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This paper mathematically treats the following economic problem: A company wants
to expand its capacity in investments that are irrevesible. The problem is to find the best
investment strategy taking the fluctuating market into account. We give some implicit
conditions for a solution in the case where the market process is n-dimensional and an
explicit solution and existence of a solution in the case where the market process is one
dimensional.
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1 Introduction

This paper focuses on the problem of investing in an uncertain market, when the invest-
ments are considered to be irreversible. This means that once an investment has been made
and the market later drops to a less favorable state, we cannot undo the investment. The
risk of overinvesting means that we should wait longer to invest, than if the investments
were totally or partially reversible (see [1]). On the other hand we do not want to wait
too long and miss out on any profits due to our lack of capacity. The problem then is to
find a proper investment strategy taking the fluctuating marked into account. Numerous
examples of irreversible investments exist, for example purchase of highly specified produc-
tion machinery, educating staff members or spending money on advertising. See Dixit and
Pindyck [3] for further economic discussions of the problem.

We assume that our investments have two effects on our economy. The first is that the
income will increase. In general the income will depend on the current state of the market
and the current investment level, which will be denoted by 6 and k, respectively. This is
reasonable since a favourable market could for instance mean greater sales of a product.
On the other hand a high capacity could result in higher maintenance costs. The income
function will be denoted by

I1(0,k) : E x [0,00) = R
where E denotes the set of all possible states of the market process.

The other effect of an investment is obviously that it costs money. We will assume
that an investment has different costs depending on what our capacity is and naturally
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also depending on how much we want to increase our capacity with. However in general
we could also have that the price of an investment is dependent on the market situation.
For example a good market could call for a greater demand in production machinery, thus
raising the price of such equipment. The function I'(6, k) will be such that an increase in
capacity from k to ¢, when the market is at the state 8, will cost

['(0,9) = T(6, k)

In addition we have a discount factor A built into the model. This factor is considered to
be strictly positive. We also consider the discount factor to be constant.

Another assumption is that the market process is not affected by the investments made.
This is a valid assumption if we are considered to be small investors in a large market.

The market process will be denoted by ©;. It takes values in the set £ C R™. We will
show that the solution to the irreversible investment problem is to find a forbidden region
F C E x [0,00), such that the optimal control is a vertical reflection off this set. This
means that it is optimal to invest whenever the pair (0, k) is in F and also to increase our
capacity k such that (6,%) no longer is in F.

0

This situation can be seen in the figure above, where we consider a one dimensional
market process. Suppose we are in the state A. Here the market is in a relatively good
state, but our production capacity is low. We see that the point A is in the forbidden
region and therefore we should invest. We also see that we should immedeately increase
our capacity & until we hit the boundary of the forbidden region (point C). If we on
the other hand start outside the forbidden region, for example at the point B, where the
market is less profitable and the capacity is high. Then we should not invest immedeately,
but wait until the marked changes into a more favourable state. More precisely the marked
be such that the pair (6, k) reaches D until we start investing again, and then we should
invest just enough to keep us out of the forbidden region.

Later it will also be shown that in order to find the forbidden region, we need only know
when (and not how much) to start investing for each investment level, then we can use this
to construct a forbidden region. In the paper this corresponds to finding k-crossections of
the forbidden region, which will be called forbidden candidates (denoted by Fi). Essentially
we will show that if this family of sets is decreasing in k, then this family of sets gives the
forbidden region F that solves the irreversible investment problem.

This paper is organized as follows. Section 2 introduces some preliminary results needed
in order to make the theory work. These results are quite well known, allthough possibly
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not in the exact form given here. Here we also give conditions on the controls, marked
process and functions IT and I'. In section 2.4 we will present the precise mathematical
interpretation of the problem. In section 3.1 sufficient conditions for a solution are given.
These conditions will be rather intricate and in section 3.2 they are narrowed down to
conditions on the forbidden area F. Section 4 gives the existence of and an explicit solution
to the problem in a simplified one dimensional case.

This paper generalizes the result in T.0).Kobilas [7] article on irreversible investment
problems, where a similar result is shown for the case where the market process is a geo-
metric brownian motion. The proofs in Kobilas paper mainly rely on stochastic integration
in order to make things work. This means that the processes we work with should be Ito
processes or at least semi-martingales if the generalization in Protter [8] is used. This
paper does not use this approach, but uses theory developed by Dynkin [4] to solve the
problem. The paper also provides some genearalization to finding the specific solution to
the irreversible investment problem.

This paper is based on my Cand.Scient.thesis in mathematics at the University of
Oslo. My supervisor has been Tom Lindstrgm. I would like to thank him for his help and
patience with my questions and ideas during the last year, and also for introducing me to
the irreversible investment problem, which has been interesting to work with. I would also
like to thank him for reading through the many versions of this paper.
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2 Preliminary results

2.1 The Market Process

The market process, denoted by ©;, is assumed to be a time-homogeneous strong Feller
process on the state space F. This means that the function

u(b,t) = E°[f(1)]

is a continuous function of (0,t) for every measurable bounded function f(6).

2.2 The Controls
We will let functions of the form
Ki(w) :]0,00) x 2 — [0, 00)

represent the investment strategies. We want these control functions K;(w) to be increasing
as a function of time. In addition we will need to integrate the control function with respect
to t and w so we will need a measurability requirement. Another assumption on the control
is that the decision on whether to invest or not should be independent on the market price
at a later stage, because we don’t know for sure what the future market price will be.
This condition can be stated mathematically using adaptedness of the control function to
the o-algebra generated by the market process. A last condition is that the process is
right-continuous. This result is needed for the process to be properly approximated by
controls that only have finite jumps and otherwise are constant. More precisely the control
functions K¢(w) will be considered to be:

1. Measurable with respect to the o-algebra Bjg ooy X M
2. Non-decreasing as a function of ¢, for a.e. w
3. Right-continuous as a function of ¢, for a.e. w

4. Adapted to the filtration M; = {0(0;);s < t}

Control functions satisfying these four conditions and starting at the investment ca-
pacity above or equal to k£ and the market beginning in the state 6 will be called (0, k)-
strategies.

