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Introduction

An old problem in operator algebras, motivated by physics, is to deter-
mine which (partially) ordered normed lineaf spaces can be the self-adjoint
part of a C*-algebra or a von Neumann algebra. This is implicit in several
papers of Segal [28, 29] and Kadison [20,21,24], and it was explicitly raised
for von Neumann algebras by Sakai [27] and for C*-algebras by Sherman
[30].

The self-adjoint elements of such algebras are used to represent
bounded observables in algebraic models of quantum mechanics. How-
ever, the self-adjoint part A of a C*-algebra is not closed under the given
associative product, but only under the symmetrized product (“Jordan
product”)

1) aob=%(ab+ba)=%((a+b)2—a2—b2).

This product makes A into a (real) Jordan algebra, and it has been
proposed to model quantum mechanics on Jordan algebras rather than as-
sociative algebras. This approach is corroborated by the fact that many
physically relevant properties of observables are adequately described by
Jordan constructs. Knowing an element of A, we can express not only the
expectation value of the correponding observable, but its entire probabil-
ity law which is given by spectral functional calculus, and in turn by the
squaring operation a — a2.

The Jordan algebra approach to quantum mechanics was initiated by
Jordan, von Neumann and Wigner in [17] where they introduced and stud-
ied finite dimensional “formally real” Jordan algebras. The restriction to
finite dimensions was removed by von Neumann [18]. Jordan operator al-
gebras (linear spaces of self-adjoint operators on a Hilbert space closed
under the Jordan product) were first studied by Topping [34] and Stgrmer
[32]. The general definitions of JB-algebras and JBW-algebras (together
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with a Gelfand-Naimark type representation theorem) were given by Alf-
sen, Shultz and Stgrmer [4] and by Shultz [31] respectively. These algebras
are defined axiomatically as (real) Jordan algebras which are also Banach
spaces, subject to suitable conditions connecting Jordan product and norm.
The self-adjoint part of a C*-algebra or a von Neumann algebra is a spe-
cial case of a JB-algebra or a von Neumann algebra respectively. Not all
JB-algebras or JBW-algebras arise in this fashion (cf. [13, Ch.3-4]), but
nevertheless they have enough structure to effectlvely model quantum me-
chanical observables. :

However, it is an important feature of quantum mechanics that the
physical variables play a dual role, as observables and as generators of
transformation groups. The observables are random variables with a spec-
ified probability law in each state of the quantum system, while the gen-
erators determine one-parameter groups of transformations of observables
(Heisenberg picture) or states (Schrodinger picture).

Both aspects can be adequately dealt with in the C*-algebra or von
Neumann algebra formulation of quantum mechanics. An element a in
the self-adjoint part A of such an algebra represents an observable whose
probability law is determined by spectral theory as indicated above, while
an element h in A determines the one-parameter group o : b — e*the=t
(equivalently doa(b)/dt = i[h,b]), which represents the time evolution of
the observable b. The spectral functional calculus is a Jordan construct,
but the generation of one-parameter groups cannot be expressed in terms of
the symmetrized product. Instead it is determined by the anti-symmetrized
product in A, which we will write as follows

(2) a*b:%[a,b]:%(ab—ba).

Thus the decomposition of the associative product into its Jordan part and
its Lie part

(3) ab=aob—i(axb)

separates the two aspects of a physical variable.

To solve the characterization problem, we must find appropriate con-
ditions for an ordered normed linear space A, under which it is possible to
define an associative product on A + {4 making this space a C*-algebra
or a von Neumann algebra. By the discussion above, this problem can be
divided in two parts: first to construct the.Jordan part of the associative
product, then the Lie part when the Jordan part is known.

By a theorem of Kadison [21] the ordering and the norm of a C*-algebra
determine the Jordan part of the product. However, they do not determine
the product itself, since the opposite algebra has the same ordering and
norm but differs in the sign of the Lie part of the product. Thus, to go
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from the Jordan structure to the C*-structure, we must make a choice for
the Lie part of the product.

It was Connes who first realized that a concept of orientation was rel-
evant in this context [8]. In this paper he studies ordered linear spaces
associated with sigma-finite von Neumann' algebras. (These are the von
Neumann algebras which have a faithful normal state (cf. e.g. [33, Prop.
11.3.19]), or equivalently the ones which admit a faithful representation with
a separating and cyclic vector £.) Connes concludes with a characteriza-
tion of such spaces (Theorem 5.8). Here he shows that a “complex ordered
linear space with order unit” (E,E™) is isomorphic to the pair (M, M)
for a sigma-finite von Neumann algebra M iff there exists a self-adjoint
form s on E such that the completion of the cone E* with respect to s has
the following properties: (i) it is “self-polar”, (ii) it is “facially homoge-
neous”, (iii) it is “orientable”. (All three properties are defined in Connes’
paper.) In the development leading up to this result, it is shown that the
completion of M* with respect to a self-polar form s is independent of
s (Theorem 2.1), and that it can be identified with the natural cone Pgh
of Tomita-Takesaki theory, which can be abstractly characterized by the
three properties (i),(ii),(iii) above (Theorem 5.2).

In [5] Bellissard and Iochum showed that the properties (i) and (ii)
above characterize the natural cone associated in an analogous fashion with
a (sigma-finite) JBW-algebra. (See also [14].) Thus in the context of such
cones, Connes’ notion of orientation is exactly what is needed to move from
(sigma-finite) JBW-algebras to (sigma-finite) von Neumann algebras.

It follows from results of Kadison [20] that the self-adjoint part of a C*-
algebra is isometrically isomorphic, as an ordered normed linear space, to
the space A(K) of all w*-continuous affine functions on the state space K.
Similarly, the self-adjoint part of a von Neumann algebra is isometrically
isomorphic to the space of all bounded affine functions on the normal state
space. In view of this, characterizing the self-adjoint part of a C*-algebra
(von Neumann algebra) is equivalent to characterizing the state space of
a C*-algebra (the normal state space of a von Neumann algebra). This
was accomplished for C*-algebras by Alfsen, Hanche-Olsen and Shultz in
[3] and for von Neumann algebras by Iochum and Shultz in [15]. Here too
the program proceeds by way of Jordan algebras (JB-algebras and JBW-
algebras respectively), but it does not involve Tomita-Takesaki theory.

The result in [3] is based on two earlier papers of Alfsen and Shultz [1]
and [2]. In [1] they gave conditions on the facial structure of a compact
convex set guaranteeing that A(K) admits a satisfactory spectral theory
and functional calculus. This gives a candidate for a Jordan product in
A(K) defined in terms of squares as in equation (1). Then in [2, Th. 7.2]
they gave necessary and sufficient conditions that this product be bilin-
ear, in which case it makes A(K) a JB-algebra. The key condition is the
“Hilbert ball axiom” which says that each face of K which is generated by
two extreme points, must be affinely isomorphic to the unit ball of a Hilbert
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space. (These Hilbert spaces can be of arbitrary finite or infinite dimension
for a general JB-algebra. But for a C*-algebra they are of dimension 3 or 1,
so for the characterization of C*-algebras the relevant condition is a “3-ball
axiom” rather than a general “Hilbert ball axiom”.)

