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Abstract

We commence with a discussion of dependencies between various
processes in discrete consumer-resource models. Two basic models are
formulated. These models are closely related anddiffer in terms of
which dependencies are assumed only. The models can be regarded as
hybrids of the Lotka-Volterra model, the Beverton-Holt model and the
Nicholson-Bailey model.

A complete stability analysis of the equilibria is given with the con-
clusion that the stability properties of these models are closely related
to Gause-type predator-prey systems.

The numerical part of our analysis brings out remarkable qualitative
differences concerning the initial value sensitivity of the oscillations of
the two basic models. These differences can neither be brought to light
by a study of limiting cases, nor by equilibrium analysis. The actual
reasons behind these results remain a delicate mathematical question.

Properties associated with the time-series directly, like mean amp-
litudes and dominating periods, did not show the same differences.
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1 Introduction

In my thesis, Lindstrom (1994), two papers about discrete ecological modeling
were included. In the first paper, Gyllenberg, Hanski and Lindstrém (1996), a
discrete model for predator-prey interactions was developed. In the derivation
of this model, the death-processes of the Lotka-Volterra system, Lotka (1925)
and Volterra (1926) were considered as continuous processes and the birth-
processes were considered as discrete events. Actually, one can show that a
Lotka-Volterra system exhibiting discrete births, takes the form,

X' = pBXe Y,
Y = M1-e )X +(1-68)Y. (1)

As § — 1, the above model reduces to the Nicholson-Bailey model, Nicholson
and Bailey (1935). I show, in appendix B, that all the equilibria of (1) are
unstable. In the light of what is known about the Nicholson-Bailey model,
cf. May (1973), these results are expected. Moreover, there is no reason to
believe that (1) possesses other bounded solutions, than those at the equi-
librium points and the positive part of the y-axis. This states that there are
limits of how far we can simplify the underlying processes when we are deriv-
ing discrete consumer-resource models. Certain processes must be taken into
account, otherwise no reasonable models can be obtained, and we know for
the moment, that intra-specific competition among the resource individuals
is to be included.

In general, continuous modeling of biological phenomena has extreme ad-
vantages in comparison to discrete modeling. On infinitesimally short time
intervals, the various processes contributing to population change tend to
operate independently, so that we can add their contributions, cf Metz and
Diekmann (1986). If we include intra-specific competition in (1), it is not
that easy. As an example of comparison, consider the following Gause-type
predator-prey system, Gause (1934),

& = rz—cz—dz® — 1 j_ijx, (2)
. mazy

= — coy. 3
Y 1+ abz 2y (3)

In (2), the first term describes the growth of the prey, in the absence of natural
death, competition and predation. The second term describes the natural
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death, the third term the competition among prey, and the last term describes
the predation process, according to the Holling II functional response, Holling
(1959). In (3), the first term describes the growth of the predator, and it
is assumed that a fraction of the consumed prey-biomass is converted to
predator-biomass. The second term in (3) describes the natural death among
predators.

If we know how the different processes contribute to population change, it
is in general, as simple as in the case (2)-(3), to write a differential equation
model for the changes on infinitesimally short time intervals. As the processes
act independently, we simply add their contributions.

The situation is completely different in the discrete case (1). First, a dis-
crete single species model allows for representation of more types of compet-
ition, than the corresponding continuous single species models. For instance,
non-monotonic discrete single species models, like the Ricker (1954)-model,
do not have any relations to one-dimensional continuous competition models,
cf. Clark (1990, first edition 1976). Mathematically, this is due to the basic
local existence and uniqueness theorem for ordinary differential equations.
Biologically, in any competition model, the population must be divided, at
least into losers and winners. Such a division, can for instance be found
in Hanski (1989). He divided the individuals in a competing population into
floaters and residents. Residents are individuals, which have a place in the so-
ciety, giving them possibilities to reproduce. Floaters are individuals, which
have either not found such a place or lost this place. This division makes
sense, since according to Maynard Smith and Price (1973) and Maynard
Smith (1974) intra-specific competition is rarely lethal and therefore float-
ers, which have experiences of one or several intra-specific combats remain
in the population. Since the floaters must live on more barren habitats and
the residents must care for their offspring, we might assume that residents
and floaters are equally vulnerable to predation. This gives possibilities to
consider predation as a process, which occurs independently of intra-specific
competition.

Vice versa, the situation is different. In contrast to intra-specific com-
petition, predation certainly removes individuals from the population. As the
predation process goes on, the conditions for intra-specific competition change
and we must ask under what conditions this must be taken into account. This
question is closely related to the notion of scramble- and contest-competition,
Nicholson (1954). Scramble-type competition is most typical, when dung, car-
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rion and stored products are exploited, cf. Hassell (1976). That is, scramble-
type competition contains an element of competition against time or bad
environmental conditions and efficiency is promoted rather than competition
against other individuals. If this type of competition actually is against time,
for instance, if successful reproduction can be made only during a very short
period in the beginning of the growing season, this gives possibilities to con-
sider competition as a process acting independently from predation. This is a
part of the content of our work in Gyllenberg et. al. (1996). Here the Ricker
(1954)-type competition was studied.

