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Abstract
It is shown that the entropy function H(Nji,...,Ng) on finite di-

mensional von Neumann subalgebras of a finite von Neumann algebra

k
attains its maximal possible value H(\/ Np) if and only if there exists
=1

k k
a maximal abelian subalgebra A of \/ N, such that A =V (AN Np).

1 Introduction

Nonabelian entropy of automorphisms of finite von Neumann algebras as put
forward in [2] is not yet well understood. If R is a von Neumann algebra with
a faithful normal finite trace 7 the definition of entropy is based on a function
H(Ny,...,Ni) on finite dimensional von Neumann subalgebras Ny, ..., N
of R, just like the entropy in the classical case is based on the entropy
H(V%_, P,) of finite measurable partitions. The function H(Ny,..., Ni) sat-
isfies many of the same properties as H (Vf=1 P,); in particular it is increasing,
and H(Ny,...,Ny) < H(VE, Ny), where V¥_, N, denotes the von Neuman-
n algebra generated by Ni,...,N,. However, some crucial properties are
false; for example it is not in general additive on tensor products, and if
H(Ny,...,N) = X%, H(N,) we cannot conclude independence of the N's
in any natural sense. Only when there is “enough” commutativity between
the N,'s can we expect nice behaviour of the function H. More specifically,




if there exists a masa — maximal abelian von Neumann subalgebra — A of
VE_, Ny such that A = V%_ (AN N,), then we have the nice formula

k
H(Ny,...,Ni) = HANN;,...,ANN) = H(A) = H(\/ Vo),
=1

thus yielding a very useful criterion for computing entropy.

In the present paper we prove the converse to the last result i.e. if we
have maximality, viz H(Ny,...,Ny) = H(Vi_, Ny), then V5, N, is finite
dimensional, and A as above exists. A consequence is that

H(M,®Ny,...,My® N) = H(My, ..., M)+ H(N, ..., Ng)

when both the M,’s and the N,’s satisfy the maximality condition. If we
furthermore have that H(Ny,..., Ny) = Sb_, H(N,) then the masa A has
the further properties that the algebas A N N,’s are masas in the N,’s and
are independent.

Our result indicates two things; firstly that it is in some cases possible
to describe relative positions of algebras Ny, ..., Ni from values of the func-
tion H(Ny,...,Ni). Secondly, if a is a 7-invariant automorphism of R and
N; = o(N) for a fixed algebra N with R = V>, N, then if the maximality
condition prevails for H(Ny, ..., Ni) for all k, then it should be within reach
to prove analogues of some of the classical theorems for generators like the
Shannon, Breiman, McMillan theorem.

The paper is organized as follows. In section 2 we prove some analytic
results needed in the sequel. In section 3 show an inequality which is crucial
for the proof. It can be described as follows. In [2, eq. (8)] it was shown that
if Tij € Rt with > Tij = 1 then

Y m(zg) < (X zy) + (i),

where 7 is the function 7(t) = —tlogt for ¢ > 0, and n(0) = 0. We improve
this inequality and give explicit estimates for the difference between the right
side and the left side. In section 4 we review the basic theory of the entropy
function H and prove some general results needed in the proof of the main
result in section 5.

The authors are indepted to E. Alfsen and M.B. Ruskai for valuable

comments.

2 Analytic preliminaries

In this section we collect some facts which will be needed in the subsequent
sections. It was shown by Nakamura and Umegaki [7] that the function
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—n(t) is operator convex. Choi proved in [1, Lem. 3.6] that every operator
convex function h on an open interval is strictly operator convex, except for
the trivial case when h is a polynomial of degree at most 1. We shall need
the following slight extension of Choi’s result, giving at the same time a new
proof of the operator concavity of n(t).

Lemma 2.1 The function h(t) = tlogt, t > 0, h(0) = 0, is strictly operator
conver on B(H)™T, i.e. for z,y € B(H)*,

h(5(z +v)) < 3h(z) + 3h(y),
with equality if and only if x = y.
Proof. Note that if z,y are invertible we could have applied Choi’s result

directly. For the general case we use the following simple lemma of Choi [1,
Lem. 3.5]. If z,w € B(H)4 are invertible, then

(1) le+w) <3 +w™)
and equality holds if and only if 2 = w. From the integral representation

Tl 1
logtzo/(1+a_t+a)da

we have for every t > 0,

h(t) =

Hence for all z,y € B(H)™,

1 1 T+
Sh(@) + Sh(y) — h( )

2
= 7(1(35 +al)t+ 1(y +al)t - (__a: +y + al) ~1)ada
, 2 2 2

as a B(H)-valued integral. By (1)

1 -1 1 1 T+y -1

s ta) ™+ oy +al) - (——2—-1-&1) >0
for a > 0, and equality holds (for each fixed a > 0) if and only if x = y. This
proves the lemma. m]




Lemma 2.2 Let R be a von Neumann algebra with a faithful normal tracial
state 7. Let a,k € R*, b € R, and assume a + tk > 0 and invertible
fort € [0,1]. Then the function t — T(blog(a + tk)) is differentiable with
derivative

%T(b log(a + k) = [ (b(al +a -+ k) k(a1 +a+ tk)")da.
0

Proof. By [6, eq. 3.6]

& r(blog(a + th))],—y = 0/ r(b(ad + @) k(a1 + a)V)dar.

