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Abstract

In this thesis, we have studied the preselection bias that can occur when the number
of covariates in a high dimensional regression problem is reduced prior to a high di-
mensional regression analysis like the lasso. Datasets in genomics often include ten-
or hundred thousands, or even millions, of covariates and a few hundred or less pa-
tients. To reduce computations or to make the problem tractable, practitioners often
rank the covariates according to univariate importance for the response, and preselect
some thousand covariates from the top of the list for multivariate analysis via penalized
regression. If the preselection of covariates is not done in a controlled way, this leads to
preselection bias.

We have studied the effect of preselection on estimation and prediction and the bias
this might induce. With a small preselected dataset, the lasso in combination with
cross validation tends to select many covariates, which together are able to explain
the data at hand very well. However, for a new independent dataset, these covariates
predict rather poorly. This is preselection bias. We have visualized the preselection bias
through boxplots in several different datasets from genomics and in simulated data. We
have also demonstrated that the problem of preselection bias is most evident in datasets
where there is a lot of noise, and where there are heavy dependencies between covari-
ates, as the univariate ranking will not be able to capture the structure of the complex
relations in this case.

To be able to trust predictions made from penalized regression on preselected covari-
ates, the preselection should be coupled with some algorithm that controls how many
covariates that should be included in order to avoid the bias. We have studied methods
like “SAFE”, “strong” and “freezing” that all make preselection more safe, the word
safe meaning that the lasso analysis for the preselected set of covariates should con-
clude with the same result as if all covariates were included.
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Chapter 1

Introduction

In many situations calling for statistical regression analysis, especially in genomics and
epigenetics, the number of covariates pall is much bigger than the number of observa-
tions N (pall >> N), as will be illustrated in Chapter 2. In order to handle challenges
caused by a high number of covariates, Tibshirani (1996) introduced the concept of lasso
in his paper "Regression Shrinkage and Selection via the Lasso" in 1996, and the theory
around this problem has grown over the years.

The lasso method introduces a L1 penalty on the covariates in a regression model
and performs variable selection by shrinking some of the coefficients exactly to zero.
A penalty parameter λ, also often called a tuning parameter, decides the amount of
shrinking and thereby how many of the covariates that are selected by the lasso. There
are several ways to find the optimal λ, but as the main interest often is to fit a model
that predicts the response as accurately as possible, one often turn to some sort of cross
validation.

As the routines for collecting data get more and more advanced, scientists are able to
register an enormously large number of covariates. A dataset can be so large that the
computation time for analyzing the data becomes very high, and it can even be impos-
sible to read the data into programs like R (The R Foundation for Statistical Computing,
version 2.15.2). The upper size limit for a matrix to be read into R is that the whole ma-
trix, N × pall , cannot exceed 231 − 1. Due to this constraint and the computation time,
reducing the number of covariates before doing lasso analyses is useful, even though
the lasso works for high dimensions (pall > N).

A common way of doing dimension reduction is first to study one covariate at a time
and examine how this specific covariate influences the response, and in the subsequent
analyses only include the top ranked covariates sorted according to their univariate
correlation with the response. The number of covariates that is being included for the
subsequent analyses seems, in many cases, to be quite arbitrary. When ranking the data
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Chapter 1. Introduction

according to their univariate relation with the response, the interaction and correlation
between different covariates in the design matrix will not be taken into account.

Both datasets from medical studies and simulated datasets will be used in this thesis to
visualize what happens when the dimension of a high dimensional dataset is reduced
without supervision. Cross validation will be applied to find the optimal value of the
penalty parameter λ. A cross validation curve visualizes the cross validated prediction
error for a grid of various λ-values, and the optimal penalty parameter, called λmin
in the full dataset, is chosen to be the λ that minimizes this cross validation curve.
For different sizes of the preselected set of covariates, the cross validation curve will
change, and thereby also the value of λ. We seek the same model as the whole dataset
would give, i.e the number of covariates in the preselected set that will give the same
penalty parameter λmin as the dataset including all the covariates.

When reducing the number of covariates in high dimensional data by preselection, the
lasso solution model may fit very well for the data from which the model was fitted. But
large prediction errors may occur when the fitted model is applied on a new dataset.
Preselection bias is a concept that is mentioned by several authors writing about high
dimensional data, but it is seldom clear what the problem of preselection bias really
is. In this thesis, we will demonstrate the problem of preselection bias in high dimen-
sional data, and illustrate how preselection bias will reduce the prediction ability of a
model even if it seems that the preselection helps the lasso to arrive at a better model
than without. We will focus on preselection in a lasso setting even though preselection
bias can appear also when reducing the number of covariates prior to any regression
analysis, for instance when reducing the dataset to be able to use ordinary least squares
method (OLS) to fit a model. In this case, it is not clear how one could examine the
phenomena of preselection bias because it would be impossible to fit a reference model
including all the covariates with OLS.

We will also study methods that will make the preselection of covariates more safe, and
thereby make the final solution of the lasso more trustworthy and avoiding preseletion
bias. Literature proposing various preselection methods to control the bias caused by
preselection has grown in recent years. Sure independence screening (SIS) was intro-
duced by Fan and Lv (2008) and is based on correlation learning. SIS reduces the size of
the high dimensional dataset from high to a moderate scale that is below sample size,
but this method assumes fairly uncorrelated variables. As datasets in genomics often
have block-like patterns of correlated variables, there are other methods that are better
suited when working with genomic datasets (Richardson and Bottolo in discussions
in Fan and Lv (2008)). El Ghaoui et al. (2011) and Tibshirani et al. (2012) developed
rules to eliminate covariates for the lasso. They are called the SAFE method and the
strong method, respectively, and for a given penalty λ they discard covariates that are
clearly not important to describe the response. Furthermore, Bergersen et al. (2013) in-
troduced freezing that can be applied when preselecting covariates so that preselection
bias is avoided. The freezing algorithm studies the cross validation curve for different
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values of λ and include only the top most important covariates of a sorted list of covari-
ates in the subsequent analyses with lasso. In this thesis we focus on genomic datasets,
and will study how to avoid preselection bias through the methods SAFE, strong and
freezing.

The thesis is organized as follows: In Chapter 2, some high dimensional datasets in
genomics are introduced. Chapter 3 contains theory for linear regression and Cox re-
gression before regularized regression and cross validation are introduced. Further-
more, what is meant by preselection and preselection bias will be explained in Chapter
4. Chapter 5 and 6 use lasso in a practical example with linear regression and Cox re-
gression, respectively, and illustrate the problem of preselection bias. SAFE and strong,
which are methods that make it possible to discard covariates, but avoid preselection
bias, are introduced in Chapter 7. Chapter 8 introduces freezing for more safely includ-
ing only the top ranked covariates for the lasso analysis, and in this chapter, we also
study an example of survival analysis with truly high dimensional data. In Chapter 9
we have done three different simulation studies to examine when preselection bias is
most pronounced, before we summarize and make some concluding remarks in Chap-
ter 10.
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Chapter 2

High dimensional datasets in
genomics

To better understand the background for the analyses in the practical examples in this
thesis, we will in this chapter introduce some of the theory about how the human DNA
and genes are built. We will also describe several different genomic and epigenetic
datasets, in which some are used in Chapters 5, 6 and 8.

DNA and genes

The human body is made up of cells which all contain a nucleus with a genome. All
the genetic information of a human body is included in the genome, and it consists
of 23 chromosome pairs. The chromosomes are encoded by long strands of DNA (de-
oxyribonucleic acid) with codes for genes. The human genome contains around 30 000
genes, and the genes can be called the recipe for the proteins that build and control the
body (www.yourgenome.org, visited 04.2014). Before the protein is made, mRNA is
created from the DNA. When mRNA and protein is made, we say that the gene is ex-
pressed. A cell’s individual characteristics are defined by the proteins, so which genes
that are expressed can tell a lot about a cell, for example if a cancer cell has genes that
are expressed differently than the same cell from a healty person (Bioteknologinemnda
2009).

The biological information contained in the DNA is encoded in DNA chains of four
different nucleotides; Adenine (A), thymine (T), guanine (G) and cytosine (C). These
chains are connected in pairs to form a DNA double helix. A human genome contains
over 3 billion DNA base pairs, and how these nucleotides are combined in a sequence
defines the cell’s characteristics.

By studying the human body on a molecular level, it is possible to detect structures
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Chapter 2. High dimensional datasets in genomics

and developments in the DNA that can influence the body’s ability to recover from a
disease, and the probability of relapse. In this chapter, we will introduce gene expres-
sion data, copy numbers, methylation data and SNPs which are four different types of
genomic and epigenetic datasets that study the DNA structure of various cells in differ-
ent ways. In the practical examples in this thesis, gene expression data and methylation
data will be used. Gene expression data and copy number data contain typically around
30000 genes, methylation data often have around half a million covariates, and there
can be several millions single nucleotide polymorphisms (SNPs) measured in datasets
in genome-wide association studies (GWAS).

Microarrays and gene expression data

All the cells in the human body contain identical genetic material, but which genes that
are active differentiate from cell to cell. Studying which genes that are active and in-
active in different cell types can be helpful to understand both how the cells normally
function, and if there are differences in the genes when a cell does not perform as ex-
pected. Microarrays make it possible to study thousands of genes at the same time, and
determine how active they are in the given cell (National Human Genome Research
Institute 2011).

A microarray, or a DNA chip, is a plate of glass or similar that is divided into a grid,
where in each spot of the grid, a specified DNA sequence from a cell sample will be
attached. This DNA sequence is called a probe and each probe is associated with a
particular gene. A microarray can include hundreds of thousand different probes, and
is often studied to determine if cells have recognizable patterns during the course of a
disease. To detect the differences in the genes of healthy cells and sick cells, DNA from
the two distinct sources is often compiled in one microarray, but with different colors.
The two sources can for instance be biopsies from the same organ from a healthy person
and a person with cancer.

The most common usage of a microarray is in gene expression data. For a gene ex-
pression microarray, a much used method to distinguish the expression levels from the
different cells is to color, or label, the samples with fluorescent dye Cy3 (green) and Cy5
(red). Through a process called hybridization, the labeled mRNA will get attached to
the perfect complementary DNA (cDNA) on the microarray. The amount of color that
attaches each spot is proportional to the amount of mRNA in the sample, and if a gene
is strongly expressed in one of the samples and not in the other, the color of this probe
will be strong. On the other hand, if the gene is expressed the same way in both the
sample from the healthy and the tumor cell, the color of the probe will be a combina-
tion of the two labeling colors. With this type of comparison of two different samples, a
colormap will illustrate clearly which genes that are expressed differently in the tumor
cell compared to the healthy cell (Oregon State University 2013). This process of how a
microarray is made is shown in Figure 2.1.
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Figure 2.1: A microarray is made by combining samples from a healthy ("normal") person and,
for instance, a person with cancer into one grid where mRNA from the different samples are
connected to its corresponding spot. Here, a red color on the microarray means that this gene is
expressed in the cancer cell, and not in the healthy cell. A yellow spot means that both the cells
contain the same amount of mRNA for that specific gene. Usually, microarrays will also include
different shades of the colors, representing how much mRNA that is activated. This illustration
is from El Camino Hospitals webpage (04.2014).

Gene expression data is usually a matrix made from DNA microarrays from a biopsy,
where the colors in a microarray is translated to numbers that describe the intensities,
and each element of the matrix reflects the activity of one particular gene. One row of
the gene expression matrix corresponds to one sample, and several samples are com-
bined into one matrix. In this thesis, gene expression data are used in both the lasso
with linear regression example in Chapter 5 and the lasso with Cox regression example
in Chapter 6.

aCGH - array Comparative Genomic Hybridization

Datasets with so called copy numbers are also frequently used to study the DNA. Alter-
ations in the DNA may lead to changes in the number of copies of a gene (Røine, 2013).
These mutations may be deletions, insertions, or duplications of the chromosome, or
part of the chromosome. The number of copies of a gene influence how the genes are
regulated in the cell. Thereby, the number of copies can be related to diseases such as
cancer. Remark that mutations in the chromosome is not necessarily due to diseases,
there are also normal variations among people.
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Chapter 2. High dimensional datasets in genomics

Array Comparative Genomic Hybridization (aCGH) is used to measure the copy num-
ber alterations of a gene. This uses the same colors and methods as microarrays; greater
intensity in one spot of the array indicates that there are many copies of this particu-
lar gene. It is useful to measure if there are less or more copies than normal, therefore
datasets in aCGH is often on log2-scale (National Cancer Institute 10.2014). This means
that the normal value of 2 copies will be represented as 0. A positive value means that
there is a gain of copy numbers, while a negative number shows that there is less than 2
copies of the gene represented in this particular spot of the array. We have not studied
aCGH data in this thesis, but included the description for completeness.

Methylation data

DNA methylation refers to the addition of a methyl (CH3) group to the cytosine (C)
and guanine (G) nucleotides (Mandal 2014). More specific, the methyl can bind to C,
but only if C is followed by G (CH3 - CG). The exact role of methylation in the gene
expression is currently unknown, but proper DNA methylation appears to be essential
for cell differentiation and embryonic development. It is a recurring phenomenon that
if a gene is methylated, it is not expressed. It has also been discovered that although
the overall methylation levels are similar in different humans, there are significant dif-
ferences in the methylation levels between different tissue types and between normal
cells and cancer cells from the same tissue (Phillips 2008). The methylation level also
changes with age.

In Section 8.3, we study the so called beta values for a methylation dataset. On one
DNA strand there are half a million probes, and in one cell sample there are several
DNA strands. A probes’ beta value is a ratio measure describing how many DNA
strands in a sample that has the particular probe methylated. There is one beta value
for each probe and it takes values between 0 and 1, where 0 indicates that none of
the probes in this cell sample are methylated, and 1 corresponds to that all probes are
methylated. The numbers in between can be thought of as “how much on” the probe
is, and describes the proportion of probes that are methylated in the cell sample.

SNPs

Over the last years there has been an increase in usage of datasets from Genome-wide
association studies (GWAS) which aim to find strong associations between what is
called SNPs and observable characteristics or traits (phenotypes) in a set of individ-
uals. The goal is to identify genetic risk factors for diseases that are common in the
population.

A single-nucleotide polymorphism (SNP) is a generic variation in some location of the
genome and involves a nucleotide that differs across different individuals. An example
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Figure 2.2: A SNP is a variation in a DNA sequence that is present in a large part of the
population. 1: DNA sequences and genes. 2: A difference in nucleotides of a large part of the
population can be found. 3: Two short DNA sequences taken from the same region of the genome
of two different persons. 4: In the first line of the DNA sequence in picture 3, one nucleotide
position had different values for the two persons. 5: Only single-nucleotide substitutions in
the DNA sequence that are present in a large part of the population are called SNPs. 6: At this
position of the DNA, a SNP is located. Scientists estimate that there are at least 10 million SNPs
in the human DNA. The pictures contains a collection of illustrations taken from the National
Human Genome Research Institutes webpage (04.2014).

is GAATCGT and GAACCGT where the DNA frequence is collected from different
individuals. In most cases, there are two different nucleotides for a variant, and the
most frequent is often called "0", and the less frequent "1". SNPs are commonly genetic
variations, and many SNPs are present in a large proportion of the human population.
The less frequent nucleotide variant can for example have a frequency of 40%, i.e that
40% of the population have this variation and 60% have the most frequent variation
(Zhang et. al 2012, and Bush and Moore 2012). It is often the less frequent nucleotide
that is of interest, because it can be tested if this variation has any association with a
common disease. If less than 1% of the population has the less frequent variant, this
variant is called a mutant and this is not defined as a SNP (Sjøberg 2006). See Figure 2.2
for an illustration on how SNPs are found.

A SNP is a modern unit of genetic variation and is used more and more in genetic
studies. Datasets from GWAS often have one or two million genetic factors. Scientists
estimate that our DNA contains approximately 10 million SNPs, but not all of these are
detected yet. We have not studied SNPs in this thesis, but the description is, together
with the description of aCGH, included for completeness.
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Chapter 3

Regression models and penalization

The practical aspects of lasso, cross validation and preselection bias will be studied
for both linear regression and Cox regression throughout this thesis. In this chapter we
will introduce the underlying theory concerning high dimensional regression problems
calling for regularized regression methods.

In many different situations in real life, an outcome of an event depends on one or more
variables or covariates. The covariates can influence the response to different degree.
Some examples are how age, gender and car type influence the risk of car accidents,
how different genes influence how exposed a person is for cancer, or how the blood
pressure and age or weight are connected. This can be modeled statistically by intro-
ducing covariates xj, j = 1, ..., p, where p is the number of covariates. The coefficients,
which indicate how much weight each covariate should have, can be denoted as β j.
Let yi be the response with i = 1, ..., N, where N is the number of observations. When
fitting a model to a dataset, there will always be an error since a model can never fully
cover all the uncertainty that exists in real life. This error is denoted εi with E(εi) = 0.

3.1 Linear regression

In linear regression, the expected response is assumed to be a linear combination of the
covariates. By using matrix representation, the linear regression model can be written
as

yyy = XβXβXβ + εεε, (3.1)

where XXX is a N × (p + 1) matrix of covariates, yyy is a vector of responses, εεε is a vector of
errors, and βββ is a vector of parameters to be estimated, including the intercept β0. More
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detailed, formula (3.1) can be written
y1
.
.
.

yN

 = yyy = XβXβXβ + εεε =


1 x11 ... x1p
. . .
. . .
. . .
1 xN1 ... xNp





β0
β1
.
.
.

βp

+


ε1
.
.
.

εN

 .

The estimated response will be ŷ̂ŷy = Xβ̂Xβ̂Xβ̂, where the estimated coefficients β̂̂β̂β are found
through some estimation procedure. These coefficients can furthermore be used to pre-
dict the response for a new set of data with new values for the covariates.

An ordinary regression problem, with a larger number of observations than covariates
(p ≤ N), can be solved with the ordinary least squares method (OLS). This is done by
minimizing the sum of the residual squared error, or in other words, minimizing the
squared difference between the true value yyy of the response, and the estimated response
ŷ̂ŷy. In the linear regression setting, the least squares estimate is given by

β̂ββ
OLS

= arg min{
N

∑
i=1

(yi − β0 −
p

∑
j=1

β jxij)
2}

or, with matrix notation,

β̂ββ̂βββ̂βββOLS = (XXXTXXX)−1XXXTyyy.

When the noise terms εi are normally distributed, minimizing the squared error is
equivalent to maximizing the likelihood, as will be used when introducing the lasso,
giving β̂ββ = arg min{−l(β0, βββ)} where l is the log likelihood function.

3.2 Cox regression

In many cases, linear regression is not the proper way to model how the covariates and
the response are connected, and there exists a large number of alternative regression
methods. In medical research, binary responses are often of interest. Whether a patient
is sick or not is a binary response, and it can be tested if the response is affected by
some covariates of interest, as the type of medicine or the age of the patient. This can
be modeled through a logistic regression model.

