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ABSTRACT. A colour calculus linked with an any discrete group G is developed.
Colour differential operators and colour jets are introduced. Algebras colour differen-
tial forms and de Rham complexes are constructed. For colour differential equations
Spencer complexes are constructed. Relations between colour commutative algebras
and quantizations of usual ones are considered.

0.Introduction

Presently there exists a number of different approaches to the construction
of a calculus: the universal construction for associative algebras [C],[K], [DV],
fermionic and colour calculus [JK],[BMOJ,[KK],[V] the calculus for quadratic al-
gebras [WZ],[M], etc. , '

This paper was intended as an attempt to illustrate the general scheme [L1,L2]
of braided calculus on the example of colour calculus. The last one is a quantiza-
tion of usual calculus, determined by some discrete group G of inner symmetries.
We restrict ourself to colour calculus over groups only, but it is clear that the
constructions may be carried over to the context of Hopf algebras also.

For any Hopf algebra which is not necessarily quasitriangular, Drinfeld [D] sug-
gests to consider the quantum double - a new quasitriangular Hopf algebra. Our
discussion in chapter 1 shows a naturality of this construction as a basis for the
colour calculus.

Briefly speaking, colour structures related to braidings on the Drinfeld quantum
double of a group algebra and a colour is a ”diagonalizable” solution of the Yang-
Baxter equation. A.B.Sletsjge [S] recently found the other description of colours in
terms of twisted Hochschild complexes.

We start with an analysis of the notion of derivations and yield some structure
which we will call a colour, arising from a natural requirement to get a reasonable
analog of our usual calculus.

In section 1 we introduce the important notion of colour commutative algebra
and show that generalized (or colour) derivations of such algebras yield a colour Lie
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algebra structure. The notion of colour is linked with some discrete group G. For
- the case G = {e} we get the usual commutative algebras and for the case G = Z,
- we get the notion of super commutative algebra.

More important examples of colour commutative algebras appear from projective
(or twisting) group algebras and crossed products. The crossed products are a
natural generalization of group algebras. For example, all finite dimensional division
algebras are crossed products. It means that a calculus over these algebras is also
a colour calculus. » A

Other examples are given by the Galois theory of rings where crossed products
and skew group algebras may be considered as base objects. Therefore, a calculus
in the Galois theory is based on a colour calculus also.

In section 2 we introduce colour differential operators. We show that such ob-
jects as modules of colour differential forms and colour jets may be considered as
representative objects for functors of colour derivations and colour differential op-
erators. Qur construction of colour de Rham complexes over colour commutative
algebra A is based on two assumptions:

(1) An algebra Q*(A) of colour differential forms should be an extension of A
to a new colour commutative algebra over the group G = Z x G generated
by A and Q!(A).

(2) A colour de Rham differential d should be a colour derivation of the colour
commutative algebra Q*(4), such that d* = 0.

These conditions determine the pair (2*(A4), d) up to some group homomorphism
of G, where G is the base group.

Note that in the particular case of our usual calculus G = {e} the algebra
(£2*(A), d) is a unique, but in the super case G = Z,, we get two equally possible
constructions of super de Rham complexes.

One can continue the procedure and produce a chain of colour commutative
algebras: (Q2*(A4),Q2*(2*(4)) and so on. Their colour cohomologies determine a
new chain of colour commutative algebras. Remark that our usual calculus actually
is the second one and based on calculus over Q*(A), (cf. Lie derivations, Schouten
and Nijenhuis brackets etc).

In section 3 we put colour calculus in the framework of category theory. We
show that colours are actually symmetries in the special monoidal category. We
describe all quantizations in the monoidal category in the sense [L1-L4] and show
that colour commutative algebras are quantizations of usual ones. In th particular
it yields isomorphisms of algebras of differential operators. This result was noted
by Ogievetsky [O] for algebras of quantum hyperplanes.

Finally, I would like to thank the Department of Mathematics, the University
of Oslo and the Centre for Advanced Study at the Norwegian Academy of Science
and Letters for support during 1993 while this work was being developed. |

1.Derivations

In this chapter we analyse some structures linked with the notion of derivations.

All algebras and rings are assumed to be associative with unit 1 # 0 and all
modules are unital.
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1.1.Associativity. Let A be an associative algebra over a commutative ring k
and let A: A — A be a k-linear map.

We start with the following preliminary naive definition of derivations

A k-linear map X : A — A will be called a \-derivation if the following version
of Leibniz rule holds:

Xx(ab) = Xx(a)b + A(a)Xa(b),
where a,b € A,.

The associtivity law for A produces the following condition on A.
We compare

Xx(a(be)) = Xa(a)(be) + Ma)(Xa(b)e + A(B)Xa(c)),

and ‘ :
Xa((ab)e) = (Xa(a)b + Aa)Xa(d))e + Mab)X(c).

This gives, A(ab)Xx(c) = A(a)A(b)X(c), for all a,b,c € A.

We will suggest that X (c) are arbitrary elements of arbitrary algebras or equiv-
alently that our future definition of derivations should work in arbitrary algebras.
Therefore, we should assume that A is an algebra endomorphism.

Moreover, we will require A to be an automorphism of A. In this case the A\—
Leibniz rule is compatible with the associativity law.

Examples.

(1) Let A = C°°(M) be an algebra of smooth functions on manifold M. It is
well known that derivations of A with A = :d, are vector fields on M.
- (2) Let A =C(M) and a : M — M be a diffeomorphism of M. Denote by
Xo 1 A — A the following "difference” operator: Xo(f) = a*(f) — f.

Then, Xo(fg) = a*(fg) — fg = («*(f) = fg + o*(f)(a*(¢9) — g), and

therefore X, is an a*—derivation of A.

1.2.Brackets. Here we amplify our definition of derivations by requirement of
some Lie structure analog,.

Let X, and X3 be two derivations of the algebra corresponding to automor-
phisms a, § € Aut(A4).
Define a commutator [X4, X ] in the following way:

[Xa,Xﬂ] = Xo, o] Xﬁ - Sa’ﬂ OXﬁ OXa,

for some k-linear map So5: A — A.
If one requires the commutator to be a derivation corresponding to some auto-
morphism o € Aut(A) then

(4)
[Xa, Xp](ab) = XaXp(a)b + a(Xpg(a)) Xa(b)+
(s) (1)
+ Xa(B(a))X5(b) + af(a)XaXp(b)—
(3) (5)
— Sa,5(XpXa(a)b) — Sa,8(B(Xa(a))Xa(b))—

(4) (2)
— Sa,8(Xp(a(a)) X (b)) = Sa,p(Ba(a) X5 Xa(D)),
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and on the other hand, by the definition of derivations, we get:
[Xa) Xp)(ab) = [Xa, Xp](a)b + o(a)[Xa, Xp](b) =
(3) (1) (2)
XaXp(a)b — So,p(XaXp(a))b + 0(a) XaXp(b) — 0(a)Sa,8(XpXa(b)).