When the competition-type is contest, defense is promoted, not efliciency.
In its pure sense, this kind of competition is incompatible with the assump-
tion of a short competition period in the beginning of the season, cf. our
second paper, Gyllenberg, Hanski and Lindstrém (1997). Hence contest-type
competition does not occur independently of predation. However, this type
of competition does allow certain other simplifications, not allowed in the
scramble-case. In this case, the discrete single-species competition model is
monotonous, and a representation with a one-dimensional differential equa-
tion is possible. Here, we shall use this simplification to derive a discrete
consumer-resource model, which is based on (1), and includes the logistic
contest-type competition in (2)-(3).

In this paper we are going to proceed as follows. Our main model is
derived in section 2. The obtained model contains expressions involving ex-
ponential integrals and the beginning of section 3 is devoted to extract the
basic properties of these expressions. After this, a reference model based
on the false assumption that competition and predation act as independent
processes is stated. In the main theoretical part we prove with mathematical
rigor that the local stability properties of these two models are qualitatively
identical and remind about the corresponding properties of continuous Gause-
type predator-prey systems, (2)-(3). Up to our knowledge, no such stability
analysis have been done before. In some limiting cases, our main model does
not contain special functions. In section 4, we show that no qualitative differ-
ences, between the dependent and the independent case, can be discovered in
these limiting cases, either. We go on with a numerical study of the complete
system. In this case remarkable dynamical differences between the dependent
and the independent case are detected, which neither can be observed by a
study of limiting cases nor by equilibrium analysis. The proofs can be found
in appendix A.




2 Derivation of the model

As concluded in section 1 and appendix B, there are no reasons to believe,
that the discrete Lotka-Volterra model (1) can possess bounded solutions,
other than the non-stable ones located at the two equilibrium points and the
y-axis. Therefore intra-specific competition in the resource population must
be included in some sense. In Gyllenberg et. al. (1996), we showed how a
short phase of scramble competition in the beginning of the season can be
included in (1). In this section, I build up the corresponding model with
- contest-type competition in the resource population. As noted in section 1,
the assumption of contest-type competition is, in its pure sense, incompatible
with a short competition phase in the beginning of the season, so competi-
tion is dependent from predation. Therefore the derivation presented below
contains new elements.

As earlier, we start by integrating the death-processes of the Lotka-Volterra
equations. If we assume that the resource-abundance is given by z and the
consumer-abundance is given by y during the season, we get,

= —azy,
y = —cy. (4)

It is justified to leave out the natural death rate of the resource, since we
shall assume that the resource is semelparous. Integration of the system (4)
of ordinary differential equations gives

z(t) = zoexp <—%(1 — e‘“)) , (5)
y(t) = yoexp(—ct). (6)

We proceed to the calculation of the part of the resource population, which
is able to reproduce. In concordance with (2)-(3), we shall assume that they
are given by the Bernoulli equation

ip = —Kz% — azry(t). (7)
Put

Ei(z) = /_ ; e"zﬁdg.




The integral is evaluated as a Cauchy principal value. Equation (7) can be
solved, and its solutions are given by

roexp (~2a(1 — =) 8
L+ Bovexp (—22) (i (2] — Bi () )

Cc

:cR(t) =

Now assume that these resource-individuals, reproduce with a mean of 3
offspring at the time-instant 7'. Simultaneously we assume that, a fraction of
the consumed resource-biomass will be converted into consumer-biomass at
the time-instant 7. We take into account that only yoexp(—cI') consumers
are alive at this time instant. Next assume semelparity for the resource and
iteroparity for the consumer. We get

Bzoexp (—9}6’—0(1 — e‘CT)>
1+ KZ“mexp (—ﬂc@) (Ei (icw) —Ei (%e‘CT» ’

y(T) = maoe™ (1 — exp (—%(1 — e“CT)>> + e~ Ty,. (9)

Note that iteroparity for the resource cannot be assumed by replacing 3
with 8 + 1, because of two reasons. First, we must assume a natural death-
rate for the resource in this case, and this will modify the denominator in
(9) considerably. Secondly, resource individuals of different age classes are
seldom equally vulnerable to predation.

Next we do some transformations. More specifically, we put

X = KTxzo,
Y = %(1 — e_CT),
c
ame™T(1 — e=T)
M =
cKT ’
1 ) .
Hiap) = o esp(~9) (Ei(p) - Bi(ap).
§ = 1—¢ 7T
and arrive in
/ /HX exp(—Y)
X' = v
1+ XH(1-29, 3
Y = MX(1—-exp(-Y))+(1-9)Y. (10)
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We have reduced the number of parameters from five to three. The paramet-
ers, which are left in the model are 3, § and M.

3 Dependencies and local dynamics

Our main model (10) contains expressions involving exponential integrals and
in the first part of this section we shall prove that these expressions behave
as expected. This is the main content of proposition 1. After this we state
a reference model, which contains the false assumption that competition and
predation act as independent processes. We proceed with a complete analysis
of the equilibria of our main model (10) and the reference model. The result
is that these two models are surprisingly equal, as far as the properties of the
equilibria are considered.