Another response common within medical research, is survival time. This will be the
focus in this thesis along with the linear response that has already been introduced. Ex-
amples of survival data can be time between births, time until divorce, or time from an
individual gets cancer treatment until relapse or death. To keep it relatively simple, we
will consider time until death from a disease (as for example cancer) in the subsequent
description.
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3.2. Cox regression

Right censored survival data

Right censored survival data is data where the starting point for entering the study
is the same for all patients, but the time of death is not always known. A patient’s
starting point can be time of the diagnosis of an illness, or time of a cancer treatment.
The stopping point of an observation, on the other hand, is not always well defined. If
observation of the patients is terminated before anything specific is known for all the
patients, the survival times are incomplete. Either a death due to the diagnosis that is
studied (the event of interest) is observed, or the observation of the patient is ended
before anything about the time or cause of death is known. When the observation is
terminated before the actual event (death) has happened, the observation is said to be
censored. An observed death of other causes than what is studied is also defined as a
censored observation.

Survival data like this require special methods to handle the censored observations
properly. Several advanced methods exist, but we will focus on the Cox proportional
hazard model which is the most common model for right censored survival data (see
Aalen et al. (2008)).

Definitions and assumptions

In the following, we will introduce some standard terminology in survival analysis.
The survival function S(t) is defined as the probability that the survival time T is larger
than t,

S(t) = Pr(T > t).

For a regression model to fit this framework, a collection of N individuals is registered,
and for individual i ∈ [1, N], Ni(t) is the counting process that counts the observed
occurrences of an event of interest in [0, t]. For survival data, it is assumed that there is
only one event for each individual, thereby Ni(t) will only take the values 0 or 1. The
intensity process of the counting processNi(t) can be written as

ηi(t) = Yi(t)α(t|xxxi), (3.2)

where Yi(t) is an indicator that gives the value 1 if individual i is under observa-
tion just before time t, and zero otherwise. α(t|xxxi) is the hazard rate, and xxxi(t) =
(xi1(t), xi2(t), ..., xip(t))T is a vector of covariates that, in general, may be time-dependent.
The intensity process ηi(t) is the conditional probability that an event occurs for indi-
vidual i in a small time interval [t, t+ dt), and can also be written as ηi(t) = Pr(dNi(t) =
1|Ft−). Here, Ft− is defined as the past and dNi(t) denotes the number of jumps of the
process in the small time interval [t, t + dt).
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The aggregated counting process is defined as N∗(t) = ∑N
i=1Ni(t) with intensity pro-

cess

η∗(t) =
N

∑
i=1

ηi(t) =
N

∑
i=1

Yi(t)α(t|xxxi),

assuming no joint events. This assumption is reasonable because the time steps can be
defined to be infinitesimally small, i.e. dt is a very small number. When the jumps of
the counting process occur randomly and independent of each other, the homogeneous
Poisson process can be used to model the counting process.

The hazard rate α(t|xxxi) in (3.2) is the probability that an individual who has not yet
experienced an event, has an event in the next small time interval. More formally, the
hazard rate is defined as

α(t) = lim
dt→0

1
dt

Pr(t ≤ T < t + dt|T ≥ t).

The hazard rate can be modeled by a regression model. In the Cox regression model,
the hazard rate of an individual is on the form

α(t|xxxi) = α0(t)exp(βββTxxxi(t)), (3.3)

where xxxi(t) = (xi1(t), ..., xip(t))T is the vector of covariates for individual i at time t and
βββ = (β1, ..., βp)T is the vector of regression coefficients.1 α0(t) is the baseline hazard and
describes the hazard for an individual with all covariates equal to zero. The remaining
part of the right hand side is the hazard ratio, or the relative risk. The hazard ratio
describes the size of the hazard rate that depends on the covariates.

There are some additional assumptions on the hazard rate in Cox regression. It is as-
sumed

1. Log-linearity:
log{α(t|xxx)} = log{α0(t)}+ βββTxxx

This means that the effect of increasing x by 1 is the same for all values of x.

2. Proportional hazards:

α(t|xxx2)

α(t|xxx1)
= exp{βββT(xxx2 − xxx1)},

which says that the ratio is constant over time.

1 Remark that in Cox regression it is not possible to estimate the value of the intercept β0. The intercept
is a part of the baseline function α0(t) which is non parametric.
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3.2. Cox regression

Partial likelihood

In the Cox proportional hazard model, the parameters βββ are estimated through the
partial likelihood, instead of the ordinary likelihood. This is necessary because the
hazard is semi parametric since it is composed by exp(βββTxxxi(t)), which is parametric,
and the non parametric baseline hazard α0(t). The partial likelihood is found taking the
conditional probabilities of observing an event for individual i at time t, given the past
and that an event is observed at time t, and multiplying the conditional probabilities for
the uncensored observations. With Ft− defined as the past, the conditional probability
here is

π(i|t) = Pr(dNi(t) = 1|dN∗(t) = 1, Ft−)

=
Pr(dNi(t) = 1|Ft−)

Pr(dN∗(t) = 1|Ft−)

=
ηi(t)
η∗(t)

=
Yi(t)exp(βββTxxxi(t))

∑N
l=1 Yl(t)exp(βββTxxxl(t))

. (3.4)

Thereby, if ij is the index of an individual who experiences an event at time Tj (i.e. the
index of an uncensored individual), the partial likelihood becomes

L(βββ) = ∏
Tj

π(ij|Tj)

= ∏
Tj

Yij(Tj)exp(βββTxxxij(Tj))

∑n
l=1 Yl(Tj)exp(βββTxxxl(Tj))

= ∏
Tj

exp(βββTxxxij(Tj))

∑l∈Rj
exp(βββTxxxl(Tj))

(3.5)

where Rj = {l|Yl(Tj) = 1} is the set of persons at risk at time Tj. Using the partial
likelihood (3.5), the partial log likelihood for the Cox proportional hazard model is
defined as

l(βββ) = logL(βββ)

= ∑
Tj

{βββTxxxij(Tj)− log( ∑
l∈Rj

exp(βββTxxxl(Tj))}. (3.6)

Remark that this will only sum over uncensored events since ij is the index for an indi-
vidual that experience an event of interest at time Tj.

For more on the theory around survival analysis and Cox regression, see Aalen et al.
(2008).
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Chapter 3. Regression models and penalization

Figure 3.1: The contours of ∑j |β j|q for given values of q (in two dimensions, i.e p = 2, and
we have only two different coefficients, β1 and β2). This figure is from the book The Elements of
Statistical Learning by Hastie et. al (2009).

3.3 Regularization for regression models

When the number of covariates is larger than the number of observations (p > N), the
ordinary methods to find the estimated coefficients can not be used to find a unique
solution to the regression problem. In this situation, there are p unknown parameters,
but only N equations, which leads to an infinite number of solutions. To be able to
find a unique solution, regularization of the optimization problem has to be taken into
account. This means that we have to introduce restrictions on the coefficients βββ in the
regression model (Vidaurre et. al 2013). In this thesis, we will study datasets where the
number of covariates p is much larger than the number of observations N (p >> N).

Penalized regression

The optimal coefficients in an ordinary regression problem are found by maximizing
the likelihood. When restrictions are introduced on the coefficients in a penalized gen-
eral regression problem, the estimation is performed by minimizing the sum of the
negative log-likelihood and a penalty;

β̂̂β̂β = arg min{−l(β0, βββ) + λ||βββ||q}, (3.7)

where λ is a penalty parameter and ||βββ||q = ∑
p
j=1 |β j|q where q ≥ 0. Different values for

q give different shapes on the constraint areas, and Figure 3.1 shows how the constraints
will look in the case of two covariates.

Two of the most commonly used penalties are the L2 and L1 penalties, which corre-
spond to q = 2 and q = 1. This is the ridge regression (Hoerl and Kennard 1970) and
the lasso (Tibshirani 1996), respectively. The ridge reduces the size of the coefficients
(shrinkage), while the lasso also does variable selection by setting some coefficients
equal to zero, as will be explained later in this section.

The elastic net (Zou and Hastie 2005), another penalization method, is obtained by
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3.3. Regularization for regression models

combining the ridge and the lasso. The elastic net penalty,

λ
p

∑
j=1

(αβ2
j + (1− α)|β j|),

gives a penalty shape that corresponds to a combination of the two shapes for q = 2 and
q = 1 in Figure 3.1, depending on a parameter α that defines the relationship between
the L1 part and the L2 part of the constraint.

The "naive" elastic net is defined as

β̂ββ
elastic

= arg min{−l(β0, βββ) + λ1

p

∑
j=1
|β j|+ λ2

p

∑
j=1
|β j|2},

where the L1 part of the penalty generates a model with some coefficients set equal to
zero (a sparse model). The quadratic part of the penalty, corresponding to the ridge
part, stabilizes the L1 regularization path, removes the limitation on the number of
selected variables and encourages grouping effect.

The lasso, i.e the L1 regularization for the regression problem, will be the constraint
used in this thesis.

Lasso

The lasso was introduced by Robert Tibshirani (1996) and is short for ’least absolute
shrinkage and selection operator’. The lasso does variable selection by setting some
coefficients equal to zero. Coupled with cross validation to find the penalty parameter
λ optimal for prediction, lasso is able to make a sparse model that also has good pre-
diction abilities. The lasso solution of high dimensional regression problems is found
by putting q = 1 in (3.7), hence

β̂ββ
lasso

=arg min{−l(β0, βββ) + λ||βββ||1}, (3.8)

where ||βββ||1 = ∑
p
j=1 |β j|. In linear regression an equivalent formulation for the penal-

ized regression problem is

β̂ββ =arg min
N

∑
i=1

(yi − β0 −
p

∑
j=1

β jxij)
2,

subject to
p

∑
j=1
|β j|q ≤ t,

where q = 1 for the lasso. Here t has the same role as λ in (3.8). The same idea as the
ordinary least squares method is used when fitting a model in the penalized regression
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Chapter 3. Regression models and penalization

Figure 3.2: Illustration of how lasso (a) and ridge (b) estimation work in the case of linear
regression. The figure is from the original paper on lasso of Tibshirani (1996) and illustrates
the two dimensional case. β̂ββ is the least squares estimates and the black square and circle is the
constraints for the lasso and the ridge, respectively.

method lasso for linear models, but in addition to minimizing the squared residuals,
the sum of the absolute value of the estimates is constrained to be less than a given
number.

Figure 3.2 illustrates the difference between lasso and ridge in the case of linear re-
gression. The black square and circle are the penalty (constraint) regions, which are
|β1| + |β2| ≤ t for lasso, and β2

1 + β2
2 ≤ t for ridge. The ellipses are the contours of

the least squares error function (Hastie et al. 2009). The point in the middle of the el-
lipses, β̂, is the least squares estimate. The solution of the penalized regression problem
is defined to be the point where the ellipses and the constraint regions intersect. For
the lasso, the figure illustrate that β1 = 0 when the black square and the largest ellipse
coincide, while for ridge, the ellipse will rarely coincide with the black penalty circle
at a point where β1 = 0. Therefore, this illustration shows that the ridge only shrinks
the model coefficients, while the lasso, in addition to the shrinking, also reduces the
number of covariates in a model by setting some coefficients equal to zero.

Lasso for Cox regression is found by using the partial log likelihood (3.6) in the formula
for lasso (3.8). More details can be found in Tibshirani (1997).
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3.3. Regularization for regression models

Adaptive lasso and the group lasso

The original version of the lasso (Tibshirani 1996) is the focus in this thesis, but it is use-
ful to be aware of that there exist several more advanced versions of the lasso. Examples
of these are adaptive lasso and group lasso.

The adaptive lasso (Zou 2006) replaces the L1 penalty in the formula for the lasso (3.8)
by a weighted version. The lasso does estimation and variable selection simultaneously,
but for certain scenarios Zou (2006) shows that the lasso is inconsistent for variable se-
lection. By introducing adaptive weights when penalizing the different coefficients, the
adaptive lasso is consistent and a solution can be found by the same efficient algorithm
for solving the lasso. The formula for the adaptive lasso is given by

β̂ββ
adapt

(λ) =arg min{−l(β0, βββ) + λ
p

∑
j=1

wj|β j|},

where www = 1
|β̂ββinit|γ

is the weight. β̂ββinit is an initial estimator and γ > 0 is a fixed param-

eter. The lasso can be used as a first step to find the initial estimator, i.e β̂ββinit(λ̂init) can
be found through cross validation and (3.8).

The grouped lasso (Yuan and Lin 2006) can be used to solve high-dimensional regres-
sion problems where the parameter vector βββ is structured in groups. More informa-
tion on adaptive lasso, group lasso, and other versions of the lasso can be found in
Bühlmann and van de Geer (2011).

The penalty parameter λ for the lasso

The penalty parameter λ in a penalized regression model like the lasso is a tuning
parameter that in the end determines how many of the covariates that are selected in
the fitted model. The size of λ decides the degree of shrinkage of the coefficients, and
when λ gets larger, the number of non-zero coefficients gets smaller because a number
of the coefficients are drawn towards zero.

In this thesis, we are interested in the penalty parameter that gives the best prediction,
and will therefore apply cross validation to find the optimal λ for this purpose. The
result of a large λ will be low variance, but large bias on the βs, because they will be
heavily shrunk. On the other hand, when λ is small, the variance increases, but the bias
decreases. With cross validation the λ that gives the optimal balance between variance
and bias on the βs can be found, as will be explained in the following section.
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Chapter 3. Regression models and penalization

Figure 3.3: 10-folds cross validation. For each iteration, the white box illustrates the validation
group of patients, while the grey boxes illustrate the training set where the model is fitted. In
studies where both sick patients and healthy references are included, both must be included in
the validation group as well as the training set. This illustration is found in Lee (2010).

3.4 Cross validation

K-folds cross validation is a method to find the optimal penalty parameter λ in penal-
ized regression, where λ determines the amount of shrinkage in the model. The cross
validation method is illustrated in Figure 3.3 and can be explained as following:

• Divide the observations in K groups

• For different values of the tuning parameter λ:

– For k ∈ [1, K], do the following:

* Put aside the kth group of subjects (patients), called the validation group.

* Fit a model with the K-1 groups that are left, i.e find the estimated coef-

ficients β̂ββ
−k
(λ).

* Use the model to predict the response ŷyy∗ for the validation group.

* Compare the predicted response ŷyy∗ with the observed value of the re-
sponse yyy∗ in the validation group.

– Find the average prediction error over the K groups.

• Choose the λ that minimizes the average prediction error, e.i. the λ that gives

coefficients β̂ββ
−k
(λ) that predict the observed value of the response the best over

all K groups.
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3.4. Cross validation

Cross validation for linear regression problems

More precisely, for linear regression, the cross validation function can be written

CV(λ) =
1
K

K

∑
k=1

∑
i∈kth part

(y∗i − ŷ∗i (λ))
2

=
1
K

K

∑
k=1

∑
i∈kth part

(y∗i − xixixi
∗β̂ββ
−k
(λ))2, (3.9)

where y∗i is the observed response in the current validation group and ŷ∗i (λ) is the
estimated response found from the covariates xixixi

∗ from the current validation group

and a model β̂ββ
−k
(λ) made by data without the validation group k. After evaluating

several different values for λ, the tuning parameter that minimizes CV(λ) is chosen.
More theory on this subject is found in Hastie et al. (2009) and the slides of Hastie and
Tibshirani from 2009 (http://statweb.stanford.edu/ tibs/sta306b/cvwrong.pdf, visited
02.2014).

The main focus when fitting a regression model can be either variable selection or pre-
diction, and this will determine which model is decided to be the best one. The cross
validation uses the prediction ability to find the optimal model. Therefore, by apply-
ing cross validation to determine the penalty parameter λ in lasso, it is automatically
assumed that the aim is prediction.

Cross validation for Cox’s proportional hazard model

The idea of tuning a model by leaving out different folds of observations is the same
for Cox regression as explained previously in this section. For a linear regression
model, the residual sum of squares ∑(yi − xxxiβ̂ββ)

2 is, apart from a constant, equal to

−2loglikelihood. Similarly, the predicted sum of squares ∑K
k=1 ∑i∈kth part(y∗i − xxx∗i β̂ββ

−k
),

used in (3.9), is connected to the cross validated log likelihood.

From Verweij and van Houwelingen (1993), we get that by denoting l(βββ) to be the log
likelihood, and defining l−k(βββ) as the log likelihood when the kth fold is left out, we
can define

lk(βββ) = l(βββ)− l−k(βββ)

to be the contribution of fold k to the log likelihood. This is a general result that holds
for all likelihood functions. If the terms in the likelihood were independent, as in a
linear model, lk(βββ) would simply sum up to be the likelihood, ∑ lk(βββ) = l(βββ). It is

defined that β̂ββ
−k

is the value of βββ that maximizes l−k(βββ). The general cross validated
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Chapter 3. Regression models and penalization

log likelihood CVL is then given by

CVL =
K

∑
k=1

lk(β̂ββ
−k
).

In order to get the K-folds cross validation formula for a Cox model, the partial log
likelihood (3.6) must be applied. Since the terms in the Cox partial log likelihood are not
independent, cross validation for estimating the penalty parameter λ in a regularized
Cox model is a bit more complicated than for the penalized linear regression. The cross
validation formula for Cox’s proportional hazard model is given by

CVL(λ) =
K

∑
k=1

lk(β̂ββ
−k
(λ))

=
K

∑
k=1
{l(β̂ββ−k

(λ))− l−k(β̂ββ
−k
(λ))}, (3.10)

and the optimal penalty parameter λ is obtained by maximizing CVL(λ), as explained
in Bøvelstad et al. (2007). This means that the contribution of all the K folds in the
cross validation is studied. The λ that makes all the folds contribute to the partial log
likelihood as much as possible, and thereby maximizes the cross validated partial log
likelihood, is chosen.

3.5 Programming in R: glmnet

For the practical analyses with the lasso in this thesis, the package glmnet (Friedman
et. al 2013) in R is used. In this package there is a parameter alpha which is called
the elastic net mixing parameter. This parameter takes values between 0 and 1 and
determines if the penalty in formula 3.7 should be L1, L2, or a combination of the two.
The penalty is defined as

1− α

2
||βββ||22 + α||βββ||1,

and alpha = 0 in glmnet gives the ridge penalty, while alpha = 1 will give the lasso
penalty (default).

To get the lasso solution with coefficients from glmnet, the penalty parameter λ must be
supplied. The optimal value of the penalty parameter λ is found from cross validation
and the function cv.glmnet. This does cross validation with n f olds number of folds,
where the default is 10 folds.