2.3 Some useful results

Before the precise mathematical problem is presented, some results are needed. The resol-
vent of a function f will sometimes be denoted by R f:

oo
Ry f(8) = EY [ / e M f(@t)dtJ
0
Here we will assume that A is a strictly positive constant. The following theorem will be
used throughout this entire paper. It can be found in Dynkin’s book, Markov processes
[4], where the only restriction on the functions is that the integrals converge absolutely:

Theorem 2.1 (Dynkin’s theorem). Let ©; be a strongly measurable strong Markov pro-
cess, and let T be a Markov time for ©:. If f = Ryh then

B> £(0,)] — £(6) = —E" [ / " Mo, dt}

0
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Proof. See Dynkin [4] pg.132 (Theorem 5.1) for the proof.
d

In the following theorems G denotes the set of all bounded measurable functions f, such
that E°[f(©,)] converges to f(8) as t — 0, for every §. And D(A,G) denotesthe subset of
G for which the generator exists.

Lemma 2.2. The set of all bounded continuous functions is a subset of G.
Proof. The dominated convergence theorem gives
lim B? [£(0,)] = B [lim /(6,)| = E” [£(©0)] = £(6)
O

There is an important connection between the resolvent and the generator of a function,
the following result can be found in Breiman [2].

Theorem 2.3. 1. If f € G, then Ry f is in D(A,G) and
(A= A)(Brf) =
2. If fis in D(A,G), then
RA(A=A)f)=f

Proof. See Breiman [2] (pg.342) for the proof.
O

The theorem has an important application which will be used later to find an explicit
expression for the resolvent.

Corollary 2.4. If f is a bounded continuous function then the equation
Au—Idu=—f
has one and only one bounded solution in D(A,G), and this solution is u(6) = Ry f(6).

Proof. f(0) is bounded and continuous and therefore in G. Assume that u(6) is a bounded
function in D(A, G) and that u(6) satisfies the equation

Au—du=—f
Then taking the resolvent on each side gives
Ry(Au — Au) = =Ry f
Now since u(f) € D(A, G) and the left side equals —u(6) by theorem 2.3, we have
u(d) = Raf
O

The following definition gives the set of functions which we will work with in this paper.
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Definintion 2.5. L} is the set of all measurable functions f : E — R such that:

Rf0) = | [ e Misen)

is bounded for 0 € E

The next theorem gives a different version of theorem 2.1 (Dynkin’s theorem), which
will be used several times later. A similar result can also be found in Dynkin [4] pg.133.

Theorem 2.6 (Dynkin’s formula). Suppose f is a bounded continuous function in D(A)
such that Af — Af € Lé. Let T denote a stopping time, then

B SO - 10) =B | [ e - an(eal
0
Proof. By lemma 2.2 and theorem 2.3, then
Bl £(©,)] = f(6) = E°[e " RA(Af — Af)(©,)] = RA(\f — Af)(9)
Using theorem 2.1, this equals

E° { /O ’ e M(Af =\ f)(@t)dt]
O

It turns out that all the (0, k)-strategies can be approximated pointwise by functions
that only have a finite amount of jumps and otherwise are constant.

Proposition 2.7. Every (0, k)-strategy can be written as a pointwise limit of simple func-
tions of the form

102n

K = Z K3 X (w) <t<rigs (w)}
1=0

where {kI'} denotes a partition of the interval [k, k + 10™] such that

E'=k+44-100" |, i=0,1,2,3,..,10°" +1
and T; denotes the first hitting time for the process Ky to the interval [k;,00) whenever
i < 10", We will let Ti02n41 = OO.

Proof. (Outlined)
For each (t,w) then there exists n,7 € N such that

kP < Ky < K7y

But then we only need to show that that this implies ¢ € [7;(w), Ti+-1(w)) But then K} <

Ky < K +107™. Details are left to the reader. For a full proof see [9].
O

This is useful since a lot of results are easier to prove for such simple functions. The
results can then be generalized to all (6, k)-strategies by using the limit theorems. Note
also that we have that

Kp(w) < Kp (W) < Ky(w)

In other words the controls are increasing in 7.
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2.4 Conditions

In order to make the theory work, some conditions on the functions IT and I' are needed.
Basically these conditions are needed for the limit theorems to hold. We also need some
~ conditions that make it possible to apply Dynkin’s theorem and Dynkin’s formula.

Conditions 2.8.

1. T is continuous and bounded in 0 for every k and non-decreasing in the k variable.
AT — AT exzists, and is continuous, continuously differentiable wrt. k, and in L(la for
every k.

2. 11 is non-negative, continuous and continuously differentiable wrt. k.
3. The function ST(#) = max {0, sup{(IT + AT — A\I')(0, k) : k > 0}} is in L.
4. The functions
M@ () = sup{|(II + AT — A[')(6,k)| : 0 < k < q}
and
N () = sup{|(Ily + AT — AL)(0, k) : 0 < k < ¢}

are in LY for all g € [0,00).
5. The function (I + ATy, — AL';)(0, k) is strictly decreasing in the k-variable.
6. (I + ATy, — AT'x)(0, k) is bounded in 0 for every k.

The fifth condition regulates the behaviour of (II4+AI'—AI')(6, k) such that it is possible
to prove the following limit theorem quite easily.

Lemma 2.9. Suppose Il and I satisfy conditions 2.8 and let K be any (0, k)-strategy, and
if {K*} denotes an increasing family of controls such that K{* — Ky as m — oo. Then

E° { /O e (Il + AT — \I')(6y, Kt)dt}

= lim E° [ / e M(IT + Al — \I')(©y, Kf)dt}
n—oo 0
Proof. (Outlined)
Let P = {(0,k) : (Il + ATy — A\['1)(6,k) > 0} and N = PY. The proof concists of
taking the limit as n — oo of the two functions

n—oo

Then the result follows by the dominated convergence theorem (using St + |(II+ AL —
AT)(6,ko)| as a bound function) on the first expectation and by monotone convergence on

the second. See [9] for a complete proof.
O

[ee] o0
lim E° { / e M(II + AT — \I)xp(©y, Kg’)dt} + E° [ / e (I + AT — A\D)xn (64, Kp)dt
0 0




2 PRELIMINARY RESULTS 2.5 The mathematical problem

2.5 The mathematical problem

Now we are ready to present the precise mathematical problem. We want to maximize the
expected profit after we have deducted the expected cost of our investments. As in the
Kobila article it can be shown that this can be expressed using the resolvent. of the function
(Il + AT — AI')(6, k). To see this first note that the total expected discounted income is
given by

Ef { / e M0y, K7) dt}
0

where I1(6, k) denotes the income rate when the market is in the state § and our investment
level is k.