The following proposition proves that the function H(1 —4,Y/é) behaves
as expected. Moreover, several important limiting properties of this function
are stated. Before stating proposition 1, we formulate a couple of lemmas,
which simplify the proof of the proposition.

Lemma 1l I[f0<d <1, then§ < —log(l —9) <4é/(1—9).

Lemma 2 (Chebyshev’s inequality) Let f and g be two functions, which
are integrable and monotone in the same sense on |a, b[ and let p be a positive
integrable function on the same interval. Then

b b b b
| & @g)de [ pe)de = [p@s©d [pof©d, ()

with equality if and only if one of the functions f, g reduces to a constant.
If f and g are monotone in the opposite sense, inequality (11) reverses.

Proposition 1 Assume that >1,0<§<1,0<p < oo, Y >0 and put
k(Y) = (1 —exp(=Y))/Y. The function H has the following properties

(a) Timy o H(1 — 6,Y/8) =1,
(b) limy oo VH(1 = 8,Y/8) = — =,
)

(c) limsyo H(1 = 46,Y/6) = w(Y),




(d) limso H(1 —6,p) =1,
(e) limsy H(1 —9,Y/0) = e~
(f

)
)
) The function H(1—6,Y/d) is, considered as a function of Y, decreasing,
g) e‘Y < H(1-6Y/6) <r(Y),

) 2

(
(h

Be~
o < BiS 5Y/6) <p-

(i) The function % is, considered as a function of Y, decreasing.

Remarks
(i) It follows from (b) that limy ., H(1 —6,Y/d) = 0.

(ii) The statements, (c) and (d), imply that the change n = Y/é in the
model (10) is not allowed.

(iii) The first inequlity of (g) implies that the solutions of (10) are positive
and bounded.

Next we proceed to the local dynamical properties of our main model
(10). The main bifurcation parameter is 8. For 0 < # < 1, the model
predicts that the consumer and the resource go extinct. For 1 < g < 1+
§/M, the resource is persistent, but the consumer is not. Theorem 1 below,
will state that, for moderate values of 8, with 8 > 1 + §/M, the resource
and consumer are persistent and the coexistence is, at least locally, stable.
Similarly, theorem 1 will state, that for high values of 3, none of the equilibria
are stable and the consumer and the resource populations must, by remark
(iii) above, possess oscillatory coexistence. Thus, the dynamical properties
of the system (10) remind a lot of the dynamical properties of the well-known
continuous consumer-resource system (2)-(3). In the rest of this paper we
shall study cases when both species are persistent only (ie. 8 > 1+ §/M),
since the other cases can be studied with methods considerably simpler than
those alluded to below. The following lemma is formulated for a class of
systems, larger than the class under consideration here. It will be useful in
the proofs of the local stability properties of the system (10) and the reference
system, which will be introduced later in this section.
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Lemma 3 Consider the general consumer-resource system

X = Xf(X,Y),
Y = Yg¢(X,Y). (12)

Assume that
(i) f.9 € CY(RY),
(i) Xfx(X,Y)+Ygr(X,Y)> -2,
(iii) XV (fx(X,V)gv(X,Y) — fr(X,¥)gx(X,¥)) > 0.
Then the interior fized point (X,Y) is locally stable if
Xfx(X, V) + Vor(X,7) <
—XY (fx(X,V)gr(X, V) = fy(X,V)gx(X,Y)) (13)

and unstable if the converse inequality holds. Moreover, equality in (13)
corresponds to a discrete Hopf-bifurcation, except for at a few exceptional
cases of strong resonance.

Equality in (iii) above, corresponds to a saddle-node bifurcation, but equality
in (ii) needs not correspond to a period-doubling bifurcation. Loosely speak-
ing, a period-doubling bifurcation occurs if the inequality in (ii) is violated
much. The expression in (iii) has a nice geometrical interpretation. By the
formula for implicit derivation, it states how the level curves f(X,Y) =1
and g(X,Y) = 1 intersect at (X,Y).

In the next theorem we return to our main system (10). To large extent,
the theorem is proved by a check of the conditions of lemma 3. But since
more about the involved functions are known, we can say more. That is, if
0 is low, then the interior equilibrium is stable, when it exists. If 8 is high
enough, the system (10) possesses oscillatory coexistence.

Theorem 1 If 8 > 14 §/M the system (10) possesses an unique interior
fized point (X,Ys). There exists a surface B,(M,8) in the parameter space,
so that if 1 + /M < B < B.(M,6), then (X, Ys) is locally stable and if B >
Bi(M,6), then (X,,Ys) is unstable. Furthermore, the bifurcation along the
curve B.(M,8) is a discrete Hopf-bifurcation, except for at a few exceptional
cases of strong resonance.
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We assumed in the derivation of the system (10), that competition was
dependent of predation. Next we shall start checking the consequences of the
false assumption that these processes act independently. This corresponds to
putting H(1 —6,Y/6) = 1. We get

X' ﬂXeXp(—Y)
1+X 7
Y = MX(1 —exp(=Y))+ (1 -9)Y. (14)

The solutions of (14) are, as the solutions of (10), positive and bounded. The
above model will act as our main reference model for independent competition
and predation. The next theorem states that the stability properties of the
equilibria of the reference system (14) are qualitatively the same as for the
system (10). ‘

Theorem 2 If § > 1+ §/M the system (14) possesses an unique interior
fized point (X.,Y.). There exists a curve B.(M,$8) in the parameter space,
so that if 1 + 6/M < 8 < B.(M,4), then (X.,Ys) is locally stable and if 3 >
B(M,0), then (X.,Y.) is unstable. Furthermore the bifurcation along the
curve B.(M, ) is a discrete Hopf-bifurcation, except for at a few exceptional
cases of strong resonance.