By specifying the parameter f amily in glmnet, the lasso solution for several different
regression models can be found. Particularly, the algorithm for the lasso for Cox re-
gression is used by specifying f amily =′′ cox′′, and applying the response as a Surv
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3.5. Programming in R: glmnet

object. A more detailed explanation for how lasso for Cox regression is done in glmnet
can be found in Appendix B2.

Glmnet uses the sequential Strong algorithm to speed up the computations. This dis-
cards covariates prior to the lasso analysis, but does not introduce preselection bias, as
will be explained in Chapter 7.

There exist other packages that implements the lasso, and the least-angle regression
algorithm (LARS) is another famous package made by Efron et al. (2004). Because of
differences in the implementations, the results from glmnet and LARS may differ.
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Chapter 4

Preselection and preselection bias

The number of covariates available in many high dimensional regression situations, is
so huge that it is useful to reduce the dimension of the dataset before performing a lasso
analysis. Sometimes this data reduction is performed because the data file is so large
that it might be hard to read it into programs like R, but most often the reduction of
covariates is done in order to reduce the computation time. In the following chapters,
we will study how this dimension reduction affects the results in analyses like the lasso.
We define pall to be the size of the full dataset, while p < pall is the size of the preselected
set of covariates.

4.1 Preselection criterion

Often, a preselection of covariates (also called prescreening or pre-filtering) seems to
be done quite arbitrarily, using some preselection criterion, but not thinking to what
consequences the reduction of the number of covariates might lead to in the subsequent
analyses. An illustration on how covariates can be preselected can be seen in Figure 4.1.
Covariates as for example gene expression data is collected from N samples. A sample
or an observation often corresponds to one patient, but observations can also include
samples from a tumor tissue and a healthy tissue from the same person. The covariates
are combined into a Nxpall matrix and sorted according to some preselection criterion
before only a reduced number of covariates are used in the subsequent analyses.

Very large sets of data is common in genomics, as described in Chapter 2, and preselec-
tion of covariates is therefore often done in this type of datasets. For instance, Cho et
al. (2010) performs dimension reduction by studying a single SNP at a time and test if
it is correlated to the response. Then they discard SNPs with a weak correlation. They
claim that the number of SNPs remaining after the preselection can be determined to
avoid computational concerns, and have in their paper reduced the number of SNPs in
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Chapter 4. Preselection and preselection bias

Figure 4.1: Illustration of now how preselection of covariates can be done. For practical rea-
sons, one dot in this illustration can for instance represent 1000 covariates. The covariates are
visualized as dots of different sizes, such that it is possible to see if the covariates are sorted or
not.
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4.2. The problem of preselection bias

their dataset from pall = 327872 to p = 1000 with no further comments.

The correlation between the different covariates and the response is a common preselec-
tion criterion when working with linear regression. Studying the correlation between
the response and one covariate at a time is, in fact, equivalent with sorting covariates
after their P-value from univariate linear regression. A linear regression model can look
like

y = a + bx,

where y is the response, a is the intercept (a constant), b is a coefficient, and x is a
covariate. This univariate linear regression is done for each of the covariates in the
dataset, and the P-value of b indicates if the value of b is significantly different from
zero, i.e if the covariate is correlated with the response or not. The covariates are sorted
according to the correlation, and the set of covariates having the highest correlation (in
absolute value), or the lowest P-value, are thereafter used in the multiple regression
analysis. The challenging question is how many of the sorted covariates should be
included in the subsequent analysis in order to obtain trustworthy results?

Another example, in a Cox regression setting, is as in Waldron et. al (2011) where they
apply a univariate pre-filter to reduce the dimension of the dataset. They compute a
P-value for each covariate by the logrank test, and filter such that only the covariates
with a small P-value are used in further computations (they used P < 0.1, P < 0.3 and
P < 0.5).

The theory concerning Cox regression is more complicated than linear regression be-
cause of the partial likelihood, but the univariate P-values can still be used to preselect
covariates before the lasso analysis. By including only one covariate at the time in the
survival analysis with the Cox proportional hazard model, a P-value for each of the
covariate’s coefficient is calculated. A prioritized list of which covariates that should
be included in the lasso analysis is found by sorting the coefficients according to their
P-value. A low P-value indicates that this covariate is significant when modelling the
response. In Waldron et al. (2011), they advise the reader to use caution when applying
this so called univariate pre-filter, especially when working with the L1 penalty (here,
combined with L2 in the elastic net), as the preselection might worsen the prediction.
This general effect of preselection is what we will study in the following sections.

4.2 The problem of preselection bias

As we will demonstrate in the following chapters, preselecting a small number of co-
variates to be included in the lasso analysis will usually result in a low value of the
penalty parameter λ. With a weak penalty, many covariates will be included in the
final model from the lasso. In general regression, when a model at most has as many
covariates as observations, the response can be replicated almost perfectly by adjust-
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Figure 4.2: Visualization of underfitting (first plot) and overfitting (last plot) in a two dimen-
sional regression problem. The plot in the middle shows the linear regression model that balance
bias and variation the best because it captures the trend of the dataset, but not the random noise.
This figure is from the webpage The Shape of Data (04.2014).

ing the corresponding coefficients. This concept is called overfitting, and an overfitted
model is not likely to predict well for a new dataset. The reason for this is that the
overfitted model will not only capture the trend (signal) of the response, but also the
random noise in the dataset from which the model was made, as illustrated in the last
plot in Figure 4.2. A good model will have a balance between the bias and the variance
such that the model will capture as little as possible of the random noise, and as much
as possible of the trend of the response.

Reducing the number of covariates in high dimensional data may result in a model that
fits very well for the data from which the model was fitted. However, due to overfitting,
this might cause large prediction errors on new datasets (Ambroise and McLachlan,
2002). This is an important aspect to be aware of when preselecting covariates. A model
should fit as well as possible to the data from which the model was fitted, but often it
is even more important how the model can be used for prediction in new datasets. In
genomics, the aim can for example be to make a model that is able to predict whether
a new patient’s probability for survival will increase or decrease if he or she gets a
particular cancer treatment.

4.3 Filtering

In some cases, the dimension of a dataset is reduced by discarding covariates that have
little variation over the different samples (often patients in genomics). This is done
because little variation across the observations indicates that this covariate is unlikely
to be able to say anything significant about the response. A possible filter is to discard
all covariates which have standard deviation less than for example 0.1. This is not to be
confused with what we refer to as a preselection criteria when discussing preselection
bias in this thesis. The reason for this is that we wish to shed light on the problems that
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may occur when we use preselection criteria connected to the relationship between the
covariates and the response. Dimension reduction by discarding covariates with low
variance only depends on the covariates, and not the response. This will not give the
same systematic errors as the preselection bias illustrate (Hastie et al. 2009). We will
refer to this type of dimension reduction as filtering.
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Chapter 5

Lasso and preselection bias in linear
regression

To present an example of the use of lasso and cross validation in high dimensional linear
regression problems, we will in this chapter study a dataset from a genomic setting. We
will examine the bias caused by preselecting covariates prior to the lasso analysis and
thereof also illustrate how the prediction ability of a model changes as the size p of the
preselected set of covariates is varied.

5.1 Introduction to the Bone data for linear regression

The dataset studied is a gene expression dataset from Affymetrix microarrays, and we
will refer to it as the "Bone data" in the following. All the N = 84 patients in the dataset
are non-related postmenopausal ethnic Norwegian women between 50 and 86 years of
age, and the dataset consists of pall = 22815 probes for each patient (after the probes
with more than 43% absent calls were removed, as described in Reppe et al. (2010)). As
mentioned in Chapter 2, a probe is a DNA sequence that is associated with a particular
gene, so in the following, a probe will be denoted a gene. We refer to Reppe et al. (2010)
for more details about the dataset and the Affymetrix microarray expression analysis.
There are several different responses available in this dataset, and from a medical point
of view, the response that is most interesting is the Total Hip T-score, which gives a
value for the bone mineral density of a patient. This response can be used to detect
which genes stand out for patients with osteoporosis and is what is being analyzed in
the paper by Reppe et al. (2010).

Another response in this dataset is the body mass index, BMI, which describes the bal-
ance between the height and weight of a person. This type of measure will not distin-
guish between the weight of fat and the weight of muscles, but will give an indication of
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whether the patient is overweight or not. The formula for BMI is given by BMI = w/h2,
where w is weight in kg and h is the height in meter. A BMI that exceeds 25 will indicate
that the patient might be overweight.

In this example, we have focused on BMI as the response and will use lasso and cross
validation, as implemented in the R-package glmnet, to evaluate which of the genes
influence BMI the most. In Section 5.2, the whole dataset is applied when fitting the
lasso, while in Section 5.3 and 5.4, the patients are divided into a training set and a
test set to study the preselection bias that may occur when reducing the number of
covariates before doing lasso analysis.

5.2 Lasso and cross validation for the Bone data without prese-
lection

As for all examples in this thesis, we have used 10-folds cross validation to find the
optimal value of λ. When doing cross validation in R, we can study a cross validation
plot to visualize how the mean squared error changes for different values of the penalty
parameter λ. As mentioned, the mean squared error (MSE) measures the difference be-
tween the observed response and the predicted response, and should be as small as
possible to get the best possible model for prediction. The algorithm goes through a
grid of different λ-values and minimizes the difference between the observed yyy∗ in the
validation group, and the estimated ŷyy∗ fitted from the model made from the remaining
9 patient groups and the covariates xxx∗ from the validation group. The cross valida-
tion process chooses λmin to be the value of the penalty parameter that minimizes the
average cross validation mean squared error, which is the average of this MSE for all
K = 10 different groups. For the Bone data, the cross validation (CV) curve is shown
in Figure 5.1(a). Here we clearly see that the λmin (the left, vertical line) is chosen to be
the λ-value that minimizes the CV curve.

Figure 5.1(b) shows the value of the different coefficients β̂ as the size of the penalty
parameter λ is changed. The larger λ, the more coefficients are set exactly equal to
zero. The numbers on top of the plot show how many coefficients that are not set to
zero, i.e how many genes are selected for fitting a model for BMI. Here, 9 genes have
coefficients that are not equal to zero. Remark that λmin is the largest λ that gives the
minimum of the cross validation curve. By studying this plot, it is clear that a λ-value
closer to 1, i.e log(λ) closer to zero, would also give the same 9 genes because there is a
gap here where no coefficients are put to zero.

The 10 folds in the cross-validation are selected randomly when using the default in
cv.glmnet in R. This also introduces some randomness in the result of the analysis. To
study how much the division of folds influences the result, we ran lasso and cross
validation 100 times, where each time the 10 folds were selected at random. As shown
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(a) Cross validation plot.
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(b) Lasso plot with covariates going towards zero.

Figure 5.1: The cross validation plot in (a) shows how the mean squared error in the cross
validation is minimized in λmin, which is marked by the left dotted line. The dotted line to the
right is the the largest value of λ such that it is within one standard error of λmin. The red
points are the average of the estimated error, while the belt around these are the estimate of the
standard error of the cross validation mean squared error. The coefficient plot in (b) visualizes
how the coefficients go towards zero as the value of the penalty parameter λ is increased. The
vertical line shows the optimal value of λmin found from cross validation. The numbers on top
of the plot show how many of the covariates that have coefficients that are not equal to zero, and
in this case with N = 84 and pall = 22815, the analysis choose 9 genes to be in the final model.
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Chapter 5. Lasso and preselection bias in linear regression

Gene index # times Name
chosen

1275 99 1563182_at
5954 99 206726_at

17489 99 228128_x_at
19965 99 235631_at

7089 96 209309_at
1492 86 1569190_at
3058 86 202085_at

11165 86 217856_at
18143 86 229425_at
22759 15
13924 7

6336 1
18092 1
20249 1

Table 5.1: The result of running lasso 100 times for N = 84 and pall = 22815 with different
folds in the cross-validation.

in Table 5.1, most often, the same few genes are selected (here recognized by their gene
index), but some randomness is detected in the sense that there are some genes which
are selected only for a few divisions of the folds. In fact, there are 9 genes which are
selected at least 86% of the times, and 4 genes which are selected 99% of the times. Only
the names of the 9 most selected genes are included in the table.

5.3 Cross validation plot for preselected sets of covariates

To better understand the data and the problems arising when preselecting covariates,
we wish to study how a fitted model is able to predict in both a training set from which
the model was fitted, and a new test set. The allocation of patients to training and test
sets is done arbitrarily, and we will in this section study the cross validation plot when
the patients are locked into two groups of Ntraining = 60 and Ntest = 24. This division
was chosen at random. Later we will divide into test and training sets 500 times. The
patients are divided into these two groups in order to make it easier to combine the
results with the study of the preselection bias later, but for now only the training set
of 60 patients will be studied. Also, only one division of the K = 10 folds in the cross
validation is used. The fold set applied here was one of the fold divisions that gave
the same 5 selected genes as the most common result after running lasso and cross
validation 100 times for the 60 patients in the training set (see Table A1.1 in Appendix
A1). Because the folds are fixed, irregularities due to different folds are avoided, and
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−3 −2 −1 0

12
14

16
18

20
22

Cross validation plot for different p

log(lambdagrid)

M
ea

n−
S

qu
ar

ed
 E

rr
or

All genes
500
1000
2000
3000
4000
5000

Figure 5.2: Cross validation plot for 60 patients while using the p genes that are most correlated
with the response BMI. This plot is made by using the cross validation curves (similar to the
one in Figure 5.1(a)) from analyses with different sizes of the preselected set of covariates and
combining the CV curve into this one plot. The vertical dotted line shows λmin when all the pall
covariates are included and this gives a lasso solution with 5 covariates.

the focus can be directed towards how different values of the size of the preselected set
of covariates, p, influence the choice of the penalty λ.

The genes are first sorted, or ranked, according to their correlation with the response,
BMI, in a univariate test. Then we perform preselection, by selecting the p top cor-
related genes for further multivariate analysis with lasso. Hence the p genes that are
most correlated are used in the analysis with lasso and cross validation. We consider
the result of lasso with the full dataset (p = pall = 22815) to be the correct solution, in
the sense that there is no preselection bias.

In Figure 5.2, we have plotted the cross validation curves for different values of p for
this specific division of patients and folds. Remember that λmin is selected as the value
that minimizes the cross validation curve. In this plot, we see that for a preselected set
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Chapter 5. Lasso and preselection bias in linear regression

of size p = 4000 or larger, the cross validation curve has the same minimum as for the
full dataset. With smaller p than this, the penalty will be smaller than for the full set,
and too many covariates (and maybe not the correct ones) will be chosen from lasso.

5.4 Preselection bias

To show how preselection bias causes problems that can not be ignored, we study the
prediction ability of a model estimated from a preselected set of covariates, both on the
dataset from which the model was made, and on a new independent dataset. This is
done by dividing the patients in the Bone dataset into two groups and determine how
well the model, fitted from the training set, is able to predict the response of both the
training set itself and the separate test set.

Mean squared error in different patient groups

Since the fitted model will be somewhat influenced by how the patients are divided
into a training set and a test set, we will do this division 500 times and fit a model for
every new division. For each fitted model, we will first apply the model on the training
set and compare our estimated value of the response to the observed response using
the mean squared error (MSE). If the model fits the data well, the MSE will be small.
The mean squared error is defined as

MSEs =
Ns

∑
i

(yi − ŷi)
2

Ns
(5.1)

where yi is the observed response for patient i, ŷi is the estimated response and Ns is
the size of the set of patients and s = {training, test}. In this example, Ntraining = 60
and Ntest = 24. To evaluate if the model is able to predict the response in a new set of
data, we will go through the same procedure for the test set. In this case we apply the
model, which we have already estimated from the training set, on the covariates from
the test set and compare the estimated response to the observed response in the test set.

For each of the 500 different divisions of the patient groups, we will get a value for the
MSE in the training set, and one in the test set. From these, we make one boxplot for
500 MSE values from the training sets, and one for the 500 MSE values from the test
sets. A boxplot shows the median of the observations as a line in the middle of a box.
The box expands to the 25% percentile and the 75% percentile, i.e it contains the middle
50% of the observations. The lines out from the box will contain most of the remaining
observations, except for possible outliers that are visualized by dots.
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(a) Boxplots of MSE for the training set with 60 patients for
different sizes of preselected datasets.
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(b) Boxplots of MSE for the test set with 24 patients for dif-
ferent sizes of preselected datasets.

Figure 5.3: Visualization of how the mean squared error changes when more and more covariates
are included in the preselected set of covariates. Each box in the boxplot represents the MSE for
500 different divisions of the patients into training and test sets, and the vertical line in the
middle of the plot represents the median of the MSE of these 500 divisions. The last box in each
plot is the analysis with the full data set (pall = 22815 covariates).
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Chapter 5. Lasso and preselection bias in linear regression

Boxplots for different sizes of the preselected set

As mentioned, the procedure above gives two boxplots of the mean squared error for
500 divisions of the patients, one for the training set of patients and one for the test set.
We make such boxplots for different sizes p of the preselected set of covariates. In this
way, it is visualized how the error in both the training set and the test set evolve as
more and more covariates are included in the lasso.

Figure 5.3(a) shows the result for the training set. Here, it seems that we get an almost
perfect model when preselecting only a small number of the original covariates. When
letting more of the covariates correlated to the response into the lasso analysis, the
difference between the estimated response and the actual response increases drastically.
On the other hand, we observe an opposite effect for the test sets in Figure 5.3(b). The
prediction mean squared error is quite large when few covariates are preselected and
decreases when more and more covariates are included, until it stabilizes from around
p = 4000 preselected covariates.

Figure 5.4 illustrates the results for both the training set and the test set combined into
one figure. We call this a preselection bias plot that illustrates what is meant by prese-
lection bias. The model can predict the response for the patients in the training set very
well when some preselection criterion is used to reduce the dimension of the covariates
to a relatively small number prior to the lasso analysis. But in practice, what we usually
want to achieve is a model that can predict the response for new patients. Therefore,
we want the error for the test set of patients to be as small as possible.

In the preselection bias plot in Figure 5.4, we have not included the variation that the
different fold divisions in the cross validation provides. In Appendix A1, we see that
the effect of folds is negligible in this setting because the variation due to different
splittings of the patients dominates the variation due to folds.