As in Connes’ paper, the final step is to move from Jordan structure
to associative structure (here from JB-algebras to C*-algebras). Again
the key role is played by a concept of “orientability”. In [3] this concept
is geometric; one requires that all the “facial 3-balls” (alluded to above)
can be oriented in a continuous fashion with respect to the w*-topology.
This can always be done locally, so that the requirement is that these
local choices can be pieced together in a continuous way to give a global
orientation. (See [3, §7] for the precise definition of orientation and 3,
Th. 8.4] for the main result characterizing state spaces of C*-algebras.)
Note also that if K is the state space of a C*-algebra, then there is a
1-1 correspondence between all “global orientations” on K and all those
associative products on A + 74 which organize this space to a C*-algebra
inducing the same Jordan product on A as the original algebra [3, Cor.8.5].

In [15], Iochum and Shultz first characterize the normal state space of
a JBW-algebra by conditions closely related to Connes’ facial homogene-
ity axiom. Then they characterize the self-adjoint part of a von Neumann
algebra among all JBW-algebras. This is more difficult than the similar
problem for C*-algebras in one respect, and easier in another. Since the
(generally non-compact) normal state space of a von Neumann algebra may
be devoid of extreme points, one must use a modified and more complicated
version of the 3-ball axiom in this case. On the other hand, no orientabil-
ity condition is needed in [15] to solve the characterization problem for the
normal state space of a von Neumann algebra. (Nevertheless, here too one
can define a notion of “global orientation” in 1-1 correspondence with asso-
ciative products in the same way as for C*-algebras, but now orientability
is automatic, as we will see in Part IIL.)

The concept of orientation introduced by Connes in [8] and that intro-
duced by ourselves in [3] are completely different in character and relate
to different contexts, but the purpose is quite similar: to pass from Jordan
structure to associative structure. More specifically, Connes’ “orientability
axiom” provides a passage from JBW-algebras to von Neumann algebras,
while our “orientability axiom” (together with the “3-ball axiom”) provides
a passage from JB-algebras to C*-algebras. One of the main purposes of
the current paper is to relate these two notions.

In the present Part I we will give a solution of the characterization
problem which relates to dynamics and applies equally well in the C* and
the von Neumann case. In the forthcoming Part IT we will develop a general
theory of orientation for C*-algebras and von Neumann algebras, which is
of geometric nature and bridges the two original approaches to orientation
for such algebras.

We will now give a brief survey of the content of the paper.
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We begin by a short summary of definitions and results from the theory
of JB-algebras and JBW-algebras (with reference to [13] for proofs). All
results are direct generalization of known results for C*-algebras and von
Neumann algebras, so readers mainly interested in the theory of orientation
for C*-algebras and von Neumann algebras can avoid the intricacies of
Jordan algebras.

Then we will transfer Connes’ notion of orientation from the natural
cone of a JBW-algebra A to the algebra itself, and we will call the resulting
notion a “Connes orientation on A”. Like the original concept, such an
orientation is a complex structure on the Lie algebra of “order derivations”
modulo its center (Definition 16).

Our next step will be to introduce yet another notion which is closely
related to that of a Connes orientation. This notion, which makes sense
both in the JB and the JBW context (and in particular in the C* and
the von Neumann context) will be called a “dynamical correspondence”.
It is defined to be a (suitably axiomatized) correspondence which assigns
a “skew order derivation” v, to each element a of the given algebra A
(Definition 17). The skew order derivations are generators of one-parameter
groups of unital order automorphisms of A, and by duality also of one-
parameter groups of motions of the state space K of A. Thus a dynamical
correspondance gives the elements of A a double identity, which reflects the
dual role of physical variables as observables and as generators of a one-
parameter group of motions of the state space. Hence the name “dynamical
correspondence”. (For related notions, see [6, 7, 9, 25].)

To motivate the definition of a dynamical correspondence, we explain
the geometrical meaning of this notion in the case of the 2 x 2 matrix
algebra (which models a 2-level quantum system, cf. e.g. [26, Ch.15)).
Here the state space is a Euclidean 3-ball, and a self-adjoint element of
the algebra acts as an affine function on the ball. This function attains its
maximum and its minimum at two antipodal points, and the correspond-
ing one-parameter group consists of rotations about the diameter between
these two points (in either one of the two possible directions depending on
orientation). The geometric meaning of a dynamical correspondence in the
general case will be explained in Part II.

Note that a Connes orientation is defined in the context of JBW-
algebras, while a dynamical orientation is defined in the general context of
unital JB-algebras (which include JBW-algebras as a special case). How-
ever, for JBW-algebras, it is shown that each Connes orientation determines
a unique dynamical correspondence (Proposition 21), and conversely that
each dynamical orientation on a JBW-algebra arises in this way from a
unique Connes orientation on the algebra (Corollary 24).

Our main result is Theorem 23 by which a unital JB-algebra A is the
self-adjoint part of a C*-algebra iff there exists a dynamical correspondence
on A, in which case there is a natural 1-1 map from the dynamical corre-
spondences on A to those C*-products on A + A which induce the given
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Jordan structure on A. The same conclusions hold with “JBW” in place
of “JB” and “von Neumann” in place of “C*”.

In Part II we will concentrate on C*-algebras and von Neumann al-
gebras, for which we will define our general notion of orientation. Like
the orientation in [3], it is defined geometrically, but here without use of
extreme points. Nevertheless, the definition is “local” in that one pre-
scribes an orientation on “small subsystems” and then requires that the
choice varies continuously. This local geometric notion of orientation pro-
vides a unified framework for studying the passage from Jordan structure
to associative structure in C*-algebras and von Neumann algebras. In this
framework we will describe the geometry of dynamical correspondences and
complete the process of relating the various notions studied in Part I.

Order Derivations

We begin by giving the definition of JB-algebras and JBW-algebras
and some of their basic properties. (A comprehensive treatment of such
algebras can be found in [13]).

1. Definition. A JB-algebra is a real Jordan algebra A which is also
a Banach space such that the Jordan product and the norm are connected
by the following conditions for a,b in A

() llacbll = llal o o]

(it) fla?]| = lla|®
(iii) [la®]l < [la® + b7

A JB-algebra with identity element 1 is said to be unstal. In this paper,
we will always assume our JB-algebras are unital.

2. Definition. A JBW-algebra is a JB-algebra A which is the dual of
a Banach space A,. The space A, is unique [13, Th.4.4.16], and it is called
the predual of A.

The self-adjoint part of a C*-algebra is a JB-algebra (for the product
aob= %(ab + ba)), and the self-adjoint part of a von Neumann algebra is
a JBW-algebra. In fact, many of the basic constructs for these associative
algebras can be carried over to their Jordan counterparts. Note in this
connection that since a JBW-algebra is a special case of a JB-algebra, all
definitions given for JB-algebras also apply to JBW-algebras.