Theorem 1 and theorem 2 show that no essential differences occur as the
systems (10) and (14) undergo the Hopf-bifurcation. In both systems, this
bifurcation occurs once, as the parameter value of 3 is increased. Hence,
equilibrium analysis does not reveal any qualitative differences between the
two systems.

4 A numerical study

In the preceding section, we made a rigorous comparison of the bifurcations of
the equilibria of the systems (10) and (14). As far as equilibria are considered,
the systems possess the same qualitative properties, or the same bifurcation
sequences with respect to the main parameter 8. In this section we are going
to show that these similarities are preserved in the nonlinear regimes of the
parameter space, as far as a quite simple limiting case is considered, but
(surprisingly) not when the complete systems (10) and (14) are compared.
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We mention some of the numerical difficulties with these systems, beginning
with those not related to the calculation of H(1 — §,Y/4).

Some serious numerical troubles occur as Y, the number of consumers
becomes small. These problems are as visible in the calculation of the time
series as they are in the calculation of the Lyapunov exponent. For moderately
small values of Y, the formula 1 — exp(—Y’) becomes inexact, because of
cancelation errors. For smaller values of even worse problems occur, but we
commence with the cancelation errors. These errors were eliminated with the
Padé-approximation,

1 —exp(-Y), Y > ¢,

ZS,_ piY? ~
1 —exp(=Y) = ﬁ; G <Y <, (15)
i=0 **
Y; Y < Cxy

where p; and ¢; are given in table 1. The coefficients of the Padé approximation
were calculated with the NAG-routine E02RAF. None of these coeflicients
are negative, hence cancelation errors are completely avoided. The maximal
relative error of the approximation (15), with ¢, = 0, as a function of ¢ is
plotted in figure 1. From this figure, we conclude that an optimal choice of
¢ is 1.6. For this choice, the relative error in (15) is approximately 7 - 1076,
when ¢, = 0. This means that, if we choose ¢, < 1.4 - 1071%, then we do not
make the approximation formula (15) worse, than it was in the case ¢, = 0,
in terms of relative errors. In our calculations, we used ¢, = 2- 10716, The
relative error in the vicinity of 2 - 107! is then approximately 10716, so this
choice of ¢, does not influence the validity of our approximation formula (15),
which takes the form

1 — exp(-Y), Y > 1.6,
8 yi
1 — exp(—Y) = %’% 2.107 < Y < 1.6, (16)
1=0 1%
Y, Y <2-107%.

We are still running into numerical troubles as Y drops below 1073%.
These problems can be eliminated, by the observation that second equation
of (10) now reads Y/ = M(X +1-4)Y, if Y < 2-107%. Introducing
n = log Y, we can rewrite this equation as n’ = log M(X +1—4) +logn. We
are now able to calculate, at least the time series, for most of the relevant
parameter values.
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This does not solve the whole problem, since similar problems occur in
the calculation of the Lyapunov exponent. These problems are most evident
in the vicinity of the saddle point (# — 1,0) in the case § — 1. In this case,
proposition 1(e) gives that the system (10) takes the form

1% BX exp(—Y)
1+ Xexp(=Y)’
Y = MX(1-—exp(-Y)). (17)

We note that the Jacobian matrix of the system (17) at (8 — 1,0) is given by

Sy R

The eigenvector corresponding to the smaller eigenvalue, 1/8 is given by (1,0)
and the eigenvector corresponding to the larger eigenvalue, M (5 —1), is given

by
(Mﬁ_(gﬁ—_li)— T 1) |

At the origin the Jacobian matrix is given by

(0 0)

Here the eigenvector corresponding to the largest eigenvalue is given by (1,0)
and this eigen-direction is achieved extremely rapidly as the calculation of the
Lyapunov exponent proceeds in the vicinity of the origin. Since eigenvectors
like (1, €), where epsilon is less than 107323, are rounded to (1,0), the eigen-
direction corresponding to the smaller eigenvalue of (18) is achieved exactly,
an hence, it takes a long time before the eigen-direction corresponding to the
larger eigenvalue of (18) will be approached as the calculation of the Lyapunov
exponent proceeds in the vicinity of (8 — 1,0). This will give an extensive
negative contribution to the Lyapunov exponent. Hence we must keep track
on the logarithmic value of the second component of the eigenvector here,
too.

We must simultaneously ask, whether such extreme parameter values
have a significant biological importance. First, we saw that the consumer-
population dropped down to values below 107323, Then, under quite similar
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conditions, we got problems with the calculation of the Lyapunov-exponent.
Under any conditions, the deterministic approximation cannot remain valid
under these circumstances. Furthermore, a biological population, which drops
regularly to extremely low densities for long periods is not very persistent.
Hence, we cannot expect any observation of this kind in nature. Hence, we
are going to draw just one conclusion in these regions of the parameter para-
meter space. This is that populations in the extremely nonlinear parts of the
parameter-plane (8 and M large) are not especially likely to be observed.