Therefore

T(blog((a + tok) + sk)|,_,

& =

d
%T(blog(a + k) 1=,

7(b(al + a + tok) "*k(al + a + tok) M da

Il
O\S

O

Lemma 2.3 With R and 7 as in Lemma 2.1 suppose k=k*€ R, ye R*, and
y +tk > 0 and invertible for all t € [0,1]. Then the function t — mn(y + tk)
is differentiable with derivative

%m(y +1tk) = —7(k(log(y + tk) + 1)),
where n(s) = —slogs, s >0, n(0) = 0.
Proof. Let z(t) =y + tk. By Lemma 2.1
Erna(t) = ~r((55(9) log a(t) + a(t) 3 log (1)

= —7(klogz(t)) + /T(:c(t)(ozl +z(t)) " k(al + z(t)) ) da

= _r(kloga(t)) + / (ol + () 'z (t)(al + () k)da

Now

o0 s 0o

/ | =1 for s > 0.
a1+s a+s 1

0 a=0




Thus by spectral calculus
/ (al +2(8))'e(t)(al + () "‘da = 1,
0

so that

%Tn(a:(t)) = —7(k(log(z(t)) + 1)).
O

Lemma 2.4 Let R and 7 be as in Lemma 2.1 and denote by Ry, the set of
invertible elements in R*. Let x,,zo € R,. Then the function f: R}, — R
defined by

f(y) = 7(y(logy — logz1 — logzw, — 1)

18 strictly conver and has minimum at
yo = exp(log z; + log x5).

In particular, f(y) > f(yo) for all y € R, v # vo.

Proof. Let y € R, with y # 1, and set
y(t) = 1=ty +ty=yo +t(y— ), t€[0,1].

Then y'(t) = y — yo, and there exists ¢ > 0 such that y(¢) > el for all
t € [0,1]. By Lemmas 2.1 and 2.2 f(y(¢)) is a twice differentiable function of
t, and we have

95w = Sr(-n®) - 7 (¢)(logz, +logz + 1)
(2) = 7((y — vo)[(logy(t) + 1) — (log z1 +log z + 1)})
= 7((y — y)(logy(t) — log z1 — log z3)).

By Lemma 2.1 and faithfulness of 7 the function z — f(z), z € Rih,, is
strictly convex, hence the function g(t) = f(y(¢)) is a strictly convex function
of t since y # yo. By (2)

9'(t) = 7((y — vo) (log y(t) — log z; — log 22)),

and so

g'(0) = 7((y — o) (log yo — log z1 — log z)) = 0.
Since g is strictly convex, 0 is the unique minimum of g, hence g(¢) > ¢(0)
for t > 0. In particular, f(yo) = g(0) < g(1) = f(y). O

The previous lemma will be used in section 3, the next in section 4.
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Lemma 2.5 Let g,:[0,1] — S C R* be a Borel function for n € N, where
S is a compact set. Then there exist measure preserving Borel isomorphisms
ap: [0,1] — [0,1] such that (gn © 0)neN has a subsequence which converges
pointwise a.e.

Proof. There is no loss of generality to assume S = [0, 1]*. We consider
first the case k = 1. Choose g,:[0,1] — S such that g, takes only finite
number of values, and ||g, — ¢, ||cc < Y/n. By suitable choice of a,, we can

assume
hn = g, 0 an:[0,1] — [0,1]

is an increasing function for each n € N. Put
V = {h:]0,1] = [0, 1]: his increasing}.

Then V is compact in the topology of pointwise convergence. Furthermore,
since each increasing function has at most a countable number of points of
discontinuity, each function in V' is Borel. Choose by compactness a subnet
(hn,) of (h,) which converges pointwise to a function h € V. Put

T =(QnI0,1]) U {z € [0,1]: his discontinuous at z}.

Then T is countable and dense in [0, 1]. Choose a subsequence (hy,;) of (h,.,)
which converges pointwise to h on T. We assert that h,, — h pointwise on
all of [0,1]. Indeed, if z € [0,1] \ T and € > 0 choose 2,2’ € [0,1] \ T' such
that 2/ < z < z and h(z) — h(z) < ¢/, and h(z) — h(2') < /2. Choose
y,y € T with 2/ < ¢ < z <y < 2/, and choose %y such that ¢ > 7y implies
|hn:(y) — h(y)| < /2 and |hy,(y') — R(Y')| < /2. Since hy, is increasing we
have when h,, (z) — h(z) > 0 that

s (2) = h(@)] < |hni(y) = R(¥)| + |R(y) — h(z)|

*/2 + |h(2) = h(z)]
f2+5[2=¢.

A NN

If A, (z) —h(x) < 0 we argue similarly with ¢’ and 2’. Since ||hy—gn00n |l =
(g, = gn) © anllc — 0 it follows that

On; © O, = hp; = h pointwise a.e.
This proves the Lemma for £ = 1.

