and

éak(u(t’ ')’ u(ta )) = (f(ta '): 'u'(t7 '))—1,—k,L2-

Summing up we have deduced that the assumptions (3.11)-(3.16) and Assumption 1-4
lead to the following stochastic variational inequality for u(t,-) = fot p(s,-)ds, for all k > kq:
Define

My, = {¢ € (&) 1,-k,m3; ¥ = 0}. (3.25)
Note that My is a closed convex subset of (-#)_; _; mz- Then for all ¢ € [0,T) we have
u(t,-) € My (3.26)
and
Ex(u(t, ), %) > (f(t:),¥)-1,-k,2 for all o € M (3.27)
and
& (u(t,-),ult, ) = (f( ), ults ) -1,-,12- (3.28)

This makes the following definition natural:

Definition 3.8 We say that u(t, z) is a weak, stochastic solution of the stochastic moving
boundary value problem (3.10) if there exists ko € N such that u(t, -) satisfies the variational
inequality (3.26)-(3.28) for all k > ko and allt € [0,T).

Remark 3.9 (1) Note that the connection between the solution u(t, ) of (3.26)-
(8.28) and the pressure process, p(t,x), in (8.10) is given by the Baiocchi trans-
form (8.17), i.e.,

u(t,xz) = /Otp(s, z) ds.

(2) Also note that in the variational inequality (8.26)-(3.28), time, t, is reduced
to a parameter whose value can be assumed fized in [0,T).

There is an equivalent, but sometimes more convenient formulation of (3.26)-(3.28).

Definition 3.10 We say u(t,x) is a weak, stochastic solution of the moving boundary
problem (8.10) if there exzists ko € N such that u(t,-) satisfies the following variational
inequality for all k > ko and all t € [0,T):

u(t, ) € My, (3.29)
where M, is defined in (3.25) and
Ee(ult,-),v—ult,") > (ft,-),v —u(t, ) -1,-kr2 for all v € M. (3.30)
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Proof of the equivalence of Definitions 8.8 and 3.10: Assume that (3.27) and (3.28) hold,
then by subtracting them we get (3.30)

Conversely, if (3.30) holds then by choosing v(-) = 2u(t,-) and v(-) = u(t,-)/2 we get
(3.28). Finally, choosing v(-) = u(t,-) + ¥(-) gives (3.27). O

We proceed to show that there is a unique solution u(t, z) of the family of stochastic
variational inequalities (3.29)-(3.30) for ¢ € [0,7) and for all k > ko, if ko is sufficiently
large. First we establish the following general result. (For simplicity we suppress ¢ in the
following.)

Theorem 3.11 Suppose K € P(U) for some £ € R and that f € ()_112. Then there
is ko € N such that for each k > ko there exists a unique u®) € M, such that

é‘}g(u('“), v — 'u,(k)) > (f,v— u(k))_l,_k,Lz for all v € M, (3.31)
where
Ex(w,9) = (K oV, Vi) _1gr2= > (Y KaVuwg, Vib,)(2N)7. (3.32)
Y atf=y

Moreover, there ezists a C' < oo such that if u and U are the solutions corresponding to f
and f, respectively, then

lu—all-1,—km < ONf = fllct—rm-2 < CUf = fll-1,=p,- (3.33)
C does not depend on f, f, k, or M.

Proof: Since K € #,(U), Proposition 2.11 implies that there is an L < 2¢ such that if
k>ky=—-L+1> —L, then (using Poincaré’s inequality) we have that

& (v,v) > A- (vav)——l,—k,Hcl, for all v € (y)—l,—k,Hga

where A > 0 does not depend on v or k > ko. Moreover, we know that f € (#)_y 2 for
k large enough. Therefore, Theorem 2.1 in Chapter 2 in [8] applied to the Hilbert space
(#)-1,—k,m3 ensures that there is a unique u®) € M such that (3.31) holds. Moreover,
(3.33) holds with C' = 1/A. O

Remark 3.12 This result gives a unique solution u*) € My of (3.81) for each k > ky.
Note, however, that Definition 8.10 requires a u(t,-) which solves all the variational in-
equalities (3.31) simultaneously for k > ky. This is achieved by the following argument:

Suppose u := u(®) solves the variational inequality (3.29)-(3.30) for a given k. We claim
that u also solves the variational inequality corresponding to k + £, when £ > 0. To show
this it suffices to verify that

U € M]H_[, (334)
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é"kH(u, ’U) > (f,'U)—l,—(k+Z),L2 for allv € M]H_g, (3.35)
and
é‘)]H_g(U, U) = (f, u)—l,——(k+€),L2- (336)

Property (3.34) is clear, since M, C My4,. To check (3.35), we note that by (3.27) we
have

Eere(u,v) = Ep(u, 99) > (f,00)_1 g 12 = (F,0)-1,-(k+8),12,

for all v € My, since v € My, = 9@ € M.
Moreover, using (3.24) and Assumption 4 we get

Epro(u, u) = E(u,8®P) = (9,491 _p 12 = (£, 29) 1 k12 = (f,u)1,—(kto),L25
which proves (3.36). We have proved

Theorem 3.13 Suppose K € Py(U) for some £ € R and that f € (&)_12. Then
there exists ko € N and u(t,) € (F)_1,_po,mz Such that u(t,) solves all the variational
inequalities (8.81) simultaneously for all k > k.