After the removal of these numerical difficulties, we compared the qualit-
ative properties of the system (17) numerically with the system

X = BX exp(=Y)
1+X 7
Y' = M(1—exp(-Y))X. (19)

System (19) is constructed by taking the limit of (14) as § — 1. The results in
the case M = 3.5 for 8 = 1.0...6.0 are collected in figure 2. Throughout this
figure, the results for the system (17) are denoted with a solid line, whereas
the corresponding results for the system (19) are denoted by a dotted line.
First we check the Figure 2(a). Here we plotted the mean amplitude (meas-
ured in log-co-ordinates) of the oscillations. The diagram shows a stabilizing
effect in the system (19), in comparison to the system (17). This is actually
what is to be expected. In figure 2(c) the dominating period is plotted. This
is the period corresponding to the maximum of the Fourier-spectrum. Here
the assumption of independent competition and predation has a slight stabil-
izing effect, too. In figure 2(b), the periods, if any below 2048 is found, are
shown. This figure should be compared with figure 2(d), where the Lyapunov
exponent of the oscillation is calculated. The oscillations of the system (17)
are remarkably more sensitive to initial conditions, than the corresponding
oscillations of (19), though the general patterns for increasing 3 are similar.
Both systems undergo a transition to chaos after the Hopf-bifurcation, as
predicted by Aronson, Chory, Hall and McGehee (1982).

We did corresponding experiments for several values of M. In general,
if M was increased, both the Hopf-bifurcation and the transition to chaos
occurred more rapidly. For very small M, the interior fixed point could be
stable for very high 3.

We proceed with an analysis of the complete systems, (10) and (14).
Here, the main additional numerical difficulties are related to the calculation
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of H(1 —6,Y/§). This expression involves exponential integrals and a quite
efficient and accurate algorithm for exponential integrals has been implemen-
ted by Press, Teukolsky, Vetterling and Flannery (1992). I modified their
code slightly and calculated,

zEi(z)

exp(z)
instead of Ei(z). A direct calculation of Ei(z) causes a rapid overflow, and
this is unnecessary, since Ei(z) is always multiplied with a factor of order
exp(—z).

The results are collected in figure 3. Throughout the figure, the results for
the system (10) are denoted by solid line, whereas the dotted lines represent
the corresponding results for the system (14). We note that the changes
in the amplitude and the dominating periods obey the same patterns as in
the case § = 1, but the growth of the amplitudes is more limited. The
most remarkable difference, was that the transition to chaos after the Hopf-
bifurcation, occurred as in the limiting case § = 1, in the dependent case,
but not in the independent case (at least not for moderate values of 3 and
M), see figure 3(d). The differences in the amplitudes can not explain the
differences in initial value sensitivity.

To see how general this observation was, we plotted figure 4. Here we
plotted different observations in the (4,3) parameter-plane, with § on the
horizontal axis and 3 on the vertical axis. Green color corresponds to extinc-
tion of the consumer. White areas correspond to persistent, non-oscillating
consumer and resource populations. Blue dots correspond to solutions with
approximately zero Lyapunov exponent. These solutions can be bifurcating
or quasi-periodic. Yellow dots correspond to periodic solutions, and a period
below 2048 is found. Cyan dots correspond to negative Lyapunov exponents,
but no period below 2048 was found. Finally, red dots correspond to chaotic
solutions. The main numerical comparison between the systems (10) and (14)
is shown in the figures 4(a) and 4(b). Over the whole range of parameter val-
ues, a transition to chaos after the Hopf-bifurcation occurs in the case (10).
This transition occurs approximately as 3 exceeds 3.5...4.5, see figure 4(a).
As predicted in the case (19), the same transition to chaos should occur for
the system (14) in the vicinity of § = 1. This is actually the case, cf. figure
4(c), but for most of the parameter values this transition does not occur, fig-
ure 4(b). Some other transition does occur, and we magnified the rectangle
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in figure 4(b), in order to check what happens on a finer scale. The result
is plotted in figure 4(d). This figure shows that no new areas with chaotic
oscillations occur, although some dispersed chaotic solutions can be detected.
This transition is more a transition from quasi- or long-periodic behavior, to
oscillations with shorter periods. Further numerical experiments have shown
that we do not find larger regimes with chaotic oscillations in the system (14)
for any moderate values of (3, other than those already found in the vicinity
of § = 1.

It can be a delicate mathematical question to check, why the transition to
chaotic behavior did not occur in the independent case, since this is a good
example how real qualitative differences between approximating systems and
real systems can arise.