The expected reduction of funds due to the investments requires more work. Here first
assume that the (6, k)-strategy is a simple control of the form given in proposition 2.7. Fix
an wp € 1. Then for each jump, say from k;_; to k;, the increase in capacity is made at the
time 7;(wo). The cost of this capacity increase is e *“0) [['(O,, (wp), ki) — (O, (wo), ki—1)]
and the expected cost is therefore

E° {e_/\“ (O, ki) — T'(O, kz‘—l)]]

The cost of all the investments is naturally given by the sum of such investments
ZE9 B NCHVSE YCH |

This sum can be rewritten as

= iEe [ D(O,, ki) ] ZE" [ TAT(Or, ks -1)]
i=1

— ¢ [e_)‘TNl" TN,kN)} ZE‘)[ —Amp( @T,k)]

N-1 - (*)
_ Z B [e_’\”“l"(@nﬂ,ki)] — E° [e_/\TOF(@TO,kO)]
i=0

Recall that the controls are adapted to the process Oy, so therefore all K;-stopping
times are also ©;-stopping times. Then Dynkin’s formula can be applied. It has the form

E [e—hr(@ﬂ k)] —T(0,k) = E° [ / " eM(AT = AT)(O,, k) dt]
0

which again means that for stopping times 7y and 7, then

E [e—’\TZI‘(@m, k)} iy [e_’\TlI‘(@TI, k)] - { / "

1

e M(AD — AT)(Oy, k)dt]

for arbitrary k € [0, 00). Using this in (*) then gives

=_—p° { /T e (AT — AI) (O, ky) dt] ZE" [ / " e‘)‘t(AP—/\I‘)(@t,ki)dt}




2 PRELIMINARY RESULTS 2.5 The mathematical problem

—I(0, ko)

If we denote the simple control by KtN , then this expression equals
[e.o]
=_F° { / e (AT — AD)(04, KY) dt] —T'(0,k)
0

Then we have an expression for the expected cost of capacity increase with the simple
controls. Then for all simple controls the expected profit is given by

Ef UOOO e M(IT + AT — AI')(©y, KtN)dt} +T'(6,k)

So what happends if the control is not simple? Let K; denote a (6, k)-strategy. Then
according to proposition 2.7 there exists a sequence of (6, k)-strategies { K{*}o2, such that
K} — K; as n — oo. For each of the simple controls the total profit is given by

0o 10211
B [ /O e MII(O,, Kf)dt] +3 E [e—)‘“ (O, k) — [(Ox, ki_l)]]
=1

= E° UOOO e M(IT + AT — \I')(©, KT') dt} +I'(0,k)

Therefore since the controls are increasing in n, lemma 2.9 gives that the expected profit
converges as n — oo and converges to

+E° [ /0 B e M(IT 4 AT — \[')(6y, Ky) dt] +1(0,k)

This is the expression for the expected cost of the investments that will be used in this
paper. But the expression I'(6, k) is not dependent on the control K, so if we let

J(ﬁ,k)(Kt) . [/ e_M(H + AT — \T')(©y, Ky) dt]
0

the problem is to find the (8, k)-strategy that maximizes this expression. Or in other words
finding a (0, k)-strategy K such that

JOR (K*) = sup{JOF)(K,) : K; (0, k)-strategies}

We also want to know what the maximum value JO®) (K}) is.
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3 Constructing a solution

3.1 Suflicient conditions

In this section the process ©; is considered to be n-dimensional, unless otherwise specified.
The assumptions on the process are as in section 2.1 and the conditions on the functions
IT and I are as in conditions 2.8. Using this we can give sufficient conditions for a solution
to the problem. A similar proposition can be found in the article by Kobila [7].

Proposition 3.1. Assume there exists a set F such that:
1. ¢(8) =sup{k: (0,k) € F} is continuous.
2. (Hk + Ay, — )\Fk)(g, k) >0, for all ((9, k) eF.

3. Suppose

v(8,k) = E° [ /0 ” e N H (O, k)dt
where
H(o, k) = {(H—l—AF— AD)(0,k)  when (6,k) ¢ F
(I + AT — AI)(6, $(0)) when (0,k) € F
then v(6,k) is bounded in 6 for every k.
4. The partial derivative v (0, k) exists and

<0 when (0,k) ¢ F

0,k
ve(6,K) {= 0 when (0,k) € F

Then for all (0, k)
sup EOF) [ / e M(IT + AT — AL)(©y, K) dt} =v(8,k)
Ki 0

where the supremum is taken over all (0, k)-strategies. Equality holds for

K} =k Vsup{¢(©;);s < t}

Proof. As before rewriting Dynkin’s theorem 2.1 for stopping times 71 and 7o gives
T2
E° [e_)‘my(@m, k)} o [e_)‘ﬁv(@ﬁ, k)] 7 { / e H (6, k)dt}
1

for arbitrary k € [0,00). Now let K; be any (0, k)-strategy, then it can be approximated
by simple controls {K7}'} of the form given in proposition 2.7

102n

K‘? = Z k?X{Ti(w)§t<Ti+1(w)}
i=0

where 7; denotes K;-stopping times (and setting N = 10%® for simplicity of notation). But
for all such simple controls

EY { /0 e MH (O, K1) dt

10
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‘ N-1 ergy oo
=5 )" / e MH(0y, KM dt| + E° [ / e"\te_’\tH(@t,Kf)dt]
i=0 Y Ti TN

Whenever ¢ € [7;(wo), Ti+1(wo)) the control K{*(wo) is constant and equal to k;

N-1 Tig1 oo
~ 3 { / e ME (0, k7) dt} + B [ / G kx)dt]
i=0 Ti ™

7; is a Ky-stopping time, but since K; is adapted to the filtration generated by ©y, then
it is a ©-stopping time as well. Dynkin’s formula then gives that the expression above
equals