A unital JB-algebra A is a complete order unit space with positive cone
AT = {a? | a € A} such that for a € A

(4) -1<a<1 = 0<a®<1,
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and this actually characterizes unital JB-algebras among all real Jordan
algebras with identity [13, Prop. 3.1.6].

A linear functional p on a JB-algebra A is said to be positive, denoted
p >0, if p(a) > 0 for all a € A. The set of all positive functionals in A* is
a w*-closed (convex) cone, denoted by (A*)*. If A is a unital JB-algebra,
then the set of all p € (A*)" such that p(1) = 1 is a w*-compact convex set
called the state space of A. Elements of the state space are called states,
and the extreme points of the state space are called pure states.

A JB-algebra is monotone complete if every upper bounded increasing
net {aq} has a least upper bound a in A. A bounded linear functional p
on A is called normal if p(a,) — p(a) for each net {a,} as above. The
positive normal linear functionals form a separating set for A if for every
non-zero a € A there exists a positive normal linear functional p such that
p(a) # 0. (This fact together with monotone completeness characterize the
JBW-algebras among all JB-algebras, and this characterization is taken as
the definition in [13].)

The predual A, of a JBW-algebra A can be identified with the subspace
of A* which consists of all normal linear functionals [13, Th.4.4.16]. We
will use the term o-weak topology to denote the topology on A determined
by the duality with A, (the o(A4, A.)-topology in Bourbaki’s terminology).
Thus, the o-weakly continuous linear functionals are precisely the normal
ones. Note that every JBW-algebra A is unital [13, Lem.4.1.7]. The convex
set of normal states on A is called the normal state space of A. If A is a
JB-algebra, then A** can be made into a JBW-algebra in such a way that
the state space of A is identified with the normal state space of A** [13,
84.4]. Furthermore, multiplication is separately o-weakly continuous on
a JBW-algebra [13, Cor. 4.1.6], so we can often make use of the o-weak
density of A in A**.

We will now introduce an order theoretic concept of derivation which
plays an important role in Connes’ paper [8]. It can be defined in the
general context of ordered linear spaces, but we will only give the definition
for JB-algebras. But first some motivating remarks.

Derivations occur in many different contexts. What is common for
various derivations 6, is the fact that they are linear operators generating
a one-parameter group of maps e*® which preserve the algebraic structure
under study. In our present context, we are focusing on the order structure,
ignoring the multiplicative aspect. Therefore the Leibniz rule is not relevant
here.

3. Definition. A bounded linear operat;;(v)r 6 on a JB-algebra A is called

an order derivation if e!(AT) C AT for all t € R, or what is equivalent, if
{ew }ier is a one-parameter group of order automorphisms.

4. Lemma. An order derivation § on a JBW-algebra A is o-weakly
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continuous.

Proof. We will first show that the map ¢ = e*® is o-weakly continuous
for given t € R, or what is the same, that po ¢ € A, for every p € A,.
Since ¢ is an order automorphism and p is a normal linear functional, then
po ¢ is also a normal linear functional. Thus po ¢ € A, as desired.

The order derivation § is the norm limit of ¢~(e* — 1) when t — 0,
so we can find a sequence {¢,,} of o-weakly continuous linear maps such
that |l¢n, — 6] — 0. Let p € A.. Then po, € A for every n and
llpown —poé|| — 0. Since A, is complete, po 6 € A,. Since p € A was
arbitrary, é is o-weakly continuous. O

We will give a necessary and sufficient condition that a linear operator
be an order derivation. The idea behind this criterion is the following: If
5 is an order derivation, then the orbit of e*® through a boundary point
of the cone A1 cannot proceed to the exterior of A*, nor to the interior,
so the velocity vector must lie in the tangent space. Connes turned this
heuristic argument into a precise criterion for self-polar cones [8, Lemma
5.3]. Later on Hanche-Olsen and Evans generalized it to arbitrary cones
with the nearest point property, i.e. to cones for which the minimum dis-
tance from an arbitrary point to a point in the cone is effectively attained
[12]. In this form it can be applied also in our context, as the positive cone
of a unital JB-algebra, and in fact of every order unit space, has the nearest
point property. This is an elementary result, which is certainly well known.
But since we have not been able to find a good reference, we include the
proof.

5. Lemma. The positive cone AT of an order unit space A has the
nearest point property.

Proof. Let a ¢ AT. Observe that there exists A € R* such that
a+ Ml € AT. In fact, we can take A =:|la|, since a > —|la]|1 (by the
definition of order unit {13, 1.2.1]). Set

(5) Mo =inf{A€R|a+Al €At}

Since the positive cone At is closed, there is an element b = a+ A\l € AT.
We claim that b is a nearest point for a, i.e. that |[c—al > [|b—al = Xo
for every c € A™T.

Let c € At and set A = |lc — a|. Then ¢ < a + Al (again by the
definition of the order umit). Since ¢ € AT, also a + A1 € A*. Hence
A > Ao as claimed. O

6. Lemma. A bounded linear operator 6§ on a unital JB-algebra is

i
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an order derivation iff the following implication holds for all a € A™ and
pe (At

(6) p(a) =0 = p(éa) =0.
Proof. By Theorem 1 of [12] the quoted statement holds in the context
of ordered Banach spaces with the nearest point property. By Lemma 5 it

can be applied in our case. O

We will denote the Jordan multiplier determined by an element b of a
JB-algebra A by 6. Thus for alla € A

(7 bp(a) =boa.

7. Lemma. Let A be a unital JB-algebra. Then 6y is an order deriva-
tion for every b € A.

Proof. Suppose p = 0 for a € AT and p € (4*)*. By the Cauchy-
Schwartz inequality for JB-algebras [13, 3.6.2],

®) le(@a)ll* = llo(b 0 a)I* < p(b*)p(a?).

Generally a? < ||alla for every a € A*. In fact, the Jordan triple product
(defined in [13, 2.3.2]) determines an order preserving map a +— {cac} for
every ¢ € A [13, 3.3.6], so if we evaluate a? by spectral theory [13, 3.2.4],
we can write

a® = {ataa?} < {a¥(|af1)a?} = |alla.
Now it follows from (8) that
(6602 < p(8?)allp(a) = 0.

By Lemma 6, 6 is an order derivation. O

8. Definition. An order derivation § on a unital JB-algebra A is self-
adjoint if § = &, for some a € A, and it is. skew-adjoint (or just skew) if
§(1) =0.

Our next lemma shows, among other things, that the skew order deriva-
tions are the Jordan derivations, i.e. the bounded linear operators § which
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satisfy the Leibniz rule

9) 6(aob) = (6a) ob+ ao (6b).