Comparing terms with mark (1) we get ¢ = @ o 8. From terms with marks (2) and
(3) one has:

Sa’ﬁ(a) = sayﬂ - a, (1)
where sq,3 = Sq,8(1) € A and
Sa,p - Ba(a) = af(a) - sa,p- (2)
for all a € A.
The terms with mark (4) and (5) give
aoXg=_S,p0Xg0aq, (3)
and
Xoqopf=Sap080X,. (4)

Therefore, we should assume that

Sayﬂ ’ Sﬂ’a =1 (4)

Then relation (3) is a consequence of (4).
Now we take a derivation X for some y € Aut(A) and consider the comp051t10n
a o Xz o v. By formulae (3) and (4) we get the following action on the elements
sgyE€EA:
a(s8,y) = Sa,8 * 58,av- (5)
In particular it follows that

saﬂy‘y = sayﬂ ' Sﬂwa'y : SQ,"[' (6)

Example. Let X, and Xg be the derivations corresponding to diffeomorphisms
a: M — M and 8 : M — M, (see ex.1.1.(2)). To introduce a commutator
[X o, Xp] one needs to enlarge the algebra A = C°°(M) by means of an element 9
with new commutative relation: ¢ - f = [a*, 3*](f) - 9, where f € A and [o*, 5*] is
a commutator of automorphisms a*, 3*.

Actually it means that we should extend our initial algebra A to colour commu-
tative algebra A[G] (see 1.6. below).

1.3. Jacobi identity. Here we yield new properties of S, 4 by assumption of
the following form of Jacobi identity:

[Xa, [Xﬂ’X‘Y]] = [[XOMXﬂ]’X‘Y] + Za,8,40 [Xﬁv [X01X7]]’

for some k-linear map Zy5,4: A — A.
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It follows by the same method as above that we should assume that
Za:ﬂ)'r = Sa;ﬂ’ : (1)

Xa(sgy) = o, (2)
and the "multiplicative” Jacobi identity '

Saf,y " Sya,f * Spy,a = 1 (3)

hold. :
Then the bracket [Xqo,Xjs] is an af-derivation and we get Jacobi and skew
symmetry properties in the following form:

(1) Jacobi identity:
[Xa, [Xﬂ,X‘Y]] = [[XmXﬂ]7X‘Y] +Sa,p - [Xﬂa [XG’X‘Y]]a
(2) skew-symmetry:

[Xo, Xp] = —5a,8 - [X3, Xa].

Remark. Denote by Ads(8) = *8 = a - B - a~!- the adjoint action of G. Then
applying the map ()~ yo( )o~~! to the Jacobi identity we get the following
property of s: ‘
’)’(Sa)ﬂ) = 87q,78-

1.4. A module structure. In this section we get an additional structure in
the algebra by assuming that the set of all derivations has an A- module structure.

Let X, be a A-derivation and let a € A be an element such that a- X, is a
v—derivation for some automorphism v = v(a, ).

In this case we have

(a- X)(zy) = a- (Xa(z)y + Mz)Xa(y)) =
= (aX))(z)y + v(z)(aXr)(y),

for all z,y € A.

Therefore we should require that a - A(z) = v(z) - a for all elements z € A.

To do this we introduce a new version of the commutative law. We say that an
element a € A is a "simple” if there exist an automorphism o = o, € Aut(A) such
that

a-z =o04(z)-a, (1)
for all elements z € A.

Denote by A, C A the k—module of all "simple” elements corresponding to the
given automorphism a:

Ay ={a€ A|az = a(z)a,Vz € A}.

Then A, = ), Aq is a graded algebra: AqAg C Aqp and a subalgebra of A.
Let’s assume that G = {a € Aut(A)|As # 0} is a group and that 4 = A,.
Then A becomes a G—graded algebra with the given action of group G such that

a(Aﬂ) C Aaﬂa-l.
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Definition. Let G be a multiplicative group with ideﬁtity element e € G. We say
tfl‘lat G-graded G-algebra A = ZaEG A, is a graded commutative G— algebra
1 .
(1) Ais a G-graded algebra: A,,Ag C Aag,
(2) there is a G-action on A such that: a(Ag) C Agga-1,
(3) Ais a graded commutative algebra: aq - T = a(z) - aq,
for‘a.ll z €A aq € Ag;a,B EG.

1.5.Consider derivations of a graded commutative algebra A. It is natural to as-
sume that derivations are compatible with the graded structure: X»(4q4) C Ap(q),
for some map A: G — G.

Comparing the degrees of terms incoming in the Leibniz rule

Xx(aa - ag) = Xa(aa)ag + A(aa)Xa(ag),

we get A(af) = A(a)B, and therefore A(a) = A - a, for some automorphism A € G.
Throughout this paper we will identify A and A.
In this case the compatibility conditions take the form X)(Aq) C Axa-

Remark. Let H be a (discrete) subgroup of Aut(A).We restrict ourself to derivations
X such that A € H.
Then

(1) The Leibniz rule determines a group homomorphism s : H — G, where
x(X) = A

(2) The module structure aq - Xy = X,, v = a- A determines an embedding
G C H such that x|g = id.

(3) Bracket conditions (1.2.) yield [H, H] C G, where [H, H] is the commutator

group generated by the commutators [z,y] = zyz~y~?.

Moreover, it follows that:
(1) K = ker» C H is an abelian group,
(2) GnK =1, [G,K]=1,

and hence H is a direct product of groups: H = K x G.
1.6. Let X be a derivation of a graded commutative G- algebra A.
Applying the Leibniz rule to products: @,z = a(z)a,, wherea € G,
aq € Ay and z € A, we get two terms:

Xi(ao)z + Aaa)Xa(2)

and
Xx(a(z))aq + Ma(z))Xr(ga)-
But X)(aq)z = AMa(z))Xa(aq), because A is a graded commutative G-algebra and
X/\(aa) € Az\a
Hence, A(aq)Xa(z) = X1(a(z))aq, and by using formulae 1.2.(4) and 1.2.(1) we
get
AM@a) = sxa * da, (1)

for all Aa € G,a4 € A,
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- We should rema:k that formula 1.2. (5) means that (1) determines a G-action
on A and sy, GA[AQ]

Remark. The graded commutative property
Qq " A8 = Sq,p" A8 * Qq

gives the hexagon equation on s.
Indeed, if we consider the product a4 - ag - a4 in two different ways we get:

|

(@a s @p)ay === Sap,ya4(aaap) SaB,v0v2adB

lI | l1

ao(agay) =——= (aa(sp,va+))ap Sa,7858(7)ayaaag.

Hence, we should require that the following form of hexagon equation holds:

Saf,y = Sa,f~y " 38,7 (2)

1.7. Starting from this point we will formalize the above constructions.
Let G be a discrete multiplicative group and A = deG A, be a G—graded
algebra. Denote by U(A) the group of units of algebra A.

Definition. A map
s:GxG—U(A),

where s : @ X B+ Sa,8 € Ala,g), and Se,o = 1, for all @ € G, is called a colour on
the group G if the following properties hold:

(1) multiplicative skew symmetry:

Sa,8 " 88,0 =1,
(2) the hezagon equation:

Safy = Saf~ " 58,y
(3) the compatibility of colour with G-action:
Saf,y = Sa,f " 58,07 * Sa,y-
In this case the colour s determines an G-action:
a(ag) = sa,s - ap, (1)

such that

for all a, 8,7 € G;aq € Aq. ‘
Remark. Condition (2) is equivalent to the multiplicative Jacobi identity.
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Examples of colours.

(1) Let G be a commutative group. Then s : G x G — U(k) C A., and
conditions (1) and (2) mean that sq 8-, = 1 and s is a group bihomo-
morphism.

(2) Let G = Z. We have two possible colours: s, g = 1-a trivial colour, and
Sa,8 = (—1)*-a standard colour.

Note that the trivial colour is the base of our usual calculus and the
standard one is a base for super—calculus.

