THE COATES-SINNOTT CONJECTURE
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ABSTRACT. Let E signify a totally real Abelian number field with a prime power
conductor and ring of p-integers Rg for a prime p. Let G denote the Galois group
of E over the rationals, and let x be a p—adic character of G of order prime to p.
The odd—primary results in this paper depend on the Bloch-Kato conjecture, while
the two—primary results are non—conjectural. Theorem A calculates, under a minor
restriction on x, the Fitting ideals of K, (Rg;Zp)(x) over Zp[G](x). Here we require
that n = 2 mod 4. These Fitting ideals are principal, and generated by a Stickelberger
element. This gives a partial verification and also a strong indication of the Coates—
Sinnott conjecture. We also discuss (co)—descent for higher K—groups, and prove
in Theorem B -a Hilbert Theorem 90 type of result for the transfer map in higher
K-theory of number fields.
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1. INTRODUCTION AND SUMMARY OF RESULTS

Let E/F be a Galois extension of number fields. The Galois group Gal(E/F')
acts on various Abelian groups associated to the extension E/F. Galois module
structure theory deals with these groups by exploring the extra structure coming
from the Gal(E/F)-action. Classical examples of such groups are Picard groups,
differents and units. This paper will focus on the Galois module structure for the
algebraic K—groups of number rings. These are a priori just Abelian groups, but
our ability to understand their deeper structure depends on the imposed Galois
module structure.

The genesis of this paper was to investigate the Coates—Sinnott conjecture posed
in [CS]. Given an integer f > 1 and an integer a relatively prime to f, one defines
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the partial zeta function by

Cr(s,a) = Z k=°

k=amod f

where Re(s) > 1. The function (¢(s, a) can be extended to a meromorphic function
over the whole complex plane. Let E be an Abelian number field of conductor f,
and choose a primitive fth root of unit (¢. For every positive a with (a, f) = 1 we
denote by o, € Gal(E/Q) the restriction to E of the automorphism of Q((f) that

maps (¢ to its ath power. For n > 0, the nth Stickelberger element relative to E is-

defined as the sum:

b= Y. ((-n,a)o;t

(a;f)=1,1Sa<f

Many arithmetic properties of a number field are concealed in its zeta function.
For K—groups of rings of integers in number fields one expects a similar phenomenon.
Coates and Sinnott announced in their Inventiones Mathematicae paper [CS] from
1974 the following conjecture.

Conjecture 1.1. (Coates—-Sinnott) Let b be a positive integer with (b, f) = 1. The
element 0,,(b) = wnt1(Q) (0™ — 03)0, annihilates Ko, (OF) where w,(Q) denotes
the largest integer m such that (Z/m)* has ezponent dividing n, and Of denotes
the ring of integers of the field E.

Background and motivation. Conjecture 1.1 was inspired by the Lichtenbaum
conjectures, and earlier work by Coates and Lichtenbaum [CL]. Moreover, Coates
and Sinnott proved in [CS] — with an additional assumption on b — that the element
61 (b) annihilates the p-primary subgroup of Ky(Og) for all odd primes p. If E is
totally real and n is even, then the conjecture is totally insipid since the Coates—
Sinnott element 6,(b) is trivial. The classical Stickelberger theorem in algebraic
number theory fits beautifully into this picture, having Conjecture 1.1 as a natural
generalization. One conspicuous attempt to establish the odd primary part of the
Coates—Sinnott conjecture is the Annals of Mathematics paper [Bal] of Banaszak
from 1992. Theorems A and C in loc sit give evidence for Conjecture 1.1, and
the same goes for Theorem 5 in [Ba2]. Théoréme 2-2 of Nguyen in [Ng] tells
us that the Coates—Sinnott element 6,,(b) annihilates the étale cohomology group
Hgt(OE[%];Zp(n + 1)). This gives a very strong evidence for Conjecture 1.1. In
fact, if the Bloch—Kato conjecture for number fields is true for an odd prime p,
then Théoreme 2-2 in [Ng] would imply the p—primary part of the Coates—Sinnott
conjecture. This follows from the well known fact that the Bloch-Kato conjecture
for number fields at an odd prime p implies the famous longstanding Quillen—
Lichtenbaum conjecture for number fields at p. See Theorem 1.2 for more precise
statements.

Our approach to Conjecture 1.1 is based on recent results of Kolster, Rognes
and Weibel which give a cohomological interpretation of two—primary algebraic
K—groups, techniques introduced by Greither [Gri] in order to study modules of
projective dimension one, and the main conjecture of Iwasawa theory due to Mazur
and Wiles [MW]. We point out that [RW] is based on the recent flourishing activity
in motivic cohomology, cf. the papers [BL], [FV], [SV] and [Vol] written by Bloch,
Friedlander, Lichtenbaum, Suslin and Voevodsky — alone and in collaboration —
and of course Voevodsky’s proof of the Milnor conjecture at the prime 2 in [Vo2].
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This paper is based on and could not have been written without the benefit of all
these extensive works. Instead of studying the entire algebraic K—group we will
try to pin down each of its eigenspaces. For this we try to determine the size
and structure of the eigenspaces for the action of Gal(E/Q) on the even algebraic
K-groups for E a totally real Abelian number field of prime power conductor.

Main results. Given a prime p we let w : Gal(Q(u2p)/Q) — Z; denote the
Teichmiiller character. For an Abelian number field F and a p—adic character x of
Gal(E/Q) we think of x as a character of Gal(Q/Q) which is trivial on Gal(Q/E).
Here we write Q for the algebraic closure of the rationals. Further we let Q, denote
the part of Q fixed by the kernel of y. Let M be a finitely presented module over
a commutative ring R with identity. We denote the first Fitting ideal of M over
R by Fitg(M). Recall that the latter is contained in the annihilator ideal of the
R-module M. Given a Galois module M and a character x as above, we denote
by M(x) the xy—part of M. For more details on y-parts, see Section 2. The two-
primary conclusion in the following result is non-conjectural, while the odd-primary
result depends on the Bloch-Kato conjecture.

Theorem A. Let E be a totally real Abelian number field with ring of p—integers
Rg, and-with a prime power conductor. Let G denote the Galois group of E over
the rationals, and let P be its p-Sylow subgroup. Write G = A X P, and let
X:A— @; be a character. Suppose that y w2t is a nontrivial character of
GGZ(QX_1w%+1 /Q) where n = 2 mod 4. Assume the Bloch-Kato conjecture is true

for E at the odd rational prime p. Then we have
Fitz, (a1(x) Kn(RE; Zp)(x) = (02 (X)) for n =2 mod 4
Fitz, 1610 Kn(RE; Z2)(x) = (02 (x)) for n =2mod 8

) Ox(x
Fitz, (61(x) Kn(RE; Z2)(x) = (%) for n = 6 mod 8

where O is the 5th Stickelberger element relative to E.

Theorem A gives a partial verification of the two—primary part of Conjecture 1.1.
The elements 6,,(b) constructed by Coates and Sinnott are quite different from the
generators of the Fitting ideals in Theorem A. This refinement should not be
too surprisingly since we consider eigenspaces of the K—groups. Theorem A also
gives, modulo the Bloch-Kato conjecture, a refinement of the odd—primary part of
Conjecture 1.1.

In Section 3 we discuss (co)—descent for algebraic K-groups of number fields
and their corresponding number rings. Most noteworthy we establish a Hilbert
Theorem 90 for higher algebraic K—groups. See [MS] for the case of K, and [Vo2]
for a similar result in higher Milnor K—theory of fields.

Theorem B. (Hilbert Theorem 90) Let E/F be a Galois extension of number fields
with Galois group T'. Let roo denote the number of real ramified primes in E/F and
let n > 1. If the Bloch-Kato conjecture holds for both E and F at the odd prime p,
then the transfer map trr : Kon(E)r — Kon(F) is bijective on the p-primary
part. For n = 3 mod 4 the transfer map trr is bijective on the 2-primary part. The
same map 1s injective with cokernel isomorphic to (Z/2)" for n =1 mod 4 on the
two—primary part. For n = 0,2 mod 4, the two-primary part of the kernel of trr
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has order less or equal to 2"~ while the cokernel is trivial. Here we assume that

Kon(Ra;Zy) is isomorphic to H3,(Ra;Za(n + 1)) for A= E,F if n =2 mod 4.

Our odd—primary results are to our knowledge still conjectural, and they depend
on the Bloch—-Kato conjecture which we will now briefly explain. A written account
of the following can be found in the not so easily accessible source [Ko]. The
Bloch-Kato conjecture for F' at an odd prime p predicts that the Galois symbol
KM(F)/p* — H"(F;Z/p”(n)) from Milnor K-theory of F to Galois cohomology
of F' is an isomorphism for all n > 2. Let M indicate the motivic cohomology
introduced in [FV] and [Vol]. From Suslin’s identification in [Su] of Bloch’s higher
Chow groups with motivic cohomology M one finds that the Bloch-Lichtenbaum
spectral sequence for F' amounts to a third quadrant spectral sequence:

EY" = HY " (F;Qp/Zp(—n))) = Koimen (F;Qp /Zy).