We now assume k > 2 and S = [0,1]%. Choose ¢:[0,1] — [0, 1]¥ which
is continuous and surjective, a k-dimensional Peano path. We apply [4,
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Thm. 14.3.6] to X =[0,1]%, Y =[0,1], S = {(¢(p),p): p € [0,1]}, and 7 the
projection X x Y — X. Then 7(S) = [0, 1]*. By the theorem there exists a
Borel map : [0, 1]* — [0, 1] such that (g,%(q)) € S for ¢ € [0,1]*. Hence if

g = ¢(p) with p € [0,1] then (¢(p),p) = (¢,%(g)). In particular Yo ¢ =id,,
so 1 is in particular surjective. But then with p = ¥(q), ¢ o ¥(q) = ¢, so

pop =id.

Let now (g,) be the sequence in the lemma. Then g, = ¢ 0 g,:[0,1] —
[0,1]. From the case k = 1 there is a,:[0,1] — [0,1] which is a Borel
isomorphism such that g, oo, has a converging subsequence. But g, = ¢ogy,
and ¢ is continuous, so (g, o ay,) has a subsequence which converges pointwise
a.e. |

In the course of the proof we showed the following

Corollary 2.6 There exists a Borel measurable map 1: [0, 1]* — [0,1] such
that whenever (gn)ncN 18 @ sequence of Borel functions, g,:[0,1] — [0, 1],
with 9 o g, an increasing function on [0,1], then (gn)nen has a subsequence
which converges pointwise a.e.

3 An inequality

Let R be a finite von Neumann algebra with a faithful normal trace 7 such
that 7(1) = 1. We follow [2] and use the notation

Se = {(zs,..4,): Ti,..;, € RT and equal to 0 except for a finite
number of indices, Z Tiy.a, = 1}

11...0%
- .
T= X Tk

110081 — 18041040k

As a consequence of Lieb’s result [6] that relative entropy is a jointly convex
function it was shown in [2, eq. (8)] that we have the following inequality. If

(z:5) € Sy then
>on(ay) < Do) + 3o ().

We shall in the present section improve this inequality via a proof which does
not make use of relative entropy.

Lemma 3.1 Let a and b be self-adjoint operators in R. Then we have

1
7(ee’) = 7(e*) 2 l[e”, 3.




Proof. It is well-known that

p—o0
where the limit is in norm (cf. [9], proof of Theorem VIIL.29). Straightfor-
ward computation yields

© r(ete) = 7((e2e?)) = S e, )3

Now
7_.((ea/2eb/2)2) — T((ea/4eb/4)(ea/4eb/4)*(ea/4bb/4)(ea/4eb/4)*)

lle*/*e" 41,

where ||z,|| = 7(|z[P)/P. By the generalized Hélder inequality [5, Corollary
3.2] we have for p e N

z1- .. 2plls < llz1llp-- - |Zpllps Z1,...,%p € R.

a/4eb/4

Hence withp =4, 21 =2 =23 =24 =¢€ we have

7_((eo,/4eb/4)4) < ||ea/4eb/4”i — T(e“/er/2)2).
Inductively we obtain

2k
7'(( ea/2’° eb/2’°)2’°) ea,/2’° eb/2’° ” .

VAN

— T((ea/Qk—l eb/zk—l)zk—l )'
< 7_((ea/2eb/2)2)_

Since the left side converges to 7(e*™®) we find
7_(ea+b) < 7_((ea/2eb/2)2)
which combined with (3) completes the proof. |

Theorem 3.2 Let (z;;) €S2, i=1,...,m, j=1,...,n. Then we have

jzlrn(a:}) + 2:7'77(3@ — i i ™ (2i) > i ” DY2( 1/2]"2

i=1j=1

N | =
||M§




Proof. Assume first that all z;;, z’ =1,...,m,j=1,...,n, are invertible
elements in RT. Then we have

ZTW(GJ%) + Z”"?(xf) - Zm(xij) =

= Z CL‘U (lOg Tij — 108 le - lOg .‘L’?))

tj

=1+ 7(zs;(logzi; —logz; — logz} — 1)).

ij

Set y;; = exp(logz} + logx3). Then by Lemma 2.4 the above quantity is
greater than

14+ 7(yij(logyi; — log z} — log a:f —1)=1-> 7(yij)

] i

Put a; = logz}, b; = logz?. Then z} = e%, y? = €%, y;; = e%*%. Since
S a; =Y x7 =1 we get by Lemma 3.1
i J

1= Trl) = Trlen) - Drle)

ij j

> —Z|
— _Z“ 1/2 2)1/2]”

which completes the proof when all z;; are invertible. The general case follows
by approximation. Indeed, set

a,/2 obi /2 ”

g =(1—e)zy + %1, 0<e<l.