(3) Let G = Z". All colours take the following forms:

sma= JI a7 [ s, o

1<i,j<n - 1<k<n

for all @ = (a1, ...,an), 8 = (b1, ..., Bn) € Z", and for some elements a;; € k,
and b,' = #1. .
(4) Let G be an abelian finite generated group, G = Z"/K, where K C Z" is
a subgroup with generators Ay = (A11,...; A1n)y -y Ar = (A1, -y Arn). Then
formula (1) gives a colour on G if sq = 1, for all @ € K,f € Z", or
equivalently, if
a:}ki =1,

forall:,j=1,..,n, k=1,..,r

1.8.Definition. Let A be a G-graded algebraand s : G x G — U(A) be a colour.
We say that A is a colour commutative algebra if A is a commutative graded
G-algebra with respect to the action (1.7.(1)).

Examples.

(1) Group algebras. Let k[G] be a group algebra of a multiplicative group G
with the standard basis {e, @ € G}. Then A = k[G] is a colour commutative
algebra with respect to the grading: A, = k-¢4 and the colour: s, 5 = €[a, 8]

(2) Crossed products. Let G be a finite multiplicative group and k be a
commutative G-ring with given action v : G — Aut(k). '

In some sense the crossed product of k£ and G is a generalized group
algebra. To define the algebra we consider a free k-module with a basis
{€a,a € G}, and determine a multiplication as follows:

€a €8 = w(a, Beag, (1)

and
€a " T = Va(Z)ea, (2)

where w : G x G — U(k) is a twisting cocycle, and o, € G, =z € k.
The cocycle conditions on w we can get from the associativity law for the
multiplication:

vo(w(B,7)) - w(a, By) - w(ef, )t - w(e,f)™ = 1. (3)
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Therefore,

w € Z2 .1 (G, k).

We should also remark that the scale transformation:
Ea H €5 = t{Q)eq,
for some function ¢ : G — U(k) determines a new twisting cocycle:

w'(e, B) = t(a)va(t(B))t ™" (af)w(e, B),

or
wh =6t w,

where §t(a,8) = t(a)va(t(B8))t™ (aB) is the coboundary of t. Therefore,
up to scale automorphisms, properties (1) and (2) together with the co-
homology class [w] € H2,,.(G, k), determine the crossed product algebra
A =k, [G].

If we consider A as a k®-algebra and define a grading by A, = k-4, Va €
G, and a G-action by

a(eg) = &E,a—[fa))saﬂ,

we get a colour algebra with colour

Sa,p = X(aa :6)5[01,/3]7
where the function x : G X G — k is given by the formula

w(a, B)
w(?B, a)w([a, fl,a) (4)

(3) We get projective or twisting group algebras if the action v is trivial. If
the twisting is trivial we get a skew group algebra.
(4) Let A=}, .5 Aa be a G-graded algebra such that A, = k.
Assume that any A, contains an invertible element and denote this ele-
ment by g, and define a G-action on k as follows:

X(a, B) =

a(x) =ga'x'ga—la

for any z € k = A..

Remark that any element a, € A, can be represented as aqy = go * Za,
with z, € k. It is show that action (1) is independent of the choice of gq.
If we define a twisting 2—cocycle w by the formula

w(e,B) =ga 98" 92" 95" € Ala,p):

then
Jda " gp = w(a, :B)gﬁ *Ja,




10

V.LYCHAGIN

and we get an algebra isomorphism 1 : k,[G] — A, such that ¥(eq) = gaq.

(5)
(6)

(M)

(8)

Let A=Y, g Aa be a strongly G-graded algebra [Da] with A, = k. Then
by definition A4 - Ag = Aap and we can use the above procedure.
Let k=R and G = Z, ® Z,. . )

Denote by a = (1,0) and b = (0,1) the generators in the group and by

w(a,B) = (_1)0151+02ﬂ2+02ﬂ1,

a twisting cocycle.
As R-vector space the projective group algebra R, [G] is generated by
€0 = 1,€q,€p,€ats With relations €2 = e = €2, = —1, and €,65 = €464 =

Ea+b-
Hence, if we define the map v by

€a1, EpF ], Eatb k,

we get an isomorphism between R, [G| and the quaternion algebra H.
Therefore, H is a colour commutative algebra.
Let G = (Zz)n.
Identify elements a = (ai,...,a,) € G with sequences &; < ... < @,
where 1 < a; <nand a4, = 1.
We define a twisting 2—cocycle on G as follows:

o(a,B) = (~1)P.

Here 7(a, 3) is a number of inversions in the sequence (&, ..., Gk, B, ..., Bz)
Then R,[G] is a Clifford algebra.

Let k=R, G=7Z;®Z; and A =Maty(R).
Similarly to the construction of ex.6 we define a map

¥ : R,[G] — Maty(R),

for some cocycle w as follows:
. 0 1 . 1 0
R 70 -1

r 0 -1 o s 10
L0 °7 o 1]
Now we define a cocycle w in such a way that ¥ becomes an algebra mor-
phism. Finally we get the following conditions on w:

w(a,a) = w(b,b) = w(a,b) =w(a,a+b) = —w(a+b,a+bd) =1,
and w(z,y) = —w(y,z), f ¢ #y.

Tensoring of the algebras Mat,(R) we get a colour commutative structure
on the algebras Mat,n(R), for alln =1,2,...
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(9) Any matrix algebra A = Mat,(C) is a colour commutative algebra..
To see this consider matrixes '

10 0 0 0 ... 0 17
0 n 0 n 0 ... 0 O
o= |7 Y og=fom 00
SR AR
00 ...om [0 0 ... g*! 0l
where n = exp(7'). Then,
pq=n-4p,

‘and the set {p®¢®;a,b = 0,1,...,n — 1} is an R-vector space basis of the
algebra Mat,(C).
Consider now the group G = Z,, @ Z, and the twisting cocycle

7]&152, if a9 + ,62 <n,
(~1)"In®B2 i ey + By 2,

w(a,B) = {

where a = (a1, &;),8 = (B1,B2) € G, and @;,3; =0,1,...,n— L.
An isomorphism ¥ between C,[Z, ® Z,] and Mat,(C) is given by the

formula:
(a3}

VY igq — g - p™,
for all @ € G.
(10) Let G = Z™, k = C and © = ||6;;|| € Mat,(R) be a matrix such that
6;; =0, if ¢ < j. Taking the twisting cocycle:
w(z,y) = exp(m(Az,y)),
where £ = (21,..,2n),¥ = (Y1,--,Yn) € Z",(z,y) = ).; Ti¥i, We get the
algebra C,[Z"] called a quantum torus.
1.9. Now we suggest our main notion.

Definition. A k-linear map X, : A — A is said to be a colour A-derivation,
AEG,if
(1) X, is a graded derivation: Xx(A4q) C Ara,
(2) A-Leibniz rule holds:
Xx(aa - ag) = Xa(aa)ag + A(aa)Xa(ag);
(3) values sq g of the colour map are constants: Xx(sqa,s) =0,
where aq € Ay, ap € Ag;a, B €G.

Remark. Property (3) of colour derivations is equivalent to the following interaction

between the G—action and derivations:

X,\O,B:S)‘,ﬂ-ﬂOX)‘.