Suslin and Voevodsky proved in [SV] that the Bloch-Kato conjecture for F' at p
implies that motivic cohomology M coincide with étale cohomology in a certain
range. Briefly, this means that the Bloch-Lichtenbaum spectral sequence for F' can
be rewritten as:
g _ { Hg:_"(F;er/Zi,(——n)) forn<m <0
o =

K_pm—n(F; Z,).
0 otherwise — ( Qp/ »)

This conjectural spectral sequence collapses directly at the Eo—page, and standard
techniques with localization sequences deliver

Theorem 1.2. Let F' be a number field with ring of S—integers Rp where S is a
finite set of primes in F that contains the infinite ones and the p-adic ones for
an odd rational prime p. If the Bloch-Kato conjecture is true for F at p, then the
Quillen—Lichtenbaum conjecture holds for F' at p. In other words, the Chern classes

induce isomorphisms Kop—m(Rp) @ Zp = HZ(Rp; Zy(n)) form =1,2 and n > 2.

Method of proof. To prove Theorem B we use the the Tate spectral sequence for
étale cohomology and the identification of K-groups with étale cohomology groups.
The two-primary parts of these results lend on results from [RW], which we now
quote parts of. Parts (a) and (b) of Theorem 1.3 are a reformulation of Theorem
6.13 in [RW], part (c) follows from Theorems 6.3 and 6.7 in [RW] and the Bockstein

exact sequence.

Theorem 1.3. (Rognes—Weibel) We have the following results for n > 0.

(a) Let F be a totally imaginary number field. Then there ezist isomorphisms
Kon(Rp){2} = B (Rp; Zo(n + 1)) and Kon41(Rr){2} = Hey(Rr; Za(n + 1)).

(b) Let F be a number field with at least one real embedding. Then

1) Ken(Rr){2} = B2 (Rr; Za(dn + 1)),

2) Komya( Re {2} = B (Rp; Zafdn + 2)),

3) Kegnta(RF){2} surjects onto H,(RF; Zo(4n + 3)).

4) Kgnye(Rr){2} & Hﬁ_(RF;Zz(éln + 4)) where the + indicates positive étale
cohomology.

(¢) Both (a) and (b) hold for F' as well.

The latter result is also important for Theorem A. The proof of Theorem A is
the most technical part of the paper. We lend on recent results of Greither in [Gri],
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and the main conjecture of Iwasawa theory [MW]. The philosophy is to restrict our
attention to eigenspaces of the K—groups. In fact, Theorem A is not valid integrally
as illustrated in Remark 5.23. We remark that readers familiar with the important
work of Dwyer and Friedlander [DF] on étale K—theory recognize from Theorem
1.2 that the conjectural odd—primary results in Theorem A are genuine theorems
for the étale K—groups of Rg.

In Section 5 we generalize previous results on Ky due to Tate [Ta]. If enough
roots of unity are in the field we find, due to an easy trick with étale cohomology
groups, a periodicity behavior of the K—groups Ky, (F') which reduces everything
down to Ky(F) (Theorem 5.8(b)). Theorem A combined with Nakayama’s lemma,
gives the minimal number of generators of the x—eigenspace of the even K-groups
in terms of Iwasawa theory (Theorem 5.1).

Organization of the paper. Section 2 is preparatory where we draw on the basic
ideas of considering eigenspaces. We also hope to motivate a bit why one should
focus on eigenspaces by including Proposition 2.4 where we discuss the two-primary
algebraic K—theory of a cyclic cubic number field. In Section 3 we look at Galois
extensions of number fields, and try to compare the (co)-invariants of the algebraic
K-theory of the extension field with that of the base field. These considerations
culminate with a proof of Theorem B, which we for obvious reasons call Hilbert
Theorem 90 for higher algebraic K-groups of number fields. The entire Section 4
is devoted to prove Theorem A. From the knowledge of the Fitting ideals of the
algebraic K—groups we find structural results for these groups in Section 5. Further
we give direct generalizations of classical theorems on Ky due to Tate.

2. BEIGENSPACE TECHNIQUES

In this section we introduce some notation, and discuss as an example the two—
primary algebraic K-theory of a cyclic cubic number field.

Let G be a finite Abelian group and let p be a prime number not dividing the
order of G. In the following we will discuss the structure of finitely generated Z,[G]—-
modules. Let y : G — @; denote a p-adic character. Two such characters are
considered equivalent if they are Gal(Q,/Q,)-conjugate. We choose the notation
Oy = Zy[x] for the p-adic integers extended with the values of x. This is the ring
of integers in a finite unramified extension of @,. In result we have that O, is a
discrete valuation ring, and hence a principal ideal domain. The ring O, is also
a Zp|G]-algebra via the rule g - ¢ := x(g)z for ¢ € G and z € Oy. We have a
decomposition

(2.1) Z,[G) = P O

where the sum is over all p-adic characters of G, modulo equivalence. From the
decomposition (2.1) we see that the ring Z,[G] is semisimple. Let M be a finitely
generated Zp[G]-module. The y-part M(x) of M is defined as the y—eigenspace
of M, namely M(x) = M ®z,(¢) Ox ={z € M | g-z = x(g9)z for all g € G}. The

crux with taking eigenspaces is the decomposition

(2.2) M = P M(x)

where the sum in (2.2) is over the finite set of representatives of equivalence classes
of p—adic characters of G. Each M(x) is an Oy—module. So in order to understand
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the Z,[G]-module structure of M it suffices to study the structure of its eigenspaces.
The following proposition is an immediate consequence of the structure theorem
for finitely generated modules over a principal ideal domain.

Proposition 2.3. The x-part of a finite Oy—module M has p-rank a multiple of
the extension degree fy, = [Oy : Zp|. This equals in turn the multiplicative order
of pin (Z]fy)*. Moreover, we have an isomorphism O, /p™ = (Z/p™)/x of Abelian
groups.

Let M be a finite Oy—module. Proposition 2.3 tells us that M is isomorphic to
a finite direct sum of copies of (Z/p")fx as an Abelian group.

We illustrate the above with the example of a cyclic cubic number field F' with
Galois group I' over the rationals. The number of 2-adic characters of I' modulo
equivalence is just two. Let (3 be a primitive 2-adic third root of unity. In (2.1)
we have a direct summand Z, that corresponds to the trivial character xo and a
direct summand Z5[(3] that corresponds to the single nontrivial 2-adic character
X. Note that f, = 2.

Proposition 2.4. Let F be a cyclic cubic number field with ring of p—integers Rp.
The 2-ranks of the class group Pic(Rp) and of the narrow class group Picy(Rr)
are both even. In the following we assume that n > 2. For p =2, or p and n both
odd, we have that the 2—-rank of K,,(RF) 1s even for n =0,4,5,6 mod 8 and odd for
n=1,2,3,7mod 8. For p odd the 2-rank of K,(RF) ts even for n =2 mod 8 and
odd for n =0,4,6 mod 8.

Proof. The xo—parts of Pic;(Rp) and Pic(RF) are both trivial since Pic.,.(Z[%]) =
Pic(Z[}l’]) = 0. Further Picy(Rr)(x) and Pic(Rp)(x) are finite Z3[(3]-modules.
Their two-ranks are even being multiples of f, = 2, see Proposition 2.3. By the
same argument we find that the two—rank of the torsion subgroup of K,(Rr)(x) is
even. The two-primary algebraic K—theory of Z[3] is known from [RW] and [W2].
Combining these we find the list for p = 2 above. Let p be an odd prime and n > 1.
Then

1 {1 for n =0,2,3 mod 4,

ko Kon(Z[-]) =
T2 2_( [p]) 2 forn =1modA4.

The proof of this is easy but tedious, and implies our claim. O

3. (CO)-DESCENT FOR K-THEORY OF NUMBER RINGS

In this section we will study Galois descent and co—descent properties for the
higher algebraic K-groups of number rings. We will also spend some pages on the
transfer map in algebraic K-theory. The main result is Theorem B.

We start by introducing notation. Let F' be a number field. Let S be a finite
set of primes of F' including the primes lying above a fixed rational prime p, and
the infinite ones. For a prime p in F' we denote its residue field by F[p], and we
let Rr be the ring of S—integers in F.

For any ¢ € Z, let HZ,(R;Zp(1)) denote the continuous p-adic étale cohomology
of R with coefﬁments in the sheaf Z,(7) as constructed by Jannsen in [Ja]. Here R
is a unital ring containing p as an invertible element. An equivalent definition
can be found in Definition 2.8 of [DF]. This group sits in a short exact sequence
0 — lim'HY (R, Z/p"(3)) — HEL(R;Zy(i)) — lim, HY(R;Z/p*(i)) — 0, where
lim denotes the inverse limit functor. The rightmost étale cohomology group is
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called the p—adic étale cohomology of R with coefficients in the sheaf Z,(i). The
lim'~term is often trivial, e.g., for rings of S—integers and finite fields.
We recall for future reference the following important results.

Theorem 3.1. Let F, be the finite field with q elements, and n > 1. Then Kon(Fy)
is the trivial group. Let p be a prime number such that (p,q) = 1. Then we have
natural isomorphisms Kan—1(Fy) ® Zp = HE, (Fy, Zp(n)) = Zp/(q" — 1).

Proof. See [Q1] and [So]. O

Theorem 3.2. For n > 1 we have Kopy1(Rp) = Kony1(F) and a short ezact
sequence 0 — Kon(Rp) = Kon(F) = D g5 Kan-1(F[p]) — 0.

Proof. See [So] and [W1]. O
We have an analogous result in étale cohomology.

Proposition 3.3. For i > 2 we have HY (Rp,Zy(i)) = Hi, (F,Zy(3)) and a short

ezact sequence:

0—>H§t(RF,Z())—>H§tFZ )) = €D Hi(Flp], Z,(i — 1)) — 0.
. €S .

Proof. Note that lim" HY, (F, Z /p*(i)) is trivial. The isomorphism in the proposition
follows by passing to the inverse limit with respect to v in the localization sequence
in étale cohomology, cf. Proposition 1 in [So]. This works since the limit functor is
left exact, and He,(F[p], Zp(i — 1)) is trivial.