- Nz_lE [ /\TZV eTz’k? } Z E° [ ATy Tz+1>kzn)] +E9 [e—ATN’/(@TN’k?V)]
1=0

N

=SB [0, k) — (O, k)| + 1 (6,F)
1=1
N
= 3B [ ((Or, ) = v(On, Ry)) | + (0, K)
i=1

Now vg(6,k) <0, for all (6, k), and since k' > k7' | then
V(@ka?) - V(Gn? kzn—l) <0

and therefore we also have that the expectation of this expression is negative, so we have
that

E° { / e MH(O;, KT) dt] < v(8,k)
0
for all n. From the assumptions we have that H(6,k) = (Il + A’ — AT")(0, ¢(#)) whenever
(0,k) € F, but since (Il + ATy — A,)(0,k) > 0 in F, then (II + AT — AL')(6, ¢()) >

(IT + AT — AI')(6, k) in F. This means that H(6,k) > (Il + AT — AI")(6, k) for all (6,k).
Then

v(0,k) > E° [/ e M(IT + AT 4+ \I') (04, K7Y) dt]
0
for all n. Taking the limit as n — oo, and using lemma 2.9 we get

E° { /O ” e M(I1 4 AT — \[)(0y, Ky) dt]

n—00 n—00

= lim E* [ / e M(IT+ AT — AT)(0y, K7 dt] < lim v(8,k) = v(6,k)
0

which shows the inequality.

11
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So let us show that the given control
K7 =k Vsup{$(0y) : s < 1}

in fact is optimal. Note that for all simple controls K" that invest only in the forbidden
region J, then we have as before

EY [/ e~ AT (04, K') dt] ZEO { /\n (O, k') — v(O,, kit ))] + (6, k)
0

But since v(0,k) is k-invariant in F the sum above equals v(6,k). Suppose {K}'} is a
family of simple controls that converge to K; from below as n — oco. These controls only
invest in the forbidden region, therefore

n—oo

o0
v(0,k) = lim E’ [ / e MH(O,, Kt”)dt]
0
By the same arguments as in lemma 2.9 this equals
o0
E? [ / e MH(6y, K;")dt}
0
But K never enters F, and since H(0,k) = (Il + AT' — A\I')(0, k) outside JF, this equals
= FEY { / e M(IT + AT — \I')(©, Kt*)dt]
0
This means that K is optimal. |

3.2 Forbidden candidates

Sufficient conditions for the problem are given in proposition 3.1. The object of this section
is to simplify these conditions. It is seen that once the forbidden region F is given, we
know by definition what the function ¢(6) is. It also turns out that it is possible to give
restrictions on the k-crossections of F such that the correspondingly defined functions ¢(8)
and v(0, k) satisfy the conditions of proposition 3.1. The basic quality needed is that they
are forbidden candidates, as we will define below.

Definintion 3.2. Let Uy, = {0 : (II + ATy, — AI'x) (6, ko) < 0}

Definintion 3.3. Given a ko € [0,00). A Borel set Py, will be called a ko-forbidden
candidate if:

1. Forall@E'PkC; ,

E? [ / e (I, + ATk — AT'%)(©s, ko) xpe (©4) dt} <0
0 0

2. For all 6 € OPF ,

E° [ / e (L), + ATk — AT%)(©1, ko) xpe (©r) dt} =0
0 0

12
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3. Uy, C PS

Now we wish to show that solving the irreversible investment problem is really a matter
of finding forbidden candidates. More precisely we want to show that if

1. Fy is a closed k-forbidden candidate for every k € [0, c0)
2. Fq C Fr,ifqg>k

3. If 0 is a boundary point for Fj (except possibly on the boundary points
of the state space), then 6 ¢ F, for any g > k.

then F = {(6,k) : 0 € Fi} gives the forbidden region that solves the irreversible investment
problem.

Lemma 3.4. ¢(0) is a continuous function.

Proof. Note that

¢~ ((ko,0) = | Fi

k>ko

Assume that 6 is a boundary point of Ugsi,Fr and that 6 € Ugsp,Fk. Then there exists
a g > ko such that 6 € F;. But then by the monotonicity of the forbidden candidates 6 is
a boundary point for Fy for all k € [ko,q|. This contradicts the third assumption on the
family of forbidden candidates, so § ¢ Ugsp,Fk. This means that Ugsy,Fr is open and
hence ¢(0) is continuous. O

Lemma 3.5. Suppose ©; is a strong Feller process on the state space E. Let f(0) be a
bounded function. Then the resolvent of f(0):

Raf(6) = B [ /0 Y f(@t)dt]

18 continuous in the 0-variable.

Proof. By bounded convergence and Fubini-Tonelli we have
lim E? [ / e~ f(@t)dt} = / e lim E? [£(0,)dt]
6—0o 0 0 6—0g

using that ©; is a strong Feller process and Fubini-Tonelli again then gives

/ et [f(©y)]dt = E® [ / T f(@t)dtJ

0 0
O
We are ready to start showing that the function v(6, k) that we defined does in fact
satisfy the conditions in proposition 3.1.

Now some properties of the forbidden candidates are needed in order to prove that
v(0,k) is differentiable wrt.k.

13
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Lemma 3.6. Let k € [0,00). If F and B are k-forbidden candidates and F' C B. Suppose
that B is closed, then

E° { / e M(II 4 ATy, — AT (04, k) x e (©) dt]
J 0 - i

o0

=F° [ / e Ml + ATy, — A% ) (Oy, k) x ge (©;) dt]
0

Proof. If § € B then (II + ATy — A\'x)(6, k) > 0 since B is a k-forbidden candidate. But

f e B,so

r oo
o / e M(IT, + AT) — \TR) (O, k)xpe (O3) dt| = 0
0 i

and by the assumption that F' is a k-forbidden candidate we have that for all 4

B / e (I, + AT}, — AT)(Oy, K)xpe (©1) dt| <0 *)
LJ O i

But then

E° [/ e M(II, 4+ ATy — M%) (O, k) x e (O:) dt]
0

= E° { / e (Il + ATk — ALk) (O, k)xpeype (OF) dt]
0

The the first of these expectations is less than or equal to zero, by (*) and the last expec-
tation is greater than or equal to zero since it is an integral over a positive function. Since
they are equal, this means that they both must be zero. So for all 8 € B the equality holds.