Summarizing results 1.1-1.6., we have the following
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Theorem. Let A be a colour commutative algebra and let Dery(A) be a k-mbdule
of all colour A\—derivations A € G. Then ’ ‘

(1) A G-graded k- module Der.(4) = ¥ Dera(A) is a left G—graded -
A-module: _

Ay -Dery(A) C Derga(4), a,A€G.
(2) Dery(A) is a G-module with respect to the action:

a(Xy) =aoXyoa™? = 8ax X,

and a(Dery(A) C Derax(4).
(3) The bracket

[Xa, X5 =Xq0Xg—54p8-XpoX,

determines a colour Lie algebra structure on Der,(A):

[Derq(A), Derg(A)] C Derag(4), (1)
[Xa, Xp] = —sa,8 - [Xg, Xal, (2)
[Xm [Xﬂ’X'Y]] = [[XmXﬂ]7X‘7] +$8a,8 - [Xﬁ’ [XmX‘Y]]° (3)

Remark. Note that defining in an obvious way from the theorem colour Lie algebra
structures are particular case of generalized Lie algebras introduced by D.Gurevich
[G]. .

1.10. Now we analyze a notion of derivation with values in A-modules. Let P be
an A-module. Before we consider derivations with values in P we should remark
that the definition of maps satisfying Leibniz rule requires an A — A bimodule
structure on P. Moreover, working with graded algebras we should consider graded
modules too.

So we have to start with a notion of graded bimodule over a graded algebra.

Let A = ) ccAe be a G-graded G-algebra and let P = ) ./ Pm be a
M-graded k-module where M is an arbitrary grading set.

To define an A — A bimodule structure on P we must require that:

Aa'PmCPaum, Pm'AaCPm-on (1)

and
(Aa'Pm)'AﬁzAa'(Pm'Aﬂ)- (2)

Therefore, we need a left and a right G—action on the set M.

Definitions.

(1) A set M with left G x M — M, X m — a -m, and right
MxG— M,m xpB +— m-f, G-actions is called a G-bispace if
(a-m)-B=a-(m-B),forall o, € G,m € M.
(2) Let M be a bispace and P be an A — A-bimodule. We say that P is a
M-graded bimodule if conditions (1) and (2) hold.
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1.11. It is natural to consider derivations compatible with the grading only.
From the beginning we define derivations X : A — P with values in M-graded
A — A bimodule P as k-linear maps of degree m € M; X = X, : Ag — P
satisfying the following form of Leibniz rule: "

Xm(aa-ag) = Xr_n(aa)aﬁ + 6m(aa)Xm(aﬁ)‘

Denote by Auts(A) the set of automorphisms of the algebra A over the group
automorphism ¢ : G — G, that is the set of automorphisms ¢ of A such that
5'(Aa) C Aqs(a).

Then for the automorphism 6, from the Leibniz rule one has: 6 € Aut,_(A),
for some automorphism ¢, € AutG.

Comparing the degrees of terms interring in the Leibniz rule one gets the follow-
ing interaction between the left and the right G—structures:

m-a=pn(a) m. (1)

Moreover, if we analogously to (1.4.) require an A-module structure in the set
of all derivations, we must assume that A is a commutative G-graded G-algebra
and

&am‘:'ao&m’ ‘Pum=-4da°§9m- (2)

1.12. Assume now that A is a colour commutative algebra and consider the
action of X, on the products aq - ag = a(ag) - aq:

Xm(aa - ag) = Xm(aq) - ag + Gm(aq) - Xm(ap),

and
Xm(a(ag) - aa) = Xm(a(ap)) - aa + Gm(a(ap)) - Xm(aa).
Comparing the terms with X,(aq) one gets the following symmetric properties for
the bimodule P:
Zm - ag = Gm(ag) - zm,

and

Oma =0m 00, Pma = Pm 0 Adq. (1)
To compare the terms with X, (ag) we will require the presence of some G-action

G x P — P, such that a : P, — Pye-1, and the following compatibility of the
derivations with the group action:

Xmoa=op(a) - aoXy,

for some map 0: M x G — U(A), where 0 : m X a — om(a) € A, (a)a-1-
In this case we get

Fm(aq) = om(@) - aq. (1)
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Definitions.

(1) Let M be a G-bispace and ¢ : M — Aut(G) a map. We say that M is a
~ p-commutative G—space if relations 1.11 (1) and (2), on automorphisms
©®m hold.
(2) Let M be a commutative G—blspace A map o:MxG—U(A),
o:mXxa— om(a) € Ay (a)a-1, We will call a colour on the bispace
M over a colour s: G X G — U(A) on the group G if

() = o (@l (8, anle) =1 (1

Tam = &(0m(B))sas (2)
for all a,8 € G,m € M.

In other words M is a commutative bispace if M ia a left G-space considered

together with a map ¢. In this case 1.11.(1) may be considered as the definition of
the right G-action.

1.13. Let M be a commutative G-bispace with a colour o and let A be a colour
commutative G—-algebra.

Definition. We say that an M-graded A—A bimodule P =Y ., Pm is a colour
symmetric bimodule if there is a G- action on P, such that

a(zm) = am(a)—l T,

and
Tm " Ga = Om(a) Qg Tm,
for all a € G,aq € Aa,Tm € Pr.
We should remark that any M-graded A-module, where M is a commutative
G-bispace with a colour o, may be considered as a colour symmetric bimodule if
the properties from the definition one looks at as the definition of G-action and

right multiplication.
1.14.Let E be a colour symmetric A — A bimodule.

Definition. A graded k-linear morphism X : A — P a degree m € M,
X(Aa) C Pmq will be called a colour derivation with values in the bimodule
P if the following properties hold:

(1) colour Leibniz rule:
X(aa - ag) = X(aa)ag + om(a)as X (as),
(2) constancy of colours:
X(om(@)) = X(sa,6) =0,

or '
Xmoa=op(a) aoX,,
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forall m € M;a,B € Gjaq € Aa,ag € Ap.
1.15. Denote by Der,,(4, P) the module of all m-degree colour derivations with
values in P and by , '
| Der.(4,P)= Y Dern(4,P)
meM
a M-graded k-module of all colour derivations.

Theorem. Der.(A, P) is a M—-graded A-module:
A, - Derp (A, P) C Derom(A, P),
for alla € G,m € M.

2.Colour differential operators

In this chapter we define colour differential operators in a category of colour
symmetric bimodules and introduce the main functors of colour calculus. We show
that such objects as modules of colour differential forms and colour jets may be
considered as representative objects of functors differential operators and deriva-
tions. We should stress also that the group G in the colour differential calculus are
considered in the triple role:

(1) G is a group controlling the commutative laws,
(2) G is a grading group of the base algebra A,
(3) G is an action group.

2.1. We start with a reformulation of the notion of derivation. To do this we
consider the Leibniz rule

Xm(aaap) = Xm(aa)ag + om(a)aaXm(as)

in the following form:

(Xmola, —om(a@)la, 0 Xm)(ap) = Ix,.(a0)(ap), (1)

where [, : A — A is an operator of the left multiplication:

lo(b) =ab, Va,be A.

Denote by [Xm,ls,] the operator on the left hand side of (1). Then the Leibniz
rule takes the form:

[(Xm,lag] = X, (a0)-

We should note that the operator [ =1 Xm(aq) - A8 = E(ma)p has a degree ma
and satisfies the relation:

[[,lap] =0 la; — Oma(B)la, 01 =0. (2)
2.2. To define differential operators one can use the usual inductive definition of

differential operators (see, for example [KLV]) with an evident modification of the
commutator notion.
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To do this we start with a notion of 0-order differential operators or ”colour”
homomorphisms. . ‘ . :

Let P=Py =3 ey Pmny Q@=QnN =23 ,cn@n be graded modules over the
colour algebra A. ' '

Here M and N are G-bispaces.

Let 0 : A — A be a graded automorphism. We say that a k-linear graded
morphism f : P — @Q is a c-morphism if f(az) = o(a)f(z), foralla € A,z € P.