To prove the second assertion, we pass to the colimit in the localization sequence
for étale cohomology. This preserves exactness and we get a short exact sequence:

0 — Hey(Rr, Qp/Zp(i)) — Hg(F, Qp/Zyp(1)) — @ Hg,(Flp], Qp/Zyp(i — 1)) — 0,
pES

All three terms in the above exact sequence are p—primary Abelian torsion groups.
For any such group we let Div denote its maximal divisible subgroup. The right
term is a direct sum of finite groups, so its divisible part is trivial and we get the
exact sequence:

0 — H3(Rr,Q,/Z,(3))/ Div — HE, (F,Qp/Zy(i))/ Div —

— @D HE(Flp], Qp/Zy(i — 1)) — 0.
pES
Further H (F,Q,/Z,(i))/ Div & Hzt(F Zy(1)) from Proposition 2.3 in [Ta}, and
likewise for Rp. Finally we have H, (F[p], Qp/Zp(i—1)) = Hi, (Flp], Zp(i—1)). O

Let E/F be a Galois extension of number fields with Galois group I'. Let T
be the set of primes lying above S in E, and let Rg be the ring of T—-integers in
E. Let n > 1 and let v denote the natural map from Ky, (F') to Kzn(E)F. In the
following key proposition we compare v with the induced map vs from Kz, (RF) to
Kon(RE)'. Let M(R) denote the exact category of finitely generated R-modules
for a ring R. The nth K'-group of R is defined as K,(M(R)). It is fundamental
that ordinary algebraic K-theory coincide with K'-theory for regular rings.
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Proposition 3.4. We have an ezact sequence

0 — ker v —> ker v —» @ ker (Kan—1(F[p]) ey Kon-1(Flp])) —
pES

— coker vg —» coker v —» @ Kon—1(Flp])/ep
pES

where e, denotes the ramification mdew of P in E/F.

Proof. We can — from Theorem 3.2 — make the commutatlve diagram with exact
TOWS:

00— KZn(RF) —_— Kzn(F) _— @{QQS’ K2n—1(F[K9D —0

o |

0 —> Kaa(Rp)" —> Kon(B)" — (Bpgr Kana (B[F)F-

‘The localization sequence is natural with respect to pairs like (F, S) and (E,T).
Moreover, the action of ' on the K—groups of the finite fields can be described in
the following way. Consider the decomposition group I'z of § where % is one of the
primes P, lying above p in E. This group surjects onto the Galois group G of the
extension E[p]/F|[p]. The I'-action is given by:

(D Kens (BB = (DKo (B[R] )1

P;

Here I'g acts on Ko,—1(E[p;]) via the natural action of G and the surjection above.
The group I'/T'z acts by permuting the #I'/T' factors. By a result of Quillen, see
p.585 [Q1] or Theorem 3.1, we have that Ka,—1(E[p;])¢ = Kon—1(F[p]). Thus we
can identify Kao,—1(F[p]) with (@WKzn_l(E[ﬁ]))r.

The map on the right hand side in the diagram is nothing but multiplication by
the ramification index, as C. A. Weibel kindly pointed out to us. See also [Ge],
Corollary 1.11 [Gi], Proposition 1.2 [Sh] and p.276 [So]. Let R} and R’ be such
that Spec(Ry) = Spec(Rr) \ {p} and Spec(R%) = Spec(Rp) \ ({§})glp- The

commutative diagram of exact categories

M(F[p]) ——— M(Rr) — M(R})

w T

Dg, M(Re/p%) —> M(Rg) — M(RE)

induces the maps between the localization sequences. Here the left vertical map is
tensoring over Rp with Rg, and F[p| Qr, Rg = GBEI@ Rg/p°. On K'-theory we
obtain diagrams of fibrations, and we need to describe the map:

Kon-1(Flp]) — (D Kzn—1(Re/p*))" = (D Ken-1(E[R]))" = Kan—1(Flp)).

Ple Plo
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Here the left most isomorphism follows since K'~theory is immune to quotients of
nilpotent ideals, cf. Corollary 2 in § 5 of [Q2]. For an object P in M(F[p]) we now
form the characteristic filtration:

0=0°(P ®rs Rg) C - Co(P QOrp Rg) C P ®ry RE.

The quotients in this filtration are all isomorphic to P ®py) E[p]. Additivity for
characteristic filtrations — see Corollary 2 in § 3 of [Q2] — gives the claim. An
application of the snake lemma then concludes the proof. [J

Corollary 3.6. Assume that ((#F[p])" — 1,ep) = 1 for all ramified primes not
in S. Then ker v5 = ker v and coker vs = coker v. When E 1s Abelian over Q,
the same results hold for the y—components if x is a nontrivial character of order
prime to p, and Kon—1(F[p]) is fized by Gal(F/Q) for all the ramified primes p in
E/F notin S.

Proof. The equality # Kan—1(F[p]) = (#F[p])™ — 1 and Proposition 3.4 give the
first claim. For the second part, we assume that Ko,—1(F[gp]) is fixed by Gal(F/Q)
for all the ramified primes p in E/F not in S. Thus on x—components we have the
equality:

P ker (Kan-1(Flp]) =2 Kzn—1(Flp]))(x) =

pES

{o € @ ker (Kanr (Flp]) 2 Kanoa(Flp])) | 2 = x(g)z Vg € Gal(F/Q)}.
pES
This sum amounts to the trivial group since x is a nontrivial character. Propo-
sition 3.4 gives us the isomorphisms ker ys(x) = ker y(x) and coker vs(x) =
coker y(x). Here we write y(x) and ys(x) for the maps induced respectively by v
and vs on the xy—part. O

We refer to [AGV] for the following result.

Theorem 3.7. (Lyndon-Hochschild-Serre spectral sequence) Assume that Rg/Rp
is a finite Galois extension of number rings with Galois group I'. The group I' acts
on the groups HY, (RE;Z/p” (1)), and there ezists a first quadrant spectral sequence
of cohomological type:

Ey* = H'(IyHy (Re; 2/p"(1)) = HE (Re; Z/p"(3))-

In [Kal] Bruno Kahn introduced positive Galois cohomology following ideas of
Kato and Milne. Positive étale cohomology is defined likewise in [C-S]. We indicate
positive étale cohomology with the lower index +. The positive groups come with
an exact sequence -+ — H7(F;Zy(i)) — HE(F;Z2(i)) — DHG(Fp;Za(3)) —
HY T (F;Zy(i)) — -+ from [Kal], where we sum over the infinite primes in F
and F,, denotes the completion of F at the place p. An identical exact sequence
where the field F is replaced by its ring of S—integers is established in [C-S]. In
particular, we have short exact sequences 0 — @moo(Z?)P — H}F(F;Zz(i)) —
H. (F;Zs(i)) — 0 and 0 — H (F; Zo()) — HZ(F;Z2(3)) = Dy reu(Z/2)p — 0
for 1 > 2 even. Identical exact sequences are obtained by replacing F' by a ring of
S-integers. There is also a Lyndon—-Hochschild—Serre spectral sequence for positive
étale cohomology, cf. [Kal]. Also the Tate spectral sequence considered in [Ka2]
exists for the positive groups. We write the proof of the following result for étale
cohomology, with the positive case being just a verbatim.
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Theorem 3.8. Let E/F be a Galois extension of number fields with Galois group
T. Assume that S contains the primes lying above the rational prime (2), and the
ramified primes in E/F. We have the following results for n > 1.

(a) Let F be a totally imaginary number field. Then there exists an ezact sequence

0 — HY(T; M) = Kon(Rp; Zs) = Kon(RE; Z2)' — H*(T; M) — 0

where M = Kont1(Rp; Z2).
(b) Let F be a real number field, and assume that Kon(Ra;Z2) 18 isomorphic
to H2(Ra;Za(n 4+ 1)) for A = E,F if n = 2mod 4. Then there ezists an ezact

sequence
0 — HY(T; M) = Kon(Rr; Zo) — Kon(Re; Zo)' — H*(T; M) — HE,(RF; Zo(n+1))
where M denotes Hy, (Rg; Za(n+1)) forn =0,1,2 mod 4. For n = 3 mod 4 we have

the same ezact sequence as in part (a), where M now denotes H}I_(RE; Zao(n +1)).

Proof. The ramification assumption makes sure that Rg/RF is a Galois extension
with Galois group I We pass to the limit over v in the spectral sequences of
Theorem 3.7, where we may assume throughout the proof that the twist ¢ >2. The
lim*—term is trivial for number rings, so the emerging spectral sequence is:

Ey’ = H'([; HE (Re; Z(1))) = HL*(Rr; Za(d)).

Recall that H, (Rp; Zo(i)) = 0. Thus all terms on the line EY° vanish. We derive
the following picture of the Eq—page:

Eg:z E;:Z Eg:z
Eg:l E;yl E§11
8
0 0 0

T

We read off the isomorphism H},(Rg; Zo(1))" & HY, (RF;Zo(i)), and the exact
sequence:

0— H! (T Hét(RE; Zo(1))) — Hz:t(RF; Zs(3)) —
— HE,(Rp; Zo())" — H*(Dy Hyy (RE; Z2(1))) — HE (RE; Za(1)).