Then Z;; is invertible, > #;; = 1, and
j

~ €
i = (1-e)zl+ —1,
~2 2, &
75 = (1—¢e)zi+ —1.
t = (-l
By continuity of the function 1 on [0,1] we are done. O

Corollary 3.3 Let (z;,..i,) € Sk. Then

k
oS mn(eh) = 3 (i) = maxg 3 )Y, (@) .
££m

=1 1, 210 toim




Proof. By Theorem 3.2 the corollary holds for ¥ = 2. Let k¥ > 2 and
assume the corollary holds for ¥ — 1. Fix [ # m in {1, ..., k}. For simplicity
of notation we may assume [,m < k. Put

Yiy.igey = inl...ik-
i
Then (yi..4,_,) € Sk—1 and yf] = :1:{J Let

a=3 > @) @E)YAIE = 5 30 W), W) 23

Telm Tptm

Then by induction hypothesis

X—:Zm(yfl)— > T Wiriey) =

=1 4 11l —1
so that
k
(4) a <Y Yonzh) = domeh) = Y T Ta.q)-
=1 1, ik 1. Bh—1 ik

Let ® : N1 — N be a bijection, and put j = ®(4;...i,_1). Then by
Theorem 3.2 (or rather [2, eq. (8)]) we get with zj;, = =54,

z Tﬂ(xil...ik) = ZTn(xjik)

110k Jik

< Do) + o,
S (e a) + X k).

1. 01

Thus by (4) the corollary follows. O

4 Entropy

Throughout this section R is a finite von Neumann algebra with a faithful
normal trace 7 with 7(1) = 1. If N is a von Neumann subalgebra of R we
denote by Ey the unique 7-invariant faithful normal conditional expecta-
tion of R onto N. Let notation be as in section 3. If Ny,..., Ny are finite
dimensional von Neumann subalgebras of R we follow [2] and define

k

H(Ny,...,Ny) = sup { > nT(mil...ik)_ZZTWENz('Ifl)}’

(.0 )ESK  dy...0p £=1 iy
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If we want to express which trace we use we write H,(Ny,...,N;). Then
H(Ny,...,Ng) > 0, symmetric in its arguments and satisfies the following
properties.

(A) H(Ny,...,Ny) <H(Py,...,P)if NyC P,

(B) H(MNy,...,Ne,Negts .., Ny) < H(N, ..., No) + H(Nigs, - .., N)

(C) Pi,...,PiCP=H(P,...,Py,Pe,...,P) < H(P,Payy,..., P)

(D) For any family of minimal projections of N, (eg)eer such that e%jl er=1
we have H(N) = e%‘? nT(ee).

(E) If \k/ N, is generated by pairwise commuting von Neumann subalge-

=1

k
bras Pg of Ne then H(Nl, ey Nk) = H( V Ne)
=1
Two inequalities were useful in [2]. The first is [2, eq. (12)] which states that
if z,y € RT, then

(5)  nr(@+y) -z +y) < (r(z) — (@) + (17(y) — m0(y))-

Since Ey is completely positive, it follows from Jensen’s inequality for oper-
ator convex functions, cf. [3] combined with Stinespring’s theorem, that

(6) nEn(z) > Enn(z), z € RY.

In particular it follows that 7nEn(z) > 7n(z). Note that if x € R* then we
have

(7) z € N if and only if nEy(z) = Exn(z).

Indeed, by operator concavity of n if nEy(z) = Enxn(x) then

Exi(e) = Ex(5(iE(@) +1(z)) < Ewn(5(En(o) + )
< 0(Bx(G(Bn(2) + 1) = nEx(e) = Ewn(a).

Thus, by strict operator concavity of n, Lemma 2.1, and faithfulness of Ey
En(z) = z. The converse is trivial.

Lemma 4.1 Let M C N be finite dimensional von Neumann subalgebras of
R. Then H(M) = H(N) if and only if each masa in M is a masa in N.
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Proof. If H(M) = H(N) and A is a masa in M, let (e)¢cr be the minimal
projections in A. Suppose e, = fo+ g, with f, and g, projections in N. Since
n(e) = 0 for each projection e it follows from (5) that

N7 (fe+ ge) — ™0(fe + ge)
< (nm(fe) — ™(fe)) + (n7(9e) — T0(9e))
= n1(fe) +n7(g0)-

By hypothesis and (D), n7(e;) = n7(fe) +n7(ge). Now if n(a+b) = n(a)+n(b)
with a,b € [0,1] then a or b equals zero. Indeed, if a # 0 and

f(b) = n(a) +n(b) — n(a+b)

then f(0) = 0, and f'(b) = log(a+b) —logb > 0, proving the assertion. Thus
7(fe) or 7(g¢) = 0, hence f; or g, = 0, and e, is minimal in N. Therefore A
is a masa in N.

The converse is immediate from (D). O

Il

n7(er)

Lemma 4.2 Let Ni,..., Ny be finite dimensional von Neumann subalgebras
of R and N = V N,. Suppose e # 0,1 is a central projection in N such that
e € N; for eachﬁ Put f =1—e. Then

H(Ny,...,N) = 7(e)Hy, (Nre, ..., Nxe) + 7(f)Hr, (N1 f, ..., Nif)
+n7(e) + 17 ().