Below we will consider automorphisms ¢ which are generated by a colour:

o(ag) = sa,pag,

for some elements a = a(c) € G.
Any o-morphism f determines a map f : M — N, such that f(Pn) C Q F(m)-
Compare degrees of f(agzm) and o(ag)f(zm) one gets:

f(Bm) = *Bf(m).

Therefore, the colour dictates a special type of G-morphisms between grading sets.
Returning to the definition of colour derivations we see that one needs special
types of commutative bispaces and colours.
More precisely, we will require that in the definition of commutative bispace
morphism ¢ has the following form:

()Om(ﬂ) = 'hﬂ’

for some map ": M — G, satisfying the condition analogous 1.11.: am = am and
om(@) = 8p,a, for all a,f € G,m € M.
Definitions.

(1) Let M be a G-bispace. We say that M is a symmetric bispace if there is a
G-bispacemap ": M — G such that m-a = ™a-m,forallm € M,a € G.
(2) Let € G. A map ¢ : M — N of symmetric bispaces will be called
an a— map if p(fm) = *Bp(m).
(3) A k-morphism f : Py — Qn of colour symmetric bimodules over sym-
metric bispaces will be called y—morphism if f(Prn) C Q,(m), Where ¢ is
an a—map, and the following properties hold:

flag - Tm) = Sa,8°0ag - f(zm)s (1)

foB=sas"Bof, (2)
forall 5 € G,zm € Pn,m € M.

2.3. Let Map, (M, N) be a set of all a-maps and

Map,(M,N) = | J Map, (M, N).
a€EG
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Denote by Hom,(Py, Qn) a set of all p-morphisms, where ¢ € Map,(M, N), and

Hom.(Py,@n)= Y Homy(Py,Qn).
pEMap,(M,N)

The set Map,(M,N) is a sjfmmetric bispace with respect to G-actions

(8- 0)om) = Blelm), (¢ B)m) = p(6m)

and a map;: Map,(M,N) — G, where ¢ = a, if ¢ € Map, (M, N).
The k-module Hom.(Pyr, @n) is a Map, (M, N)-graded module by definition.
Moreover, if one defines the left and right A-structures by

(a5 - F)om) = a5 - (@) (F-as)@m) = Flas - zm),

where ag € Ag,Zm € Pm,f € Homy,(Py,Qn), one gets a symmetric A-module
with
Aﬂ : HOIII‘P(PM, QN) - Homﬂtp(PM)QN)a

Hom,(Py,Qn) - Ag C Homes(Pum, Qn),

and
frapg=35qp"ap"f,

if ¢ € Map, (M, N).
Summarizing, we have the following result.

Theorem. Let M and N be symmetric bispaces and Py, Qn be M and
N-graded A-modules respectively. Then:
(1) Map,(M, N) is a symmetric bispace,
(2) Hom,.(Pum,Qn) is a symmetric A — A bimodule, and
(3) f € Homy(Pu,Qn),» € Map,(M,N), and ¢ € Homy(Qn,Rxk), ¥ €
Mapg(M, N), then p o p € Map,4(M, K) and g o f € Homyy(Pu, Rik).

2.4. Denote by Hom§ (Puy, @n) the set of all k-linear morphisms

A: Py — Qn of degree p € Map,(M,N), i.e. A(Prn) C Qu(m), and such that
Aof=s4pBoAforall BeG.

For any homogeneous element ag € Ag we denote by l,,,74, and é,, the follow-
ing operators:

lag(A) =ag- A, T‘aﬂ(A) =A- as, 6ap = raﬁ(A) — la(aﬂ)(A).

Definition. The element A € Hom¥(Puy,Qn) is a colour homomorphism if
bay(A) = 0, for all homogeneous elements ag € Ag and 8 € G.

Denote by Hom¥ (Par, @) the set of all colour homomorphisms and define colour
differential operators by induction on the order.
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Definition.

(1) Colour differential operators of order 0 are colour homomorphisms.

(2) The element A € Hom§{(Py,Qn) is a colour differential operator over
colour commutative algebra A of order <141, [=0,1,... and degree ¢
acting from the colour symmetric module P to the colour symmetric module

Q if 84,(A) is a colour differential operator of order < ! and degree B - for
any homogeneous element ag € Ag,B € G.

Denote by Difff (P, @n) the set of all colour differential operators of order < [
and degree ¢ acting from Py to Qn.
The set of colour differential operators of order < I,

Diffi(Pp,@n)= D,  Difff(Pum,Qn)
»EMap(M,N)

is stable with respect to left I, and right r,, multiplications in

Homg(Pup, QnN) = Z Hom‘kP(PM, Qn)
pEMap(M,N)

and therefore possesses an A — A bimodule structure.
The definition of colour differential operators implies the existence of imbeddings:

Diff{ (Py,Qn) C D1ff,+1(PM,QN).
Denote by

Diff¥ (Py, Qn) = | Diff{ (Pur, Qw)
>0

the k-module of all colour differential operators of degree ¢ and by

Diff.(Pm,@N) = Z Diff?( Py, Qn)
@EMap(M,N)

the filtered A — A bimodule of all colour differential operators.

2.5. Let A; € Diff?(Py,Qn), A; € Difff(Qn,Rk) be colour differential
operators of degrees ¢ € Map,(M,N), % € Mapg(N, K) respectively.

An easy computation shows that for any element a = a, € A, we have the
following identity:

82(Az 0 A1) = Az 084(A1) + ba(a)(A2) 0 AL
This implies the following

Proposition. The composition A, o A; of colour differential operators
A € Diﬁ"P(PM,QN) and A; € Diﬁ':p(QN,RK) is a colour differential operator
Ago A € Dlﬁl+t (Pum, Ri).
Any morphism ¢ € Map(G, M) can be determined by the element m = ¢(e) €

M. We denote by Diff["(Py) = Diff{ (A, Py) the corresponding module of colour
differential operators, and

Diff((Py) = Y Diff"(Py), Diffu(Py) = Diffi( Pur).
meM >0
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The composition of colour differential operators defines an associative algebra struc-

 ture in Diff,(A) and right Diff,(A)-module structure in the module Diff,(Pas).
Moreover, the rule a(Am) = Sa,m * Am, where @ € G, A, € lef'"(PM) :

defines a G-module structure in Diff,(Par).

Suppose A : Pyy — @Qn is a colour differential operator of order < [. Then the-

~ composition fa : V € Diff{*(Py) — AoV € Dlﬁ'ﬁ(_:")(QN) defines a homomor-
phism of filtered right Diff ,(A)-modules: ‘

fa : Diff.(Py) — Diffo(Qn).

Example. Let A be the algebra of the quantum hyperplane generated by ele-
ments z1,...z, and relations ;z; = w;;z;z;, for some 2-cocycle w (see examples
1.8,2.8.). Then the module Der.(4,4) = 3. 7. Ders(4, A) is generated by the
partial derivations 0/0z; € Der_y;(A, A), where 1; = (0, ..., 0, },0, ...,0) € Z™, and

0/0zi(z;) = 6ij.
The colour Leibniz rule gives the relations:
0/0z; - z; —walxj -0/0z; = dij,
and
9/8z; - 8/0z; — w;j0/0z; - 8/0z; = 0.