Theorem 1.3 finishes the proof if Rp is the ring of two—integers in F', and Rp is the
ring of two—integers in E. However, the cited result remains valid for arbitrary rings
of S-integers where S contains the dyadic primes. For this, one can for example
combine Theorems 3.1 and 3.2 with Proposition 3.3. O

By the same argument as in the proof of Theorem 3.8, we also obtain




THE COATES-SINNOTT CONJECTURE AND EIGENSPACES OF K-GROUPS 11

Theorem 3.9. Let E/F be a Galois extension of number fields with Galois group T'.
Assume that S contains the primes lying above the odd rational prime (p), and the
ramified primes in E/F. If the Bloch-Kato conjecture s true for both E and F
at p, then we have an exact sequence

0 — HY(T; M) = Kon(RF; Z,p) — Kon(RE; Zp)t — HA(T; M) — 0

where M denotes K§n+1(RE;Zp) and n > 1.

The layers in a Z,—extension of F' give typical examples where we can apply
Theorems 3.8 and 3.9. We hope to discuss the algebraic K—theory of such extensions
more carefully in a forthcoming paper.

Corollary 3.10. Let E be a totally real Abelian number field, let T' be the p—-Sylow
subgroup of Gal(E/Q), let F' be the fized field of T' and let 5 > 0. Let x be a
p-adic character of Gal(F/Q). Assume that the character x " 'w**2 s nontrivial.
With the same assumptions as in Theorems 3.8 and 3.9 we have an isomorphism

Ksjt2(Rr; Zp)(x) = Ksjy2(Re; Zp)(x)" induced by ys(x).

Proof. Theorems 3.8 and 3.9 give that both the kernel and the cokernel of the map
~s is given by I'-cohomology groups of H}, (Rg; Zy(45+2)). Recall that E is totally
real, so Hy,(Rg; Zy(47 + 2)) = HY(E;Qp/Z (45 + 2)) from the Bockstein exact
sequence. The imposed assumption on x implies HY (E; Qp/Zp(47 + 2))(x) = 0 for
all primes p (Tate cohomology commutes with y—components, cf. Proposition 1 of
[Co]). This implies our claim. O

Let E/F be a Galois extension of number fields with Galois group I'. Let
tr : K(E) — K(F) denote the algebraic K-theory transfer map. We denote
the restriction of tr to K(Rg) by trr. Likewise we let trr signify the restriction of
tr to K(E)r. We now prove Theorem B.

Proof of Theorem B. First we assume that p is an odd prime, or that p = 2 and F'is
a totally imaginary number field. The Bloch-Lichtenbaum spectral sequence from
[BL] is by construction compatible with transfers, and therefore the isomorphism
Kont1(E;Qp/Zp) & HY(E;Qp/Zy(n + 1)) is also compatible with transfers. The

Tate second quadrant spectral sequence
E; " = Ho (I3 HE (B Qp/Zp(n + 1)) = Hé_tr-l_s(F? Qp/Zp(n + 1))
delivers an isomorphism:
Hét(E; Qp/Zp(n+1))r = Hét(FQ Qp/Zp(n +1)).

Next consider the Bockstein exact sequence:

Kont1(E)r ® Qp/Zp — Kon+1(E; Qp/Zp)r — Kon(E){p}r ——0

| . |

Kont1(F) @ Qp/Zy —— Kont1(F; Qp/Zyp) — Ko (F){p} ——0.

The vertical map in the middle of this diagram is an isomorphism by the previous
arguments. Thus the right vertical map is surjective, and its kernel is divisible.
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Theorem 3.2 tells us that any divisible subgroup of K2,(E) is trivial. This gives
our claim.

Now let p = 2, and let F' be a real number field. Since Hi (E,Q,/Zy(n+1)) is the
trivial group for g > 2, the Tate spectral sequence for totally positive cohomology
delivers an isomorphism:

H}F(E7QP/ZP(TL +1)r = HL(F,Qp/Zy(n + 1)).
As in the previous case, we derive the isomorphism:
HY (B; Za(n + 1)) 2 H (F; Za(n +1)).

Theorem 1.3 gives our claim for n = 3 mod 4. Next we let n = 1 mod 4. Using
the remarks before Theorem 3.8, and observing that Hy(T', @y real% ©') is trivial
because (B real%p’ ) is an induced I'-module, we let M = Zy(n + 1) and form the
commutative diagram with exact rows:

0 —HZ (B, M)r —> H4(E, M)r —> (&' rearZp’)r —>0

L

0—— H?i_(F,M) —_— Hzt(F,M) E— @p real%ﬁo —0.

The left vertical map is an isomorphism. The right vertical map is clearly injective
with cokernel equal to a direct sum of copies of Z /2 indexed over the real ramified
primes of F' which ramify in E/F. The snake lemma and Theorem 1.3 therefore
conclude the proof in the case n = 1 mod 4.

Next we treat the cases n = 0,2mod 4. Then H}, (R, Zo(n + 1)) = Z/2 and
HZ (R, Za(n + 1)) = 0, for R the real numbers. Again, using the remarks preceding
Theorem 3.8, we form the commutative diagram with exact rows:

(EB@/ real%ﬂol)l“ —— Hi(E,ZQ(n + 1))1" — Hgt(E,Zz(n + 1))1‘ >0

@p real%p —_— Hi(F>Z2(n + 1)) —_— Hgt(F7Z2(n + 1)) 0.

The central vertical map is an isomorphism. This implies that the right vertical
map is surjective. Moreover, the kernel of the right vertical map has order less or
equal to the order of the cokernel of the left vertical map, which equals 27=. These
observations combined with Theorem 1.3 conclude our proof. [

Proposition 3.11. Let E/F be a Galois extension of number fields with Galois
group T' and let n > 1. Then we have an isomorphism coker (trr)r = coker trr on
the 2nth K—group, and a short ezact sequence:

0 — ker(Kan(Re)r — Kon(E)r) — ker (trr)r — ker trp — 0.
Moreover, if E/F is a cyclic exztension then we have the following ezact sequence:
(trT)p

@ Kon—1(Flp])/ep — Kan(RE)r
pES

Kon(Rp) — coker trp — 0.
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Proof. Consider the following commutative diagram of I'-modules with exact rows:

Kon(Rp)r — Kaon(E)r — (Dper Kon—1(E[p]))r —0

l(trT)r ltl‘r l

0 — Kon(Rp) — Ksp(F) —— Dpgs Kan—1(Flp]) ——0.

The former diagram — with the same notation as in Proposition 3.4 — originates
from the following commutative diagram of exact categories:

Dper Dpjp M(EP]) — M(Rg) —= M(E)

| L

Dpgs M(Flpl) ——— M(Rp) — M(F).

The left vertical map is forgetful, and induces the transfer map from K(E[g])
to K(F[p]) in algebraic K-theory. We can identify (D o K2n—1(E[p]))r with
Kyn—1(F[g]), and the transfer map appearing on the right hand side of the first
diagram is surjective. For this see Lemme 9 of [So]. Thus the transfer map is an
isomorphism, in fact equal to the identity map. An application of the snake lemma
then gives an isomorphism coker (trr)r = coker trr and the claimed short exact
sequence.

Now for the case of a cyclic extension. Under the identification above we have
that the norm map (B, Kan—1 (E[F))r — Kan-1(Flp]) = (B, Kano (EE))
corresponds to the map Kan—1(F[p]) — Kan-1(F[p]) given by raising an element
to the power of e,. In fact the first map is an isomorphism and the second one is
multiplication by e, see the last part of the proof of Proposition 3.4. This gives

the isomorphism ﬁo(l", Doer Kon-1(E[@])) = @pgs Kan-1(F[p])/ep. From the

snake lemma we find the exact sequence:

Hy (T, (6D Kan-1(E[R))) = Kan(Ru)r — Kan(Rr) — coker trp — 0.
BET

But we have

Hy (T, @) Kzna (B[F]) = B (T, @ Kenoa(Elp]) = B (T, €D Kon1(E[7])

peT pET pET

where the first isomorphism comes from the definition of Tate cohomology groups,
and the second holds because I' is cyclic. O

Corollary 3.12. Assume that E/F is a cyclic eztension. Let n > 1, let trp :
Kon(E)r — Kan(F), and suppose that the two natural numbers (#F[p])" — 1 and
e, are relatively prime for all ramified primes p not in S. Then ker (trr)r is trivial.
If E is Abelian over Q, then the same result holds for the x—components if x is a
nontrivial character of order prime to p, and Kan—1(F[p]) is fized by Gal(F/Q) for
all the ramified primes p i E/F not in S.

Proof. The argument is the same as in Corollary 3.6. [
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4. FITTING IDEALS FOR K—GROUPS OF TOTALLY REAL NUMBER RINGS

The main goal of this section is to prove Theorem A. In fact we will prove a
somewhat stronger result in Theorem 4.1. We obtain Theorem A as a consequence
of the identification of the algebraic K—groups appearing in Theorem A with étale
cohomology groups. We adopt the same notation as in Section 1.

Theorem 4.1. Let E be a totally real Abelian number field with ring of p—integers
RE, and with a prime power conductor. Let G denote the Galois group of E over
the rationals, and let n = 2 mod 4 be a positive mteger Let P be the p-Sylow
subgroup of G and write G = A X P. Let x : A — Q be a p—adic character.

Suppose that x ‘w31 is a nontrivial character of Gal(Q X_1w2+1/Q) Then

. n
Fitz, (6100 Hen(Rms Zo(5 + 1)) = (03 (X))
where 0z is the 3th Stickelberger element relative to E.

Remark 4.2. Observe that if p = 2 or 3 then w? is the trivial character and the
condition x w2t £ 1 in Theorem 4.1 1s equivalent to x # 1, because § +1 is an
even integer.