5 Summary

In this paper, qualitative differences concerning the initial value sensitivity
of the oscillations of the models

v 5X exp(-Y) |
- X gy exp (=) (Bi (5) — Bi (1 - 9)%))
Y= MX(1 - exp(~Y)) + (1 8)Y 20)
and
, _ BXexp(=Y)
Y= Tarx
Y = MX(1-exp(-Y))+ (1 -9)Y, (21)

were reported. Both models are based on the discrete Lotka-Volterra model
(1), the difference is that intra-specific competition is assumed independent
from predation in (21). If Y — 0, both models reduce to the Beverton-Holt
(1957) model. A complete local stability analysis is given and both models
remind, a far as local stability is considered, about the Gause-type predator-
prey systems.

The limiting case § — 1 is given special attention. In this case the above
models differ as much as possible from each other, and the denominator in (20)
takes a particularly simple form. This case did not possess the differences
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alluded to above. Therefore care must be exercised when deriving discrete
ecological models. The models (20) and (21) are closely related, and their
qualitative differences can neither be brought to light by a study of limiting
cases, nor by equilibrium analysis.

The main differences were observed in the initial value sensitivity of the
oscillations. The transition to chaos in (21), did not occur or occurred es-
sentially slower than in the model (20). Such differences were not observed
in properties associated with the time series directly, like mean amplitudes
and dominating periods of the oscillations. Here, the differences corrobor-
ated what was expected only, ie the oscillations of (20) had slightly larger
mean amplitudes and dominating periods than the corresponding oscillations

of (21).

A Proofs

Proof of lemma 1 The lemma follows, since
1

5 dE
ﬁég._—bg1—@ (22)
é

and 1/€ is strictly decreasing. O
Proof of lemma 2 A complete listing of various proofs of this lemma as

well as historical remarks, were given by Heinig and Maligranda (1991). Here
one of the proofs listed there is given. If f and g are monotone in the same

sense, then
p(s)p(t)(f(s) — £(2))(g(s) — g(t)) = 0, (23)

for a < s < band a <t <b. If they are monotone in the opposite sense, the
inequality (23) reverses. Integration of (23) gives

0 < [ [ ps)p)(r(s) ~ FO)als) ~ o(0)dsd
_ / ﬁ/ %—/p@ ()t [ p(s)g(s)ds —
/a p(s)f (S)dS/ dt+/ s)ds bptf(t)g
- z( [ pts)as [ bp(S)f(s)g(S)dS— [ )(s)ds [ p(s)a(s) )
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Thus (11) follows. O

Proof of proposition 1 (a) The Maclaurin-expansion

n

Ei(:v):v-l—lnx-l—zx—', z >0, (24)
= nn!

v = Euler’s constant, cf. Abramowitz and Stegun (1965), shows that Ei(z)
can be approximated with a logarithm in the vicinity of zero. Hence

g, 10 (1-57) = ‘YIE&%(E (5)-5("5))

= Ylg& % (log(1 —0)+O(Y)) =1.

(b) In this case we use the asymptotic expansion of Ei(z),

| | |
Ei(x)ww(l+%+%+%+...),

Zz

cf. Cody and Thacher (1969). We get

lim Y H <1 _s, X) S (1 e O (ﬁ))

Y =00 ) Y —oo log(l — 5) 1-9 Y
N N
— log(1-6)"

(c) The generalized mean value theorem and lemma 1 give

lim H(1—6,Y/§) = lim %‘%)) /Y% exP(E) 4

5—0+ 550+ — log(l -6 Jry ¢
~ exp(—X)  _log(1—4) ¥
= A Tlg(ioe) T v AR O
exp (— %) Y Y
= Jim (o0 (5) ~ e (5 7))
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(d) I’ Hospital’s rule gives

| ) - . Ei(p) —Fi((1 - )p)
51_1)1&[{(1 §,p) = exp(—p) 51_1}&_ —log(1 — 0)

= exp(—p) - lim exp((1—d)p)
= Jim exp(=6p) = 1.

(e) We have
. YN @2 (CHEQR) e (F) B ()
Jim H <1 — 3) =~ Hm log(i vy o+ Jip 1o;(1 — ) 5

The first term in the last expression is zero. A similar calculation as in (a),

shows that the second term is exp(—Y).
() If (1 = 6)Y/6 < £ <Y/§, we note that

iy exff) de< [ &I;(_ng, (25)
8 k) E

This implies that
0k(Y)

Y
“Tog(1—19) © H (1 “‘5’E>'

Since the partial derivative with respect to Y of H(1 —§,Y/§) is given by
d Yy o1 Y k(YY)
a_YH<1_5’X>‘_5H<1_5’5>_1og(1—5)’ (26)

it is negative and we have that H(1 — 4,Y/d) is decreasing, being considered

as a function of Y.
(g) To prove the first inequality, we assume (1 — §)Y/é < £ < Y/5. We
have exp(§) > exp((1 — §)Y/é). By (22), this expression is equivalent to

_m exp(£) (log (%) ~log (QI;)X)) > exp (Q%W) ,

which, by the generalized mean value theorem is equal to

1 ¥ exp(§) (1-90)Y
‘log(l—é)/ﬂ—-;‘E 5d§>eXp( 5 )

19




for a properly chosen &.
The second inequality is a consequence of lemma 2. In other words, we
can rewrite the inequality as

/1 = €)d5 =) /uLexp(§>d§

(i %) (il o)

Now choose a = (1 — 8)Y/s, b = Y/5 f(€) = exp(€), g(§) = 1/¢ and
p(€) = 1. Now, p is integrable with [°p(£)dé =Y and f, g are monotonic in
the opposite dlI‘eCtIOIl This implies (g).