The algebra of colour differential operators Diff.(A4, A) is a Z"- graded algebra
generated by elements z; of degree 1;, ¢ =1,...n, and 0/0z; of degree —1;
J = 1,...n, and the relations above. '

2.6. The graded module associated with the filtered module Diff,(Par),

Smbl.(Py)= Y Smbl{*(Py),

t>0,meM
where (Pa)
m _ Diff}* (Pm
Smblt (PM) = Diﬁ';n_l(PM)’

is the module of colour symbols of Pyy.
Since the map fa is compatible with the filtration, it defines a morphism

smbl,(A) : Smbly(Ppr) — Smbl.(Qn)
and k—morphisms

smble(A) : SmbI*(Par) — SmblZ™(Qw)

called t—symbols of the operator A.
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Propbsition. Let A, € Diff*(A), Ag € Diff’(A). Then the colour commuta-
tor ’

[Aa,Aﬂ] = Aa o Ag — Sa,8° Aﬂ o Aa
is a colour differential operator of order < s+t — 1 and degree aﬁ.

Proof. We have :
6a(Aa) = [Aaa la]
if a =ay € A,

Therefore, by using the colour Jacobi identity, we get

8a[Aa; Al =[[Aa; gl la] =
[Aav [Aﬂa a]] t Sa,8" [Aﬂ7[ a la]] =
[Aa,6a(Ag)] + 30,6 - [Ag,6a(Ad)]-
a

Denote by smbl(A) = A mod Diff; ;(A4), if A € Difff(A), the symbol of the
colour differential operator.
Then the following theorem is a direct consequence of the proposition above.

Theorem.
(1) The symbol algebra Smbl,(A) is a colour commutative algebra:

smbl(Ay) - smbl(Ag) = sq,5 - smbl(Ag) - smbl(Ag).
(2) The bracket
{smbl(A,),smbl(Ag)} = [A4,Ag] mod DiffeF,_(A4),

where A, € Diff*(A) and Ag € Diff?(A), determines a colour Poisson
structure.
It means that the bracket

{ , }:Smbl¥(4) x Smbl?(4) — Smbl2?,_,(4)

satisfies the following conditions:
[2.1.] the colour skew symmetry:

{smbl(Aq),smbl(Ag)} = —sq,5 - {smbl(Ag),smbl(A,)},
[2.2.] the colour Jacobi identity:
{smbl(A4), {smbl(Ag),smbl(A,)}} =
{{smbl(Aq),smbl(Ag},smbl(Ay)} + sa,s - {smbl(Ag), {smbl(As),smbl(A,)}},
[2.3.] the action condition:

smbl(a(Ag)) = sq,4 - smbl(Ag),

[2.4.] the colour derivation condition:
{smbl(Ay),smbl(Ag) - smbl(Ay)} =
{smbl(Aq),smbl(Ag)} - smbl(A,) + sq,5 - (smbl(Ag)) - {smbl(Ag),smbl(A)}.




COLOUR CALCULUS AND COLOUR QUANTIZATIONS 21

2.7. In this section we build up the representative object for the functor of
colour derivations.
Denote by

Q'(4) = ) Qy(4)
a€G _
the A-module generated by elements agda. of degree By, with
(1) the usual relations:

d(aq + ag) = dag +dag, d(aq-ag) =day - ag+ aq-dag,

and
(2) the relations of colour constancy, dsa,g = 0.
Note that relation (1) can be considered as the definition of a right A~ module
structure on Q1(A).
Let d: A — Q!(A) be the operator: d: aq — da,.

Theorem. For any colour derivation X, : A — Py of degree m € M there is a
homomorphism fm € Homm,(Q*(A), Pa) of degree m € M such that

Xm = fmod,

The homomorphism fm, is uniquely determined, and the correspondence X, — fn,
establishes an isomorphism between Derm,(A, Py) and Hom,, (Q!(A), Pyr).

Proof. If we set
fm(aadag) = ($m,a - @a) - Xm(ag),

we transform the usual Leibniz rule for the operator d into the colour Leibniz rule
for the derivation X,,. O

2.8. Starting from A — A bimodule Q!(A) and a colour commutative algebra
Q°(A) = A we build up an algebra of colour differential forms over A.
This algebra will be a new colour commutative algebra

Q*(A) = ) QL4

1€EN,a€CG

graded by the group G = Z x G and generated by elements a, € A, = Q9 of degree
(0, ) and their differentials da, € ), of degree (1, a).

We will require also that the universal derivation d : A — Q!(A) can be ex-
tended to a colour derivation of the algebra 2*(A) with degree (1,€) in such a way
that d% = 0.

The last condition on d dictates some restrictions on a colour in the algebra
Q*(A). To get the restrictions we consider a some colour 5 : G x G — U(A) on
2*(A) such that 3|lgxg = s.

Hexagon condition 1.6.(2) for § may be written in the form

g(n+m,aﬁ),(k,‘y) = §(n7a)7(kyﬁ7) ) g(m’ﬂ)’(k"Y), (1)
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where k,m,n € N, a,B,7 € G. Denote by wAf € Q"}""(A) the product of forms

a

w € Q3(A),0 € QF in the algebra Q*(A). Then, '
d(wAB) = dw A8+ 31e) may - w A db,

and B

dz(w A 0) = 3(1,e),(n+1,a) -dw A dB + 5(1,:),(n,a) cdw A d9 =0.

Hence, we should require that '

5(1,¢)(n+1,0) T 5(1,e),(nya) = 0. (2)

From these relations it follows that

5(1,e), (ko) = (—1)Fe(a),

where ¢ : G — U(A.), ¢(a)=30,¢),0,a)-

Taking n = m = 0,k = 1,y = e in hexagon equation (1), one gets that ¢ is
a group homomorphism. So, if we fix a colour s : G x G — U(A) and a group
homomorphism ¢ : G — U(A.), then from equation (1) we get

S(n,a)(m,8) = (=1)""p(a)™™ - 50,8 - 0(B)", (3)
and compatibility conditions 1.7.(2) are fulfilled.

Proposition. Let A be a colour commutative algebra with a colour s. Then any
colour 5 on the group G = Z x G with conditions 3|gxg = s and 2.7.(2) are given
by formula (3) for some group homomorphism ¢ : G — U(A.).

Below we will denote by Q*(A4, ¢), or simply by 2*(A), the colour commutative
G-graded algebra with the colour derivation d = d,, of degree (1.€).

Therefore for any colour commutative algebra A, a group homomorphism

¢ : G — U(A.), and an element a € G, we have the complex:

0— 4% QL(4,0) 25 02(4,0) <5 -+ 25 QL(4,9) S5 QA A,Y) 5 -

The cohomology of the complexe at the term Q¢ (4,¢) we will denote by HL (A4, ¢),
and will be called as the colour de Rham cohomology of the algebra A.
Because of d,, is a colour derivation of the colour commutative algebra Q*(A4, ¢)

then _
H'(49)= Y, HAy)
ieN,a€G

is a Z x G-graded colour commutative algebra with respect to the colour 3.

Examples.

(1) Let G = {e}. Then homomorphism ¢ is a also trivial, and we get the
standard colour on the algebra of differential forms: 5, = (—=1)™".

(2) Let G = Z;. There are two possibilities for ¢: (1) ¢ is a trivial homomor-
phism, and (2) (1) = —1. Thus there are two algebras of differential forms
linked with a commutative Z,-algebras.
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(3) Consider 4 = Mat,(C) as G = Zn®Zn-graded colour commutative algebra.
Then ¢ € G = Hom(G,C*) is a character of the group. Therefore, any
~ character on G gives us the algebra of colour differential forms on Mat,(C).
(4) The quantum hyperplane [cf. WZ,BP] is given by the following data:
k = C,G = Z", and the twisted 2-cocycle:

where 9 is a skew-symmetric n x n matrix, g € C*, a,be Z".