For an introduction to Fitting ideals and their main properties, see the appendix
of [MW]. Fix a commutative unital ring R, and a finitely generated R-module M.

Choose a presentation 0 — A % R — M — 0. Then form the n x n matrices
® = (¢(az), ..., (an))* where (ay, ..., an) runs through all n—tuples of elements in A.
The Fitting ideal Fitg M of M over R is defined as the ideal in R generated by the
elements det(®). _

The Fitting ideal is in general not multiplicative in short exact sequences, but
we have the following useful lemma.

Lemma 4.3. Let R be a commutative ring and let 0 — A — B — C — 0 be an

ezact sequence of finitely presented R—modules. Suppose that C' has a free resolution
of length one. Then Fitg B =Fitr A-Fitr C.

Proof. See Lemma 3 in [CG]. O

Let Ey be the cyclotomic Z,—extension of E. Write I for the Galois group
Gal(Q(ups)/Q(pp)). Let M, and M, o be the maximal Abelian p-extension of
E. which are unramified outside primes over p and unramified outside p—adic and
1nﬁn1te primes, respectively. Let X, = Gal(M,/Ew), Xp o = Gal(Mp oo/ Ewo) and

= Gal(Ex/E). If p is odd then M, = My o, and X, = X, . Let G o be the
Galois group of the maximal extension of E unramified outside the primes above
p and the infinite ones. Throughout Section 4, the ring Rg will denote the ring of
p-integers of E.

Lemma 4.4. Let E be a totally real Abelian number field. For all even 1 we have
H,(Rp; Zy(i)) = Hom((Xp,00(—1))r7, Qp/Zp).-
Proof. To prove the isomorphism, we refer to p.53 in [RW]. Shortly one shows that

Hom((Xp,00(—))r, Qp/Zp) = Hom (X, 00, Qp/Zy(i))"

=~ H'(Gp,00; Qp/Zp(1))
= He?t(RI% Zp(3)). O

e
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We put Ey = E — corresponding to characters of first kind — if p? does not
divide the conductor of E, and Ey = E N Q((,) if p* divides the conductor of E.
We identify T' with the group Foo/Eo. We have [E : Eg] = p° for some e and
I’ = I, We set E) = Eo((p + Cp_l). We denote by P’ the p—Sylow subgroup
of @' = Gal(E}/Q) and write G' 2 P’ x A’. For all p-adic characters { of A’ we
denote the discrete valuation ring Z,[A'](§) = Zy(€) by O¢. Let X, and X, ., be the
central Iwasawa modules associated to E, and let A denote Zy[I']. For all nontrivial
characters ¢ as above Greither proved that X (€) is a A¢[P'] := O¢®z, A[P'|-module
of projective dimension one, see Proposition 5.1 in [Gri]. For the case when p divides
the conductor of E see the comments in advance of Theorem 7.6 in [Gri]. Moreover,
Greither also determined its A¢[P’'] Fitting ideal, see the proof of Theorem 7.4 in
[Gri] and also [Wi]. We summarize these results.

Theorem 4.5. (Greither) The A¢[P')-module X, (£) has projective dimension one
for all nontrivial even ¢ as above. The Fitting ideal Fity,(p X, () s principal
and generated by 1Fe. The element Fz € A¢[P'] is characterized, modulo units, by
the equations Y(Fg) = Gy(T) for all characters ¢ of Gal(E}/Q) extending . Here
Gy(T) € Z,[¥][[T]] is the unique power series such that Ly(1—s,) = Gy(k(7)*—1)
where v is a topological generator of ' and k : T' — Zj 1s the cyclotomic character
defined by = - ¢ = ) for any ¢ € Zy(1).

For an even character ¢ the Iwasawa module X (€) is A¢[P']-torsion, see § 5
and § 6 of Chapter 5 in [La]. As a consequence of the famous Ferrero-Washington
theorem in [FW] — saying that the Iwasawa invariant p, vanishes for Abelian
number fields — and the structure theorem for Iwasawa modules — e.g., Theorem
13.12 of [Wa] — one obtains that X/ (£)/p has finite order. A characterization of
the Fitting ideal of X, (¢) is given in Lemma 3.7 of [Gri].

Lemma 4.6. (Greither) Let M be a A¢[P']-torsion module of projective dimension
less or equal to 1. Suppose that M/p is finite and that ¢ € A¢[P'] is such that
Fitp,(y) M = (¢(¢)) for all characters 1 of G'. Then Fitp,py M = ().

Let F be a totally real Abelian number field. Let G(F); be the Galois group
of the maximal Abelian two—extension of F' unramified outside dyadic primes. Let
G(F)3,00 be the Galois group of the maximal Abelian two-extension of F' unramified
outside dyadic and infinite primes. Global class field theory gives us a short exact
sequence of Galois—modules:

(4.7) 0 — Z/2[Gal(F/Q)] — G(F)2,00 — G(F)z — 0.

Let E!, be the extension of E’ of degree 2" contained in the cyclotomic Zj-
extension E'_. We insert F' = E!,, the nth layer in the cyclotomic Zy—extension of
E',in (4.7) and then pass to the inverse limit. The inverse system Z/2[Gal(E,/Q)]
is surjective, so we get a short exact sequence:

(4.8) 0 — Z/2[Gal(EL,/Q)] — X; o, — X3 — 0.

Proposition 4.9. With the same notation as in Theorem 4.5 we have the equality
Fits [P X} 00(€) = (Fe)-

Proof. This is immediate for p odd from Theorem 4.5, since then X}, ., = X}, and
2 is clearly a unit in A¢[P’]. Next let p = 2. Since £ is nontrivial we also have
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E = Eg and P = P’. Let us consider the {—parts of the short exact sequence
(4.8). Clearly we have Fitp,p) Z/2[Gal(Ex/Q)] = (2). By Proposition 5.1 of
[Gri], the A¢[P']-module X3(&) has projective dimension equal to one. The ring
A¢[P'] is local, so every projective module is free. Hence we have a resolution
0 = Ae[P']™ — Ae[P']"2 — X}(€) — 0. Since X3(€) is a torsion A¢[P']-module
we must have n; = ny. By Theorem 4.5 we have Fitp,(p) X3(§) = (F¢/2). An
application of Lemma 4.3 to the ring R = A¢[P’] and the exact sequence (4.8) gives
the assertion Fity,(py X3 oo(§) = (F¢). O

Next we determine the O, -1[P]- F1tt1ng ideal of the dual of HZ,(Rg;Z,(3)) for
all even 1. Recall that A -1[ N = O,-1[P'][[T]], where we identify a generator
of I' with 1 + T. For any nontrivial character ¢ of A, the element F-1 can be
thought of as a power series with coefficients in Og-1[P’].

Proposition 4.10. With the assumptions and notations as above we have for all
positive integers n = 2 mod 4:

D), Qp/Zp)(x ™) =

) n
F1tox_1[p] Hom(He?t(RE; Zp(§ +

(F

g (R P+ T) — 1) mod ((1+ T) 1),

Proof. The condition on n implies that § 4 1 is even. By Lemma 4.4 we have:

n

n 1\ o _
Hom(He?t(REZp(g + 1))an/Zp)(X 1) = XP,OO(_§ - 1)(X 1)1‘"
Furthermore we find:
n
o= = D
n n
FltA _1[P"] X (X 1w2+1)( 5 — l))]_'w

(FltA 1[P'] X

=

= (F o 3nl(s (7)5“(1 +T) = 1)
= (F )

(Fito, (1 (Xpoe(—3 — D0 rv) =

X~
—1w2+1( (7)%—“(1 +7) -1

mod ((1 4+ T)?° — 1)).

The first equality follows from the isomorphism (A,-1[P'])r: = O,-1[P] and well
known properties of Fitting ideals. The second equality is clear since A’ acts on
Zy(—% — 1) via w~ 271, Proposition 4.9 gives the equality:

FitAX—lw%‘l'l[P,] X’,oo(x—lw%-l'l) =F Z4+1 (T)

X tw

The action we consider is twisted —(% + 1) times. In result we have to replace T
by k()31 (1 + T) — 1. This justifies the third equality. The last equality follows
from the identification of the generator of IV with (1 +T)?° — 1. O
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Lemma 4.11. Write o for F _, a11(k £(7)ET1 (14 T) — 1) mod ((1 +T)*° —1).
For all characters ofG ewtendmg x and all positive integers n = 2 mod 4 we have
the equality

-1/ %\ __ _ z 2+11/’
¢ (ax) - ¢(un9%) - —(1 —p2pT (P)) n +1

in Qp(v), where uy, is a unit of Oy[P]. Here we write ¥~ (p) for ¢~ (Froby),
where Froby, is the Frobenius element of G associated to p. :

Proof. Write ¢ = 1'p where ¢’ is a character of Gal(E/Q) and p is a character
of Gal(E/Ey). By the characterization of F i3+ and Theorems 4.2 and 5.11 in

[Wa] we find:
Y ay) = Gyay g (5(1)E0(7) = 1)
= Ly(—. 97w )
= (1 -pFy T E)L(—5, %)

n BE+1¢—1
— _(1=pz¢p~ 1 —2TY
(1-pH ) =

On the other hand, let f be the conductor of E and let (; € Q be a primitive fth
root of unity. Let 0, € Gal(Q({f)/Q) with a € (Z/f)* be the element given by
0a(f = (}. For any integer 1 > 1 we have the formula

i—1

(4.12) (s(1 —1,04) = ———Bi(a/f)

where B; is the sth Bernoulli polynomial. This follows from Theorem 4.2 in [Wa)
with s = 1 — 4. In fact, the function ((s,a/f) in loc cit is equal to f*(y(s, aa) for
Re(s) > 1 and hence for all s by analytic continuation. Now let u, =1 — p*? oy ~1
Using formula (4.12) with ¢+ = 2 + 1 we compute:

E f
P(unbz) = (1—p2e~"(p))(~ % Z z41(a/ ™ (a))
=-(1 —p%¢‘1(p))§%jr1/i—l~

This concludes the proof of Lemma 4.11. [

Let A be any Z,[G]-module. We denote by Hom(A, Q,/Z,) the dual of A as an
Abelian group with the action op(a) = p(c7ta) forc € G, a € Aand ¢ : A —
Qp/Z,. We denote by Hom™(A,Qp/Zp) the dual of A as an Abelian group with
the action op(a) = p(ca) where o, a and ¢ are as above. We now briefly recall
some properties of the rings O,[P]. Let a be a nonzero divisor in Oy[P]. The ring

Ox[P]/a is a zero-dimensional Gorenstein ring. For definitions see Proposition 4
in the appendix of [MW]. In particular, let A be an O,[P]-module of finite order
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annihilated by a. Then A is an O[P]/a-module and we have an isomorphism of
O, [P]-modules:
(4.13) Home [p)(4, Ox[P]/a) = Hom™ (A, Qp/Zy).
The functor Hom*(—, Q,/Zy) is a contravariant exact functor on the category of
O, [P]-modules of finite order. By Proposition 1 in the appendix of [MW] we have:
(414) Fitox[p] A= Fitox[p] Hom* (A, QP/ZP)
For any Z,[G]-module A we denote by A* the Zp[G]-module which is the same
as A as an Abelian group, but where g € G acts via g7'. If A is an O,-1[P]-
module and Fitp__,(p) A = (a) with o € O -1[P], then A* is an O,[P]-module and
Fito p) A* = (*), where (a*) is an element of Oy[P] such that ¢(a*) = ¢~ (a)
for any character ¢ of G extending y.
Proof of Theorem 4.1. Let M denote Zy(% + 1) and let W denote Q,/Zp. From
(4.14) we have:
Fito, (p) B2 (Re; M)(X) = Fito, (p Hom* (HE, (Re; M)(x), W).

Furthermore we find that:

Fito, (p) Hom*(HZ,(Rg; M)(x), W) = Fito (p] Hom(H%,(Rm; M)(x), W)*

= Fito p)(Hom(HZ, (Rg; M), W)(x ™))"
= (F i 3n(k(ME(1+T) 1)
mod ((1+ T)?° —1))*.

The last equality follows by Proposition 4.10. In particular the Fitting ideal

Fito, [P H2,(Rg; M)(x) is principal and generated by:

Foy s (s()F (14 T) — 1) mod (1 + T — 1",
Let ¢ be a character of G which extends x. From Lemma 4.11 we know that
P(ay) = p(unfz). Since Oy[P] = O [T]/((1+ T)#¥ —1), by mapping a generator
of P to 1+ T, both o, and upfz can be viewed as polynomials in Q,(x)[1 + T
of degree < #P whose values agree on all the #Pth roots of unit. Since the
Vandermonde determinant formed by the powers of the #Pth roots of unity does
not vanish, these two polynomials must be equal. Thus we find:

Fito,(p Hiy(Re; Zp(5 + 1)) = () = (63 (1)) O

Proof of Theorem A. We apply Theorem 1.3. Let n = 2 mod 8. The isomorphism
Kn(Rg; Z2) = H?(Rg; Za(% + 1)) implies that Fito,p) Kn(RE; Z2)(x) = (82 (x))-
On the other hand for n = 6 mod 8 there is a short exact sequence:

(415) 0= Kn(Rp;Z2)(x) = H*(Bp; Za(5 + 1)(x) = ZalG)/2(x) = 0.

CYX=

The module Zy[G]/2(x) = Oy[P]/2 has the resolution 0 — O,[P] EN O,[P] —
Ox[P]/2 — 0. We now apply Lemma 4.3 to R = Oy[P] and the exact sequence
(4.15), to obtain the equality of ideals 2Fite [p) Kn(RE;Z2)(x) = (02 (x)). This
gives our claim since 2 is not a zero divisor in O, [P].

The odd—primary claim is immediate from Theorems 1.2 and 4.1. O

We conclude this section by giving a formula for the order of the eigenspaces for
the higher K—groups of totally real Abelian number fields.
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Corollary 4.16. Assume the hypothesis of Theorem A. For all natural numbers
n = 2 mod 4 we have the order formulas

B'n -1
#2900~ T1 I gooto50 ™)~ I TT 5,

X' ~x P! x! xX'~x ¢ | x!

with a, equal to 0 or 1 respectively if n =2 or n =6 modulo 8, and

0 By y
#Kn(RE; Z)(x) ~ [ 11 L(—gﬂ/" BE H H o ¢

xX'~x P! x! xX'~x Y| x!

for p odd. The symbol a ~, b means that both sides have the same p—adic valuation.
The first product runs over the characters x' which are Gal(@p/Qp)—conjugate to
x- The symbol ¢' | x' means that ¢’ is a character of G extending x'.

Proof. We prove the first assertion. The odd—primary result is similar, and will be
left to the reader. We have # K (REg;Z2)(x) = #(Z2/ Fitz, Kn(REg; Z2)(x)). Let
dy be the order of x, and let (upq, be a primitive #Pd,th root of unit. The ring
O,[P] is a free Zy—module, and the connection between Fitting ideals over the rings
O,|P] and Zy is given in Proposition 6, § 9.4, Ch. III of [Bo]. Let N.denote the
norm map for fields. Applying Theorem A we get:

Q2 (Cxpay)

FitZQ Kn(RE, Zz)( ) N Fitox[p] Kn(RE; Zz)(x)

Q@ (Capay) 1
:(NQz #Pd ZTne%(X))

The proof of Lemma 4.11 shows that we have the equality of ideals:

(NQp(C#PdX)e ( ) _ H H "+1 1/)' 1 .

X' ~x P x!

This implies our claim. O

5. MORE ON THE STRUCTURE OF THE K-GROUPS

In this section we will derive some consequences of Theorem A concerning the
actual group structure of the higher K—groups K,(Rg;Zp)(x)-

Let x be a p-adic character of A. The ring O,[P] is local, with maximal ideal
m generated by p and the augmentation ideal of P, and we have O,[P]/m = O, /p.
Given an O,[P]-module M, we know by Nakayama’s lemma that its minimal num-
ber of generators is the dimension of the O, /p—vector space M/mM. Given an
even natural number n we want to study the minimal number of generators for
the higher K—groups in degree n viewed as O,[P]-modules. Here we stress that
x~'wz*t! is a nontrivial character.

Let Gp(x 'w?t!) and Gy oo(x " 'w2 1) be the y w2t —component of the Ga-
lois group of the maximal Abelian p-extension of Qy-14241 which is unramified
outside the p—adic or unramified outside the p—adic and infinite primes respectively.

Observe that if n = 2 mod 4, then Qx_lw%+1 is a totally real Abelian number field.

In this case Leopoldt’s conjecture is true, and implies that if y “'w=*? is nontrivial,

then both G, (x *w?t!) and Gy eo(x *w2+1) have finite order (see Theorem 5.2,
Ch. 5 in [La]). We denote by Ox—lw%'“ the ring of integers of Qx—lw%“'
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Theorem 5.1. Assume the hypothesis of Theorem A. Then the minimal number
of generators of the Oy[P]-module K,(Rg;Zy)(x) equals the minimal number of
generators of the Ox_lw%-i-l -module Gp(x_lw%*'l) if p=2 and n = 6 mod 8, and

of the Ox_lw%Jrl—module Gp oo(X *w2tL) otherwise.
To prove Theorem 5.1 we will combine Theorem A with the following lemma.

Lemma 5.2. Let M be a finitely generated Oy[P]-module, and suppose that the
Fitting ideal Fito, ., M 1s principal and generated by a nonzero divisor. Then the
minimal number of generators of M equals the minimal number of generators of

Hom(M,Qy,/Z,) viewed as Oy—1[P]-modules.

Proof. Proposition 4 in [CG] implies that there exists an exact sequence 0 —
Oy[P]* — O,[P]* - M — 0. Let f be a generator for the Fitting ideal of
the O, [P]-module M. Consider the following commutative diagram whose vertical
arrows are induced by multiplication by f:

0_>OX[P]k'L>Ox[P]k ]\f 0
0 — O, [P]k —= O, [P]* M 0.

Observe that f is not a zero divisor in O,[P] and that fM = 0. An application of
the snake lemma to the diagram above gives the exact sequence:

(5.3) 0 M (Ox[P1/£)F — (Ox[P]/)*.