Assume that 6 € B. Let 75 denote the first hitting time for the process O to the set
B. Then

E° { / e (I, + ATk — AL)(O, k)X pey pe (Or) dt]
0

B
— B [ / e M(IT), + ATy — AT) (O, k)x e ge (Or) dt}
0

-I-Ee |:/ e_)‘t(l'[k + AT — )\Fk)(@t, k)XFO\BC (@t) dt}

B

The first integral is zero since Ou(w) ¢ FO\BY, whenever 0 < t < 7p(w). By Dynkin’s
theorem 2.1, the second integral equals

Ef {e_ATB E°7s { / e (Il + ATy, — AT'%)(©¢, k)x o\ po (©:) dt”
0

which is zero since ©,, is on the boundary of B a.s. and

E° {/ 6_/\t(Hk + ATy — )\Fk)(@t, k)XFC\Bc (@t) dt} =0
0

for all # € B, and also on the boundary of B, since B is closed. So the result also holds if
0 & B.
O
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3 CONSTRUCTING A SOLUTION 3.2 Forbidden candidates

Lemma 3.7. Let F,; denote g-forbidden candidates for all ¢ € [0,00). And suppose that
Fgy 2 Fqy, whenever ga < q1. For any k € [0,00), then

U%
>k

and

(17

q<k
are both k-forbidden candidates.

Proof. To show this first note that if § € J ., F¢ then since {F4} is a decreasing family
of sets, there exists a ¢ such that 6 € F; for all g € [k, §]. This means that

E° [/ e (Il + ATy, — A1) (6, Q)Xy-‘qc (0y)dt| =0
0

for all ¢ € [k,q], since Fy is a g-forbidden candidate. Therefore using the dominated
convergence theorem with the function

N@(9) = sup{|(IIy + ATy — AT%) (6, k)| : 0 < k < g}

from the conditions as a bound, we have

(oo}
5 [ /0 e M (I + ATy — AT%)(O1, k)X, 7o (©1) dt]

= lini E? |:/ e_)‘t(Hk + AT, — AXT')(©y, q)X]:qc (6:) dt} =0
qa— 0

Lemma 3.5 and conditions 2.8.6 then gives that this expression is zero on the boundary
also. If 0 & Ugs i Fy, then 8 ¢ F for all ¢ > k. So

Ee |:/ G_At(nk -+ A].—‘k - )\Fk)(@)ty Q)X]:qc (@t) dt:| S 0
0

for all ¢ > k, but then
o0
E9 |:/ e—)‘t(]:[k -+ Al—‘k — AP]{;)(@t, k)qu>k]:qC (@t) dt:| < 0
0

also, since this is the limit as ¢ — k.
Together this gives that J o>k Fg is in fact a forbidden candidate. The proof in the
other case is similar. O

Corollary 3.8. Let {Fy}re[o,00) be a decreasing family of closed k-forbidden candidates,
then

(o0}
o0 { / e (I + ATk = ATk) (O, k)X, 70 (©2) dt]
0
(ee]
=E’ [ / e (Il + ATy — ATy ) (84, k)Xo, _, 70 (©1) dt}
0

= F¢ [/ e_At(Hk + ATy, — )\Pk)(@t, k)xj_-kc <@t) dt]
0
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3 CONSTRUCTING A SOLUTION 3.2 Forbidden candidates

Proof. Note that [, F¢ and Fy are closed and that
NFA27m2U7A
g<k >k

Combining lemma 3.6 and lemma 3.7 then gives the result. |
Now we are ready to show that the function v(0, k) is differentiable wrt. k.
Lemma 3.9. v(0,k) is differentiable wrt. k and |

ve(0,k) = E° { /0 e (T 4+ ATy — A\['%)(6y, k)x o (O) dt}

Proof. Suppose ¢ > k. And let Ak = ¢ — k. Then we have

V(eaQ) — l/(e’ k)
Ak

= AkT1E? [ /O ” e M[(IT + AT — AT')(©y, q) — (I1 + Al — AT')(©y, k)Ixze (©1) dt]

#ako? | [T NI AT = AD)(©40) = (T 4+ AL~ AT)(@s 6O irp s (00

For the second integral note that whenever 6 € .7:qc \FE then #(0;) € [k,q]. Then by
the mean value theorem, there exists a function c¢(6) such that ¢(0) € [k, ¢] and

(IT+ AT = AI')(©¢,q) — (IT + AT = AT') (O, #(©4))

Ak xrg\rg (O0)
— 5O
= (T + AT — AT1)(O4, ¢(00)) x50 2 (@tﬁ_Aqii(?t_)

Note that this function is bounded by the function N (’;)(@t) given in the conditions (for
some k > k) and that %(,?t) <1lin .7-"qc \FC, so by the dominated convergence theorem,
taking the limit from above as ¢ — k gives

(IT+ AT — AI')(©4, ¢) — (T + AI' — AI')(©4, $(©4))
Ak

q'—)k

< )24 [/ e_)‘t(Hk + AT, — )\Fk)(@t, k))xﬂq>k_7_—g\_7_-kc (@t) dt]
0
which is zero by corollary 3.8. Then we are left with the first integral
(e}
lim AkLE? [ / e M[(I1 + AT — AI)(©4, q) — (I + AL — A)(6y, k)Ixze (©1) dt]
q— 0

Again using the mean value theorem we can move the limit inside the expectation, since
the integrand is bounded by the function N*)(6) in the conditions (for some k > k). This
gives

0

The case where ¢ < k and ¢ — k is similar. O

16




3 CONSTRUCTING A SOLUTION 3.2 Forbidden candidates

We have shown that v(6, k) is differentiable wrt.k and we know what this derivative is.
So the only thing left to prove is that v(0, k) satisfies condition 4 in proposition 3.1.
This follows quite easily from the definition of the forbidden candidates.

Lemma 3.10.