The number of covariates in the final model

Boxplots of the number of covariates in the lasso solutions are pictured in Figure 5.5.
It is obvious that the number of genes selected from lasso when p is small, is much
higher than the number that is selected when we use the whole dataset with p = pall =
22815 genes. We keep this in mind in the following sections and when studying the
preselection bias plot in Figure 5.4. When the lasso is run only on the top univariately
correlated covariates (the preselected set), the cross validation tends to choose little
penalization and many selected genes, so that the model fits well to the current dataset,
but will not be able to predict the response of a new dataset in a good way. A sparse
model seems to be the best choice, and the preselected set has to be large enough to
avoid the phenomenon of overfitting.
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Figure 5.4: The median of the different MSE for 500 divisions of the patients. Here, the errors
for both the training set (60 patients) and the test set (24 patients) are plotted together. (Some
of the outliers in the test set are out of range in this plot, see Figure 5.3).
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Figure 5.5: Boxplots of the number of genes that is selected in the minimum value of the cross
validation curve when doing lasso and cross validation for different p, i.e different size on the
preselected set of genes. Each box represents the number of covariates in the lasso model fitted in
the training set for 500 different groupings of the patients in the Bone data. Note that in Section
5.3 where the patients were locked in one allocation of the training and test sets, 5 genes were
included in the lasso solution from the analysis with pall covariates.
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Chapter 6

Lasso and preselection bias in Cox
regression

The previous chapter illustrated how the preselection bias, described in Chapter 4, can
affect the prediction ability of a model in high dimensional linear regression. We now
illustrate how the problem of preselection bias applies for survival analysis as well.
What happens to the subsequent analyses when only a few of the covariates in survival
data are preselected before a model is fitted by the lasso?

6.1 Introduction to the Lymphoma dataset for survival analysis

To illustrate the lasso and preselection bias on survival data, we have used a dataset
studied in Rosenwald et al. (2002). This dataset is also used in Alizadeh et al. (2000)
and Simon et al. (2011) and can be downloaded from http://llmpp.nih.gov/DLBCL.
The dataset was collected to study the cancer called diffuse large B-cell lymphoma (DL-
BCL), which is a cancer of the white blood cells in the body which are responsible for
producing antibodies. Patients with DLBCL may respond well to chemotherapy and
other treatments, but many will eventually die of the disease. Treating this type of can-
cer affect the body extensively, and can in some cases cause the patient to die if the
patient does not die of the disease first. This means that treating a patient will not al-
ways be the best choice because it can lead to a sooner death. Hence this dataset was
collected to find out whether it is possible to predict the survival of DLBCL patients by
analyzing the disease on a molecular level.

As explained in Alizadeh et al. (2000), only genes that are mainly expressed in lym-
phoid cells and genes with known or suspected roles in processes important in im-
munology or cancer are included in this DNA microarray study. We have used this
dataset even though this is a type of pre-filtering of covariates. This filtering is based
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(b) Zoomed in on the interesting part of the
cross validation plot.

Figure 6.1: Cross validation curve for the survival data with all N = 240 patients and all
pall = 7214 gene expressions. The left vertical dotted line shows the choice of the penalty
parameter λmin = 0.1155, and this gives a model with 24 covariates.

on biological knowledge, and is not the preselection based on statistical analysis that is
being discussed in this thesis. But either way, it is worth keeping this filtering of genes
in mind when analyzing the results for the following statistical analyses.

Information on imputation of missing values and how we prepared the data for analy-
sis is found in Appendix A2 and A3.

6.2 Lasso and cross validation for the Lymphoma data without
preselection

After removing the covariates with more than 50% missing values and imputing the
remaining missing values, the dataset consists of pall = 7214 gene expressions for N =
240 patients. For each patient, follow up time (in years) since diagnosis is used as the
response, and status at follow-up defines if the observation is censored or not. If the
patient is alive at follow up, the observation is censored. The patients in this dataset
had no previous history of lymphoma, and the follow-up time is the time since the
untreated diffuse large-B-cell lymphoma was detected. The p > N situation calls for a
lasso penalty as before, but this time in combination with a Cox regression. We define
the response as a two-column matrix with name "time" and "status", where status is 1
if the patient is dead, and 0 if the observation is censored. This matrix can be created
with the Surv() function from the survival package in R.
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6.3. Cross validation plot for preselected sets of covariates

Gene ID # times Gene ID # times Gene ID # times
chosen chosen chosen

27774 100 30170 100 27573 84
31242 100 34344 100 28497 68
17236 100 33358 100 25977 68
31981 100 32238 100 34376 68
31669 100 28377 100 24980 37
27585 100 32679 100 16891 37
27731 100 32424 90 29657 37
24376 100 30406 90 34805 32
28328 100 30634 90 17854 16
27267 100 24432 84

Table 6.1: The 29 most selected genes after running lasso 100 times with different folds in the
cross validation.

The cross validation plot for this situation is shown in Figure 6.1, where 6.1(a) is the
full plot, while 6.1(b) is the same plot, but zoomed in so that the minimum of the cross
validation curve is shown more clearly. This optimal choice of λmin = 0.1155 gives
a lasso solution with 24 selected genes. How the ten folds in the cross validation is
divided will give some randomness in which λ is selected, but this λ is the λ that is
selected most often when running the code 100 times where the folds change every
time. That is, λmin = 0.1155 is selected 31 times. The penalty parameter that selects 22
genes is chosen 22 times of the divisions, and the λ that selects 27 genes is chosen 21
times. For all the 100 random fold divisions, between 19 and 27 genes are selected. See
overview in Table 6.1.

6.3 Cross validation plot for preselected sets of covariates

For survival analysis, univariate Cox regression is often used to preselect covariates.
The covariates which have the lowest P-value from the univariate analyses are included
in the subsequent analysis with the lasso.

As for the linear regression, we wish to study how the cross validation plot changes
as more and more preselected covariates are included in the dataset to be analyzed.
We have now divided the patients in two groups: 120 patients in a training set and
120 patients in a test set. For now, only the training set will be used, but the patients
are divided in order to compare the results with results later in the chapter. For this
reduced dataset, lasso and cross validation is applied. The λ that chooses 22 genes, was
the λmin that was selected most times when running cross validation 100 times with
different divisions of the folds. Therefore, the folds and the λ-grid that resulted in a
model with these 22 genes will be used in the following when checking how the cross

43



Chapter 6. Lasso and preselection bias in Cox regression

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0

10
.0

10
.5

11
.0

11
.5

Cross validation plot for different p with n1=120 patients

log(lambdagrid)

P
ar

tia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

All genes
100
200
500
1000
1500
3000

Figure 6.2: Cross validation curves when the size of the preselected covariates is changed. Here,
22 genes are selected in the lasso when all genes are included, and the long dotted line shows the
λmin in this point. The short vertical line is the minimum of the cross validation curve when
p = 1000 of the preselected covariates are included, and with this penalty parameter lasso will
choose 23 genes, instead of 22 as the full set of covariates will result in.

validation plot evolves when the size of the preselected set of covariates, p, is changed.

The cross validation plot for different values of p is plotted in Figure 6.2. We seek the
p that gives the same minimum of the cross validation curve as the minimum when
using all the pall = 7214 covariates. In the plot, the correct minimum is not found until
p = 1500 of the covariates are included. If, for instance, only p = 500 covariates are
preselected, the cross validation chooses a smaller λ than what would be chosen when
including all the covariates in the analysis. Here, 22 genes are selected from the lasso
when all genes are included, while as many as 45 are included in the final model when
the preselected set contains as few as p = 500 covariates. When λ is smaller, the lasso
will choose more genes to be significant, and this will result in an overfitted model. This
indicates that too many covariates tend to be included in the final model when too few
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6.4. Preselection bias

covariates are preselected in the lasso Cox regression as well as in the linear regression
in the previous chapter.

6.4 Preselection bias

Check on how well a model fits

The Cox proportional hazard model is, as mentioned in Chapter 3, a semi-parametric
model. The baseline hazard α0 is non-parametric and not estimated by the Cox regres-
sion. Therefore, the only element that is estimated in the Cox regression is the relative
risk, i.e the survival compared to other patients. The deviance is often used to deter-
mine the fit of a model in Cox regression. In general, the deviance of a model is defined
as

D(θ̂) =− 2[logL(θ̂)− logLsaturated model]

=− 2[logL(θ̂, X)− logL(θ̂saturated, X)],

where X is the data, the saturated model is the model that "perfectly" fits the data, and
θ̂ is the coefficients in the maximum of the likelihood function. In our setting, the Cox
partial likelihood, defined in (3.5), must be used.

It is not straight forward to study how a model fit for a new dataset with the deviance,
but we have constructed a check. In our deviance check, we first we studied the de-
viance calculated from the partial likelihood with covariates and response from the
training set together with the model coefficients that are fitted also from the training
set. Secondly, we used the deviance calculated from the partial likelihood with the
same model coefficients that was fitted from the training set, but now we applied co-
variates and responses from the test set. For this to work, the size of the training set
and the test set must be equal.

More detailed, we find the maximum of the partial likelihood function for the training
set, and save the θ̂ = β̂1, β̂2, ... in this point. When we then apply the same θ̂ in the par-
tial likelihood for the test set, we get an impression of whether the likelihood function
in the test set is much different from the likelihood function in the training set, since
we find the value of the partial likelihood function for the test set in the point where
the partial likelihood for the training set had its maximum. If the value of these two are
close, it is probable that the likelihood functions are similar, i.e that the model from the
training set has a good fit also in the test set.
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Figure 6.3: Preselection bias plot for Cox regression. The plot shows how the median of the
deviance of a model in a training set and a test set evolve when more and more preselected
covariates are included in the lasso analysis. The lasso analysis is done on the training set before
a check on how the model fits the new data in the test set is performed. Here, the size of the
training set and the test set are both 120 patients.
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6.4. Preselection bias

Visualization of preselection bias

The result of the check on how a model works in the training set and in the test set is
shown in the preselection bias plot in Figure 6.3. This shows approximately the same
pattern as for the preselection bias plot in the linear regression, although in a less con-
spicuous way. We see that when few covariates are included in the set of preselected
covariates, the model from the lasso seems to fit badly in the test set even though it
fitted well in the training set. When the size of the preselected set is increased, the
model will fit the test set better and better until it stabilizes. On the other hand, for the
training set, the fit is well when p is small and gets worse until it stabilizes. This can be
explained by the overfitting phenomena since we get a smaller value of the penalty pa-
rameter λ when too few preselected covariates are included in the lasso. The difference
of the error in the preselection bias plot with deviance is less pronounced than for the
example in the previous chapter. This can for instance be a consequence of using a dif-
ferent test to check the fit, the structure of the design matrix in this dataset is different,
or that different regression models are applied.

In this example we have fewer outliers in the boxplots than in the linear regression
example. This can be explained by the number of patients we have; in the Bone data,
we only had 84 patients that we divided into 60 and 24 for the training and test set. In
this dataset on survival, we have a total on 240 patients, and this gives less differences
for each new spitting of the patients. Hence, the results will be more stable.
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Chapter 7

Discarding covariates with SAFE
and strong

Is it possible to do preselection and still be able to trust the results from the lasso anal-
ysis? In Chapter 8, we will study a method to determine how large a preselected set of
covariates should be to avoid preselection bias. This method studies how the the cross
validation plot changes when adding more and more covariates to the preselected set.
The method is then able to conclude if the preselected set of covariates is large enough
to avoid preselection bias, or if more covariates should be included in the analysis.

In this chapter, the methods "SAFE" (El Ghaoui et. al 2011) and "strong" (Tibshirani et
al. 2012) will be introduced. These methods are constructed to discard covariates in
lasso-type problems, and were originally made to speed up the existing algorithms for
lasso. In fact, the sequential strong algorithm is implemented in the glmnet package
in R (Friedman et al. 2013), as mentioned in Section 3.5. This means that when doing
lasso analysis in R, as we did in the previous two chapters, a selection of covariates is
automatically done within the glmnet algorithm discarding some covariates to improve
computational efficiency. But, as will be explained in this chapter, this selection does
not lead to preselection bias because it is checked that the discarding of covariates is
done safely through the sequential strong method in combination with with KKT. This
discarding comes in addition to the type of preselection described in Chapter 4.

Both the SAFE method and the strong method discard covariates “from the bottom”,
i.e. they discard the covariates that are the least correlated to the response, and thereby
probably not included in the final model fitted from the lasso. The aim is to discard as
many covariates as possible without making any mistakes. For both the SAFE and the
strong method, the univariate inner product between the response and each covariate
is used to decide if a covariate should be discarded or not. If the inner product is small,
the covariate is discarded. It is common practice to standardize the covariates before
a lasso analysis is done, but the SAFE and strong methods apply also when covariates
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Chapter 7. Discarding covariates with SAFE and strong

are not standardized.

7.1 SAFE

For a given penalty parameter λ, the SAFE rule discards the jth variable if

|xxxT
j yyy| < λ− ||xxx||2||yyy||2

λmax − λ

λmax
, (7.1)

where λmax = maxj|xxxT
j yyy| is the smallest λ which sets all coefficients equal to zero. Recall

that the larger λ is, the more coefficients are put to zero.

This algorithm is safe, in the meaning that if a covariate is discarded with the SAFE
method, it is guaranteed that that covariate would not have been a part of the final lasso
solution with penalty λ, even if it had remained in the dataset for the lasso analysis.

7.2 Strong

The basic strong rule for the lasso discards the jth covariate if

|xxxT
j yyy| < 2λ− λmax, (7.2)

for a given penalty parameter λ. The sequential strong rule uses the univariate inner
product between the covariates and the residuals to decide which of the covariates that
should be discarded, and discards variables xxxj at λk if

|xxxT
j {yyy−Xβ̂Xβ̂Xβ̂(λk−1}| < 2λk − λk−1, k = 1, ..., (7.3)

where λ0 = λmax. This means that for each new value of λk, all pall covariates will be
ranked based on the fitted model for λk−1. The lasso is then fitted for the top ranked
covariates. This sequential strong rule is what is implemented in glmnet in R. Since
β̂̂β̂β(λmax) = 000, the basic strong rule is a special case of the sequential rule.

The strong rule is often able to discard more covariates than the SAFE rule. When the
covariates are standardized, i.e ||xxxj||2 = 1 for all j, the strong rule will discard more
covariates than SAFE because the strong bound will be larger than (or equal to) the
SAFE bound. This can be seen by noting that λmax ≤ ||yyy||2 when the covariates are
standardized, and then the strong bound is the largest:

λ− 1||yyy||2
λmax − λ

λmax
≤ λ− (λmax − λ) = 2λ− λmax.
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7.3. KKT condition

Both SAFE and strong have global as well as sequential algorithms (called recursive
for SAFE). Sequential algorithms do checks for every new value of λ in contrast to the
global methods that discard covariates by doing an overall analysis of the regression
problem.

In contrast to the SAFE method, the strong method is not safe. The strong algorithm
discards covariates that most likely will not be a part of the final model, but there are
no guaranties. In Tibshirani et al. (2012) there where no violations in the 100 simulated
sets where p >> N (which is when the rule is mostly used), but some violations may
occur when p ≈ N.

By combining the strong rule with simple checks of the Karush-Kuhn-Tucker (KKT)
condition (see next section), it can be made safe. Any approximate rule for discard-
ing covariates can be combined with KKT to ensure that the method finds the exact
solution, but the sequential strong rule will in practice discard a very large proportion
of the covariates that do not influence the response, and rarely make mistakes. This
means that when applying the strong algorithm, the KKT check will rarely be used to
reinclude covariates in the dataset.

7.3 KKT condition

The Karush-Kuhn-Tucker condition is an extension to the method of Lagrange multi-
pliers. While the Lagrange multipliers method solve problems that include constraints
with one or more equalities, the KKT conditions allow the constraints to be inequalities
as well. A problem may look like

x∗ = argmin f (x)
subject to hi(x) = 0 for i ∈ 1, ..., m
subject to gi(x) ≤ 0 for i ∈ 1, ..., n

The optimization problem can then be written as

x∗ = argmin{ f (x) +
m

∑
i=1

aihi(x) +
n

∑
i=1

bigi(x)}

where ai and bi are the KKT multipliers (Gordon and Tibshirani, 09.2014).

As explained in Tibshirani et al. (2012), the KKT condition for the lasso problem is

xxxT
j (yyy−XXXβ̂ββ) = λsj

for j = 1, ..., p and sj ∈ sign(β j) if β j 6= 0 (sj ∈ [−1, 1] if β j = 0). This check will be done
for each λ, and if the KKT condition is violated, the corresponding covariates that were
excluded in the previous step of the strong algorithm, will be reattached to the dataset.
That the KKT condition is violated means that |xxxT

j (yyy−XXXβ̂ββ)| > λsj, i.e. there is a high
level of correlation between the excluded covariates and the response.
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Chapter 7. Discarding covariates with SAFE and strong

7.4 Strong and SAFE methods applied on Bone data

To compare the SAFE and the strong algorithms, we have used the Bone data to make
a plot that is similar to Figure 2 in Tibshirani et al. (2012). This plot shows how many
covariates are left after applying the SAFE and strong rules and compares this with
how many covariates there are in the lasso solution. We have reused and modified
code from the strong paper to study the SAFE and strong methods on the Bone data 1

and the result is displayed in Figure 7.1. The sequential strong algorithm seems to be
the best one, since this is the algorithm that discards a large percentage of the covariates.
This figure looks similar to the plots in the paper on the Strong method of Tibshirani et
al. (2012) based on other datasets.

Furthermore, we see that the recursive and the sequential algorithms seem to be the
best ones. Either if we use the sequential algorithms or the global algorithms, strong
seems better than SAFE in that strong discards more covariates that will not be included
in the lasso solution.

1 Code from http://statweb.stanford.edu/~tibs/strong/, modified for this context.
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7.4. Strong and SAFE methods applied on Bone data
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Figure 7.1: SAFE and strong algorithms to discard covariates. Here, the remaining number of
covariates, after some have been discarded, is compared to the number of covariates in the lasso
solution for a given value of λ (decreasing from left to right). The horizontal full line is the total
number of covariates before any covariates are discarded, pall = 22815. The maximal number of
covariates used in the lasso after ranking all pall covariates for each λ with the sequential strong
algorithm is 277 and is visualized by the dotted line. The proportion of the variance explained
by the model is shown along the top of the plot.
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Chapter 8

The concept of cross validation
freezing

Both the “SAFE” and the “strong” method for selecting covariates explore the data and
discard the covariates that are the least likely to be important in the final model, as
described in the previous chapter. It is also possible to study the problem the other
way around, by adding covariates to the preselected set “from the top and down” and
include more and more covariates until it is likely that the results from lasso and cross
validation will be the same for the preselected dataset as for the full dataset. This pre-
selection method was introduced by Bergersen et al. (2013) as “freezing” and is able to
preselect covariates without introducing preselection bias.

Freezing will in practice not be an alternative to the sequential strong algorithm that
is implemented in the glmnet package in R, but will be a complementary method for
reducing the dimension of large datasets “outside” the lasso optimization.