Let M# = Hom* (M, Q,/Z,) and let k' be the minimal number of generators of M#.
Now apply Hom*(—,Q,/Z,) to (5.3). Since Hom"(Oy[P]/f, Qp/Zy,) = Ox[P]/f
by the Gorenstein property (4.13), we derive that the Oy[P]-module M # can
be generated by k elements, therefore k' < k. By (4.14) also M# has Fitting
ideal generated by f. By reversing the role of M and M # we find that k < &/,
i.e., k = k/. Therefore the minimal number of generators of the O, -1[P]-module
Hom(M,Q,/Z,) = (M#)* is also k. O

Proof of Theorem 5.1. We let k denote the minimal number of generators of the
group H,(RE; Zy(%+1))(x). From Lemma 5.2 we find that the minimal number of
generators of the O, 1 [P]-module Hom(HZ, (RE; Zp(% +1)); Qp/Zy)(x ") is also k.
By Lemma 4.4 this last module is isomorphic to X, co(—%—1)r/(x™"). By applying
Nakayama’s lemma to the local ring A,—1[P'], we get that the A,—1[P']-module

n n

Xpool—5 —D(X7) = X; oo(XwE)(—5 — 1)

has minimal number of generators equal to k. This implies that the minimal num-
ber of generators of the A__; 241 [P']-module X} . (x 'w?T!) is also k. Observe

now that Gp co(x ‘w2 T!) = (XI/,7OO(X_1(,U%+1))1"><PI. Nakayama’s lemma, applied
this time to the ring Ax—lw% +1[P'] implies that the minimal number of generators

of the (’)X_lw%J,l—module Gpoo(x 'w2T!) is k. We can repeat all the above by
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changing cohomology groups with positive cohomology groups and removing all
the symbols oo, to get that the two (’)x_lw%.u—modules Hﬁ_(RE; Zy(% +1))(x) and

Gp(x'w2T!) have the same number of generators. As in the proof of Theorem A,
the identification of cohomology groups with K groups gives our claim. O

Let Pic4 denote the narrow Picard group.
Corollary 5.4. Assume the hypothesis of Theorem A. Suppose that:

Pic"’(ox—lw%*'l)(X_lng) is a cyclic Oxflw%’H — module.

Moreover, we assume that there 1is o;:al.y one prime lymg above p in Qx_lw%+1.
Then Kn(RE; Zyp)(x) = Ox[P]/(02(x)) for p odd. When p = 2, we have 1somor-
phisms Kn(RE;Z2)(x) = Ox[P]/(02(x)) for n = 2mod 8 and Kn(Rp;Z2)(x) =
On
O [P1/( 22 for n = 6 mod 8,
Proof. Let F' = Qx_lw%ﬂ and € = y 1wz 1!, For all places p of F, we denote by
U, the ring of p-adic integers in the completion of F' at p. By global class field
theory we have an isomorphism

G Cr
b Hp’[poo U;; ' Hp|oo R-i—

where C7F is the idele class group of F' and R are the real positive numbers. Since
Picy(OpF) is the narrow ideal class group of F', we get a short exact sequence

lep U;

*
o

(5.5) 0— (€) — Gp,00(§) — Picy(OF)(€) — O

where the totally positive units Of  of F' embed diagonally in [] olp o We
note that J ., Ug(€) is a cyclic Og~module. The first term in (5.5) is trivial,
because £ is not the trivial character and there is only one prime above p. Our
assumption then implies that G, o(£) is a cyclic Og—module. The Og-module
G,(€) is also cyclic, because it is a surjective image of Gy oo(§). Theorem 5.1 then
gives that K, (Rg;Zp)(x) is a cyclic Oy[P]-module, and therefore it is isomorphic
to Oy[P]/ Fito () Kn(RE; Zp)(x). An application of Theorem A concludes the

proof. [

We observe that with a slight modification of the above proof for p = 2 and
n = 6 mod 8 we could have weaken the hypothesis of Corollary 5.4 in this case by
requiring only the cyclicity of the ordinary Picard group instead of the narrow one.

Corollary 5.4 gives us a computation of the y—components of higher K-groups
in many cases.

An easier accessible object than the ordinary tame kernel is the modified tame
kernel, or if we prefer the narrow Ko—group. The reason for introducing the narrow
tame kernel is that we do not want the real embeddings to have any impact on
our K-groups. We will beef up the definition of the narrow tame kernel to higher
K-theory in Definition 5.6. Like in the classical K, setting, we want the quotient of
the tame kernel by the narrow tame kernel to be an elementary two—group of rank
the number of real embeddings of the field. Let F' be a number field. The notion
of a higher narrow tame kernel for F' and Rr makes sense only in degrees 87 + 2,
where 7 > 0. This fact is reflected in Theorems A and 5.8, cf. also the list of the
2-rank of K, (Rr) displayed in Theorem 7.11 of [RW].
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Definition 5.6. Let j > 0. We define the two-primary part of the (85 + 2)th
narrow tame kernel Kg’j_l_z(RF) of F as H?,_(RF; Zo(47 + 2)). In the same way we
define the two—-primary part of the (85 + 2)th narrow K-group Kg"j_l_z(F) of F as
HY (F; Za(45 + 2)).

Remark 5.7. The group KT (RF) has been around for a long time, cf. the papers
[Grl], [Gr2] and [Ke]. As for Ko we have the ezact sequence 0 — Kg"j+2(F) —
Ksjt2(F) = @, rea(Z/2)p — 0. This also holds with F' replaced by Rp, cf. the
ezact sequences prior to Theorem 3.8. On odd-primary parts there is no difference
between higher narrow and ordinary algebraic K—groups.

We will next demonstrate that the Bloch-Kato conjecture for F' tells us more
about the higher algebraic K-groups of F. Let (€D A;)o denote the subgroup of
the direct sum @ A; consisting of the elements a = (a;) such that — in additive
notation — > a; = 0. We let p, signify the group of nth roots of unity, and like
before we let S be a finite set of primes in F' containing the infinite ones So, and
the p-adic ones for a fixed rational prime p. Finally we let S, denote the complex
primes of F. Part (d) of the following theorem lends on results from [RW] and
the comments in the last part of the proof of Theorem 3.8. We point out that
Theorem 5.8 is a direct generalization of classical Ky—results due to Tate, cf. the
famous Theorem 6.2 in [Ta).

Theorem 5.8. Assume that the Bloch-Kato conjecture is true for F at p if p s
an odd rational prime. Then we have the following results, where n > 1, v > 1 and
p 1s odd in (a) - (c).

(a) We have an isomorphism Kon(F){p} = HZ,(F;Zy(n + 1)) for n > 1, and
there ezists a map 6 : Hg, (F;Z/p*(n)) — Kan(F){p} whose image is the ezponent
p” subgroup of Kan(F'). The same holds for Rp.

(b) Assume that F' contains a primitive p”th root of unity. Then we have pe-
riodic 1somorphisms Kon(F)/p¥ = (Ko(F)/p”)(n — 1) and also Kon(Rp)/p*¥ =
(K2(Rr)/p”)(n — 1) of Galois modules.

(c) With the same assumption as in (b), we have a natural short ezact sequence
of Galois modules:

0 — Pic(RF)/p”(n) — Kon(RF)/p” — (@ Z%—p)o(n) — 0.
S\S.

(d) Let p = 2. Note that in (b) and (c) one has v = 1 if F is a real number
field. Parts (a), (b) and (c) are non—conjecturally true if F is totally imaginary,
or F is real and n = 0,1 mod 4. Let F be a real number field from now on. If
Kon(F){2} = HE,(F;Za(n + 1)) for n = 2mod 4, and likewise for Ry, then parts
(a) - (c) are true for n =2 mod 4. For n = 3mod 4, (a) - (¢) remain true where
we replace étale cohomology by positive étale cohomology, the functor Ko by the
functor K, the Picard group by the narrow Picard group and S, with Seo.

Proof. (a) The Block-Lichtenbaum spectral sequence provides an isomorphism
Kont1(F;Q,/Zy) = H (F;Q,/Zy(n + 1)), see the discussion before Theorem 1.2.
If we quotient both modules in this isomorphism by their divisible part, we obtain
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our first claim. Next we make the diagram:

Kan(F){p} S Kn(F){p}
(5.9) /// le le'

v

HL(F3 2 /p" (n+ 1) —= H4 (F; Zy(n + 1)) —— Hy, (F; Zp(n + 1)).

The lower part of (5.9) forms part of the long exact sequence in étale cohomology

associated with the extension 0 — Zy(n + 1) S Zyn+1) = Z/p*(n+1) = 0.
The existence of a map § with the desired property is now clear.
(b) Recall that H3,(F;Zy(n + 1)) is the trivial group for all n. We now find the

isomorphisms:

Kon(F)/p" 2 HE(F; Zy(n + 1)) /p” = H(F;Z/p"(n + 1))
~ HZ,(F;Z/p"(2))(n — 1) = (HE,(F; Zy(2))/p")(n — 1)
= (K2(F)/p")(n—1).

The second isomorphism follows directly from the Bockstein exact sequence, while
the third isomorphism follows from the hypothesis on F'. Precisely the same kind of
arguments apply for Rp. See also the remark concluding the proof of Theorem 3.8.

(¢) The claimed exact sequence of Galois modules for n = v = 1 is Theorem 6.2
of [Ta]. The same proof extends to the case n = 1 and v > 1. Part (b) lifts that
result to the higher K—groups.

(d) Our assertions follow from Theorem 1.3. If F' is totally imaginary, or F' is
real and n = 1,3 mod 4 then we need no addition arguments than for p odd. In
part (c¢) with n = 3 mod 4 we employ the narrow version of Theorem 6.2 in [Ta],
see Theorem 3.6 in [Ke].

Now for the case F real and n = 0,2 mod 4. Part (a) is as in the odd case,
and part (c) follows from (b). To prove (b), recall that HZ (F;Za(n + 1)) =
D, rear(Z/2)p for n > 2 even. The Bockstein exact sequence diagram

0 —=HZ(F;Za(n +1))/2 ——=HL(F; Z(n+ 1)) ——= @D, e 20 —> 0

lg

Hgt(F; %(2))(”’ - 1) — @p real %‘P —0

arising from the identification of Z/2(n + 1) with Z/2(2)(n — 1) as sheaves on the
étale site over Spec(F') gives the claimed periodicity. Likewise for Rp. U

The n = 1 case of the following result is the narrow version of Theorem 6.2 in
[Ta], see Theorem 3.6 in [Ke].