9. Lemma. Let A be a unital JB-algebra with state space K and let 6
be an order derivation on A. For everyt € R let oy = e*® and let o be the
dual map defined on A* by (afp) = p(ar(a)) for p € A* and a € A. Now
the following are equivalent:

(i) 6 is skew

(i) as(1) =1 for all t
(iis) oy is a Jordan automorphism for all t
(iv) 6 is a Jordan derivation

(v) of(K) C K for allt.

Proof. (i) = (i) Use the exponential series for e*.

(i) = (4i1) By a known theorem of Kadison, every unital order au-
tomorphism of a C*-algebra is a Jordan automorphism [21]. The same
result is in fact valid for a JB-algebra. It can most easily be obtained from
Theorem 12.13 of [1], by which the Jordan square a® = a o a of an element
a of A (and hence every Jordan product a o b) is completely determined
by the ordering and the order unit (via the spectral integral [ A2dey, of [1,
equation (8.28)]). Thus, if oy is a unital order automorphism, then it is
also a Jordan automorphism.

(i44) = (iv) Since  is a Jordan automorphism, then a(aob) = a(a)o
a(b) for a,b € A. By the standard argument

6(a0b) = limt~(04(a) 0 @u(8) ~ @ 0b) = (82) 0 b +a o ()

(iv) = (i) By Leibniz’ rule §(1) = §(1 0 1) = 2(6(1). Hence 6(1) = 0.
(i) < (v) Trivial. O

For our next proof we shall need two elementary results valid for ele-
ments z, ¥, z in a unital Banach algebra. The first is the equation

(10) lim ||(1+ n~lz)" —e%|| =0,

n—oo

which follows from the continuity of the holomorphic functional calculus.
The second is the inequality

(11) ly™ = 2™ < n- Max{|ly]l, [2l1}"~* |y — 2,
which follows from the decomposition

Yy - =y Ny —2) + Y Ay —2)z 4 o+ (y—2)2 L
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We will denote the set of order derivations of a JB-algebra A by D(A).

10. Proposition. The set D(A) of order derivations of a unital JB-
algebra A is a real linear space closed under Lie brackets [61,82] = 6162 —
6961.

Proof. The fact that D(A) is closed under linear operations, follows
directly from Lemma 6.

To show that D(A) is closed under Lie brackets, it suffices to show that
[61,62] is an order derivation for a given pair 61,6, € D(A).

By looking at the first few terms of thg;e;xponentia.l series involved, we
see that )

(12) et51 6t62€_t61 e—t62 =14+ t2 [51, 52] + t4¢ta
where ||@;]| is bounded for ¢ in a neighbourhood of 0.

Set t = =% and define a, = etrfiglnbagtndioteds, §, = 1412[6), 6]
and v, = ¢y, forn=1,2,--- . Now

(13) O — P = n_27n
forn =1,2,---, and {||v.]|} is a bounded sequence.

Clearly (ay,)™ is an order automorphism for every n. It follows from
(10) that [|(Br)™ — exp[é1, 62]|| — 0 when n — oo. Thus we only have to
show that ||(an)™ — (Br)™|| — 0 when n — co.

We will prove this by applying (11) with «, and 8, in place of y

and z, and we begin by showing that {|a,|™} and {||8,]|"} are bounded
sequences. By (12)

llomll < 1407281, 2]l + 072 n]

for n = 1,2,---. We will assume [61,62] # 0 (otherwise there is nothing to
prove). Let A > 1 be arbitrary. Then for sufficiently large n

llom |l < 14 An71|[61,62]]| < exp(An~!|61, 62])),
which gives
llan|™ < exp(A[61,62]]])-
Since A > 1 was arbitrary,

Tim [l ™ < exp(||[61, 621))-
n—00
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For every n
1Bl < 1+ 01|81, 82]ll,
and then also

18n 1™ < exp(ll[61, 82])-

Let M > expl||[61,62]]] > 1. By the inequalities above, |la,||* < M
and ||B,||* < M, and then also ||a,||""! < M and ||B,||""! < M, for
sufficiently large n. Now it follows from (11) and (13) that

l1(em)™ = (Bn)" | < nMlom = Bl < 07" M]|7n]

for large n. Thus ||(as)™ — (Br)"|| — 0 when'n — oo, and we are done. O

11. Lemma. FEvery order derivation § on a unital JB-algebra A can
be decomposed uniquely as the sum of a self-adjoint and a skew derivation,
namely 6 = 8, + &' where a = §(1).

Proof. Set a = §(1) and 6’ =6 — 6,. Then §(1) =a—aol =0, so
6§ = 6, + 6’ is a decomposition of the desired type. If § = 8, + 6" is another
such decomposition, then evaluation at 1 gives §(1) =bol =15, 50 b = a.
Therefore the decomposition is unique. O

To each 6 € D(A) we will associate the adjoint order derivation §*
defined by 6* = 6, — 8’ where § = 6, + ¢’ as above. Thus § € D(A) is
self-adjoint iff §* = 6.

Two elements a, b of a JB-algebra A aresaid to operator commute if the
operators d,, 8, commute, i.e. if (aox)ob="ao(zob)forallz e A. If A is
the self-adjoint part of a C*-algebra, then a, b operator commute iff ab = ba
[11, Lem. 5.1]. The set of all elements in a JB-algebra A which operator
commute with every other element of A is called the center of A, and it
will be denoted by Z(A). Note that Z(A) is an associative subalgebra of
A. We will also denote by Z(D(A)) the center of the Lie algebra D(A),
i.e. the set of all § € D(A) such that [6,6'] = 0 for every other element ¢’
of D(A).

12. Lemma. If § is a skew order derivation on a unital JB-algebra A
and z € Z(A), then

(i) e’z =z for allt € R
(i6) 62 =0.
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Proof. Recall that the bidual A** is a JBW-algebra. By o-weak
continuity of multiplication in each variable separately, the bidual map
(e*®)** is also a Jordan automorphism. Furthermore, again by o-weak
continuity of multiplication, the center of A will be contained in the center
of A**, so it suffices to prove the lemma for the special case where A is a
JBW-algebra. Then it is enough to prove the lemma for the case where 2z
is a central idempotent, i.e. 22 = z. Since § is skew, then e*® is a Jordan
automorphism, so e’z is also a central idempotent for ¢t € R. Thus e®z—z
is the difference of two central projections, so ||e*®z — z|| is either zero or
one. Since ||e*®z— z|| is a continuous function of ¢ which is zero when t = 0,
it must be zero for all t. This proves (i).

Now also 6z = lim;_,ot~1(e?®z — 2) = 0, which proves (ii). O

13. Lemma. If A is a unital JB-algebra, then

(14) Z(D(A)) ={6. | z € Z(A)}.
Yifym

Proof. Assume first that § € Z(D(A)). In particular [§,8,] = 0 for

every a € A. Let z = §(1). Then for every a € A
8(a) = 664(1) = 646(1) =64(2) =acz=1zoa.