8.1 Freezing in previous examples

Bergersen et al. (2013) defines freezing as the point where the minimum of the cross
validation curve stays the same even though more covariates are included in the anal-
ysis, i.e the point where the penalty parameter λ found in the reduced dataset is the
same as the optimal λmin found using all the covariates in the dataset. Figure 5.2 on
page 35 visualizes freezing for the Bone data. When the size of the preselected set of co-
variates, p, exceeds 4000, the cross validation curve is “frozen” and the minimum of the
curve is the same minimum as for the whole set of pall = 22815 covariates. This means
that with only 18% of the dataset, the optimal solution for the lasso regression problem
can be found. Similarly, the freezing for the survival data in Chapter 6 is shown in
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Chapter 8. The concept of cross validation freezing

Figure 6.2(on page 44. Here, the cross validation curve freezes when p = 1500. 1 This
corresponds to 21% of the full dataset.

When the size p of the preselected set of covariates is larger than the set of covariates
in the freezing point, it is expected that the mean squared error in the linear regression,
or the partial likelihood deviance in the Cox regression, will not change much even
though a higher p is used. In this thesis we have shown that this is indeed true for the
datasets we have evaluated. That the prediction error for new data is enlarged when
the preselected set of covariates p is smaller than the set where the cross validation
curve freezes is visualized in the preselection bias plot in Figure 5.4 on page 39 for the
linear regression situation, and in Figure 6.3 on page 46 for the Cox regression situation.

For the examples in this thesis, it is possible to calculate how the cross validation curve
for the full dataset would look like, but this is not always the case if the number of
covariates becomes too large. Even if the cross validation curve for the full dataset can
be obtained, the aim of the freezing algorithm is to track the relevant part of the cross
validation curve without using all the covariates, but rather just a subset of these. The
concept of freezing evaluates how large the preselected set of covariates, p, must be to
find the correct lasso solution, hence without preselection bias.

8.2 Guiding the preselection through freezing

The motivation behind the freezing algorithm is that when increasing p, the cross val-
idation curves will start to coincide from the maximum value, λmax of the λ-grid and
down, i.e from the right of the cross validation plot. Bergersen et. al (2013) defines this
concept and say that the cross validation curve is freezing in (λ, p).

Some notation must be introduced to be able to explore the concept of freezing in more
detail. The set of p ordered covariates are defined as xxx1, ..., xxxp, and p takes values
0 < p1 < ... < pall . Then Cp = {1, ..., p} can be used to indicate the covariates that
are included in an analysis, and CF = {1, ..., pall} is the full dataset. The cross vali-
dation curve is named CV, and thereby will the cross validation curve for the dataset
containing p of the highest ordered covariates be defined as CVCp . Λ is a predefined
grid of λ-values used in the cross validation.

A curve is defined to be frozen in (λ, p) if

CVCp′
(λ′) = CVCF(λ

′),

∀λ′ ≥ λ and ∀p′ ≥ p. (8.1)

In words, this means that if the cross validation curve is frozen in (λ, p), then the curve
will be identical to the cross validation curve for the full dataset for all λ′ > λ, i.e to the

1Recall that the cross validation curve for p = 1000 has a minimum that gives a smaller value of λ, even
though it is difficult to read from the figure.
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8.3. Survival analysis and freezing for truly high dimensional data

right of the minimum of the curve. This part of the curve will not change even though
more covariates are included in the preselected set (p′ > p).

To detect the freezing point, the following algorithm can be used. Here, m = {1, ..., M}
and pM = pall .

Freezing algorithm:

• Compute the cross validation curve CVpm for all λ ∈ Λ, for m = 1, 2, 3, ..., until

CVCpm+1
(λ) = CVCpm

(λ) for all λ ∈ Λ̃.

Here, Λ̃ = [λ̃, λmax] contains a minimum of the cross validation curve CVCpm
(λ)

for λ-values larger than λ̃. This means that the algorithm will stop if the cross
validation curves for following datasets, where the last one is larger than the pre-
vious, is the same from λmax down to a given value of the penalty parameter
λ = λ̃. The minimum value of λ between λ̃ and λmax is defined as λ∗pm

.

• Use the lasso with penalty parameter λ∗pm
, and by including only the Cpm covari-

ates. Thereof, the solution β̂ββCpm
of the penalized regression problem can be re-

turned.

Whether the algorithm stops before pm = Pall depends on the ordering of covariates,
but even simple ordering will most frequently lead to pm << pall . Even though this
algorithm will most often find the correct solution, it is neither guarantied that λ∗pm

=

λmin nor β̂ββCpm
(λ∗pm

) = β̂ββCF
(λmin), so additional sequential checks can be included in the

algorithm to detect false stopping. More details on this additional check can be found
in Bergersen et al. (2013).

8.3 Survival analysis and freezing for truly high dimensional
data

Even without preselecting any covariates, a model for the datasets used in both Chapter
5 and 6 can easily be fitted through the lasso. The datasets contained around 22000 and
7000 covariates, respectively, and the glmnet in R has no problem with these amounts
of data. Even so, preselection is often done for simplicity and to save memory and
computation time. Then freezing can be used to control the preselection of covariates
and prevent preselection bias. For larger datasets, a reduction of the size of the dataset
through preselection of covariates may be crucial to be able to perform analyses with
reasonable limited computational resources.
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Chapter 8. The concept of cross validation freezing

Bergersen et. al (2013) examined lasso in a linear regression setting when introduc-
ing the concept of freezing. However, freezing in lasso analysis for survival data has
not been examined previously. In chapter 6 in this thesis, the concept of freezing was
visualized for survival data with pall = 7214, and we will now study a dataset with
methylation data to examine the concept of freezing in the Cox regression setting for
truly high dimensional data.

In our methylation dataset provided by Heidi Lyng at Oslo University Hospital (Radi-
umhospitalet), there is a total of 147 patients with cervix cancer. Each patient has corre-
sponding methylation measurements for 484919 probes. Right censored survival data
is also available for each patient; the patient has entered the study at time of chemother-
apy, and the time of first relapse is considered as an event.

We wish to examine the cross validation plot for methylation data and study how it
changes as more and more covariates are included into the preselected set. By compar-
ing the cross validation plot for pall and other p < pall , we are able to detect when the
curves freeze and thereby how many covariates the freezing algorithm would include
in the preselected set of covariates. Because R had difficulties running the lasso when
all the 484919 probes were included in the dataset, we reduce the size of the dataset
by filtering the covariates before we do the preselection that is described in this thesis.
The covariates are filtered such that only the covariates with standard deviation larger
than 0.1 are included in the dataset, and the data is then reduced from a total of 484919
covariates to pall = 168045 covariates. By doing this, we are able to study the cross vali-
dation plot for all the covariates that are in our new dataset. This filtering is reasonable
because if there is almost no variation between different patients for a given covariate,
the probability that this covariate will describe the response is vanishingly small.

Differences in the results from lasso for different fold divisions

To test the variability of the results for different folds in the cross validation in this
dataset, lasso and cross validation is done 100 times where R choose the folds at ran-
dom. Table 8.1 shows how the value of the penalty variable λ varies, and how many of
the probes that are selected in the lasso solution for the different values of λ. Gui and Li
(2005) claims that a penalized Cox regression model on gene expressions tend to select
only a few covariates in the final model, and this is the case in this example. Here, 75%
of the fold divisions in the cross validation will conclude to select 5 or less covariates to
be included in the final model from the lasso. Which of the probes that are selected are
shown by their index in Table 8.2.
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8.3. Survival analysis and freezing for truly high dimensional data

Pentalty λ # times # genes
chosen selected

0.2345 29 1
0.1947 20 5
0.1858 18 9
0.2136 10 2
0.2039 10 3
0.2238 6 1
0.1774 5 12
0.1693 2 16

Table 8.1: The result of running lasso 100 times with different folds in the cross-validation for
the methylation data. This table shows how many times each of the λ-values are selected, and
how many genes will be included in the lasso solution, given λ. Note that the same value of λ
gives the same number of selected probes, but this is not necessarily true the other way around.

Probe # times Probe # times
index chosen index chosen

128889 100 24931 7
101102 65 32905 7

45758 55 101453 7
129063 45 11243 2

44711 43 27571 2
51339 25 43488 2
69144 25 71840 2
86213 25 110815 2
90636 25

Table 8.2: The probes that get selected when doing the lasso 100 times with different folds in the
cross validation for the methylation data.
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(a) Cross validation plot: λ = 0.2345 and 1
probe is selected.
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(b) Zoomed: λ = 0.2345 .
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(c) Cross validation plot: λ = 0.1947 and 5
probes are selected.
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(d) Zoomed: λ = 0.1947.

Figure 8.1: Cross validation plot for the methylation data. In (c) and (d) it is possible to detect a
curve that include the minimum of the cross validation curve, while in (a) and (b), the minimum
is set to be in the very end of the cross validation curve.

60



8.3. Survival analysis and freezing for truly high dimensional data

Cross validation plot to detect freezing

Even though Table 8.1 shows that only one gene is selected from the lasso analysis for
the λ-value chosen 29 % of the times, we choose to use λ = 0.1946 which selects 5
probes in the subsequent analysis. When λ = 0.2345, the cross validation curve has
it’s minimum in the end of the curve, as seen in the cross validation plots in Figure 8.1.
It is not reasonable to analyze this any further because we are interested in finding
which p that will detect the right shape and location around the minimum of the cross
validation curve for the full dataset. To be able to detect the differences that various
sizes of the preselected sets of covariates give in lasso and cross validation, the cross
validation curve in the case where all covariates are included must have a curve such
that the minimum can be detected.

With this methylation data, we wish to study the cross validation plot for different
sizes of the preselected set of variables, and not the preselection bias boxplot because
it is too time consuming to run the lasso for serveral different divisions of the patients.
We assume that preselection bias would be visualized in a preselection bias plot if less
than the number of covariates in the freezing point were included in the lasso analysis.
Therefore, all the patients are included in the following analysis instead of only the
training set, as was done in Chapter 5 and 6.

Figure 8.2 clearly shows that also for this dataset, preselection bias can occur if too
few of the covariates are chosen to be included in the preselected set. In this dataset,
however, the number of covariates can be reduced to as little as 0.6% of the original
dataset by applying freezing; the number of covariates to be included in lasso and cross
validation can be reduced from p = 168045 to p = 1000, and the lasso solution will still
be the same with 5 probes selected. We say that the cross validation curves are frozen
in (λ = 0.1946, p = 1000).

When working with datasets as large as this, the advantage of reducing the dataset
before any penalized regression model is used is amplified. Even the straight forward
operation to read the pall = 168045 covariates into R takes over a minute. 2 The com-
putation time when using the whole dataset with pall covariates in the lasso and cross
validation is over 10 minutes. In contrast, the same analysis when using the 1000 co-
variates with the highest influence on the survival in a univariate regression model took
less than 10 seconds.

2The computer used here is an Asus with a Inter Core i7 processor with 8 GB memory.
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Figure 8.2: Cross validation plot for different size p of the preselected set of covariates in the
methylation data. Here, λ = 0.1946 and 5 probes are selected in the final model. It is not easy to
detect by studying the plot, but the line for p = 1000 has actually the same minimum as the one
for the whole dataset. Thereby, this cross validation curve is frozen in λ = 0.1946, p = 1000.

62



Chapter 9

Simulation studies

In Chapter 5 and 6, we studied how preselection bias can be a problem when prese-
lection of covariates is done for real datasets, while Chapter 7 described how some of
the covariates are discarded through the sequential strong algorithm when doing lasso
with glmnet in R. To be able to preselect even more covariates prior to the lasso, and
still be able to trust the results, Chapter 8 showed how the cross validation curve can be
used to check whether the preselected covariates are able to make a trustworthy model.
We now simulate data to study preselection bias further. We are interested in studying
how the level of noise, and the dependence structure in the design matrix influence the
problem of preselection.

9.1 Setup for the simulation studies

For the following simulation studies, we will generate the response yyysim from a linear
regression model with normally distributed noise εεε ∼ N(0, σ2III);

yyytrue = XXXβββ,
yyysim = yyytrue + εεε. (9.1)

To study the effect of the noise level on preselection bias, the signal to noise ratio (SNR)
is used to determine the amount of noise in a simulation. The signal to noise ratio
describes, as the name indicates, how much noise the dataset has, compared to how
strong the signal (trend) is in the observations. A low value of SNR corresponds to a
large amount of noise, and the variance is then defined as

σ2 =
Var(yyytrue)

SNR
.

We choose SNR = 0.5 and SNR = 2.

63



Chapter 9. Simulation studies

The covariate matrix XXX is defined in various ways in the following different simulation
studies, partly following Bergersen et al. (2013).

• A - Independent: The covariates are simulated independently from a standard
normal distribution.

• B - Microarray: The genomic Bone dataset with microarray covariates from Chap-
ter 5 is used.

• C - Dependency within blocks: The covariates are simulated in blocks of 100. In
each block the covariates have a pairwise correlation between the ith and the jth
covariate given by ρ|i−j|, but there is independence between blocks.

When simulating data, it is common to repeat independent simulations several times,
often thousands, to make sure that the results are not only due to some random factor.
When studying the preselection bias, we have, in Chapter 5 and 6, divided the patients
into a training and a test set several times to get rid of the randomness due to patient
groups. This must be done in the simulation studies as well. We define s1 = 100 to
be the number of simulations and s2 = 100 the number of allocations of the patients.1

For each of the simulation studies (A, B and C), we have simulated the covariates XXX as
explained above, chosen SNR ∈ {0.5, 2} and done the following:

How to do simulations combined with splittings into training and test sets

• Simulate s1 vectors of responses yyysim following (9.1).

– For every yyysim, allocate the patients into training and test sets s2 times.

* For every allocation of patients and for different sizes p of the prese-
lected set of covariates, fit a model through lasso in the training set and
find the mean squared error for both the training set and the test set.

– Save the median of the the s2 values of MSE in both patient sets for all p.

• Make boxplots with the MSE medians from s1 simulations, one boxplot for each
p for both the training and the test set.

This means that to visualize the results for the simulation studies, instead of making
s1 = 100 preselection bias plots like the one in Figure 5.4, we save the median of the
MSE for the s2 different divisions of the patients. These medians are used to make new
boxplots for the results of the s1 simulations. The width of the boxes are therefore not
to be directly compared to those in Chapter 5 and 6, but should still give an impression
of the variability.

1To limit the computation time, we simulate new responses 100 times instead of thousands. The 100
times 100 lasso analyses for all different values of p took approximately one week to run for each simula-
tion study.
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9.2. Three simulation studies

9.2 Three simulation studies

A: Covariates independently simulated from a standard normal distribution

To study how the lasso is effected by preselection bias when covariates are independent
of each other, we first simulate a covariate matrix XXX independently from the standard
normal distribution. The number of observations is chosen to be N = 200. For each
observation, we simulate pall = 10000 covariates independently from the standard nor-
mal distribution. We define the coefficient vector βββ to be equal to zero, except for the
coefficients corresponding to 10 randomly drawn covariates where five are put equal
to −2 and five are put equal to 2.

As described above, boxplots of the median of 100 MSE from s1 = 100 simulations are
depicted to study the preselection bias in the simulation study. The results for simu-
lation A are visualized in Figure 9.1, both for SNR = 0.5 and SNR = 2. When the
covariates are independent, the preselection bias is not that clear, but we can still see
that the MSE in the test set decreases from p = 500 to p = 1500 (steepest to p = 1000)
for both SNR = 0.5 and SNR = 2. This indicates that the univariate sorting of covari-
ates is not necessarily that bad when the covariates are not very correlated. But even in
this simple example it is essential that “enough” of the sorted covariates are included
in the preselected set. The size of the set of covariates that should be analyzed in lasso
could potentially be reduced to as little as 10-15% of the full dataset, as we see in this
figure.

The differences in the MSE for various noise levels is noticeable; when SNR = 2 and
there is little noise, the MSE is low for both the training set and the test set, compared to
what is the case when SNR = 0.5. Also, the effect of including too few of the covariates
in the lasso is less evident when SNR = 2

When studying the number of covariates selected in the final model (Figure 9.1 (b) and
(d)), we see that when the number of covariates p in the preselected set of covariates
reaches a high enough level, the number of non zero covariates in the lasso solution
jumps to a low number. Since the response is simulated from a defined set of βs, we
know that the correct number covariates that effect the response is 10. Therefore, a
model with over 100 covariates different to zero, as the model for p = 500, will obvi-
ously be an overfitted model.

B: Covariates from the Bone data

A large datasets with independent covariates, as in simulation A, is not very realistic
when it comes to real life datasets. Therefore, we wish to study how the preselection
bias changes for different levels of noise when simulating the response using covariates
from real data. For this simulation study microarray covariates from the Bone data in
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Figure 9.1: A. Boxplot of s1 = 100 simulations where, for each simulation, the noise εεε is drawn
randomly. For each new simulation, the patients are divided into training and test set s2 = 100
times, and the median of the MSE for both the sets are saved. These medians are used to make
the boxplots (a) and (c) here. Figure (b) and (d) are made similarly by saving the the median of
the number of covariates in the lasso solution in every patient division. Here, the pall = 10000
covariates are independently simulated from the standard normal distribution.
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Figure 9.2: B: Boxplot of 100 simulations from setting B where the covariates are from the Bone
data. See Figure 9.1 for more information on how these plots are made.
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Chapter 5 is used. Here, there are pall = 22815 covariates for N = 84 patients. When
simulating a response for the covariates, we define all the βs to be equal to zero, except
for the coefficients corresponding to the 9 genes that were selected from lasso with BMI
as the response (see Table 5.1 on page 34). We defined the coefficients corresponding to
the first 5 of these genes to be equal to −2 and the remaining 4 coefficients to be 2.

The results for simulations with both SNR = 0.5 and SNR = 2 are visualized in Fig-
ure 9.2. When SNR = 0.5 (Figure (a)), i.e there is a lot of noise, the preselection bias
that is studied in this thesis is clearly visualized. The median error from 100 simula-
tions will be reduced in the test set as more covariates are included in the preselected
set. We see that the median of the MSE stabilizes at around p = 6000, and if we had
studied the cross validation plot for the s1 = 100 simulations and s2 = 100 divisions
of patients, most of the curves would probably freeze at this point where only 26% of
the covariates are used. Around this p, the number of covariates selected in the lasso
solution also stabilizes at a low level. Even though there seems to be a preselection bias
effect when SNR = 2 as well, the effect here is less evident. Remark that the y-axes are
different in Figure 9.2 (a) and (c), and the error in (c) is quite low for all p. When there
is little noise in the dataset, the test set and the training set will be (logically enough)
quite similar, and the fitted model will thereby fit fairly well to the test set as well.

C: Simulation study with covariates correlated in blocks

Simulation B shows that the preselection bias is more evident when a real genomic
dataset is used, than when covariates are simulated independently like in Simulation A.
In this section, we simulate another covariate matrix XXX that is more similar to genomic
datasets than the covariate matrix with no correlations in A. We introduce a correlation
parameter ρ = 0.9 and simulate XXX with blocks of 100 covariates. Within each block, the
pairwise correlation between covariate i and j is given by

cor(i, j) = ρ|i−j|,

which means that covariates close to each other are highly correlated. The blocks are
simulated independently and the size of the full covariate matrix is 200× 10000. As in
A, five coefficients are chosen to be −2 and five are put equal to 2. The covariates that
correspond to these coefficients are all in different blocks.