Here 7o(ze) = 7(e)~'7(xe) is normalized trace on N.

Proof. Since e belongs to the center of IV, the conditional expectation of
R, (= eRe acting on eH) is given by Ey,c(exe) = eEy,(z). Let (z;,..5,) € Sk.
By the definition of H(Ny, ..., N;) we may assume z;, ; € N. Thus

Z n7(exi,..qp) — Z ZT”(ENzewfl
1.0k
= > n(r Te(exn i) ZZ e)7en(En,cez’)

11...0%

= 77(7-(6)) + T(e) Z nTe(exil...ik - T(e Xg: Z Ten(ENzeewf)

21...0%

< nr(e) + 7(e)H, (Nie,. .., Nge)
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by definition of H, (Ne,..., Nxe), and similarly for f. By the inequality (5)

we therefore have

S onr(miya) — Y O, (BN,

11,0 JARRY)

= Z (nr(exiy. i, + [Ziy.q,) — T0(€Tiy 4 + [Tiy. i)
910

+ 3 (i) - X SrEna)

(€. i) + (07 (Fir..i) = T0(FTir..00)))

< Y ((rlemi i) 7
+z o) = £ S r(en(Enal)) - T 5 rlfalEat)
= (Zn(w) -2 Z (Ey,ext,)) |
+( X r(fzii) = 2 2 m(Bn f1f,))
M) () + o DHy, (NLf, ..., Nef)

< nr(e) + 7(e)Hr, (Nie,. . .,
Taking sup over all (z;, ;) € Sk we see that the left side is smaller than the

right side in the formula in the lemma.
Conversely let (yp,,.p) € NTe with ¥ vp,.p, =€, and (2q;,..q,) € NTf

with 3 24,4, = f. Put

Yp1...pk if 'il = 2pe vl
Lir.in = if p=2¢—1 Vi

0 otherwise
Then . e
U zt, if ip=2g —1

We have

Z nT(xil---ik) - Z ZTU(ENﬂUf,)
= ( Z N7 (Yp1...o0) ZZTW(ENleyp,))

P1y.-Pk
( Z 777'(qu -qk +ZZT77(EN¢fqu )
q1..-qk
"“777'(6)"'7- ( Z nTe(ypt Pk ZZTen(EN,eyf;t))

P1...Pk
+n7—(f +T(f ( Z nry qu Qk) ZZTM(ENJZ@))
9

q1--9k
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Taking sup over all (y,,. ) and (24, 4,) We find

H(Ny,...,Ng) > nr(e) + 7(e)Hyr, (Nre, . .., Nre) +n7(f)
+T(f)H‘rf(N1f’ sy Nkf)a

proving the lemma. a

Lemma 4.3 Let Ny,..., Ny be finite dimensional von Neumann subalgebras
k
of R, and N = \/ N;. Let e be a central projection in N, and suppose
=1
H(Ny,...,Ny) = H(N). Then H, (Ne,...,Nye) = H, (Ne).

Proof. Let M, denote the von Neumann algebra generated by N, and e.
k
Then N, C M; C N, so that N = \/ M,, and Mye = Nye. By property (A)

=1
and (C) and Lemma 4.2 applied first to H(Mj,. .., M;) and then to N, we
have

H(N) = H(N, ..., Ny)
< H(M,..., M)
=1n(e) + m(f) +7(e)Hr, (Nie, ..., Nye) + 7(f)Hr (N1 f, ..., Nif)
< m(e) +mn(f) + 7(e)Hr, (Ne) + 7(f)Hry (N f)
_ H(N).

It follows that 7(e)H-,

e

(MNqe, ..., Nye) = 7(e)H, (Ne), proving the lemma. O

Lemma 4.4 Let N be a von Neumann subalgebra of R such that H(N) < co.
Then N is finite of type I with totally atomic center.

Proof. If the conclusion does not hold there exists a weakly closed abelian
C*-subalgebra A of N without minimal projections. Say e is the identity
for A. Then for each n € N there exists an orthogonal family ey,...,e, of
projections in A with sum e and 7(e;) = 27(e). Thus if f =1—e,

H(N) > H(A® Cf)
> ; n(r(e)y) +nr(f)
= 7(e)logn + 1n7(e) + n7(f),

proving that H(N) = +o0, contrary to assumption. O
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5 The Main Theorem

In this section we prove our main theorem. Recall that if NV is a finite dimen-
sional von Neumann algebra then the rank of N, rank NV, is the dimension of
a masa in N. Thus dim N < (rank N)2.

Theorem 5.1 Let R be a finite von Neumann algebra with a faithful normal
trace T with 7(1) = 1. Let Ny,..., Ny be finite dimensional von Neumann

subalgebras of R and let N = \k/ Ny. Then the following two conditions are
equivalent =

(i) H(Ny,...,Ny) = H(N).