Let A be the algebra generated by elements z,,...z, and the relations:
T;Tj = w;;T;T;, where w;; are matrix elements of w. A is obviously a colour
commutative algebra and we can build up the algebra of colour differential
forms on A. For this end we note that any group homomorphism

¢ : G — C* has the form ¢(@) = 22, for some complex vector

z=(z1,...2n) € (C*)".

The algebra 2*(4, ¢) is now a colour commutative algebra generated by
elements z;,y; = dz;, 1 <1,j <n, and the relations:

Tilj = WijT;Ti, ITiYj = ZiWijY;Tq, YiY; = —2iZ;Wi5Y5Y5.

2.9. Here we outline the construction of Lie derivations and Nijenhuis brackets
over colour commutative algebras.

Let’s describe derivations of the algebra Q*(A). Denote by Der?'? Q*(A) sub-
module of all algebraic derivations, i.e. colour derivations X of Q*(A) such that
X IQO( A) = 0.

Since any algebraic derivation is determined by values on Q!(A) we get the
isomorphism:

Der(’,) Q°(A4) = Homq (Q'(4), 04+ (4)) = Dera (2**1(4)). (1)

For any derivation X € Dero(2**!(A)) we will denote by ¢x the corresponding
algebraic (inner) derivation of Q*(A).

In other words the operator may be defined as the colour derivation in Q*(A)
such that:

(1) 1x : Q5(4) — QL55(4),

(2) ex(w1 Awz) = 1x(w1) Awz + (=1)%p(a) ™ - sa,8 - p(B)* - w1 Arx(ws),

(3) 1x(ag) =0, :x(dag) = X(ap),
where j,k €N, o, € G,wi € Q4(4),a5 € Ap.

The module of colour algebraic derivations is obviously closed with respect to
the colour commutator of derivations.

Therefore we get a colour Lie algebra structure on

Nij(d)= ) Homa(Q!(4),2F(4)).
k€Z,a€G
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The colour Lie algebra Nij(A) will be called a Nijenhuis algebra of the colour
commutative algebra A and the bracket will be called a colour algebraic Nijenhuis
bracket. ‘

" By definition the Nijenhuis bracket of elements X € Homq(Q!(4), 2¥+1(A)) and
Y € Homp(Q'(A), Q"1 (A)) is given by the formula

[X,Y)(w) = ex(Y(@)) = (=1)* - ()™ - 50,6 - 0(B)* - 2y (X (w)),

for all w € QI(A).
Any derivation X € Dery(A) determines an inner derivation
1x € Der(_1,0)(2*(A)) and a Lie derivation: Lx = [1x,d).
For Lie derivations we have the same properties as for the usual ones.

Theorem.
Lx is a colour (k, a)— derivation of the algebra of colour differential forms Q*(A) :

Lx (w1 Aws) = Lx(wi) Awz +p(a) ™ s0.5-w1 A Lx(ws).

(1) The bracket [Lx,Ly] is a Lie derivation Lz for some element Z = [X,Y],
and is called the Frolicher - Nijenhuis bracket.
(2) The Frélicher-Nijenhuis bracket

Homg (R (4), 251 (4)) x Homg(Q'(4), 271 (A)) — Homgs(Q(4), QFHF2(4))

determines a G—graded 5—colour Lie algebra structure in the Nijenhuis al-
gebra.

Here w; € Q’ﬁ‘,(A),wg € Q! (4).

2.10. In this section we outline the construction of the modules of colour jets
as representative objects for the functors of colour differential operators (see [KLV]
for the usual case).

Let Pjs be a symmetric colour module. Consider the tensor product A (% Py as

a colour M-graded module too. To do this we assume that elements
e ®@Tm, Qo € Aa,ZTm € Pp, have the degree am and the G-action is given by
the formula B(aq ® zm) = B(a) ® B(zm). The left A-module structure in A % Py

is induced by multiplication in the first factor.
For any element ay € Ay we define the endomorphism §% : A%PM — A(%PM

as follows:
8% (ag @ Tm) =08 e @ Tm — a3 @ GaTm.
Then 6%« are endomorphisms such that §%=(Ag (% P,)C(A % P )gom, and
6% (ag ® z) = ag ® 6*=(2).
Let p;+1 be the M—graded submodule of A C% Pyr generated by all the elements

of the form
(6% 08%10---06%1(ag @ Tpm).
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| Denote by J'(Pa) the quotient module A ? Py /w41 and by ji: Py — T(Pag)

the map: ji(zm) =(1® ¢m) mod pi41.

We will call the modules J'(Py), 1=0,1... as modules of colour jets and
Ji as colour l-jets operators. :

One has

b0, (J1)(zm) =Jila - zm) — aa - ji(zm) =
(1®ay Tm — 8 ®Tm) mod gy = —6*(1Q ) mod pi4q
and jjo B = foj. |
Therefore, 6,4, 0" -06%1 (51) =0,and j;: Pyy — J’(P‘M) is a colour differential
operator of degree td: M — M and order [.

Theorem. For any colour differential operator A : Pyy — Qn of degree

¢ € Map, (M, N) and order [ > 0 there is a colour homomorphism

A JYPy) — Qn of degree ¢ such that A = f2 o j;. The homomorphism
fA is uniquely determined, and the correspondence A — f establishes an isomor-
phism between Diff{ (Pun,Qn) and Homy,(J'(Pum), @n).

Proof. The uniqueness of the morphism f2 is obvious. In order to show existence
we define f2 : A® Py — Qn by putting
k

F*(as 8 2m) = alag) - Alwm).
Then |
fA(6“" (a4 ® xm)) = fA(a., ® AgTm — G08 @ Tm) =
a(ay)A(apzm) — a(ayap)A(zm) = a(ay)8a,e(A)(Zm)-
Therefore, f~|,,,, = 0 and we get the morphism f : J!(Py) — Qn, such that
A=floj. O |

2.11. Let A : Pyy — Qn be a colour differential operator of order ! and degree
v € Map,(M,N). We define the t-jet prolongation of A in the usual way as the
composition A® = j, 0 A: Py — JTHQnN).

Denote by fA(t) the corresponding homomorphisms: A? = f‘:‘t 0 Jitt-

The embeddings Diff;*(Py) C Diff' (Pa), t < u, generate epimorphisms 7y, ¢
TL(Py) — TE(Pyu), m € M, such that 7y 1 0 ju = js.

Moreover, Ty ; 0 Ty y = Ty 1, forall t <u < w.

Denote by Cosmbl’, (Pas) the kernel of the projection

Ttt—1 - jrtn(PM) B J;-I(PM) and by

Cosmbl,(Py)= ) Cosmbli,(Py)
t>0,meM
the cosymbol module of Pyy.

®) e-1 . .
One has 741 0 f& = f2 omt1e41-1 and therefore any colour differential
operator A determines a homomorphism

Cosmblif*(A) : Cosmblit!(Py) — Cosmbll,,.y(Qn)
of degree ¢.
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Definitions.

(1) Let A : Pyy — Qn be a colour differential operator of order [ and degree
¢ € Mory,(M,N). Then M-graded submodule R; = Ker f& C J'(Py) is
called a colour differential equation. Riy: = Ker f"\‘_(‘) cJ H"(PM) is called
t—prolongations of R;. '

(2) The M-graded module g; = 3,5 9™, where g/ = KerCosmbl}, (A), is
called a symbol of the equation Ry, and giy; = ZmE:\/I 9l Where g7}, =
Ker Cosmbl} ,(A), is called t—prolongations of the symbol.