=0 forall (0,k)eF

vi (0, %) { <0 forall (0,k) ¢ F

Proof. Fix a k € [0,00). Assume (0,k) € F, that is § € F. By lemma 3.9 we know that
o0
I/k(e, k) =E° [/ e_M(Hk + ATy — AT'g) (O, k:)X]_-kc (@t) dt]
0
Now let 7 denote the first hitting time for the process ©; to the set }"kc . Then

(0, 8) = B [ [ e+ Ave - xmi)(: kg (@) dt}
0

+E9 {/ e_/\t(Hk + ATy, — )\Fk)(@t, ]C)X}-kc (@t) dt:|

The first integral is zero, since ©; € Fj, as long as 0 < t < 7. By Dynkin the second integral
equals

E° [e“ATFEGTF { /0 e M(I, + ATy — AT') (O, k) x e (@t)dt”

This is zero since F is a forbidden candidate and ©,, € OF.
Now assume that (6,k) ¢ F. Then vg(6,k) < 0 by the assumption that Fj is a
k-forbidden candidate. |

We have shown that the function defined does in fact satisfy the conditions of proposi-
tion 3.1, and therefore it solves the irreversible investment problem. This can be summa-
rized by the following theorem.

Theorem 3.11. Suppose O is a strong Feller process on the state space E and that the
functions II and T' satisfy the conditions 2.8. Given a set F C E x [0,00), and suppose
Fr =10:(0,k) € F} satisfies the following:

1. Fy 1s a k-forbidden candidate for every k.
2. Fi 2 Fq for all ¢ > k.

3. If 0 is a boundary point for Fy, (except possibly the boundary points of E), then 0 & Fy
for any ¢ > k.

Let ¢(0) = sup{k : (0,k) € F}. And let v(0,k) be defined by

v(0,k) = E° [ /O M 4+ AT — AT)(Oy, k)X e (©1) dt]

+E° [ /0 h e M(I1 4 AT — AI)(©, ¢(01)) x5, (©) dt]

17




3 CONSTRUCTING A SOLUTION 3.2 Forbidden candidates

Then
oo
v(0,k) = sup {Ee [/ e_)‘t(H + AT — A\I') (O, K3) dt| : Ky (0, k)—stmtegies}
0

And the control

K; =k Vv sup{¢(O;)}
s<t

is an optimal (0, k)-strategy.

Proof. Lemma, 3.4, lemma 3.9 and lemma 3.10 show that the conditions of proposition 3.1
are satisfied. O

Proposition 3.12. Suppose B is a Borel set and
(o]
E? [/ e (4 A — A')(©y, k)XB(@t)dt}
0

is continuous in 0 for all k, then the result in theorem 3.11 holds for all strongly measurable
strong Markov processes and (Il + ATy — AL'x) (6, k) not necessarily bounded.

Proof. The boundedness and the strong Feller properties are only needed to show the 6-
continuity of the function above (which is only needed in lemma 3.7. Then the result
follows as in theorem 3.11 |

18




4 DIFFUSIONS

4 Diffusions

Suppose ©; is a one dimensional diffusion on the state space (0,00), where the drift 1(6)
and variance 0%(#) both are continuous on (0, 00) and

o2(#) > 0 for all 6 € (0,00)

then it is possible to show that the function given in proposition 3.12 is continuous as long
as (I, + ATy — AT'x)(0,k) € L. Then will not need to show that diffusions satisfying the
properties above are strong Feller processes.

4.1 Resolvent of a diffusion

As seen in the previous sections the resolvent plays an important part in finding the solution
of the irreversible investment problem. In order to get more explicit solutions, it is useful
to use an alternative expression for the resolvent. As we shall se this expression is equal
to the resolvent for all the functions we will work with i.e. the functions in LY. But first
a result from Breiman [2] is useful. It gives the existence of two independent solutions of
the equation Af — Af = 0 that are easy to work with.

Theorem 4.1 (Breiman [2], Theorem 16.69). A¢ = A¢, A > 0, has two continuous
solutions ¢4 (0), p—(0) such that

1. ¢4+(0) >0, ¢_(0) >0, 6 € (0,00)
2. ¢(0) 1s strictly increasing, ¢—(0) is strictly decreasing.

Proof. See Breiman [2] pg.380 for the proof.
|

It can be shown that if the process is a diffusion, then the functions ¢4 and ¢_ satisfy
the corresponding differential equation

50°(0)8"(0) + p(6)¢' = r¢ =0

(See Breiman [2] pg.389). In the following definition W(#) denotes the wronskian of the
functions ¢4 (6) and ¢_(0), so

W (0) = ¢, (0)¢—(0) — ¢+(0)¢_(6)

Since ¢4 and ¢_ are twice differentiable it follows that the wronskian is continuous in
(0,00). In addition it is also strictly positive using Breimans theorem. Using any functions
¢+ (0) and ¢_(0) that satisfy the properties in theorem 4.1 we have the following definition.

Definintion 4.2. Let L¢ 4 be the set of measurable functions such that
¢+ ()| f ()] 77)|
Wno2m)
and

¢l ()l

W o2l *

are bounded for 6 € (0, 00).
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4 DIFFUSIONS 4.1 Resolvent of a diffusion

The functions in Lé _are interesting because the resolvent of such functions can be
expressed using the functions ¢4 (0) and ¢_(0).

Proposition 4.3. Suppose f € Lé“ﬁ_. Then

o [P 285 () * 2%_(n)f(n)
RAf(0) = ¢-(0) 5 mdn+¢+(9) ; Wd
Proof. Let

n
o Wma?(n) o Wn)o2(n)
First assume that f is continuous and in Lglb% ¢_- Then u(0) satisfies the differential equa-
tion

Au—du=—f

By theorem 2.3 this equation has only one bounded solution in Dy, and this solution is
the resolvent of f. Therefore u(0) = Ry f(6). The result therefore holds if the function f
is continuous and in Lé% 4_- By using the convergence theorems the result can be seen to

hold for all functions in L;; b O
+, —

Naturally one wants to ask which functions are in fact in Lé+’ _- The following propo-
sition gives the connection between the previously defined Lé and Lé)ﬁ b

Proposition 4.4.
Lé g L(]i)+7¢'—

Proof. First assume that f is a bounded function. Then E°[e=*|f(©;)|dt] is bounded for
6 € (0,00). Let

£al®) = min{n, | £(0)|x(2 4 (0))

Note now that the functions ¢ (8),¢_(6), o%(6) and W(6) are continuous so they are
bounded on the interval [, 7] for all n. In addition f, is bounded for every n. Then the
integral