Again, by studying Figure 9.3, we see that the preselection bias effect is most evident
when there is a lot of noise in the dataset (SNR = 0.5) . In Simulation A, the median of
the MSE when SNR = 0.5 froze approximately around p = 1000 (Figure 9.1(a)), while
now, when the covariates are no longer independent, more covariates must be included
in the preselected set, but it seems that p between 1500 and 2000 should be satisfactory.
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9.2. Three simulation studies
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Figure 9.3: C: Boxplot of 100 simulations from setting C where the pall = 10000 covariates are
simulated in blocks of 500 with pairwise correlation from a multivariate normal distribution.
See Figure 9.1 for more information on how these plots are made.
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Chapter 9. Simulation studies

Concluding comments on all the simulations

For all the simulation studies in this thesis it is clear that the preselection bias is most
expressed in datasets where there is a large amount of noise. When the training and test
set are indeed differentiated because of the high noise level, the fitted model’s ability
to predict is essential. An overfitted model with too many non-zero coefficients, as the
fitted models when the size of the preselected set of covariates is below the size when
the cross validation curve freezes, will have poor prediction ability. On the other hand,
when there is a less noise and thereby the training and test set are more similar, the
ability to predict does not seem to be that effected by the size of the preselected set of
covariates because the model fits quite well overall.

Even though the error in the test set is of most interest, the training set can be of help
to study tendencies. The changes in the MSE is more pronounced in the boxplots for
the training set and can be used to detect how large p must be for the cross validation
curves to be frozen. For the test set, the model tends to fit better and stabilizes for
the same p as when the training set demonstrates a poorer fit. Also, by studying the
boxplots where the number of covariates in the lasso solution are visualized, we see
that when the error for the training set jumps to a higher lever, the number of non-zero
covariates in the solution is reduced to a noticeably smaller number.
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Chapter 10

Summary and conclusion

Summary of the most important topics in this thesis

This thesis is a study of how high dimensional regression problems are affected by the
preselection of covariates and when the problem of preselection bias is most evident.
High dimensional datasets with thousands or up to millions of covariates, and a signif-
icantly smaller number of samples are common in genomics. We have shown examples
of different types of genomic datasets in order to give an overview of some settings
where high dimensional regression is required and to understand more of the micro-
biology in this type of data. Furthermore, we have presented theory and methods to
deal with high dimensional regression problems, focusing on linear regression and Cox
regression for survival analysis. The main focus has been on penalized regression mod-
els and the lasso, which is defined with a L1 penalty so that it does variable selection
coupled with prediction. The number of non-zero covariates in a lasso solution tends
to be small. That there are few covariates in the lasso model indicates that the penalty
parameter λ in the penalized regression model is large. The penalty parameter is found
through cross validation for all the examples in this thesis since we have been focusing
on optimizing prediction performance.

To avoid working with very large datasets, researchers tend to reduce the number of
covariates prior to a penalized regression analysis like the lasso. We have studied how
this can lead to preselection bias if the preselection of the covariates is not done prop-
erly and shown that the problem of preselection bias is not something that only occurs
occasionally in some special datasets. Preselection bias is in fact something one should
be aware of when studying all high dimensional datasets, but if the preselection of co-
variates is done controlled by algorithms as strong (Tibshirani et al. 2012) or freezing
(Bergersen et al. 2013), it can be done more safely. But even though a fitted model from
almost all datasets may lead to preselection bias when preselection of covariates is done
in an ad hoc way, some datasets seem to be more exposed to preselection bias than oth-
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Chapter 10. Summary and conclusion

ers. We have seen that for datasets more exposed to preselection bias, the number of
covariates needed in the preselected set will often be relatively large.

Challenges and further work

The challenges dealing with huge amounts of data are many, and several choices, that
can affect the final result, have to be made along the way in a high dimensional regres-
sion analysis. In this thesis, we chose to reduce the dimension of the design matrix for
the methylation data in Section 8.3 as a first step in our analysis of the data. The covari-
ates that had less than 0.1 in standard deviation across the patients were excluded from
the subsequent analyses. This is a reasonable filtering, in that the probability that these
covariates are able to detect anything significant about our response is very small. Our
study is on preselection based on the relationship between covariates and the response,
but that this extra filtering was necessary shows that unexpected problems often oc-
cur when dealing with real data, requiring ad hoc solutions. An alternative solution
to filtering the covariates could be to apply the freezing algorithm, but then we would
not be able to study the cross validation curve for the “full” dataset to illustrate where
the curves froze. Another example of challenges concerning real data is the necessity
to manipulate the Lymphoma data in Chapter 6 by using K Nearest Neighbor (KNN)
imputation to avoid missing values.

It is also worth mentioning that the lasso is somewhat depending on the ordering of
the covariates in XXX. In the Cox example in Chapter 6, 22 covariates were selected by
the lasso when the covariates where sorted according to their P-value from a univariate
regression model. In contrast, the lasso solution included 23 covariates when the lasso
was done before the covariates were sorted. Both these models where fitted with the
full dataset with pall covariates. We have used the result from when the covariates were
sorted so that the cross validation curve with pall was compatible with the curves when
p < pall ordered covariates were used in the lasso.

That freezing occurs when applying the lasso for survival data was shown in both
Chapter 6 and 8. In chapter 6, we also studied the preselection bias plot when studying
survival data. To be able to analyze how well a Cox regression model fitted a new test
set, we had to improvise by studying the partial likelihood for the test set at the point
where the partial likelihood for the training set had its maximum. We assumed that
the fitted model would give a likelihood function that had its maximum approximately
at the same spot if the model fitted the test set as well as the training set. This is an
approach open for discussion, and the results in the preselection bias plot in Figure
6.3 can be influenced by that this procedure is less intuitive and straightforward than
studying the mean squared error in linear regression. Would another approach show
the preselection bias even clearer, in the meaning that the differences in the error when
p is increased would be more evident in the test set? Our study only indicates how far
away from each other the likelihood functions are, and a check that is able to detect the
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actual prediction ability of a model in a test set would be desirable. But even though
our approach is somewhat weak, we are able to detect a preselection bias effect which
coincides with the freezing point in the cross validation plot in Figure 6.2. We have
therefore shown that preselection bias is also a problem when dealing with survival
data.

The preselected set of covariates will, at some point when p is large enough, include
all the covariates that is essential to fit a model without preselection bias. Determining
how large p must be to get this same model as if the full dataset was used in the lasso
analysis can be done in various ways. As mentioned in the comments in Chapter 9, the
point where the preselection bias plot stabilizes (and the cross validation plot freezes)
is more evident when studying the error (MSE or deviance) for the training set. This
seems to be a recurring phenomenon. Even though it is the error in the test set that is
of most interest, we may be able to exploit that the error for the training set increases
drastically at the point where the error for the test set stabilizes on a low level. This ob-
servation indicates that we can detect how large the preselected set of covariates should
be to avoid preselection bias without even studying a test set. Datasets in genomics of-
ten have few samples, and by dividing the samples into a training and a test set, the
number of samples in each of the two analyses are reduced, Ntest ≤ Ntraining < N. To
keep the number of samples in the lasso analysis as large as possible, it could be inter-
esting to examine the errors in this thesis without studying a test set. We could rather
examine how the error for the model, fitted from the dataset with all the samples N,
changes as the size of the preselected set of covariates p is increased. When the error
increases drastically and the number of covariates in the lasso solution is reduced, the
optimal p is probably found. This approach would also result in that the irregularities
for each run of lasso and cross validation are only due to different folds in the cross
validation, and not different divisions of the patients. The size of the preselected set of
covariates from this approach should correspond to p when the cross validation curves
are frozen.

Prediction rules to avoid preselection bias rely on how the covariates are initially or-
dered. All the covariates included in the lasso solution for the full dataset must be
contained in the preselected set if the same solution should be found with a reduced
dataset. To be able to find this result, a list of organized covariates must be evaluated
and p increased until all essential covariates are included in the preselected set and the
correct lasso solution has been found. The ordering of the covariates must be such that
the most important covariates are ranked highest. An optimal ordering would reflect
the lasso behavior, but in practice an approximation of such ranking is used. By ranking
the covariates based on simple univariate computations, Bergersen et al. (2013) showed
that the size of the set of covariates to be included in the lasso can be reduced to a small
percentage of the original dataset. This conclusion has been reinforced in this thesis.

The prediction challenges that preselection of covariates lead to are most emphasized
in high dimensional regression problems with dependencies between covariates, and
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where there is a large amount of noise, as shown in the simulation studies in Chapter
9. To fit a model that has a good ability to predict is challenging in this setting, and it is
important to avoid all effects that may lead to a weaker model. To control the preselec-
tion of covariates and thereby avoid preselection bias is therefore an important aspect
when it comes to dealing with high dimensional data with dependencies and noise. In-
dependent covariates are rarely the case in real life situations, so the simulation study
with correlated covariates are more interesting. Further research should include sim-
ulations with interactions between covariates, as is often the case in genomic datasets.
We expect that the preselection bias will get even more evident when interactions are
included because the univariate sorting of the covariates will not be able to capture the
interaction structure of the design matrix. It is then likely that the preselected set of
covariates must be larger than for the data with independent covariates and the data
with correlated covariates to be able to include all the essential covariates in the lasso
analysis.1 Furthermore, it is likely that by studying even larger datasets than what have
been the main focus in this thesis, the problems appearing when there are correlations
in the design matrix will be even more evident.

Conclusion

What is new in this thesis is a clear understanding and visualization of how preselection
bias affects a model’s ability to predict. The connection between the point where the
prediction error for a new dataset stabilizes at a low level in a preselection bias plot and
the freezing point of a cross validation curve has also been visualized. The concept of
freezing has not previously been studied in survival analysis, and we have shown that
freezing occurs in survival analysis, as well as in the linear regression setting. Also,
the idea that the preselection bias will be more evident in datasets where the univariate
sorting is unable to detect the dependence structure in the design matrix is emphasized
through the simulation studies. We have stressed the problems that may occur when
preselection of covariates is done without applying algorithms designed to control the
preselection. This will hopefully guide students and researches to be more alert when
manipulating high dimensional datasets by reducing the number of covariates before
applying analyses like penalized regression.

1Note that the Bone data used in Simulation B is gene expression data from medical studies, and prob-
ably contains interactions between some covariates. In this situation, the size of the preselection set in-
cluded more covariates when the mean squared error for the test set stabilized at a low level, than for the
two other simulation studies.
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Appendix A

A1: The effect of folds in the preselection bias plot

The solution from a lasso analysis is somewhat affected by the folds in the cross val-
idation. In the preselection bias plots throughout this thesis we have made boxplots
showing the variation due to the splitting of patients into training and test sets. The
effect of the folds is neglected, and in this appendix we will show that the variation due
to the folds will not affect how the medians evolve in the preselection bias plots. The
variation due to the division of patients into training and test sets dominates the varia-
tion due to the folds. The check is constructed using the Bone dataset from Chapter 5,
but we assume that the results will hold for all examples in this thesis.

When visualizing the preselection bias through boxplots with different divisions of pa-
tients, we let the cv.glmnet algorithm in R choose folds in the cross validation at random
for each of the patient divisions. Table 5.1 showed that this was acceptable when all the
patients were included because the lasso and cross validation chose approximately the
same genes even though different folds were used. This is checked for a random train-
ing set of 60 patients as well. Table A1.1 indicates that this also gives a quite stable
result. To validate that these stable result hold for different divisions of the patients,
and not only for this random patient group, we have constructed a check using box-
plots.

Gene index Chosen
5954 97
7208 97
7089 94

11194 73
16482 73

1492 13

Table A1.1: The result of running lasso 100 times with different folds in the cross validation for
one random training set of 60 patients.
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Figure A1.1: The boxes with labels "Training" and "Test set" show the median of the different
MSE for 500 divisions of the patients and the full dataset using all covariates, i.e the same as
the last box in Figure 5.3 (a) and (b). The "Check"-boxes show 100 different divisions of folds
for each of 100 divisions of patients. The median of the two sets are approximately at the same
level in the original boxplot and in the check to detect if the random folds for each division of the
patients would ruin the credibility of the visualization of the preselection bias.

When testing with 100 different folds for every division of patients, it is assumed that
there will be more variation than with only one set of folds for each division of patients.
The median should be approximately at the same level as in the boxplot for pall with
folds chosen at random for each division of the patients. We do this to be able to trust
the results in Figure 5.3 and 5.4, where we have not taken into account the effect the
different folds have on the results. Figure A1.1 shows that our assumption seems to
hold, and that we do not need to take the effect of the folds into account when we
study the median of several patient divisions. The effect of different splittings of the
patients will by far exceed the effect of different folds.

Note that because of the time of computation, we check with 100 different folds when
dividing the patients into training and test sets 100 times, not 500 times that is the
number of patient splittings done in the preselection bias plots.2 Therefore, the variance
might not be that large in the checking of the effect of different folds as we would expect
if we tested with 100 folds for all the 500 patients groups.

The conclusion here is that it should be safe to trust the result in Figure 5.3 and the

2The 100 times 100 computations of lasso and cross validation took approximately one week to run.
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preselection bias plot in Figure 5.4, without controlling for different folds for each new
division of the patient groups and for each new p.

A2: Imputation

When analyzing real data, a common problem is that there are missing values in the
dataset. This can for example be caused by faults in the measuring equipment when
collecting gene expression data. How these missing values are dealt with will influence
the results of the analyses that is done. Setting the missing values to zero is maybe the
easiest way out of the problem with missing values, but will not always make sense
when advanced analyses of the data is of interest.

The most common way of dealing with missing values is to impute the NA (not avail-
able) numbers with some kind of mean of the samples that are closest to the sample
with a missing value. One example of such an imputation is the K Nearest Neighbor
(KNN) method that we applied on the dataset for survival of patients with Large-B-Cell
lymphoma from Rosenwald et.al (2002). In this dataset, some genes had a large num-
ber of missing values. To impute a missing gene expression for a patient S, the k (we
used k=8) patients that are most similar to patient S are found, and the missing gene
expression value for patient S is imputed to be the mean of the gene expressions for the
specific gene from these k patients.

Because it will be difficult to compare different patients if most of the patients has the
same covariate as missing, KNN is not used if more than some percentage of the obser-
vations are missing. In our example with survival data, we removed the genes that had
more than 50% missing values and applied KNN on the remaining genes.

A3: Details about the dataset for Cox regression

The dataset studied in Chapter 6 is downloaded from http://llmpp.nih.gov/DLBC. We
have connected the patient data (under Supplemental Data) and the gene expression
data from DNA microarrays ("Web Figure 1 Data file") by the "LYM-number".

Five of the patients had zero as follow up time, and to get the Cox proportional hazard
analysis to work, we define that these patients have time = 0.0001. Since this is such
a small number, the analysis will be marginally effected by this change. Around 10
percent of the total 1.8 million (7399x240) gene expressions was not defined. We have
removed the 185 genes that had more than 50% missing values. This is 2.5% of the
original 7399 genes. Furthermore, we have imputed the rest of the missing values by
using the K Nearest Neighbors method (KNN) with k = 8. This is done through the
function impute.knn() from the package impute from Bioconductor version 2.13.

83



84



Appendix B: Scripts in R

B1: Code for Chapter 5

A linear regression model is used when we analyze the Bone data with BMI as the
response. The following code shows how to implement many of the main ideas in
Chapter 6, 8 and 9 although modifications will be needed for the different regression
models and datasets.

1 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 # THE BONE DATA
3 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
4 # THE COVARIATES :
5 data <− read . csv ( " Bone . csv " , sep=" , " , header=TRUE, row . names=1)
6 data <− as . matrix ( data )
7 gener <− t ( data ) #nxp m a t r i s e
8

9 # D e l e t e columns with T o t a l Hip T−s c o r e and with , , ,
10 gener <− gener [ , − ( 1 : 2 ) ]
11 gennavn <− colnames ( gener )
12 id <− rownames ( gener )
13 p <− length ( gennavn ) # 22815 g e n e s
14 n <− length ( id ) #84 women
15

16 # THE RESPONSE :
17 respons <− read . csv ( " MoreResponses . csv " )
18 bmi <− respons [ 3 , ]
19 bmi <− bmi[ ,−1]
20 i d r e s <− colnames ( bmi )
21 bmi <− as . numeric ( bmi )
22

23 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
24 # RUN LASSO MANY TIMES
25 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
26 # Load p a c k a g e
27 l i b r a r y ( glmnet )
28

29 dfny <− rep ( 0 , 1 0 0 )
30 maxdf <− 100
31 keepindex <− matrix ( rep ( 0 , maxdf* 100) ,nrow=100 ,maxdf )
32 keepcoef <− matrix ( rep ( 0 , maxdf* 100) ,nrow=100 ,maxdf )
33 for ( i in 1 : 1 0 0 ) {
34 # Cross−v a l i d a t i o n
35 cv <− cv . glmnet ( gener , bmi , alpha =1)
36 f i t <− glmnet ( gener , bmi , alpha =1 , lambda=cv$ lambda . min )
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37 dfny [ i ] <− f i t $df
38 co <− coef ( f i t )
39 index <− rep ( 0 , f i t $df )
40 k=1
41 for ( l in 1 : p ) {
42 i f ( co [ l ] ! = 0) {
43 index [ k ] = l
44 k=k+1
45 }
46 }
47 keepindex [ i , ] <− c ( index , rep ( 0 , ( maxdf−length ( index ) ) ) )
48 keepcoef [ i , ] <− c ( co [ index ] , rep ( 0 , ( maxdf−length ( co [ index ] ) ) ) )
49 }
50

51 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
52 # CROSS VALIDATION PLOT WHEN MORE AND MORE COVARIATES ARE INCLUDED
53 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
54 # T r a i n i n g s e t o f 60 p a t i e n t s ( t e s t s e t w i l l no t be used y e t )
55 gener1 <− gener [ s e t t 1 , ] # s e t t 1 c o n t a i n s 60 i n d e x e s be tween 1 and 84
56 bmi1 <− bmi [ s e t t 1 ]
57

58 # S o r t c o v a r i a t e s by u n i v a r i a t e c o r r e l a t i o n with t h e r e s p o n s e ( s e t t 1 )
59 cormat <− matrix ( rep ( 0 , p* 2) , ncol =2)
60 for ( i in 1 : p ) { # go through a l l t h e g e n e s
61 # i +1 t o c o r r e s p o n d with t h e i n d e x e s from glmnet ( i n t e r c e p t )
62 cormat [ i , 1 ] <− i +1
63 cormat [ i , 2 ] <− cor ( gener1 [ , i ] , bmi1 , method=" pearson " )
64 }
65 c o r s o r t a b s <− cormat [ s o r t . l i s t ( abs ( cormat [ , 2 ] ) , decreas ing = TRUE) , ]
66