Similarly ([KLV]) by using of colour de Rham operator d = d,, we can define
Spencer colour operators

S =S, Q(A,0) ® THPy) — 04, 0) @ T (Pa),

such that S(w ® jk(p)) = dw ® jx—1(p), for all w € Q'(A),p € Py.
For any colour differential equation we have S(Ri4+: C Q!(A) %} Ritt—1-

Therefore, Spencer operators produce the complexes:

0 — Rip: — Q(4,0) ® Ripi-1 — (A4, 9) ® Ript—g — -,

which cohmologies are Spencer colour cohomologies of colour differential equa-
tion R;.

3.Graded monoidal categories and colour quantizations

In this chapter we compare the colour calculus developed above with the calculus
in braided tensor categories suggested in [L1]. To do this we describe two monoidal
categories linked with colour calculus. The first one is an underlying category of
grading spaces and the second one is an corresponding category of graded

k-modules. '

3.1. Denote by Symg the category of symmetric G-bispaces. Thus, an object
X in the category is a symmetric G-bispace, or in other words a left G—space
X endowed with G-map": X — G. é\ morphism in the category is a G-map
f: X — Y of left G-spaces such that f(z) = £, for all z € X.

One can convert Sym¢ into a monoidal category by introducing a ”tensor prod-
uct” of G—spaces.

At first we define the tensor product to be the pushout. X éY of X and Y, where

X 1is considered as right G-space and Y as left G—space, respectively. Therefore,

elements of X é Y can be identified with equivalence classes z ® y of

(z,y) € X x Y with respect to the following equivalence relation:
(za,y) ~ (z,0y), Va€G.

Examples.

(1) Let X = G be a standard symmetric G-bispace. Then G X Y =Y, for

all Y € Ob(Symg), and the isomorphism above is given by the formula
(a,y) — ay, YVeeG,yeY.
(2) Let Y = * be a trivial G-bispace. Then, X X * = X/G is the orbit space.
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We will consider X é Y as a G-bispace with left and right multiplications a-(z ®

y) = az®y and (zQy)-a = Q@ ya, and with the symmetry function: 7 @ y = - §.
3.2. Let C be an arbitrary monoidal category with a tensor product ®. Recall
the following

Definition[McL]. A symmetry for monoidal category C is a natural isomorphism
oxy: XQY — Y ®X, forall X,Y € ObC), such that

(1) the hezagon condition: ocxgy,z = (0x,z ® idy) o (idx Q oy,z)
and
(2) the unitary condition: oxy 0 oy, x = tdxgy

hold.

Theorem. Any symmetry in the monoidal category Symg has the form

ox,y(z®y)=[2,9] -y®x=, (1)
forall X,Y € ObSymg), z€X,y€Y.

Proof. We will identufy elements z € X with morphisms ¢; : G — X in the
category such that: t;(a) = (aZ™!) - z.
From the naturality of the symmetry o it follows that the diagram

' oX,Y

XxY — Y xX
G G
Ttx Xty Ath’tX
G G

0G,G
GxG@ — Gx@G
G G

A

G — G

commutes.
But A = 0, is a morphism in the category. Hence X = id, and we get formula

(1). An easy computation shows that the hexagon and the unitary conditions are
valid for the given 0. O

Remark. The same result we get if we consider the new tensor produt X [GXG] Y,
where [G, G] is the commutator group.

3.3. Denote by GMod; the category of graded k-modules equipped with a
special G—action.

Thus objects in GMod;, are graded k-modules Ppr = Y 1 Pm, graded by G-
bispaces M € Ob(Symg), and endowed with a left k[G, G]-module structure such
that a(Pp) C Pam for all a € [G,G].

The k[G, G]-module structure determine a special G-module structure on Py :
a(zm) = [a,m] - Tm,

and a right k¥[G, G]-module structure
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where a € [G,G],8 € G,z € Pp.

Morphisms in the category are graded k[G G]-morphisms f PM — QN cov-
ering morphisms in the category Symg.

We convert G Mody into a monoidal category by letting Py ® Qn be the usuall
k[G, G]-tensor product graded by the space M x N.

Any object Me Ob(SymG) determines an obJect k(M) € Ob(g]\lodk) where

k(M) is the algebra of k-valued functions on M with basis {§n},m € M, such
that ém(m) = 1,'and ém(m') = 0, otherwise. We will consider k(M) as M-
graded k—module, where functions 6,, have degree m, the G-action is given by
o(8m) = ama-1, and the left k[G, G]- module structure is given by a - 6., = §qm
Any element z,, € Py we will identify with morphism: t(zm) : k(M) — Py,
such that #(zm )(6m) = Tm, HTm)(bama-1) = a(zm),Va € G, and t(z,,)(6m') =0

otherwise.

Let o be a symmetry in the monoidal category. By using of naturality of sym-
metries we get the following commutative diagram:

oP,Q

PM ® QN — QN ® Py
Tt(zm)m(yn) Tt(y,.)@t(zm)
(M) ® k(N) 2200200, 1Y @ k(M).

Any symmetry o covers the symmetry in the category Symg. Therefore,
Tk(M) K(N) * Om ® bn = X(12, )[R, 1] 67 @ b,

for some function x : G x G — U(k), and

oP,Q(Zm @ Yn) = X(h, A)[h, A]Yyn ® Tm. (1)

The condition that ¢ is a morphism in the category yield the following condition
on x:

(1) x(aao,B) = x(a, a0 B),
for all o, 8 € G, a0 € [G,G].

The unitary equation produces the multiplicative skew-symmetry property on x
X(a)ﬂ) ' X(:Baa) = 13
and the hexagon equation yields

x(aB,7) = x(e,7) - x(8,7),

for all a,8,€ G.

Summarizing we get the following
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Moreover, if o is a symmetry (or braiding) in the monoidal category then ag(’y =
Q;IX oox,yoQx,y is a symmetry too [L1]. One can define o—differential operators in
braided tensor categories in such a way that quantizations generate tra,nsformatlons
of modules of o—differential operators [L1,L2].

3.6.Here we describe quantizations in the category GM ody.

Let Q be a quantization. Then by using the naturality of Q we get the following

commutative diagram (see 3.3.):
_ 0 |
Xm @ Yn —=% Xy @Y

~

Tt(m@t(yn) . H(2m)Bt(vn)

6] @ k1G] 2 k(G @ k(]

ll

MG  —— K

where Xp,Yn € Ob(GMody), =m € Xum,yn € Yn.
Because of § = id, we have g(eq) = g(a)€q, for some function ¢ : G — k*, and

Qx,y(zm ®Yn) = ¢(MA)Tm @ yn From condition 3.5.(1) we get ¢ = 1, and therefore
Q =1d.

Theorem. Any quantization in the monoidal category GMody is trivial.
3.7. Similarly to theorem 3.3. we get the following

Theorem. Any quantization Q in the monoidal categofy GMody is given by the
formula

QP,Q(mm X yn) = Q(ﬁlyﬁ)zm ® Yn,

where q : GxG — U(k) is a quantizer [L4], i.e. an[G, G)- invariant multiplicator
on the group:

(1) q(aao,/B) = q(a,aoﬂ),

(2) q(e,a) = Q(a’e) =1,

(3) a(a, B7)e(B,7) = a(aB,7)q(a, B),
where ag € [GaG]a a,B,7 €G.

Example. Let G = Z".Then the theorems above show that quantizations act on
the set of all symmetries in a transitive way. Therefore all modules of differential

operators on quantum hyperplanes are isomorphic. The isomorphisms can be given
by the quantizations [cf. O.].
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