/ " 264 () fn(n)
o Wi(n)a?(n)

is an integral of a bounded function over a bounded interval, so the integral is bounded
for all 6. ¢_(6) is bounded in [2,n] (and in [1,c0) since it is decreasing). Also whenever
0 < %, then the integral is zero, so

o 204 (77) fn (77)
60 | Wnodm) *

is bounded for 6 € (0,00). In a similar way

*2¢_(n) fn(n)
040 [ e
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4 DIFFUSIONS 4.2 A simplified problem

is also bounded. Then by proposition 4.3 we have that for all n

o [4 o
B[ [T oo = 6-0) [ 0Dy g,00) [ Hm 0 Dan
Now f,(0) <|f(0)], so therefore

Ef [ /O e fn(@t)dt] < Ef { /0 ” e f(@t)|dt]

But E°[[;° e=*| f(©y)|dt] is bounded by a constant M. Then

g 2¢+(77)fn(77) ( )fn(n)
6-0) [ T + 9/ 20-(0)Jntn)
O [ Fger it o+ [ Sgior
is also bounded by M for 6 € (0,00) for all n. Since 21?;,"(5;)’?6 "(7(77)’) is positive and increasing

in n for every 7, the monotone convergence theorem gives

? 20+ (] ()] ° 26_(n)|f ()]
20 vv<n>aﬁ<n>‘h7*'¢+(9)/£ ot

o ¢+ n 77 fn n)¢ (n)

Then f € L¢+ 6

O
This gives the following observation.
Corollary 4.5. If f € L, then
" 264 ()f () , > 2¢_(n)f(n)
Ryf(0)=o_(0 m+ ¢4+ (0 —— = d
©=6-0 || ot 14O |, Wpottn
Proof. Since Le crl b then the result follows by proposition 4.3.
O

This result is useful because it gives an explicit expression for the resolvent of mea-
surable functions, but also because it gives a sufficient condition and also a nescessary
condition for a function to be in Lé. In fact showing directly that the bounded functions
are in L<1#+, 4_requires some of work, especially if the functions ¢4 (0) and ¢_(0) are not
given explicitly. But knowing that Lé+,¢_ = L%a this is obviously the case.

4.2 A simplified problem

In this section we study a simplified problem. Here we will prove the existence of a solution
and also give an explicit formula for the solution. We will assume that the set

IC = {0 : (I + ATy — \I%)(0, k) < 0}

is an interval for every k. Then I is of the form (0,a)U (b, 00) where one or both of these
intervals possibly are empty sets. So let us assume that the k-forbidden candidate is of the
form [¢1,12]. Then we want to find numbers 91 and 2 such that

Ef |:/ e_M(Hk + Al'g — )\Fk)(gt, k)X(0,¢1)(@t)dt
0
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4 DIFFUSIONS 4.2 A simplified problem

+E° [/ e M (Il + AT, — AT'%) (O, k)X(qﬁz,OO)(@)t)dt:l =0
0

for 0 = 1 and 6 = 1)9. Lets first try to evaluate this function for § = 1/1. Then using the
alternative expression for the resolvent given in the previous section, this equals

Y126, (n) (Mg + ATy, — AT'%)(n, k) * 2¢_(n) (g + ATy, — ML) (n, k)
¢—(¢1)/0 W(n)o_g(n) d77 + ¢)+(¢1) /w2 W(T])O’2(’I’]) d77

We need to choose 97 and 19 such that these integrals equal zero, and at the same time
ensuring that the interval (0,11) contains the interval (0,a). This suggests that we let 9
and 19 be defined as follows:

6 —
11 = inf {9 € (0,00) : /0 ¢+(77)(Hk;(x:)1—(;kz(n))\rk)(77> k) dn > 0}

and

(I + ATy — ATR) (1, k
¢2_Sup{9€ 0,00) : [ 2= kW(n)ak?(n) k)N )dn>0}

The following two lemmas verify that the given assumptions are in fact correct. A similar
result can be found in the Kobila article [7].

Lemma 4.6. Let f be a continuous function in Lé such that

/af(n)dnzo , for all 8 € (0,a)
[

Then

¢-(0) [* o [ O=(0)
5@y 1= [, S
Note now that g(a) = 0 and that the function g(6) is differentiable.

o $-(0)8+(6) - ) g, -0
g(0) = 20 [ pyan - 20100y + =D 0

Proof. Define

¢ (0)p4(0) - ¢’+(9
B (¢+(9) /f

The expression ¢'+(9) ¢_(0) — ¢_¢(0) is positive since qb+( ) is strictly increasing and
¢—(0) is strictly decreasing. Using the assumption that ;' f(n)dn > 0, gives that g(f) is in
fact a monotonely decreasing function, and since g(a) = 0, then 9(0) > 0 for all § € (0,a).

This also gives that the integral in question is positive by considering ¢+E9§ g(0). O

Functions 17 (k) and (k) can be defined in a similar way as in Kobilas article such
that the interval [¢1(k), 2 (k)] is in fact a k-forbidden candidate for every k.
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4 DIFFUSIONS 4.2 A simplified problem

Lemma 4.7. Let the functions 11(k) and 1a(k) be defined by

6 _
1 (F) = in {9 50 /O ¢+(77)(Hk;<1:)]——‘0k2(n)>\rk)(777 k) dn > 0}

Po(k) = sup {9 >0: /000 ¢“(n)(Hk;(ﬁ)1:f2(:7))\Fk)(n’ k) dn > O}

Let Fi, = {0 : ¢1(k) < 0 < pa(k)}. Then Fy, is a k-forbidden candidate for every k € [0, c0).

Proof. Fix a k € [0,00). Note that by corollary 4.5 then

E° [ / e (I + ATy — AT) (O, k)x 70 (©1) dt]
0

02 Iy, + ATk — AT%) (1, K) X[y (k) abn ()€
_¢_(9)/0 ¢+ () (L K k) (M5 B) X (k) o (k)] (ﬁ)dn

W (m)a?(n)

0 2¢_ (1) (I + ATk — AT) (10, K) X[y (k) )} (1)
+6:(0) W) i

If 11 (k) < 1bo(k), inserting 0 = 11 (k) gives:

= ¢_(¢p1(k)) / Vi) 264 () Mk + ATk — ALk) (7, &) X0, (k) (1) i

- W(n)o?(n)

% 2¢_ ()T + ATk — X%) (1, k)X (s (k),00) (1)
e (4 (R)) /¢ . ) dn

these integrals are zero by the definition of ;(k) and vy(k). The result is similar for
6 = 19(k). It remains to show that the set Fj also satisfies the last two properties of
forbidden candidates.