(h) This inequality is a consequence of the inequality in (g).

(i) The nominator of the derivative of this function is given by

_Be Y H (1 _s %) + (B —1) (%H (1 iy %) + %) eY

We shall prove that the expression (27) is negative. Lemma 1 gives

)
—log(l — 5) < m
This implies that
1-6, v Be ¥ —1
5 Beet —1)—-1< " log1 —9)"

Now, by (g)

(1%;(/3(2"’ -1) - 1) H <1 -4, %) < (%) k(Y).

A slight reorganization of this inequality implies that (27) is negative. O

Proof of lemma 3 Since (X,Y) belongs to the interior of R}, we must
have f(X,Y) =1 and g(X,Y) = 1. The Jacobian is given by

- 1+ Xfx(X,Y) Xfr(X,Y
s =T e )

20




The equilibrium (X,Y) is stable if and only if

—1 4+ |TeJ(X,Y)]| < detJ(X,Y) < 1

Now
TrJ(X,Y) = 2+ Xfx(X,Y)+Ygr(X,Y),
detJ(X,Y) = 1+Xfx(_, )-I—ng(X,Y)
FXY (fx(X, V) (X,¥) = fr(X,V)gx(X, 7))

and (X,Y) is  stable if and only if

—XY (fx(X,Y)gr(X,¥) = fr(X,V)ex(X,Y)) < 0,

Xfx(X,Y)+
XY (£x(X, D)oy (X,7) = (X, Dox (X, 7)) < 0,
—4—2Xfx(X,Y) - gy (X,Y)
R (14X, Pgr (X, V) — (X, Pgx(X,F)) < o

The above inequalities are true if

+XY (fx(X,V)gr (X,¥) = fr(X,V)ex(X,Y)) < 0,
—4—2X fx(X,Y)-2Ygv(X,Y) < 0.

The first inequality corresponds to (iii), in the theorem, and the second to
(13). The last inequality corresponds to (ii) in the theorem. Approximations
were used in the derivation of the last inequality only, hence the equilibrium
is unstable when the converse inequality in (13) holds.

Let A; and ), be the eigenvalues of the matrix J(X,Y). If detJ(X,Y) =
1, then A\ A2 = 1. By (ii) and (iii), both eigenvalues are complex conjugates
and |A;] = 1, ¢« = 1,2. Hence, equality in (13), corresponds to a discrete
Hopf-bifurcation. a
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Proof of theorem 1 We prove first that the interior fixed point (X, Y;)
exists and is unique. If we solve the equations

BX, eXP(_Y;)

A 1+ X, H(1-46Y,/5)
Y, = MX,(1-exp(—=Y,))+(1-90)Y,,
we obtain
Bexp(=Y;) — 1
X = sy (28)
5
. = . 2
X Mk(Ys) (29)

Call the functions defined by (28)-(29), f(Y) and g.(Y'), respectively. By pro-
position 1(i) function f,(Y") is strictly decreasing, and by proposition 1(c) and
1(f), the function g.(Y") is strictly increasing. Both functions are continuous.
By proposition 1(a), we have limy o f(Y) = 8 — 1 and limy_,0 g.(Y) = %
Moreover, f,(log 3) = 0 and by proposition 1(b) and (c), limy e g«(Y) = oo.
Hence the graphs of the functions f, and g, intersect once. This implies that
the system (10) has a unique fixed point in the interior of R} if 3 > 146/M.

Assertion (i) of lemma 3 is valid, so we proceed to (ii). By proposition

1(b) and (f)

 X.H(1-§,Y./5)
1+ X, H(L—6,Y./9)

Xofx (X, Yi) = > —1 (30)

and by proposition 1(g) we get

Yigy (X, Ys) = MX, (e‘Y* - /@(Y;)) =6 (%

) >-1, (31)
hence (ii) is valid and the interior fixed point possesses no period-doubling
bifurcations.

We proceed to (iii). By the formula for implicit derivation, the de-
rivatives of the functions f,(Y) and ¢.(Y) calculated at Y, are given by
—v(Xe, Y/ fx(Xs,Yy) < 0 and —gy(X,, Ys)/g9x (Xs, Yy) > 0, respectively.
This implies

fr (X, Ys) > gy (X, Ys)
fx(XoYe) ™ gx (X Ya)
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We conclude that
9x(Xs, Ys) = MK(Y,) > 0 (32)

and by (30), we get fx(X,,Y:) <0, hence
fX(X-k7 Y:k)gy (X*7 Y;') —gx (X*7 K)fY(Xiw Y;) >0

and (iii) in lemma 3 holds.
It remains to check under what conditions (13) holds. We note that

| ~ X, H (1-6%)
fY(XmY;) =-1- 1-|-X*H(1—(S,Y—6t)

and by the equalities in (29), (30), (31) and (32), we obtain

Y,

(MK(Y*) o1 (15, 3)) (X*fx (X, Vi) + Yagy (X, Y3)

+X Y (Fx (X Ya)gy (X Y5) — fr (X, Yi)gx (X, Y*))) =

_6H (1 _s, %) +5M(1 = r(Y,)) (33)
+8%Y, (H <1 _s %) + %H (1 s %)) .