Hence § = 6,. Also 6,6, = 8,6,, so z € Z(A).

Assume next that z € Z(A). By the definition of Z(A)), §, commutes
with every self-adjoint order derivation §,. Therefore we only have to show
that 6, commutes with every skew derivation §. But such a derivation is

a Jordan derivation, so it follows from the Leibniz rule (9) and Lemma 12
(ii) that

86,(xz) =6(z0z) = (6z) ox + z 0 (6z) = 6,6(x)
for every z € A. Thus 66, = 6,6 as desired.-O

If A is the self-adjoint part of a C*-aléébra A, then we will assign to
each d € A a linear operator 64 on A defined by

(15) da(z) = -;—(da: + zd*)
for z € A.

14. Lemma. If A is the self-adjoint part of a C*-algebra A and § = 64
ford e A, then forz € A andt e R

(16) exp(2t6)(x) = etdzeld.
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In particular if § = 6, for a € A (self-adjoint case), then
(17) exp(2t6)(z) = e'*ze'®,

and if § = &;p for b € A (skew case), then

(18) exp(2t6)(z) = ePze i,

Proof. Consider the left and right multiplication operators Ly : = +—
dzr and Ry : x — zd* defined on A for d € A. Since Ly and R} commute,
then forxz € A

exp(2t64)(z) = exp(tLq + tRy+)(z) = exp(tLq)exp(tRq-)(z) = etizetd,

This proves (16), from which (17) and (18) both follow. O

15. Proposition. If A is the self-adjoint part of a von Neumann
algebra A, then the order derivations of A are the operators 64 on A defined
above, and an order derivation § is self-adjoint (skew) iff it is of the form
64 for d self-adjoint (skew).

Proof. An order derivation is self-adjoint iff it is of the form §, for
a € A (by definition). Clearly also, an order derivation is skew if it is of
the form &y (i.e. of the form 84 with d skew). Conversely we will show
that an arbitrary skew order derivation ¢ is of this form

For every t € R the map e? is a Jordan automorphism of 4. We
extend it by (complex) linearity to all of .A. By a theorem of Kadison [22]
there is a central projection ¢ such that e*® acts as a *-isomorphism from
cA into A and a *-anti-isomorphism from (1—c).A into A. By Lemma 9, e
fixes ¢. Hence e?f is a *-automorphism of c.A and a *-anti-automorphism of
(1—c)A. Applying e twice, we observe that e?* acts as a *-automorphism
also on (1—c).A. Sincet € R was arbitrary, this means that e is in fact a
*_automorphism of A for every t € R. Thus by the Kadison-Sakai theorem
the generator 6 of the one-parameter group {et‘s }ter is an inner derivation
on A, ie. §(z) = 3(hw — zh) for some h € Aand all z € A [19, Ex.8.7.55].

Let h = a + ib where a,b € A. Then for each z € A

(5(:1,‘) = —iéia(w) + 51'1,(73),

and since 6(z) € A then §;,(z) =0 and 6(x) = 6ip(x). Thus 6 = 6.

If d € A, say d = a + ib, then §; is the sum of the order derivations
6, and 8;3, so 64 is also an order derivation. Conversely we will show that
every order derivation is of this form.
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Assume that § is an arbitrary order derivation on A and consider the
decomposition § = 8§, + &' established in Lemma 11. By the argument
above, §' = ;3 for some b € A. Thus for every z € A

5(z) = %(ax +za)+ %(b:c — o) = %((a +ib)z + 2(a + iB)*) = Sarin(2),

so § is of the desired form. O

The results above can easily be dualized to the predual A. of the
von Neumann algebra 4. If § is an order derivation of A and a; = etd,
then we consider the dual operator (a:). on the self-adjoint part A. of
A, for t € R. Generally {(a¢)«}tc r is a one-parameter group of order
automorphisms of A, and if § is skew then each (a:). leaves the normal
state space invariant (Lemma 9 (v)), so {(a:)«}tc r is a one-parameter
group of affine automorphisms of the normal state space.

The orbits of {(ct)«}ter can be easily visualized in the case where
A is the 2 x 2 matrix algebra. Here the (normal) state space is a Eu-
clidean 3-ball, and the pure state space is the surface of the ball, i.e. a
Euclidean 2-sphere. If a € A is self-adjoint and has two distinct eigen-
values A; < A corresponding to (unit) eigenvectors i, &2, then the vector
states we,,we, are antipodal points on the sphere (South Pole and North
Pole on Fig.1). If § = 6;, (the skew case), then (a;)« is a rotation of the
ball by an angle t(A\; — A\2)/2 about the diameter [we, ,we,]. Thus the one-
parameter group {(a:)« }tcr represents a rotational motion with rotational
velocity (A\; — A2)/2 about this diameter, and the orbits on the sphere are
the “parallel circles” (in planes orthogonal to (we,,we,]). If § = 6, (the
self-adjoint case), then the orbits will take us out of the state space. But
this can be remedied by a normalization, i.e. by considering the parametric
curves t — ||(at)«0||"1(at)«0 instead of ¢ — (az)«0. These are the “lon-
gitudinal semi-circles” on the sphere (in planes through [w¢,,we,]). The
proof of these facts is elementary matrix calculation and will be omitted.

W, &

Fig.1
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In the example above we can easily see how the one-parameter group
is determined by the geometry in the self-adjoint case, and we can also
see what indeterminacy there is in the skew case. The self-adjoint element
a € A determines a real valued affine function é : w — w(a) on the state
space. This function attains its minimum A; at we, and its maximum A
at we,. In the self-adjoint case the orbits are the longitudinal semi-circles
traced out in the direction from we, to we,. In the skew case the orbits are
the parallel circles, but they can be traced out in two possible directions
“esastbound” and “westbound”. The mere knowledge of the affine function
& does not tell us which direction to choose. This would require a specific
orientation of the ball (right handed or left handed around wg,we, ).

Connes orientations and dynamical correspondences

We will now transfer Connes’ concept of orientation [8, Def. 4.11] to
the context.of JBW-algebras. The idea is to axiomatize the map 64 — 6;4 of
D(A) into itself where A is the self-adjoint part of a von Neumann algebra
A, or rather the corresponding map which is obtained when elements of
D(A) are identified modulo Z(D(A)).

To simplify the notation, we will write D(A) in place of D(A)/Z(D(A)).
We will also denote the equivalence class of an element 6 of D(A)) modulo
Z(D(A)) by 6. Note that the involution 6* = (6*) is well defined on D(A)),
for if 6, = b then 61 — 8 = 6, for some 2z € Z (A) (Lemma 13), Hence

85 — 85 = 83 = 62, s0 (57) = (65).

16. Definition. A Connes orientation on a JBW-algebra A is a com-
plex structure on D(A), which is compatible with Lie brackets and involu-
tion, i.e. a linear operator I on D(A) which satisfies the requirements

(i) I? = -1 (the identity map).
(i) (781, 62] = [81, 162] = I[61,65)
(iii) I(5*) = —(I6)".