Assume 6 € (0,%1(k)). Then

E9 |:/0 e_M(Hk + AT, — )\Fk)(@tv k)X[wl(k),wz(k)]O(®t>dt:|

3 6 26 (n) (I, + AT, — AT%) (n, k) Y1(k) 26 _ () (I, + ATy — AT%) (1, k)
=60 | Wino2m) i+ .0) | Wmo2(n) n

©  2¢_(n)(My + ATy — AT%)(n, k)
6+(0) /W) Wno2m)

Note that the last of these integrals is zero, and since

k) 26, () (T, + ATy, — ALR)(n, k) ,
6-0) | Wno*(m) =

dn
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4 DIFFUSIONS 4.2 A simplified problem

the first integral in (*) can be rewritten. This gives

$18) 96_ () (IL, + ATy — ATw)(n, k) ~ k) 26 (1) (T + ATy, — AT1)(n, k)
6:0) [ Wl in=5-0) | Wnot() i

Vik) 26 (n) (I + ATy — ATy) (1, k) ¢ (0)9—(n)
9>/ W (o) (1 _<9>¢+<n>> an

which is negative for all § € (0, (k)) by lemma 4.6.

If US is connected, then Uy can be written as a union of two intervals (0,a) and
(b,00) (where one or both of these intervals possibly are empty sets). It is easily seen that
Y1(k) > a and 1a(k) < b. This means that [¢1(k),2(k)] is a k-forbidden candidate for
each k. O

It remains to show the monotonicity of the family of forbidden candidates. More
precisely we need to show the following

Lemma 4.8. If ¢ > k then [1(k), %2 (k)] 2 [¥1(q),%2(q)]
Proof. Assume that 11(k) > 0. By definition

n®) ¢ () (Ly, + ATy — ADy) (m,k)
/ W o2 =

Since (II + AT'y, — A\L';)(0, k) is strictly decreasing in the k-variable, then

V1) ¢ () (T + ATy — ALy) (1, 9)
L e <o

for all ¢ > k. For all such ¢ there exists a § > 1 (k) such that

¢+(77 (Hk + Ark — Al'x)(n, 9)
W(n)a*(n)

also. Then v;(q) > 0, so the function 1(k) is strictly increasing. Similar arguments also
give that ¢9(k) is strictly decreasing. The result then follows.

dn <0

O

Note that since 91 (k) and (k) are the only boundary points (except 0 and co), and
1(k) is strictly increasing and 9(k) is strictly decreasing, then the boundary points of
[¥1(k),¥a(k)] are not in [11(g), ¥2(q)] for any g > k. The solution to the optimal irreversible
investment problem can be summarized in the following theorem:

Theorem 4.9. Suppose Il and T are functions satisfying the conditions in 2.8.1-5. Let

¢ﬂk):dnf{ee(O¢m)i40¢+0ﬂah-FAFk_AFwO%k)m7>0}

W (n)o?(n)

¢—(n) (L + AT — AL'k)(n, k)
1o(k) = sup {9 € (0,00) : / W n)o™ () dn > O}
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4 DIFFUSIONS 4.2 A simplified problem

Let F = {(0,k) : ¢¥1(k) < 0 < yq(k)} and $(0) = sup{k : (6,k) € F}. Let the function
h(n, k) be defined by

h(fm k) — { ("7.7 k) | for 1 ¢ [¢1(k),¢2(k)]
(m,¢(n)) forme [¢1(k),¢2(k)]

Then

sup {E(e’k) [/ e M(II+ AT — \T')(©, Kt)dt] A k)-stmtegies}
0

B ? 9. (m) (I + AT — XT)(h(n, k)  9¢_(m)(I1 + AT — XT)(h(n, K))
=0-0) | Wino2m) i+ 4.0) | Wino2m)

And the optimal control is
Ky =k Vsup{¢(0s) : s < t}

Proof. Using lemma 4.7, lemma 4.8, with the following remark, then proposition 3.12 gives

the result.
O

Let us end this section with an example.

Example 4.1. Suppose we have the market process

1
= — d
d©, tdt + dBy

with discount factor A = % Let II and T' be the functions

116, k) = % <1 - ﬁ)

[0,k) =k
Then
1 1 1
and
(T + AT — ATR) (0, k) = ——— —
k k k P - 0(k+ 1)2 2
Note that the equation A¢ — A\p = 0 has the two solutions
69 _ 6—9 6_9
¢+(0) = — and  ¢_(0) = -~

and that these are on form as in proposition 4.3. This gives W(0) = 2.

>

| =

S*(0) = max {0, iup {(Il + AT — AI') (6, k)}} <
>0
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which 1s in Lé) by proposition 4.4. Also

M@ (6) = sup {|(IT + AT ~ AT)(0, ) : k € [0,q]} < 7 + g

N(Q)(G) = sup{|(Hk + AT, — /\Fk)w:k)’ ke [0, Q]} < %+)\

which are in L for all ¢ € [0, ). (Il + ATy, — AT'x)(0,k) is strictly decreasing in the
k-variable, since
1

II ATy — A 0 =
(IMgg 4 ATk — AT'kx) (6, k) CFEE

which clearly is negative for all (0,k) € (0,00) x [0,00). So all the conditions on the
functions II and I' are satisfied. Note that for all k there exists a 6 > 0 such that (Il +
AT, — AT%)(0,k) > 0 for all 0 € (0,0). Then 1(k) = 0 for all k. By proposition 4.4 the
function (k) becomes

a(k) = sup {9 € (0,00) : /000 ﬁe_n — %ne_”dn}

The integral can be computed quite easily

*© 1 1 1 1 1 1 1+6
N _ Zpedn = —9___9 —9__—9: _ —0
(A G+02° ~ 2™ T kit T2 T2 k+12 2 )°
For each k there exists only one point 8 for which the expression is zero, and this point is

2
(k+1)2

1

So therefore a(k) = max{ﬁg —1,0}. And the forbidden region that solves the irre-
versible investment problem is

fz{w¢y0<0<@f%?_l}
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