The above expression tends to —§ < 0 as Y, — 0. We use (26) and proposition
1(b) to show that it tends to M — §3/log(1 — &) > 0 as Y, — oco. The first
two terms are increasing functions of Y,. It remains to check that the last
term increases, too. The Y-derivative of the last term above is

5(1—8)H (1 s, %) (% _ 1) _ % (1 - ,g(y*)%) L (34)

We shall show that (34) is positive. We divide the above expression with
—(1—6)exp(—Y;/é)/log(1 — ) > 0 and put

Yy Xy,
. 5 exp(f) (& _ > Y es I
L(5,n)_5(/%t+Y* e (1) —e T Ty |
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From lemma 1 and (24) we get

. )
32210[/(57 Y,)=1¢ (m + log(1 — 5)) >0 (35)
and from (25) we get
6y = [ 220 e vy >0 36
VY = [, e b a(Y) (36)

By the fundamental theorem of calculus, the inequalities (35) and (36) im-
ply L(4,Y,) > 0, which implies that (33) increases from —6 < 0 to dM —
§%/log(1—4) > 0 as Y, increases. Hence, the Hopf bifurcation occurs once as
Y, increases. From (28)-(29) we get that Y, is a strictly increasing function
of 3. Thus, the Hopf-bifurcation occurs once as [ increases, too. O

Proof of theorem 2 In this case H(1 — §,Y/6) = 1. We have to modify
the arguments of the proof of the theorem 1 in a few cases only. In this case
the fixed point is given by

X. = Pexp(=Ys) -1, (37)
5
X = Sy (38)

In concordance with the proof of theorem 1, we call the functions defined
by (37)-(38), f« and g., respectively. By (29), g. = g». Obviously f. de-
creases, but not through the arguments alluded to in the preceding proof.
Now limy o f«(Y) = 8—1 and f.(log ) = 0. Hence, the fixed point (X, Y,)
exists and is unique if 8 > 1+ 6/M. Assertion (i) and (iii) of lemma 3 follow.
To prove assertion (ii) of lemma 3, we only have to use (30)-(31) and insert
H(1 —6,Y/§) = 1. We proceed to condition (13). In expression (33), we
have still not made use of the differential equation (26). Therefore, we can
substitute H(1 — 4,Y./8) =1 in expression (33). We get

—§+ M1 — w(Ya)) + %Y,

which obviously increases from —¢ to 400 as Y, increases from 0 to +oo.

Using (37)-(38) we get that the Hopf-bifurcation occurs once as  increases.
O
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B The discrete Lotka-Volterra system

Lemma 4 All equilibrium points of the discrete Lotka-Volterra system (1),
are unstable if 3 > 1.

Proof The origin is a saddle, and hence, unstable. It is possible to calcu-
late the co-ordinates of the interior equilibrium point. The Jacobian of (1)
calculated at these co-ordinates is given by

Bé1og B B 1 i)
J(M(ﬁ—l)’lo h) = MEL S8 1§ )"

The determinant of this matrix is given by

—14+B+6— B+ BSlog B
-1+p '

We shall prove that this expression is greater than one. Since § > 1, we have

B
/ log zdz = [zlogz — z]° = Blog — B +1 > 0.
1

We multiply this expression with §, add 8 — 1 to both sides and divide with
B — 1. We have proved that

—L1+ 48— 35+ pslog

1.
146

Hence both fixed points of the discrete Lotka-Volterra system (1) are unstable.
O
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Table 1: Coefficients of the Padé-approximation (15).
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Figure 1: Relative errors in formula (15) for different choices of ¢. The value
of ¢ is plotted at the horizontal axis and the relative error is plotted along the
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Figure 2: A numerical study of the system (17) (solid line), and the system
(19) (dotted line). (a) Mean amplitudes of the oscillations in log-coordinates,
(b) periods, if any below 2048, (c¢) dominating periods, (d) Lyapunov expo-
nents. The values of  are plotted on the horizontal axis.
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Figure 3: A numerical study of the system (10) (solid line), and the system
(14) (dotted line). (a) Mean amplitudes of the oscillations in log-coordinates,
(b) periods, if any below 2048, (c) dominating periods, (d) Lyapunov expo-
nents. The values of 3 are plotted along the horizontal axis.
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Figure 4: A numerical study of the system (10) and the system (14). Para-
meter values corresponding to chaotic solutions are plotted with red dots,
Quasi-periodic and bifurcating solutions are denoted with blue dots, Cyan
dots denote periodic solutions, with extremely high periods and yellow dots
low periodic solutions (period below 2048). White areas mean stable coex-
istence and green areas non-persistent consumer populations. (a) Bifurcation
diagram of the system (10). (b) Bifurcation diagram of the system (14). (c)
Special study of parameter values in the vicinity of § = 1 in the system (14).
(d) Special study of the parameter values in the small rectangle in (b), of
the system (14). The parameter ¢ is plotted on the horizontal axis and the
parameter 3 is plotted on the vertical axis.
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