If A is the self-adjoint part of a Von Neumann algebra A, then it is
easily verified that I: 64+ 8,4 (with d € A) is a Connes orientation of
A. We call it the Connes orientation induced on A from A. (Note that the
map Ip : 84 > 8;q from D(A) into itself is not well-defined, since d is not
determined by 64 if d is not known to be self-adjoint.)

An alternative approach is to take the basic properties of the map
a — ;4 where a is a self-adjoint element of a von Neumann algebra A as
axioms for a map ¢ which assigns to each element a in a general unital
JB-algebra A a skew order derivation 1, oni"A. Geometrically 1 assigns to
each real valued affine function on the state space K of A a one-parameter
group of affine automorphisms of K. Such a one-parameter-group describes
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a motion of states, and we will call 1 a “dynamical correspondence”. The
precise definition is the following:

17. Definition. A dynamical correspondence on a unital JB-algebra
Ais a map 9 : a — 1), from A into the set of skew order derivations on A
which satisfies the requirements '

(1) W’a,lﬁb] = _[6(1,617] for a, be A
(ii) Yga =0for all a € A.

A dynamical correspondence on a JB-algebra A will be called complete
if it maps A onto the set of all skew order derivations on A.

It is easily verified that condition (ii) above is equivalent to the state-
ment that exp(ty,) fixes a for all @ € A and all t € R. This property is
easily visualized in the 2 x 2 matrix example, and it will play an important
role in the geometrical investigations in Part II.

We will also state the definition of a dynamical correspondence in an-
other form. In this connection we shall need the following lemma, which
will also be needed later.

18. Lemma. Let A be a unital JB-algebra and let v be a map from A
into the set of all skew order derivations on A. Then for all pairs a,b € A

(19) [Ya, 6] = Sy,

Proof. Since 1), is skew, it is a Jordan derivation. Hence for all c € A

Ya(boc) = (Yab) 0 c+bo (Yac),
which can be rewritten
PabbC — Gpac = by, bC.
This gives (19). O

Note that linearity of v is not listed among the requirements in the
proposition below, since it follows from the other requirements.

19. Proposition. Let A be a unital JB-algebra and let ¢ : A — 1,
be a map from A into the set of skew order derivations of A. Then 1 is
a dynamical correspondence iff the following requirements are satisfied for
a,bec A

(i) [thas ¥l = —[6a, 6]
(%) [a;66] = [ba,P)-
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Proof. Assume first that 1 is a dynamical correspondence. Condition
(i) above is trivially satisfied as it is identical with condition (i) of Definition

17.
By condition (ii) of Definition 17 and Lemma 18, then for all a € A

[wa’ 6a] = 61/)0,0' = 60 =0.
By linearity of 1, then for all a,b € A

O = [¢a+b» 5a,+b] = [¢a, 6b] + [/(l)lh 60,]’
which gives

[¢a,5b] = —[¢b’6a] = [6a7¢b]7
and proves condition (ii) above. .

Assume next that 1 satisfies conditions (i) and (ii) above. Condition
(i) of Definition 17 is trivially satisfied, and it follows from condition (ii)
above and Lemma 18 that for alla € A

5'z,baa = ["/)aa(sa] = [5aa¢a] = _[1/)41,641]'

Hence 14a = 64,41 = 0, so condition (ii) of Definition 17 is also satisfied.
It remains to show that ¢ is linear. By Lemma 18 and condition (ii)
above, then for all a,b

8pab(1) = [Ya, 86)(1) = [8a, ¥6}(1) = —[thp, 6a](1) = —byya(1).

Hence
(20) Yab = —ta;

from which it follows that a — ,b is a linear map from A into D(A) for
each fixedbe A. O

In the above proof we have actually also shown that if ¢ is a dynamical
correspondence on A, then equation (20) above holds for all pairs a,b € A.
‘We shall make more use of this equation later.

‘We will now explain the relationship between Connes orientations and
dynamical correspondences, and we begin with the following:

20. Lemma. If 9 is a dynamical correspondence on a unital JB-
algebra A, then the kernel of ¢ : A — D(A) consists of all self-adjoint
order derivations 6, where z € Z(A). '
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Proof. If a € ker, then it follows from Definition 17 (i) that [64, 5] =
—[%a,%p] =0 for all b € A. Hence a € Z(A).

Conversely, if z € Z(A) then 6, € D(Z(A)) (Lemma 13), so it follows
from Lemma 18 and Proposition 19 (ii) that for all b€ A

0y.b = [wzﬂsb] = [5;;,’1/11;] =0.

Thus ¢,b=0for allbe A, so z € keryp. O

21. Proposition. A Connes orientation I on a JBW-algebra A de-
termines a complete dynamical correspondence v such that v, € I(6,) for
all a € A, and v is the only dynamical correspondence with this property.

Proof. Let a € A. We will first show that there exists a unique
6 € I(6,) such that 6 is skew.
Choose 81 € I(6,). By Definition 16 (iii)

B = I1(8a)" = —1(83) = —1(84) = =61

Hence 8% +6; =0, so 6 + & = 6, for some z € Z(A) (Lemma 13). Now
define § =6; — 16, = 1(61 — 67). Thus 6 is skew. Also

1 - -
6= 61— 56: € I(61) = I(50).

If §; is an arbitrary skew order derivation such that 6’ € I (5a), then § — &'
is both central and skew. By Lemma 13 6 — 6" = 0, so § is the unique skew
order derivation in I(ég). _

Denote the unique skew order derivation in I(6,) by v, for each a € A.
Clearly 9 : a — 1), is a linear map from A into D(A).

Let a,b € A. By Definition 16 (i),(ii)

(164, I65) = I[bq, I6) = I*[b4, 6] = —[6a,bb)-
Thus for some z € Z(A)
[’lwba,awb] = _[5aa§b] + 6z-
Since 1, and 1y are skew, then (1, ¥s](1) = 0. Also [6q,6](1) =aob—
boa = 0. Hence z = 6,(1) = 0. Thus [¢),,%s] = —[ba, ), S0 9 satisfies
condition (i) of Definition 17.

To show that 1 also satisfies condition (ii) of Definition 17, we first
observe that for all a € A then by Definition 16 (ii)

(Y0, 8a] = [I8a,64] = I[ba,8a] = 0.
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By Lemma 13 there exists z € Z(A) such that [¢)g,6,] = 6,. Now 6, is a
commutator of two bounded linear operators on A and it commutes with
each of them, so it follows from the Kleinecke-Shirokov Theorem [10, p.128]
that 6, is quasi-nilpotent, i.e.

lim ||6,"]|* = 0.
But 6,™(1) = 2™ for all n: Hence
182" 127" 2 12212 = =l

so z = 0. (The norm-closed subalgebra generated by a single element and
1 is isometrically isomorphic to C(X) for some compact Hausdorff space
X [13, 3.2.4], so ||22"|| = ||2]|*"). Thus [t4,8a] = 0. Now it follows from
Lemma 18 that 6y, = 0, and hence also ,a = 0, so we have verified
condition (ii) of Definition 17. Thus ¢ is a dynamical correspondence.