(i) There exists a masa A in N such that A = e\Z(A N Np).
In partz’cul(zr, if the above conditions hold, then N is finite dimensional and

rank NV < [I rank NN,.
=1

Proof of theorem 5.1 (part 1) The implication (ii)=(i) is well-known and
follows easily from properties (A), (C), (D) and (E). Indeed,
k

H(N)> H(Ny,...,Ny) > HANNy, ..., AN Ny) = H(\/ (AN Ny))
=1

— H(A) = H(N).

From now on we assume (i). By property (B) H(N) < Z H(N;) < o0,

hence N is by Lemma 4.4 finite of type I with totally atomlc center. By
Lemma 4.3 assumption (i) holds for Ne and Nye,..., Niye for each central
projection e in N. Since the center of N is totally atomic the identity 1 is
the sup of central projections e with dim Ne < oco. If we prove the theorem

k
for Ne we conclude in particular that rank Ne < T[] rank /V,. Since this
=1
holds for all such e it holds for N itself, i.e. N is finite dimensional with
rank N < H rank N,. We shall therefore in the sequel assume dim N < oo.

In order to prove Theorem 5.1 we need to replace (z;,..i,) € Sk and the
operators x‘fl by functions with values in N. Since dim N < oo we can
consider N as a subset of R" for some r € N. Let

c:sup{%:O#weN,nggl}.

15




Since dim N < 00, ¢ < 00, It is clear that Corollary 2.6 holds with the cube
[0,1]" replaced by [0,c]". We therefore let 1:[0,c]” — [0,1] be a function
with the properties of Corollary 2.6. Let (z;,.;,) € Sk, and assume, as we
may, that z;, ; € N. For each £ let the numbers 7, run through the numbers
{1,2,...,n}. Put

i —¢(T(wu) u) ’I:g=1,...,’n,g.
Let o, be a permutation of {1,...,n,} such that
Coult) S Coyie) S S G

oe(ng)’
The defining sums in the definition of H(Ny, ..., Ni) remain the same if we
replace ig by O'e('iz), or (i1,...,i) by (01(i1),...,0k(ix)). We can therefore
assume ¢ < ¢ -+ <k, £=1,...,k. Choose numbers in [0, 1] as follows:

0= e<a{<~-<af;t=1,

E
.7

Put:A‘Z a5y, J) j < ne, AL, =[af,_;,1]. Put

(I -1 - T(ib"g).

ZXA‘ T(:U Tz, te(0,1],

J=1

where X4 is the characteristic function of the set A, or in our previous nota-
tion, if we write A;, for Af,

g = ZXAQ )7(zf,)'ai,  te[0,1].
Then 1 o g is an increasing function [0, 1] into [0, 1]. Put

gt te) = Y Xy x- xaq, (t1y - (HT(CCH ) Tiy..ix

i1..0k

Then g:[0,1]* — N+ C R" is Borel. Note that we have
1
[

g(tl, k)dtl Ldty=1

g (t)dt =1.

o °\._.

To complete the proof of Theorem 5.1 we shall need the following two lemmas
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Lemma 5.1 With the above notation we have

/1-- o/lm'(g(tl,.. te))dty ... dty — Z/”?EM (9°(te))dte =
0

0 =1}

= Z 777-(3711 wc ZZTHEM fl)

71...0% =1 4

Proof. The proof is a computation of the integrals involved.

t5))dty ... dty =

O\H
o —_ .

3

I

—

Q

—~

g

1
/777'( Z X,‘L1 t1) . XAik(tk (HT ) Tiy.4p) by ... dity
0
1

. 1. k ) B

= > [ [, @) X, Gn((T] 7(05) (i)t . dt

1.0 0 =1

k k . % B
= Z };[;[T(xfl)<(£ T(mft)) N7 (%i,..05 ) -l-n((l:]__];T(a:fl)) T(le,k)
= > n7(®i.q) +log (HT(If))T(xilmik)
k
= D 7 (@iri) + T(Tirin) ;log 7(as,)
= 3 1(@ii) + 3 7(@i.a,) log (i)
k

= Z nT(wilmik) - ;Zm’(mfl)

Similarly we have

1

/’T’I]ENt( ft))dt = /ZXA (t) Tn(T(xu) 'En,x u)d

= ZT(%, )7(7( 5%) 'n(En,;,) + 77(7'(5%) YEy,z;,)

=Y 0(En,zf,) +log 7(ai,)T(En,zi,)

)

= > (En,z;,) — 3 n7(a5,)-

i

17




Subtraction of the second formula from the first yields the lemma. a

Lemma 5.2 Let Ny, ..., Ny be finite dimensional von Neumann subalgebras

k
of R and N = \/ N,. Suppose € > 0 and (z4y..4,) € Sk satisfy
=1

k
H(N)—e< Y nr(iy.q,) — 2 2 (En,as,)-

11...0%

Then we have

k
O Y domled) < > (@i.q) +e

=1 iy T1...0k

(i) S S (rn(En,at,) — m(z,) <.

£=1 1

=1 1y

Note that by Jensen’s inequality (6) En,n(zf,) < n(En,z,), so each term in

(i) is nonnegative.

Proof. We may assume each z;, ;, € N. Since 7(En,z;,) > Tn(xfl) we

have by Corollary 3.3

H(N)—¢e< Z nr(x;,..

i1k

<Y nr(w,..