67 # Fix f o l d s
68 # " m i n e f o l d e r " i s a v e c t o r o f numbers be tween 1 and 10 , l e n g t h 60
69

70 # −−− Run l a s s o one t ime t o f i x lambda g r i d −−−
71 # Cross v a l i d a t i o n in t r a i n i n g s e t ( n1 p a t i e n t s )
72 cv1 <− cv . glmnet ( gener1 , bmi1 , alpha =1 , f o l d i d =minefolder )
73 plot ( cv1 )
74 # Choose lambda with l o w e s t p r e d i c t i o n e r r o r
75 lambda1min<− cv1$ lambda . min
76 f i t <− glmnet ( gener1 , bmi1 , alpha =1 , lambda=lambda1min )
77 df1 _ a l l <− f i t $df # number o f non−z e r o c o e f f i c i e n t s in model
78 lambdagrid<− cv1$ lambda
79

80 # Change f o r pny = c ( 5 0 0 , 1 0 0 0 , 2 0 0 0 , 3 0 0 0 , 4 0 0 0 , 5 0 0 0 , p_ a l l )
81 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 pny <− 500
83 X_ 500 <− gener1 [ , c o r s o r t a b s [1 :500 ,1 ] −1]
84 cv_500 <− cv . glmnet (X_ 500 , bmi1 , alpha =1 ,
85 f o l d i d =minefolder , lambda=lambdagrid )
86 lambda1min<− cv_500 $ lambda . min
87 f i t <− glmnet (X_ 500 , bmi1 , alpha =1 , lambda=lambda1min )
88 df1 _500 <− f i t $df
89 co <− coef ( f i t )
90 behold <− rep ( 0 , f i t $df )
91 j =1
92 for ( i in 1 : ( pny+1) ) {
93 i f ( co [ i ] ! =0) {
94 behold [ j ] <− i
95 j = j +1
96 } }
97 k o e f f i s i e n t i n d [ 1 , ] <− c ( behold , rep (0 ,90− length ( behold ) ) )
98 k o e f f i s i e n t e r [ 1 , ] <− c ( co [ behold ] , rep (0 ,90− length ( behold ) ) )
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99 gennavnny [ 1 , ] <− c ( colnames (X_ 500) [ behold−1] , rep (0 ,90− f i t $df ) )
100 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101

102 # F r e e z i n g p l o t
103 # Put a l l t h e c r o s s v a l i d a t i o n c u r v e s in one p l o t
104 plot ( log ( lambdagrid ) , cv_500 $cvm , ylim=c ( 1 2 , 2 3 ) ,
105 type=" l " , l t y =1 , ylab="Mean−Squared Error " ,
106 main=" Cross v a l i d a t i o n p l o t f o r d i f f e r e n t p" )
107 l i n e s ( log ( lambdagrid ) , cv_ 1000 $cvm , type=" l " , l t y =2)
108 l i n e s ( log ( lambdagrid ) , cv_ 2000 $cvm , type=" l " , l t y =3)
109 l i n e s ( log ( lambdagrid ) , cv_ 3000 $cvm , type=" l " , l t y =4)
110 l i n e s ( log ( lambdagrid ) , cv_ 4000 $cvm , type=" l " , l t y =5)
111 l i n e s ( log ( lambdagrid ) , cv_ 5000 $cvm , type=" l " , l t y =6)
112 l i n e s ( log ( lambdagrid ) , cv1$cvm , type=" l " , l t y =1 , lwd=3 , col =2)
113 l i n e s ( rep ( log ( lambda1min ) , 2 0 ) , seq ( 1 0 , 2 9 , by=1) , type=" l " , l t y =3)
114 legend ( " t o p r i g h t " ,
115 c ( " Al l genes " , " 500 " , " 1000 " , " 2000 " , " 3000 " , " 4000 " , " 5000 " ) ,
116 l t y =c ( 1 , 1 : 6 ) , col=c ( 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) , lwd=c ( 3 , rep ( 1 , 6 ) ) )
117

118 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
119 # STUDY THE EFFECT OF PRESELECTION IN TRAINING AND TEST SET
120 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
121 n1 <− 6 0 ; n2 <− n−n1
122 pvektor <− c ( 5 0 0 , 1 0 0 0 ,1 5 0 0 , 20 0 0 , 2 50 0 , 3 0 00 , 3 5 0 0 , 4 0 0 0 ,
123 4500 ,5000 ,6000 ,7000 ,8000 ,9000 ,10000 ,p )
124 one1 <− rep ( 1 , n1 ) ; one2 <− rep ( 1 , n2 )
125

126 # Func t i on t o make t e s t s e t , g i v e n t h e t r a i n i n g s e t
127 s e t t c o n t a i n s <− function ( i ) {
128 for ( k in 1 : n1 ) {
129 i f ( s e t t 1 [ k]== i ) { return (TRUE) } }
130 return (FALSE)
131 }
132

133 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
134 # FUNCTION
135 # − d i v i d e p a t i e n t s S t i m e s
136 # − d o e s l a s s o on t r a i n i n g s e t
137 # − MSE f o r b o t h t r a i n i n g and t e s t
138 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
139 MSE_ in _ t r a i n i n g _ t e s t <− function ( S , oppdel_navn ) {
140 for ( s in 1 : S ) { # d i v i s i o n s o f p a t i e n t s
141 # D e f i n e t h e t r a i n i n g s e t and t h e t e s t s e t
142 s e t t 1 <− s o r t ( sample ( c ( 1 : n ) , n1 , replace=F ) )
143 X1 <− X[ s e t t 1 , ]
144 y1 <− y [ s e t t 1 ]
145 s e t t 2 <− rep ( 0 , n2 )
146 k=1
147 for ( i in 1 : n ) {
148 i f ( ! s e t t c o n t a i n s ( i ) ) { s e t t 2 [ k]= i ; k=k+1 }
149 }
150 X2 <− X[ s e t t 2 , ]
151 y2 <− y [ s e t t 2 ]
152

153 # s o r t a c c o r d i n g t o t h e c o r r e l a t i o n with t h e r e s p o n s e
154 cormat <− matrix ( rep ( 0 , p* 2) , ncol =2)
155 for ( i in 1 : p ) {
156 cormat [ i , 1 ] <− i +1
157 cormat [ i , 2 ] <− cor ( X1 [ , i ] , y1 , method=" pearson " )
158 }
159 c o r s o r t a b s <− cormat [ s o r t . l i s t ( abs ( cormat [ , 2 ] ) , decreas ing = TRUE) , ]
160
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161 d f a l l <− rep ( 0 , length ( pvektor ) )
162 e 1 a l l <− rep ( 0 , length ( pvektor ) )
163 e 2 a l l <− rep ( 0 , length ( pvektor ) )
164 for ( t in 1 : length ( pvektor ) ) {
165 pny <− pvektor [ t ]
166 Xny1 <− X1 [ , c o r s o r t a b s [ 1 : pny ,1]−1]
167 cv1 <− cv . glmnet ( Xny1 , y1 , alpha =1)
168 lambdamin <− cv1$ lambda . min
169 f i t <− glmnet ( Xny1 , y1 , alpha =1 , lambda=lambdamin )
170 df1 <− f i t $df
171 d f a l l [ t ] <− df1
172

173 co <− coef ( f i t )
174 betaindex <− rep ( 0 , df1 )
175 j =1
176 for ( i in 1 : ( pny+1) ) {
177 i f ( co [ i ] ! =0) {
178 betaindex [ j ] = i ; j = j +1
179 }
180 }
181 betaene <− co [ betaindex ]
182 # T r a i n i n g s e t
183 Xene1 <− cbind ( one1 , Xny1 [ , betaindex −1])
184 yhat1 <− Xene1 %*% betaene
185 e1 <− y1−yhat1
186 e 1 a l l [ t ]<− sum( e1 ^2) / n1
187 # T e s t s e t
188 Xny2 <− X2 [ , c o r s o r t a b s [ 1 : pny ,1]−1]
189 Xene2 <− cbind ( one2 , Xny2 [ , betaindex −1])
190 yhat2 <− Xene2 %*% betaene
191 e2 <− y2−yhat2
192 e 2 a l l [ t ]<− sum( e2 ^2) / n2
193 }
194 save ( lambdaall , cvverdi , d f a l l , e 1 a l l , e 2 a l l ,
195 f i l e =paste ( oppdel_navn , run , " . RData " , sep=" " ) )
196 }
197 } # end o f f u n c t i o n −−−−−−−−−−−−−−−−−−−−−
198

199 S <− 500 # number o f d i f f e r e n t d i v i s i o n s o f t h e p a t i e n t s
200 MSE_ in _ t r a i n i n g _ t e s t ( S=S , oppdel_navn=" oppdeling " )
201

202 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
203 # MAKE PRESELECTION BIAS PLOT FOR 500 DIVISIONS OF THE PATIENTS
204 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
205 plength <− length ( pvektor ) # number o f d i f f e r e n t p ’ s
206 lambdamat <− matrix ( rep ( 0 , S* plength ) ,nrow=S )
207 cvverdimat<− matrix ( rep ( 0 , S* plength ) ,nrow=S )
208 dfmat <− matrix ( rep ( 0 , S* plength ) ,nrow=S )
209 e1mat <− matrix ( rep ( 0 , S* plength ) ,nrow=S )
210 e2mat <− matrix ( rep ( 0 , S* plength ) ,nrow=S )
211

212 for ( s in 1 : S ) {
213 load ( paste ( " oppdeling " , s , " . RData " , sep=" " ) )
214 lambdamat [ s , ] <− lambdaall
215 cvverdimat [ s , ] <− cvverdi
216 dfmat [ s , ] <− d f a l l
217 e1mat [ s , ] <− e 1 a l l
218 e2mat [ s , ] <− e 2 a l l
219 }
220 med_e1 <− apply ( e1mat , 2 , median )
221 med_e2 <− apply ( e2mat , 2 , median )
222
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223 # P r e s e l e c t i o n b i a s p l o t
224 # T r a i n i n g and t e s t s e t in t h e same p l o t
225 boxplot ( e1mat , a t = 0 : 1 5 * 3 + 1 , ylim=c ( 0 , 3 5 ) , xaxt = "n" ,
226 col=" bisque3 " , ylab="Mean Squared Error " ,
227 xlab=" S ize of the p r e s e l e c t e d s e t of c o v a r i a t e s " ,
228 main=" V i s u a l i z a t i o n of p r e s e l e c t i o n b i a s " )
229 boxplot ( e2mat , a t = 0 : 1 5 * 3 + 2 , xaxt = "n" , add = TRUE, col=" c o r n s i l k 1 " )
230 axis ( 1 , a t =0:15 * 3+1 .5 , l ab el s=FALSE)
231 t e x t ( x =0:15 * 3+1 .5 , y = par ( " usr " ) [ 3 ] − 1 , s r t = 60 , ad j = 1 . 2 ,
232 l ab el s = pvektor , xpd = TRUE)
233 legend ( x =35 ,y=36 , c ( " Test s e t " , " Training s e t " ) , f i l l =c ( " c o r n s i l k 1 " , " bisque3 " ) )
234 l i n e s ( 0 : 1 5 * 3 + 1 ,med_e1 , lwd=5) )
235 l i n e s ( 0 0 : 1 5 * 3+2 ,med_e2 , lwd=5)

B2: Code for Chapter 6

In this chapter, we use Cox regression instead of linear regression that was used in
Chapter 5. This makes the programming a bit more advanced, but the idea is the same
as for the programs in B1 for Chapter 5. The main differences is

• The response y must be defined as a Surv object including time and status. Surv
is a part of the survival-package.

• The covariates are sorted according to their P-value from a univariate Cox re-
gression model before the top p covariates are included in the preselected set of
covariates. We have used the default P-value in coxph from the survival-package,
which is calculated from the Wald test. The Wald test statistics is

Z =
β̂ j

se(β̂ j)
,

which is approximately standard normally distributed under the null hypothesis
that β j = 0.

• In glmnet, the variable f amily must be defined as ′′cox′′.

• It is not possible to predict the responses for a new dataset, so the deviance is used
to determine how well a model fits for the new dataset.

When doing cross validation for survival data in the glmnet-package in R, specifying
f amily = ”cox”, the default is grouped = TRUE. This choice gives a more efficient use
of the risk sets because here the cross validation partial likelihood is obtained for the
Kth fold by taking the log partial likelihood evaluated on the (K− 1)/K of the dataset
and subtract the log partial likelihood evaluated on the full dataset, which corresponds
to formula (3.10) in Section 3.4. This is explained on the page for the R-package glmnet
(Friedman et al. 2013).
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1 # * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 # DATA FOR SURVIVAL ANALYSIS
3 # * * * * * * * * * * * * * * * * * * * * * * * * * * * *
4 l i b r a r y ( s u r v i v a l )
5

6 dat2 <− read . table ( " ht tp : / / llmpp . nih . gov /DLBCL /NEJM_Web_ Fig1data " ,
7 header=T , sep="\ t " , f i l l =T , quote=" " )
8 dim ( dat2 ) # 7399 295
9 # t h e f i r s t two columns o f t h e f i l e i n c l u d e unique ID and name

10 X <− as . matrix ( dat2 [ , 3 : 2 9 5 ] )
11 p <− dim (X) [ 1 ]
12 rownames (X) <− dat2 [ , 1 ]
13

14 p a t i e n t s <− read . table (
15 " ht tp : / / llmpp . nih . gov /DLBCL /DLBCL_ p a t i e n t _ data _NEW. t x t " ,
16 header=T , sep="\ t " )
17 dim ( p a t i e n t s ) # 240 12
18 n_ p a t i e n t s <− dim ( p a t i e n t s ) [ 1 ]
19

20 # EXTRACT "LYM NUMBER" FROM COLNAMES OF X
21 n_LYM <− 274 # Stop a t 274
22 LYM_ s t r i n g <− rep ( 0 , n_LYM)
23 LYMno <− rep ( 0 , n_LYM)
24 for ( i in 1 : n_LYM) {
25 LYM_ s t r i n g [ i ] <− substr ( colnames (X) [ i ] , 1 3 , 1 5 )
26 }
27 # some names has a b i t d i f f e r e n t names :
28 LYM_ d i f f _names <− c ( 1 4 4 , 2 3 3 , 1 7 1 , 1 2 , 9 0 )
29 for ( i in LYM_ d i f f _names ) {
30 LYM_ s t r i n g [ i ] <− substr ( colnames (X) [ i ] , 1 4 , 1 6 )
31 }
32 for ( i in 1 : n_LYM) {
33 LYMno[ i ] <− as . numeric (LYM_ s t r i n g [ i ] )
34 }
35

36 Xnew <− X [ , 1 : n_LYM]
37 dim (Xnew) # 7399 274
38 colnames (Xnew) <− LYMno
39

40 # CONNECT GENES AND SURVIVAL OF PATIENTS
41 LYMpatients <− p a t i e n t s [ , 1 ]
42 # Connect t h e LYM−numbers from t h e gene e x p r e s s i o n s t o t h e p a t i e n t s
43 Xnew <− Xnew[ , colnames (Xnew) %in% LYMpatients ]
44 # s o r t t h e g e n e s and p a t i e n t s a f t e r LYM number
45 Xnew <− Xnew[ , s o r t . l i s t ( as . numeric ( colnames (Xnew) ) , decreas ing=F ) ]
46 p a t i e n t s<−p a t i e n t s [ s o r t . l i s t ( as . numeric ( p a t i e n t s [ , 1 ] ) , decreas ing=F ) , ]
47 dim (Xnew) # 7399 240
48

49 # TIME AND STATUS FOR THE SURVIVAL DATA
50 time_ years <− p a t i e n t s [ , 3 ] # F o l l o w up y e a r s
51 time_ years <− p a t i e n t s [ , 3 ] # F o l l o w up y e a r s
52 # change t ime 0 t o a s m a l l number t o be a b l e t o i n c l u d e t h e s e
53 time0 _ p a t i e n t s <− which ( time_ years ==0)
54 time_ years [ which ( time_ years ==0) ] <− 0 .0001
55 # S t a t u s : 1= dead , 0= c e n s o r e d
56 deadal ive <− p a t i e n t s [ , 4 ]
57 s t a t u s <− rep (NA, length ( deadal ive ) )
58 for ( i in 1 : length ( deadal ive ) ) {
59 i f ( deadal ive [ i ] == " Alive " ) { s t a t u s [ i ] =0 }
60 e lse i f ( deadal ive [ i ] == "Dead" ) { s t a t u s [ i ] =1 }
61 }
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62

63 # DEAL WITH MISSING VALUES
64 length ( which ( i s . na (Xnew) ) ) / (7399 * 240) # approx 0 . 1 was NA
65 # s o u r c e (" h t t p : / / b i o c o n d u c t o r . org / b i o c L i t e . R")
66 # b i o c L i t e (" impute " ) )
67 l i b r a r y ( impute )
68

69 # Remove g e n e s with more than 50% m i s s i n g
70 missing50 <− length ( which ( countNA > 0 . 5 ) ) # 185 (2 ,5%)
71 Xnew_remove <− Xnew[−which ( countNA > 0 . 5 ) , ]
72 dim (Xnew_remove ) # 7214 240
73

74 # Impute m i s s i n g v a l u e s with KNN, k=8
75 X t e s t _more_rem <− impute . knn (Xnew_remove , k=8)
76 X t e s t _rem <− X t e s t _more_rem$ data
77 Xnew <− X t e s t _rem
78

79 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
80 # RUN LASSO MANY TIMES
81 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
82 y <− Surv ( time_ years , s t a t u s )
83

84 i seed <− 171 :270
85 # s a v e one row f o r e a c h run o f g lmnet
86 Resul t s <− matrix (NA, ncol =2 ,nrow=length ( i seed ) )
87 rownames ( Resul t s ) <− i seed
88 colnames ( Resul t s ) <− c ( " lambdamin " , " df " )
89 l i s t n o n z e r o <− l i s t ( )
90

91 for ( seed in iseed ) {
92 s e t . seed ( seed )
93 print ( paste ( " seed =" , seed , sep=" " ) )
94 cv . f i t <− cv . glmnet ( x= t (Xnew) , y=y , family=" cox " ,
95 s tandardize=T , alpha =1)
96 f i t <− glmnet ( x= t (Xnew) , y=y , family=" cox " ,
97 lambda=cv . f i t $ lambda . min , alpha =1)
98 Resul t s [ rownames ( Resul t s ) ==seed , ] <− c ( cv . f i t $ lambda . min , f i t $df )
99 coef <− as . vector ( f i t $ beta )