To show that 1) is complete, we consider an arbitrary skew order deriva-
tion 8 and we will show that § = 1, for some a € A. More specifically, we
choose an arbitrary 6; € I(—6) and we will show that 6; is self-adjoint, i.e.
of the form §; = 6, for a € A, and that ¢, = 6.

By Definition 16 (iii) and the fact that § is skew,

51 = —(I8)* = I(8*) = I(=8) = &;.

Thus 6} — 61 =8, for some z € Z(A). Applying both sides to 1, we get
(63 — 81)(1) = z. Since 87 — 6 is skew, then z = 0. Thus 67 = 61 so 6y is
self-adjoint, i.e. 6; = §, for some a € A.

_ By definition 6, € I(-0), so 6, = —I6. Then by Definition 16 (i),
16, = —I26 = 6. Thus 6 € Ié,, so § is the unique skew order derivation in
I6,; in other words § = v,. With this we have shown that 9 is a complete
dynamical correspondence.

_ The uniqueness is clear, since 1), is the only skew order derivation in
Ié,. O )

The concept of a Connes orientation is defined for JBW-algebras, while
the concept of a dynamical correspondence is defined for unital JB-algebras,
so the two concepts cannot be equivalent. Note however, that it will fol-
low from our main theorem that a dynamical correspondence on a JBW-
algebra is necessarily complete and is derived from a Connes orientation
as in Proposition 21 (Corollary 25). Thus the two concepts are in fact
equivalent in the context of JBW-algebras.




21
The main theorem

We are now ready to prove our main theorem which relates dynamical
correspondences to associative products.

22. Definition. Let A be a unital JB-algebra. A C*-product (W*-
product) compatible with A is an associative product (z,y) — zy on the
complex linear space A + ¢4 which induces the given Jordan product on
A and organizes A + A to a C*-algebra (von Neumann algebra) with the
involution (a + ib)* = a — ib and the norm ||z|| = ||z*z||*/2.

Note that if a JB-algebra A is the self-adjoint part of a C*-algebra A,
then we can transfer the product and the norm from A to A + iA by the
representation = a-1b (where z € A and a,b € A). This organizes A+iA
to a C*-algebra with the properties in the definition above. Thus, a JB-
algebra is the self-adjoint part of a C*-algebra iff there exists a C*-product
compatible with A on A + ¢A. Similarly in the JBW-context.

23. Theorem. A unital JB-algebra is (Jordan isomorphic to) the
self-adjoint part of a C*-algebra iff there exists a dynamical correspondence
on A. In this case each dynamical correspondence i on A determines a
unique C*-product compatible with A such that for a,b € A

(23) Pob = é—(ab — ba),

and each C*-product compatible with A arises in this way from a unique
dynamical correspondence 1 on A. The same conclusions hold with “JBW”
in place of “JB” and “W*” or “von Neumann” in place of “C*”.

Proof. Assume first that A admits a dynamical correspondence . By
equation (20) of Proposition 19 we can define an anti-symmetric bilinear
product (a,b) — axb on A by writing

(24) axb=1,b.

Next define a bilinear map (a,b) — ab from A x A into A+ 1A (considered
as a real linear space) by writing

(25) ab=aob—i(axb).

This map can be uniquely extended to a bilinear product on A + A (con-
sidered as a complex linear space). We will show that this product is
associative. By linearity, it suffices to prove the associative law

(26) a(cb) = (ac)b -

VT
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for a,b,c € A.
Writing out (26) by means of (25), we get

ao(cob)—i(ax(cob)) —i(ao(cxb)) —ax(cxb)
=(aoc)ob—i((aoc)*xb) —i((akc)ob) — (a*c)*b.

Separating real and imaginary terms (and using the anti-symmetry of the
*-product), we get two equations. The first one can be written as follows

(27) a*(b*c)——b*(a*c)=—ao(l$_oc)+bo(aoc),
and the second one as follows
(28) ax(boc)—bo(axc)=ao(bxc)—bx(aoc).

The left hand side of (27) is nothing but [t)4,%s](c) and the right hand
side of (27) is nothing but —[8,,85)(c). Similarly the left hand side of (28)
is [tVq, 6p)(c) and the right hand side of (28) is [64,%s](c). Thus these two
equations follow directly from the characterization of a dynamical corre-
spondence in Proposition 19.

We must also show that the bilinear product on A + ¢4 is compatible
with the involution, i.e. that (zy)* = y*z* for z,y € A +iA. By linearity
it suffices to show that (ab)* = ba for a,b € A. But this follows directly
from the antisymmetry of the x-product, as.

(ab)* = (aob—i(axb)* =aob+i(axb)=boa—i(b*a) = ba.

We have now shown that A + iA is an associative *-algebra.
By the definition of the involution, the self-adjoint part of A+iA is A.
Thus by (25) and the anti-symmetry of the %-product,

%(ab-{-ba):aob

for all pairs a,b € A. Thus the associative product in A + ¢A induces the
given Jordan product on A.

We will now show that z*xz € AT for every € A + iA. The closed
Jordan subalgebra C(z*z) of A generated by the self-adjoint element z*x
and 1 is associative, hence isometrically isomorphic to the real commutative
Banach algebra C(X) for a compact Hausdorff space X [13, Th.3.2.2].
Thus z*z = a — b where a, b are two positive elements of C(z*z) such that
aob = 0. By the definition of the Jordan triple product [13, 2.3.2] and the
associativity of C(z * x),

{bab} =2bo (boa)— (bob)oa=bo(boa)=0.
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But since the Jordan product in A is equal to that induced from the as-
sociative algebra A + 14, the same is true for the Jordan triple product.
Therefore also bab = 0. o

Calculating in the associative *-algebra A +iA, we now find that

(29) (xb)* (wb) = baz*zb = b(a _ b)b = —b°.

Since 0 < b € C(z*z), then > > 0 and b = 0 iff b = 0. Thus in order
to prove b = 0, it suffices to show that (zb)*(xzb) = 0. For brevity we set
y = zb, and we will show that y*y = 0.

By (29) y*y € —AT. Write y = ¢+ id where ¢,d € A and calculate

vy +yty =2(c +d%),
which gives

yy* =2 +d*) —y*y e AT,

i

Thus we have shown that
(30) y*'ye —AT and yy* € AT,

Following [13, 3.2.9] we define the inverse of an element a € A to be
its inverse in C(a) (if it exists), and we denote it by a~1. Note that this
definition is equivalent to the usual definition of inverse in Jordan algebras;
namely that a’ € A is the inverse of a if o’ satisfies aca’ = 1 and a®0d’ = a
[4, Prop.2.4].