1.0k
<
1.0k

1.0k

< H(N),

Z N7 (Ti,..
Z nr(@s,..

k
i) — z Z TU(ENzwf,)

=1 1

i) — ;2777(‘”5:)
i) — O (&5

1.0k

.ik) - Z Tn(EN‘T’ilmik)

1.0k

where the last inequality follows since we can consider (%i,..4,) as an element

in S; by sufficient reindexing, and

H(N)
(z:)€S1 i

The conclusion of the lemma is now immediate.

18
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Proof of Theorem 5.1. part 2 We assume (i) so there exists a sequence
(x?l...z'k)nEN in S;, such that

H(N) = lim ( 3 nr(eh ) —ZZT’? En,t))-
i1 g =1 1,

Let g, and g denote the functions corresponding to (z7, ;. ) as defined before
Lemma 5.2. By that lemma we have

11 1
=lim (/- [nT{gn(ts,..., 1. T le; 2))dt,
(8) H(N)—M(O/ O/n (gn(t e dt =3 / n(Ex,g(te)) dte)

By Lemma 5.3 we find

© i 3 [ (m(Bvght) — (a2t =0

By Lemma 5.3 and Corollary 3.3 together with a straightforward computa-
tion we find

11
10 lim gL ()2, g (tm) Y| 5dt e dtm, =0 for £ #m
n—00 2
00

By Corollary 2.6 and the construction of the functions (g5) we can choose
a sequence (n;);cy such that the subsequences (g5,) converge p01ntW1se almost
everywhere. Reindexing we can therefore find functions g% [0,1] — {z €
N:0 < z < c1} such that g¢ — g* pointwise a.e. Since ||gi|]| < c the
Lebesgue dominated convergence theorem applies. From (9) we get

p 1
lz_: /(T’I}(Engg(tz)) - Tn(ge(tz)))dtg =0

Since the integrand is nonnegative this implies

™m(En,g'(te)) = n(g*(te) a.e.
= TEnn(g‘(te) ae.

Thus by (6) and faithfulness of 7,

1(En,g"(te)) = Enn(g(te)),

hence by (7) we have g‘(t,) € N; a.e.
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Similarly by (10) we find
[6°(t) 2, g™ (tm)?] = 0 a.e. in [0,1]? for I # m,

hence [¢*(t), g™ (tm)] = 0 a.e. when [ # m.
We assert that the operators g%(s) and ¢g™(t) commute for almost all s
and almost all ¢. Indeed, put

Ke={ g()6(s)ds: 6 € C((0,1])}
0

Kn={ [ g"@u(t)dt:y € C(0,1)}.

Operators in K, commute with those in K,, because

1 1

(] 9*(s)o()ds)( [ g™ (Byu(e)dt) =

0 0

g4 (s)g™ () p(s)(t)ds dt

Il

o O ~—

g™ (t)g"(s)p(s)v(t)ds dt

o O—

= ([ gm®u©)a) ([ gs)e(s)dt)

Consider N in its Hilbert-Schmidt norm. Then K, and K,, are closed sub-
spaces. Choose hy, ..., h, which span K, i+ Then

[(5'(s) hiy(s)ds =0 ¥ ¢ € O((0,1)

Hence (g%(s),h;) = 0 a.e. Thus ¢g(s) € K;+ = K, a.e., and similarly
g™(t) € K,, a.e., proving that [¢*(s), g™(t)] = 0 for almost all s and almost
all ¢, as asserted.

From the above we can choose nullsets V;, C [0,1] such that ¢*(s) € N,
whenever s € V,, and [g¢(s),g™(t)] = O whenever s € V;, t & V. Let By
be the von Neumann subalgebra of N, generated by g*(s), s ¢ V;. Then
B, C B!, N N whenever [ # m. Since 7 oo Ep, is continuous

TU(EBzgﬁ) - TW(EBIQE) = Tn(gz) pointwise a.e.
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Thus by the Lebesgue dominated convergence theorem

1 1
/Tﬂ(EBlgﬁ(te))dtz — /Tﬂ(ge(tg))dtg, L=1,...,k.
0 0

Similarly

1 1
[m(Exgilt)dte— [l t)dte,  £=1,....k
0 0

Thus from (8) we get

v 1

H(N) = 1?]‘,1_1;1010(/ v /nT(gn(tl, .. ,tk))dtl e dtk — Z/T’I](EBlgﬁ(tg))dtg)
0 0

=17

By Lemma 5.2 this means

k
H(N) = lim (3 nr(a}, ;) = > > mn(Es,ai,)

110k =1 1y
By definition of H (B4, .. ., By) the right side of the last equation is majorized
k
by H(Bj,...,Bx). By property (C) we therefore have, letting B = V By,
=1

H(N)< H(B,,...,By) < H(B) < H(N).