Hence the stochastic distribution process, u(t, x), is the (unique) weak stochastic solution
of the stochastic moving boundary problem (3.10), according to Definition 3.8.

4 Some Properties of the Solution

In the previous section we started from the stochastic partial differential equation for the
moving boundary value problem and deduced that a (weak) solution must solve a family
of stochastic variational inequalities. We then established existence and uniqueness of
solution for these inequalities. In this last section we investigate to what extent we can
deduce physical properties of the moving boundary from this solution.

First note that the generalized expectation of u(t, z),

uo(t,z) = Elu(t,z)] = (u(t, z),1)

solves the deterministic moving boundary value problem obtained by replacing K (z), A(z),
and £(t, z) by their generalized expectations Ko(z), Ao(z), and & (¢, z), respectively. In this
case the (deterministic) wet region at time ¢ is given by

Dy (t) = D(0) U supp uo(t, -) (4.1)

(see e.g. [14]).
To construct the saturation 6(¢,z) from u(t,z) we proceed as follows: Fix ¢ € [0,T),
k > ko and consider the mapping

v & (u,v) for v € (F) 1k, m
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where &(:,-) is defined by (3.32). By Proposition 2.10 this is a bounded linear functional
on (#)_1,_,mi- Hence there exists a g = g(¢,") € (#)_1,,z-1 such that

& (u,v) = (g,v)-1,—k,12 for v € (&)1 _km- (4.2)

Note that g does not depend on & > k.
From (3.27) we conclude that

(9(t,),®)=1,-k,L2 > (f (), ¥)1,-k,22 (4.3)
for all ¢ > 0.
Now we define the stochastic saturation at time t, 6(t,-), by
0(t, z) = Mx) — g(t,z) + f(¢t,x), (4.4)
then
(0(t,-), %) —1,—k,z2 < (A, %) —1,-k,r2 for all 1 = 0. (4.5)

Thus we have recovered the physical property that we set up as Assumption 3 in the original
moving boundary value problem.
To recover Assumption 4, note that for all £ > ky and £ > 0 we have

(’\() - G(t, ')7 U’(t7 '))—-1,—(k+l),L2 = (g(t, ) - f(t7 ')a u(ta '))—1,—(k+€),L2 =0,
by (4.2) and (3.36). Hence
S 00() = Byt ), gt 22N =

0!
for all £ > 0, which is only possible if

(A () = 0,(t, ), uy(t,+)) 2 = 0 for all 4.

Thus we have recovered the basic physical properties we set up for the stochastic moving
boundary value problem in Assumption 3 and Assumption 4, based on our weak solution,
u(t, z), of the stochastic variational inequalities. However, many important questions re-
main. Some of them are:

(Q1) Is u(t,z) > 0 in the sense of Definition 3.1? As pointed out earlier (Section 3)
Hu [7] has shown that in general the answer to this is no. However, it might be
yes in some important cases. If u(t,z) > 0 we can regard u(t,z) as a measure
u(t,z,-) on #'(R?) and it is then (in view of Theorem 3.6) natural to define
the stochastic wet region at time t by

D(t,w) = D(0) U {z € R%; w € suppu(t,z,-)}.
In general we can only give w-averages of the wet region, in the following sense:
If n € (&)_1,—r and 1 > 0, define the n-averaged wet region by
D(t,n) = D(0) U {z; (u(t,x),n)-1,-x > 0}. (4.6)
What are the properties of D(t,n) for ¢ > 07
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(Q2) What is the relation between the two ‘wet regions’ D(t,n) defined by (4.6) and
V(t,n) defined by (3.18)7 In the deterministic case we have D(t) = V(¢) (see
Theorem 3.6).

(Q3) Is there a tractable constructive/numerical method for computing the coeffi-
cients u, (¢, z) of u(t,z)?

(Q4) If v = 0 we have the following conservation of mass formula

/ Y@ dr= | &t 1) ds. (47)
Do(t)—D(0) Do(t)

The right hand side represents the amount of fluid being pumped into the
medium up to time ¢, while the left hand side represents the (added) volume of
the fluid in the wet region at this time. To prove (4.7) choose ¥ = vy = Xy, (%)
(deterministic) in (3.24), where V;(t) is a neighborhood of Dy(t). Then we get

0 = /V | Golt2)de = / (Folt, %) + o(z) — Oo(t, 7)) da

Vo(t)

_ /Va) (o(t, 7) — 60(t, ) + B0(0, 2)) da

— &o(t, ) dz — /

Mo(z) dz + / Ao(z) dz
Do(t) Do(t)

D(0)

as Vo(t) 4 Do(t). O

Can one find a similar conservation of mass formula in the stochastic case?
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