Furthermore it is easily shown that a € A is invertible with inverse a’
in the Jordan algebra A iff a € A is invertible with inverse a’ in the Jordan
algebra A+1iA iff a is invertible with inverse o in the associative *-algebra
A+ iA. (For the last equivalence, see [16, p.51].)

By definition, a real number A is in the spectrum of an element a of
the JB-algebra A, in symbols A € sp(a), if A1 — a is non-invertible in A.
Thus, by the above, A € sp(a) iff A1 — a is non-invertible in the associative
algebra A + i A.

Calculating in the associative algebra A+iA (in the same way as in the
proof of [19, Prop.3.2.8]), we find that if A1 — y*y is invertible and A # 0,
then

(AL =yy") (y(AL — yy)"ly* +1) = AL
so Al — yy* is also invertible. With this we have shown that

sp(y*y)\{0} = sp(yy™)\{0}.
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By (30) sp(y*y) = sp(yy*) = {0}, and by the spectral theorem for JB-
algebras [13, Th.3.2.4] y*y = yy* = 0. Hence b = 0, and then z*z € A" as
claimed.

Define now for x € A +iA

1
(31) ]l = ll="2]=.

Extend each state p on A to a complex linear functional on A +iA. Note
that since the states separate the points of A, their extensions will separate
the points of A + iA. Define for z € A +iA

(32) (x| y)p = py"z).

Since z*z € AT for all z € A + iA, this is a semi-definite inner product.
Construct now the GNS-representations (7,, H,,) in the usual way, and let
(v, H) be the direct sum of all such representations. If z is a non-zero
element of A + iA, then there exists a state p such that p(z*z) # 0, and
then m,(z) # 0. Thus 7 is a *-isomorphism of A +iA into B(H). In
particular, 7 restricts to a Jordan isomorphism of A into the self-adjoint
part of B(H), so it follows from [13, Prop.3.4.3] that |w(a)| = |a| for
a € A. By (31) and the corresponding equation for the norm of B(H), we
now have for z € A + 34

(33) (@)l = lin(z"2)[| = |la"al| = ||z-

Thus (30) defines a norm on A + ¢A which makes = : A+ iA — B(H)
an isometric *-isomorphism. Clearly this norm satisfies the C*-condition
llz||? = ||z*z||, and we will now show that A+iA is complete for this norm.

Pulling back the corresponding inequalities from B(H), we have for
everyrx =a+ibe A+iA

max(||al], [o]]) < |zl < lla] + [b]-

Since A is complete in the order unit norm, the space A + iA must be
complete in the norm (31), and then be a C*-algebra.
It follows from (24),(25) and the anti-symmetry of the x-product that

i 1
5(ab—ba) = S(axb—bxa) = a(b).

Thus we have constructed a C*-product compatible with A which satisfies
the requirement (23). This product is unique since the compatibility with
the Jordan algebra A determines the self-adjoint part aob in (25), and the
requirement (23) determines the skew part’ax b in (25).

Assume next that A + 44 is equipped with a C*-product (z,y) — zy
compatible with the JB-algebra A. Now we define a map % from A into
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D(A) by equation (23), and we prove by straightforward calculation that
the two requirements (i),(ii) of Definition 17 are satisfied. Thus 9 is a
dynamical correspondence on A. Also we can recover the given associative
product by substituting 14b for ax b in (25), so this product arises from 1
by the construction in the first part of the proof.

It only remains to specialize to JBW-algebras. In this connection we
must prove that if A is a JBW-algebra and (z,y) — zy is a C*-product
on A + iA which is compatible with A, then A + {A is a von Neumann
algebra. The quickest proof of this fact is based on Kadison’s theorem
that a monotone complete C*-algebra with a separating family of normal
states is a von Neumann algebra [23] (or [19, Ex.7.6.38]). In fact, the
conditions on monotone completeness and separation by normal states are
both imposed on the self-adjoint part of the C*-algebra, and since they are
satisfied for the JBW-algebra A, there is nothing more to prove. O

Remark. The proof above shows that if A is a JB-algebra and A+iA4
is equipped with an associative product such that a 4+ b — a — ib is an
involution, then A + iA can be normed (in a necessarily unique way) to
become a C*-algebra.

24. Corollary. A JBW-algebra A is the self-adjoint part of a von Neu-
mann algebra iff there exists a Connes orientation on A. In this case each
Connes orientation I on A determines a unique W*-product compatible
with A such that ford € A+iA

(34) I(5d) ’Ld,

and each W*-product compatible with A arises in this way from a unique
Connes orientation on A.

Proof. Assume first that A admits a Connes orientation I. By
Proposition 21 there exists a dynamical correspondence 9 on A such that
Y € I(6,) for a € A. Construct the corresponding W*-product in A + ¢4
as in Theorem 23.

Let d € A, say d = a + ib where a, b€ A. Then to verify (34) we
observe that for all c€ A o

bipe = %(bc —¢b) = e,
80 63 = p. Since 151, = I(gb), then

I(6ip) = I(hy) = I*(6p) = —bb,
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which gives
(35) I(84) = I(b2) + I(6ib) = P — & = bia — b = bia,

and establishes (34). Recall that (as shown in the proof of Proposition
21) there is a unique skew-adjoint order derivation in I (6;a). Thus any
two W*-products compatible with A and satisfying (34) induce the same
Lie multiplication map ;4 for each d € A, as well as the same Jordan
multiplication (inherited from A), and thus coincide.

Assume next that A + i4 is equipped with a C*-product compatible
with the JBW-algebra A. Thus A is the self-adjoint part of a von Neumann
algebra A, and by Proposition 15 each order derivation on A is of the form
84 for some d € A. Now we can define a map I from D(A) into itself by
(34), and we prove by straightforward calculation that the requirements
(i),(ii),(iii) of Definition 16 are satisfied. Thus I is a Connes orientation
on A. Clearly I is the unique Connes orientation on A for which equation
(34) is satisfied. O :

25. Corollary. A dynamical correspondence ¥ on a JBW-algebra A
is necessarily complete , and there is a unique Connes orientation I on A
such that ¥, € I(6,) for all a € A.

Proof. Let 9 be a dynamical correspondence on a JBW-algebra A.
By Theorem 23 there is a unique W*-product in A such that (23) holds. In
other words, A is the self-adjoint part of a von Neumann algebra A which
is unique (up to a *-isomorphism) under the requirement v, = d;, for all
a € A. Now it follows from Corollary 24 that there is a Connes orientation
I on A such that I(8,) = 8ia = ¥a. Thus t, € I(6,) for all a € A. _

By the same argument as the one leading up to (35), I(64) = d;q for
all d € A. Since each order derivations on,A is of the form §; for some
d € A (Proposition 15), this proves that I is uniquely determined by the
requirement

(36) Yo = I(Sa) =8;, forac A.

By Proposition 21 there is a unique dynamical correspondence on A for
which (36) holds, and this correspondence is complete. Thus ¥ is complete,
and we are done. O
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