100 coef1 <− cbind ( rownames (Xnew) , coef )
101 nonzero <− coef1 [ coef ! = 0 ] [ 1 : f i t $df ]
102 nonzerobeta <− coef1 [ coef ! = 0 ] [ ( f i t $df +1) : ( 2 * f i t $df ) ]
103 l i s t n o n z e r o [ [ paste ( " seed " , seed , sep=" " ) ] ] <− l i s t ( nonzero , nonzerobeta )
104 }
105

106 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
107 # PRESELECTION BIAS IN DATA FOR SUVIVAL
108 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
109 p_ a l l <− dim (Xnew) [ 1 ]
110 n <− dim ( p a t i e n t s ) [ 1 ]
111 X <− t (Xnew)
112

113 # d i v i d e t h e p a t i e n t s i n t o two d i f f e r e n t groups
114 n1 <− 1 2 0 ; n2 <− n−n1
115 pvektor <− c ( 2 0 0 , 5 0 0 , 1 0 0 0 , 1 5 0 0 , 2 0 0 0 , 2 5 0 0 ,
116 3000 ,3500 ,4000 ,4500 ,5000 ,p_ a l l )
117

118 S <− 500
119 for ( s in 1 : S ) {
120 # D e f i n e t r a i n i n g and t e s t s e t
121 s e t t 1 <− s o r t ( sample ( c ( 1 : n ) , n1 , replace=F ) )
122 X1 <− X[ s e t t 1 , ]
123 y1 <− Surv ( time_ years [ s e t t 1 ] , s t a t u s [ s e t t 1 ] )
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124

125 s e t t 2 <− rep ( 0 , n2 )
126 k=1
127 for ( i in 1 : n ) {
128 i f ( ! s e t t c o n t a i n s ( i ) ) { s e t t 2 [ k]= i ; k=k+1 }
129 }
130 X2 <− X[ s e t t 2 , ]
131 y2 <− Surv ( time_ years [ s e t t 2 ] , s t a t u s [ s e t t 2 ] )
132

133 # Find t h e p−v a l u e f o r e v e r y p r o b e from u n i v a r i t e cox r e g r e s s i o n :
134 save _ pvalue <− matrix ( rep (NA, p_ a l l * 2) , ncol =2)
135 for ( i in 1 : p_ a l l ) {
136 x <− ( X1 [ , i ] )
137 f i t <− coxph ( y1~x )
138 save _ pvalue [ i , 1 ] <− i
139 save _ pvalue [ i , 2 ] <− summary ( f i t ) $ coef [ 5 ]
140 }
141 # and s o r t t h e p r o b e s a f t e r t h e i r P−v a l u e
142 probe_ pvalue <− cbind ( save _ pvalue [ , 1 ] , colnames (X) , save _ pvalue [ , 2 ] )
143 c l a s s ( probe_ pvalue ) <− " numeric "
144 probe_ s o r t <− probe_ pvalue [ s o r t . l i s t ( probe_ pvalue [ , 3 ] ,
145 decreas ing=F ) , ]
146 probe_ s o r t <− as . matrix ( probe_ s o r t )
147

148 lambdaall <− rep ( 0 , length ( pvektor ) )
149 cvverdi <− rep ( 0 , length ( pvektor ) )
150 d f a l l <− rep ( 0 , length ( pvektor ) )
151 d e v t r a i n a l l <− rep ( 0 , length ( pvektor ) )
152 d e v t e s t a l l <− rep ( 0 , length ( pvektor ) )
153

154 for ( t in 1 : length ( pvektor ) ) {
155 pny <− pvektor [ t ]
156 X1ny <− X1 [ , probe_ s o r t [ 1 : pny , 1 ] ]
157 cv1 <− cv . glmnet ( X1ny , y1 , alpha =1 , family=" cox " )
158 lambdamin <− cv1$ lambda . min
159 lambdaall [ t ]<− lambdamin
160 cvverdi [ t ] <− min ( cv1$cvm)
161 f i t <− glmnet ( X1ny , y1 , alpha =1 , lambda=lambdamin , family=" cox " )
162 df1 <− f i t $df
163 d f a l l [ t ] <− df1
164 coef . max <− coef ( f i t )
165 # t r a i n i n g s e t
166 d e v t r a i n a l l [ t ] <− coxnet . deviance ( y=y1 , x=X1ny , beta=coef . max )
167 # t e s t s e t
168 X2ny <− X2 [ , probe_ s o r t [ 1 : pny , 1 ] ]
169 dev . t e s t <− coxnet . deviance ( y=y2 , x=X2ny , beta=coef . max )
170 d e v t e s t a l l [ t ] <− dev . t e s t
171 }
172 save ( lambdaall , cvverdi , d f a l l , d e v t e s t a l l , d e v t r a i n a l l ,
173 f i l e =paste ( " newdata_KNN_ oppdeling " , s , " . RData " , sep=" " ) )
174 }

B3: Code for Chapter 8

As the dataset in Chapter 6, the methylation data is survival data and we specify
f amily =′′ cox′′ in glmnet. The freezing plots (cross validation plot for different sizes
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p of the preselected set of covariates) are made similar for the datasets in Chapter 5, 6
and 8, but in the latter two the covariates are sorted according to the P-value from a
univariate Cox regression model instead of the Pearson correlation used in the linear
regression case in Chapter 5.

1 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 # METHYLATION DATA (SURVIVAL)
3 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
4 Metyl_ i n f o <− read . table (
5 " d a t a s e t / Methylation _ beta _Normalized_AnaPasUSNPflt_ detPFjern _ Stdv0 . 1 . t x t " ,
6 header=T , sep="\ t " , na . s t r i n g s = " " )
7 P a t i e n t _ data <− read . table ( " d a t a s e t / P a t i e n t _ data . t x t " ,
8 header=F , skip =1)
9 colnames ( P a t i e n t _ data )<− c ( " 147 " , " I l lumina _ p a s i e n t e r " , " Tid " , " S t a t u s " )

10

11 # P r e p a r e t h e d a t a s e t
12 Pat ients ID <− P a t i e n t _ data $ I l lumina _ p a s i e n t e r [ 1 : 1 5 0 ]
13 xm <− Metyl_ i n f o [ , colnames ( Metyl_ i n f o ) %in% Pat ients ID ]
14 index_ P a t i e n t s <− which ( Pa t ients ID %in% colnames (xm) )
15 # u pd a t e P a s i e n t I D with on ly t h e p a s i e n t s t h a t have Metyl _ i n f o
16 Pat ients ID <− P a t i e n t _ data $ I l lumina _ p a s i e n t e r [ index_ P a t i e n t s ]
17 t <− P a t i e n t _ data $Tid [ P a t i e n t _ data [ , 2 ] %in% Pat ients ID ]
18 s <− P a t i e n t _ data $ S t a t u s [ P a t i e n t _ data [ , 2 ] %in% Pat ients ID ]
19 y <− Surv ( t , s )
20

21 p_ a l l <− 168045
22 n <− length ( Pa t ients ID ) #147 p a t i e n t s
23

24 # * * * * * * * * * * * * * * * * * * * * * * * * * *
25 # RUN LASSO MANY TIMES
26 # * * * * * * * * * * * * * * * * * * * * * * * * * *
27 # S i m i l a r a s in Chapt e r 6 , but with d i f f e r e n t s e e d s
28 # ( and l o n g e r c o m p u t a t i o n t ime )
29 i seed <− 123 :222
30

31 # * * * * * * * * * * * * * * * * * * * * * * * * * *
32 # FREEZING PLOT
33 # * * * * * * * * * * * * * * * * * * * * * * * * * *
34 # Do u n i v a r i a t e cox r e g r e s s i o n f o r e a c h p r o b e
35 # Th i s t a k e s a l ong t ime !
36 save _ pvalue <− rep (NA, p_ a l l )
37 for ( i in 1 : p_ a l l ) {
38 x <− t (xm[ i , ] )
39 f i t <− coxph ( y~x )
40 save _ pvalue [ i ] <− summary ( f i t ) $ coef [ 5 ]
41 }
42 # s o r t t h e p r o b e s a f t e r t h e i r P−v a l u e
43 probe_ pvalue<−cbind ( probeID , save _ pvalue )
44 probe_ s o r t <−probe_ pvalue [ s o r t . l i s t ( probe_ pvalue [ , 2 ] , decreas ing=F ) , ]
45 # g i v e s t h e i n d e x o f t h e p r o b e s
46

47 X <− t (xm)
48 seed _now <− 172
49

50 # Cross v a l i d a t i o n p l o t f o r d i f f e r e n t s i z e s p ,
51 # i s made s i m i l a r l y a s in Chapt e r 5
52 s e t . seed ( seed _now)
53 pny <− 500
54 X_ pre <− X[ , probe_ s o r t [ 1 : pny , 1 ] ]
55 cv_ pre <− cv . glmnet (X_pre , y , lambda=lambdagrid , family=" cox " )
56 lambda1min <− cv_ pre $ lambda . min
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57 f i t <− glmnet (X_pre , y , family=" cox " , lambda=lambda1min )
58 df_ pre <− f i t $df

B4: Code for Chapter 9

All the datasets here are simulated from linear models with Gaussian noise. Therefore,
the programmed function for Chapter 5 in B1 can be used when splitting the patients
into different training and test sets and computing the mean squared error.

1 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 # FUNCTION TO SIMULATE NEW NOISE
3 # and s a v e d a t a t o make p r e s e l e c t i o n b i a s p l o t
4 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
5 s imulate _ t h i s <− function ( snr , S , oppdel_navn ) {
6 # ADD NOISE
7 sigma1 <− sqr t ( apply ( ysim , 2 , sd ) ^2 / snr )
8 eps <− rnorm ( n , 0 , sigma1 )
9 y <− ysim + eps

10

11 # Func t i on from c o d e f o r Chapt e r 5 : C a l c u l a t e MSE
12 # in t r a i n i n g and t e s t s e t f o r S d i v i s i o n s o f p a t i e n t s
13 MSE_ in _ t r a i n i n g _ t e s t ( S , oppdel_navn )
14 # ( Saved on ly d f a l l , e 1 a l l , e 2 a l l h e r e )
15 }
16

17 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
18 # FUNCTION TO DO HUNDRED SIMULATIONS
19 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
20 hundred_ s imulat ions <− function ( snr=snr , S=S , oppdel_navn , run_navn ) {
21 for ( run in 1 :num_ runs ) {
22 s imulate _ t h i s ( snr=snr , S=S , oppdel_navn )
23

24 dfmat <− matrix ( rep ( 0 , S* plength ) ,nrow=S )
25 e1mat <− matrix ( rep ( 0 , S* plength ) ,nrow=S )
26 e2mat <− matrix ( rep ( 0 , S* plength ) ,nrow=S )
27

28 # C o l l e c t d a t a from t h e S d i f f e r e n t d i v i s i o n s o f t h e p a t i e n s
29 for ( s in 1 : S ) {
30 load ( paste ( oppdel_navn , s , " . RData " , sep=" " ) )
31 dfmat [ s , ] <− d f a l l
32 e1mat [ s , ] <− e 1 a l l
33 e2mat [ s , ] <− e 2 a l l
34 }
35 # Save median o f e a c h run ( median o f 100 d i v i s i o n s o f p a t i e n t s )
36 # One f o r e a c h p
37 med_e1 <− apply ( e1mat , 2 , median ) # median o f columns
38 med_e2 <− apply ( e2mat , 2 , median )
39 med_df <− apply ( dfmat , 2 , median )
40

41 # s a v e f o r e a c h run
42 save (med_e1 , med_e2 , med_df ,
43 f i l e =paste ( run_navn , run , " . RData " , sep=" " ) )
44 }
45 }
46

47
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48 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
49 # DEFINE VARIABLES IN ALL SIMULATIONS
50 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
51 pvektor <− c ( 5 0 0 , 1 0 0 0 , 1 5 0 0 , 2 0 0 0 , 2 5 0 0 ,3 0 0 0 , 3 5 0 0 ,
52 4000 ,4500 ,5000 ,6000 ,7000 ,8000 ,9000 ,p )
53 plength <− length ( pvektor )
54

55 S <− 100 # d i v i s i o n s o f p a t i e n t s
56 num_ runs <− 100 # s i m u l a t i o n s
57

58 # For t h e s i m u l a t i o n s o f c o v a r i a t e s in sim A and B :
59 p <− 10000 # number o f c o v a r i a t e s
60 n <− 200 # number o f p a t i e n t s
61 # S i z e o f t h e two groups
62 n1 <− 1 0 0 ; n2 <− n−n1
63 one1 <− rep ( 1 , n1 ) ; one2 <− rep ( 1 , n2 ) # f o r t h e i n t e r c e p t
64

65 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
66 # A: COVARIATES SIMULATED INDEPENDENTLY
67 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
68 # MAKE THE COVARIATES
69 X <− matrix ( rep (NA, p*n ) ,nrow=n )
70 # draw X. C o v a r i a t e s s i m u l a t e d i n d e p e n d e n t l y
71 # from t h e s t a n d a r d normal d i s t r i b u t i o n
72 for ( i in 1 : n ) {
73 X[ i , ] <− rnorm ( p , 0 , 1 )
74 }
75

76 # MAKE RESPONSE
77 # D e f i n e b e t a
78 s e t . seed ( 1 3 2 )
79 betaindex <− sample ( 1 : p , 1 0 )
80 # 6823 9526 2895 4750 4959 2888 8565 1068 2380 7491
81 r e a l b e t a <− rep ( 0 , p )
82 r e a l b e t a [ betaindex [ 1 : 5 ] ] <− −2
83 r e a l b e t a [ betaindex [ 6 : 1 0 ] ] <− 2
84

85 ysim <− X %*% r e a l b e t a
86

87 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 # d e f i n e v a r i a b l e s
89 # Change be tween SNR=0.5 and SNR=2
90 oppdel_navn <− "norm_sim_ snr05 "
91 run_navn <− "norm_run_ snr05 "
92 snr <− 0 . 5
93 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94

95 hundred_ s imulat ions ( snr=snr , S=S , oppdel_navn , run_navn )
96

97 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
98 # B : SIMULATE WITH GENES FROM BONE DATA
99 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

100 # MAKE RESPONSE
101 # D e f i n e b e t a : Choose t h e g e n e s t h a t have been s e l e c t e d
102 # in p r e v i o u s a n a l y s i s t o have b e t a not e q u a l t o 0
103 # gene i n d e x c h o s e n e a r l i e r :
104 important = c (1276 ,1493 ,3059 ,5955 ,7090 ,11166 ,17490 ,18144 ,19966 )
105 # Remark : Must s u b t r a c t 1 t o g e t t h e r i g h t gene s i n c e t h e i n d e x e s
106 # i s wi th b e t a 0 a t i n d e x 1
107 r e a l b e t a <− rep ( 0 , p )
108 r e a l b e t a [ important [1 :5 ] −1] <− −2
109 r e a l b e t a [ important [6 :9 ] −1] <− 2
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110

111 X <− gener # from Bone data , s e e Chapt e r 5
112 ysim <− X %*% r e a l b e t a
113

114 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
115 # d e f i n e v a r i a b l e s
116 # Change be tween SNR=0.5 and SNR=2
117 oppdel_navn <− " sim_ snr05 "
118 run_navn <− " run_ snr05 "
119 snr < 0 . 5
120 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
121

122 hundred_ s imulat ions ( snr=snr , S=S , oppdel_navn )
123

124

125 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
126 # C : CORRELATED COVARIATES
127 # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
128 l i b r a r y (MASS)
129 # MAKE THE COVARIATES
130 # C o v a r i a t e s c l o s e t o e a c h o t h e r have h i g h e r c o r r e l a t i o n
131 # 1 on t h e d i a g o n a l
132 b l o c k s i z e <− 100
133 blocks <− p / b l o c k s i z e
134 rho <− 0 . 9
135 Sigma_ cor <− matrix ( rep (NA, b l o c k s i z e ^2) ,nrow= b l o c k s i z e )
136 for ( i in 1 : b l o c k s i z e ) { for ( j in 1 : b l o c k s i z e ) {
137 Sigma_ cor [ i , j ] <− rho^abs ( i− j )
138 } }
139

140 Mu <− rep ( 0 , b l o c k s i z e )
141

142 # draw X: m u l t i v a r i a t e s t a n d a r d normal d i s t r i b u t i o n
143 # e q u a l c o r r e l a t i o n 100 c o v a r i a t e s
144 X <− matrix ( rep (NA, n*p ) ,nrow=n )
145 for ( block in 1 : blocks ) {
146 X [ , ( ( b l o c k s i z e * ( block−1) ) +1) : ( b l o c k s i z e * ( block ) ) ] =
147 mvrnorm ( n , Mu, Sigma_ cor ) # one samle in e a c h row
148 }
149 dim (X) #200 10000
150

151 # MAKE RESPONSE
152 # D e f i n e b e t a
153 s e t . seed ( 5 ) # c h o o s e t h i s s e e d s . t no b l o c k has more than one b e t a ! =0
154 betaindex <− sample ( 1 : p , 1 0 )
155 # 2003 6852 9167 2844 1047 7008 5277 8074 9558 1104
156 r e a l b e t a <− rep ( 0 , p )
157 r e a l b e t a [ betaindex [ 1 : 5 ] ] <− −2
158 r e a l b e t a [ betaindex [ 6 : 1 0 ] ] <− 2
159

160 ysim <− X %*% r e a l b e t a
161

162 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
163 # d e f i n e v a r i a b l e s
164 # Change be tween SNR=0.5 and SNR=2
165 oppdel_navn <− " cor _sim_ snr05 "
166 run_navn <− " cor _run_ snr05 "
167 snr <− 0 . 5
168 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
169

170 hundred_ s imulat ions ( snr=snr , S=S , oppdel_navn )

96



.


	Introduction
	High dimensional datasets in genomics
	Regression models and penalization
	Linear regression
	Cox regression
	Regularization for regression models
	Cross validation
	Programming in R: glmnet

	Preselection and preselection bias
	Preselection criterion
	The problem of preselection bias
	Filtering

	Lasso and preselection bias in linear regression
	Introduction to the Bone data for linear regression
	Lasso and cross validation for the Bone data without preselection
	Cross validation plot for preselected sets of covariates
	Preselection bias

	Lasso and preselection bias in Cox regression
	Introduction to the Lymphoma dataset for survival analysis
	Lasso and cross validation for the Lymphoma data without preselection
	Cross validation plot for preselected sets of covariates
	Preselection bias

	Discarding covariates with SAFE and strong
	SAFE
	Strong
	KKT condition
	Strong and SAFE methods applied on Bone data

	The concept of cross validation freezing
	Freezing in previous examples
	Guiding the preselection through freezing
	Survival analysis and freezing for truly high dimensional data

	Simulation studies
	Setup for the simulation studies
	Three simulation studies

	Summary and conclusion
	Bibliography
	Appendix A
	Appendix B: Scripts in R