In particular, by Lemma 4.1 each masa in B is a masa in N. Let A, be a
masa in B,. Since the By all commute with each other, the abelian algebra

k k
A=\ A;is amasain B and hence in N. Since A = V (AN N,) the proof
=1 =1

is complete. O

Theorem 5.1 sheds light on two problems which have well-known classical
analogues. The first says in our notation that if A and B are commuting
finite dimensional abelian von Neumann subalgebras of R then H(A, B) =
H(A) + H(B) if and only if A and B are independent, ie. AVB=AQB
and 7(ab) = 7(a)7(b) when a € A, b € B. One might believe that something
similar holds in the nonabelian situation. The following example shows that
an affirmative result must be quite restrictive.
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Example 5.4 Let N; = {(fﬁ ?}) € My(C) : 1 is identity in Mz(C)}, S0
N =C® M2(C) C M4(C) Let

01 00
0 010

V= 00 0 1 € M4((C)
1 0 0 0

Let N, = uNyv*. If A, is the diagonal matrices, ("61 ;)1) in Ny, then Ay =
vAv* is an abelian subalgebra of My(C) which together with A; generates
the diagonal matrices A in M;(C). We thus have

H(Ny, Np) > H(Ay, Ay) = H(A) = H(M4(C)),
hence
H(Ny,N;) = H(NyV N,)=log4 =log2+log2
= H(Ni)+ H(N2).

However, N; and N, do not even commute.
The restricted theorem shows that the existence of A; and A, is generic.

Corollary 5.5 Let Ni,..., Ny be finite dimensional von Neumann subalge-
k
bras of R, and let N = \/ N,. Assume
=1
k
H(N)=H(Ny,...,Ng) = ZH(N;;)
=1

Then there exists a masa A in N such that Ay = AN N, is a masa in Ny,
and Ay, ..., A are independent.

k
Proof. By Theorem 5.1 there is a masa A in N such that A = V A,
=1
A, = AN N,;. We thus have
k
H(N) = H(A) = H(Ay,...,Ay) <> H(4)

fgiMMhHW)

It follows that H(A,) = H(N,), hence by Lemma 4.1 A, is a masa in IV;, and

MM=HM“”AQ=iHMd

=1
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The conclusion of the corollary now follows from the classical abelian case.
O

The second problem which is true in the classical case but false in the
nonabelian case is that of additivity of entropy of tensor products of auto-
morphisms, see [8] and [10]. Our next result can be used to show that it is
true when one has maximality assumptions like those in Theorem 5.1.

Corollary 5.6 Let R; and Ry be finite von Neumann algebras with faith-
ful normal traces 71 and T with 7;(1) = 1. Suppose My,...,My C Ry,
Ni,...,Ny C Ry are finite dimensional von Neumann subalgebras. Let

k k
M=\ M, N=\ N, Suppose
=1 =1

H.(Mi,...,My)=H, (M), H,(Ny,...,Ny) = H,(N).
Then

H‘l'1®7‘2(M1 ® Ni,..., My ®Nk) = HT1®T2(M®N) = HTl(M) +H7'2(N)

Proof. By Theorem 5.1 there exist masas A C M and B C N such that

A=\k/(AnMe), B=\k/(BnNg).

=1 =1
Then
k k
A®B=\/(AnM;)® (BNNy) = \/(A® B)N (M ® Np)
=1 =1
Since A ® B is a masa in M ® N it follows that
HM®N)=H(A®B) =
=H(A®B)N (M ® Ny),...,(A® B) N (M}, ® Ni))

SH(MI®N11,Mk®Nk)
<H(M®N).

This proves the first identity in the corollary. The second follows since
H(A® B)=H(A)+ H(B) = HWM) + H(N). O

23




References

[1] Choi, M.D., Positive linear maps on C*-algebras, Thesis, Univ. of Toron-
to (1972). D

[2] Connes, A. and Stgrmer, E., Entropy of automorphisms of II; von Neu-
mann algebras, Acta math. 134 (1975), 289-306.

[3] Hansen, F. og Pedersen, G.K., Jensen’s inequality for operators and
Lowner’s theorem, Math. Ann. 258 (1982), 229-241.

[4] Kadison, R. and Ringrose, J., Fundamentals of the theory of operator
algebras, vol. II, Academic Press 1986.

[5] Kunze, R., Lp-Fourier transform on locally compact unimodular groups,
Trans Amer. Math. Soc. 89 (1958), 519-540.

[6] Lieb, E., Convex trace functions and the Wigner-Yanase-Dyson conjec-
ture, Advances in Math. 11 /1973), 267-288.

[7] Nakamura, M. and Umegaki, H., A note on the entropy for operator
algebras, Proc. Japan Acad. 37 (1961), 149-154.

[8] Narnhofer, H., Stgrmer, E. and Thirring, W., C*-dynamical systems
for which the tensor product formula for entropy fails, Ergod. Th. and
Dynam. Sys. 15 (1995), 961-968.

[9] Reed, M. and Simon, B., Methods of Modern Mathematical physics,
Vol. I, Academic Press, New York 1972.

[10] Sauvageot, J.-L., Ergodic properties of the action of a matrix in SL(2,Z)
on a noncommutative 2-Torus.

24