Proposition 5.10. Let F' be a real number field. Then we have isomorphisms
K& o(F)/2 = K§(F)/2 and K§;,,(Rr)/2 = KJ (RFp)/2. Moreover, there ezists a

natural short ezact sequence:

(5.11) 0 — Picy(Rp)/2 — Kijyo(Rr)/2 — (€D Z/2)0 — 0.
S\ Seo

e




24 PIETRO CORNACCHIA AND PAUL ARNE @STVAER

In particular, we have the 2—-rank formula:

rky Ké"j+2(RF) =r1ky Pict(Rp) + #(S\ Seo) — 1.

Proof. The argument is the same as in Theorem 5.8(d) for n = 3 mod 4. This time
the twist does not matter, since we reduce modulo 2. [

The n = 1 case of the following result is Theorem 5.4 in [Ke].

Corollary 5.12. Assume that the Bloch-Kato conjecture is true for F at the odd
rational prime p. If (, ¢ F, then we have a short ezact sequence

0 —+ (Pic(Rae))/p(n))" — Kan(Be)/p — ( ) Zp)o(n)T — 0

of T-modules where T signifies the Galois group Gal(F((p)/F) and n > 1.
Proof. From Theorem 5.8 we find the short exact sequence
. Z
0 — (Pic(Rp(c,))/p(n)" — (Kan(Rr(c,))/p)" = (P ;;p)o(n)P —0
S\Se

of I'~modules since the orders of I and p are relatively prime. For the same reason

we find that Ksn(Rr)/p =, (Kzn(RF(CP,,))/p)F from the projection formula in
algebraic K—theory. 0O

Proposition 5.13. Assume the hypothesis of Theorem A and let p = 2. Then for
n =2 mod 8:

9%(X))

—5 )

In particular, the element %0%()() is contained in O,[P].

Fito (p) K (Rz)(x) = (

Proof. Consider the short exact sequence defining K (Rg)(x):
(5.14) 0 — K (Re)(x) — Kn(RE)(x) — Z2[G]/2(x) — 0.

The same argument as in the proof of Theorem A in the case p = 2 and n = 6 mod 8
applied to (5.14) gives our claim. [

The next proposition generalizes Proposition 6.2 in [Ke].

Proposition 5.15. Let E/F be a Galois estension of number fields, with Galois

group T'. Then the transfer map induces an isomorphism K§}+2(E)p = K§|}+2(F)-

Suppose that T' is solvable and for p a prime in F let e, denote its ramification
indez in E/F. If (ep, (#F[p|)¥+t —1) = 1 for all ramified primes p not in S, then
the transfer map induces an isomorphism Kg; ,(Re)r = K{i o(RF).

Let now E be a totally real Abelian number field of prime power conductor f,
F C E with T = Gal(E/F) of 2-power order, and x a nontrivial character of G =
Gal(E/Q) of order prime to 2. Then the transfer map K;{].H(RE) — K"B"jJr2 (Rr)
induces an 1somorphism Kg'ﬁ_z (Rr)(x) & K§}+2(RE)(X)P-

Proof. We have an isomorphism H3 (E; Za(4j + 2))r = H? (F;Z(4j 4 2)) from the

Tate spectral sequence for positive étale cohomology, cf. the proof of Theorem B.
The odd-primary claim is contained in the same result.
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The assumption that I' is solvable means that we may assume that I' is cyclic.
Consider the diagram:

K342 (BE)r —= K42 (B)r — (Dper Ksj+1 (E[P))r —0

! | |

g-j+2 (RF) - Kg—j+2(F) - (@pes K8~j+1(F[K9])) —= 0.

0—K

The right hand side is an isomorphisrﬁ, ‘cf. thé prbof of Proposition 3.11. Thus
we are reduced to show that Hy (T 69751 o Ksjt+1(E[p])) is the trivial group for all
p & S. Since I is cyclic we have

Hy (T, @ Keja (BI)) 2 B (T, @D Kejoa (Blp)) = B (T, D Keja (Elp))

Ple Ple Ple

where the first isomorphism comes from the definition of Tate cohomology groups.

We have that ﬁO(FaGBmpKBHl(E[@_])) =~ Kgj+1(F[p])/ep where e, denotes the
ramification index of p. Our hypothesis together with Theorem 3.1 give that this
last group is trivial. This implies the second assertion.

Now for the last claim. Since E C Q({f+( f_l), there is only one prime of F' which
ramifies in the extension E/F, and it is fixed by Gal(F/Q). Proposition 3.12 then
gives Ksjt2(Re)(x)r = Ksj+2(Rr)(x). The proof now proceeds as in the second
part, by employing the short exact sequence mentioned in Remark 5.7 for Rg
and Rp. 0O

Corollary 5.16. Assume the hypothesis of Theorem A with p = 2, and let Eq =
EP. Then K&; ,(RE)(X) is a cyclic Oy[P]-module if and only if K3, »(RE,)(x)
is a cyclic Oy-module.

Proof. The group Kg"j +2(REe)(x) is a module over the local ring Oy[P]. Thus —
from Nakayama’s lemma — the number of generators of Ki, ,(Rg)(x) is nothing
but the dimension of the O, /2-vector space Ké"j +2(RE)(x)P /2. Proposition 5.15
gives at once the isomorphism K§"j+2(RE)(X)p/2 & Kg'j+2(REo)(X)/2. O

Next we consider the cyclicity of Kgjt2(Rrg, )(Xx) as an Oy—module. For any
finite Oy~module M, we define its x-—rank rky M as the dimension of the O, /2-
vector space M/2.

Lemma 5.17. Let F be a real Abelian number field and let G = Gal(F/Q) = Px A
where P is the 2-Sylow subgroup of G. For any 2-adic character x of P we have:

rky Kgi 15 (RF)(X) = rky Picy (Rp)(x) + tky (6D Z/2) (x) — tky Z/2(x)-
pl2

Observe that Z/2(x) is trivial unless x is the trivial character.

Proof. For this we take x—parts in (5.11). The claim follows since rk, is additive
on exact sequences of finite O, /2-modules. O
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Proposition 5.18. Assume the hypotheses of Corollary 5.16, and moreover that
the x-rank of K;j+2(REo)(X) is less than 2. Then:

+ OX[P]
K8j+2(RE)(X) (94j+1(X)/2) :

1

Proof. By hypothesis Kg"j 42(RE,)(x) is a cyclic Oy—module. Corollary 5.16 implies
that the group Kg_j-pz(RE)(X) is a cyclic Oy[P]-module. Thus

(5.19)  Ki12(RE)(x) = Oy[P]/ Fito, 17 Kij42(RE)(xX) = Ox[P]/(6141(x)/2)
where the last isomorphism follows from Proposition 5.13. O

Proposition 5.20. Suppose that E is a totally real Abelian number field and let
G = Gal(E/Q) = P x A where P is the 2-Sylow subgroup of G. Let x be any
2-adic character of A and suppose that OF . (x) = (0%)*(x), where OF , are the

totally positive units of Rg. Then Kgjt2(RE)(x) & 8J+2(RE)(X) @ O,[P]/2.

Proof. The hypothesis means that the signature map Sign : R} — Z3[G]/2(x) =
O,[P]/2 is surjective. We want to show that (5.14) is split. We do this in two
steps, first the classical Ky—case and then in general.

Let 1, be the unit of the ring O, [P]/2 and let u € R% be such that Sign(u) =1,
The Stemberg symbol {—1,u} € Kz(E) lies in the tame kernel Ky(Rg) and has
order 2. Mapping 1, to {—1,u}(x) induces a section of the map Ky(REg)(x) —
O4[P]/2, and done with the Kj—case.

Since Zy/4(2) = Zy/4(47 + 2), we find an isomorphism HZ (E; Zo(4] + 2))/4 &
HZ,(E;Z4(2))/4 by arguing as in the last part of the proof of Theorem 5.8(d).
Therefore by the above we know that we can define a section of Kgj+2(RE)(x)/4 —
O,[P]/2 by sending 1, to the class of some element o € Kgj12(REg)(x). It is now
easy to check that we can modify « in order to get an element of Kg;42(REg)(x) of
order 2 which gives a section Oy[P]/2 — Ksjt2(Re)(x). O

Lemma 5.17, Propositions 5.18 and 5.20 allow us to give explicit calculations
of Kgj+2(REg)(x) in many cases where x is not the trivial character. Precisely
the same argument as in the proof of Proposition 5.20 shows that the extension
0— K8]+2(F) — Kgjt2(F) = @D, rea(Z/2)p — 0 is split for any number field F,
since this is true for Ky by an argument with Steinberg symbols. Clearly, the same
holds for Ry under the assumption O% , = (OF)*.

Let E be a prime power conductor field, and let xo be the trivial 2-adic character
of the odd part of Gal(E/Q). Then Kgj+2(REe)(x0) = Ksj+2(Rr) ® Zg where
F = E* has degree # P over Q. Thus to study xo—components we may assume that
E is a totally real number field of prime power conductor p" such that Gal(E/Q)
is a cyclic group P of 2-power order. Then Pic(Rg)®Zy = 0. In fact there exists
a surjection from Pic(Of) ® Z, where K is the field of conductor p™ and degree
20rd2(p"=2""") Gver the rationals. Recall that Pic(O) ® Zs = 0 by Theorem 10.4
in [Wa], and thus the hypothesis of Proposition 5.20 are satisfied. Hence we find
Ksjt+2(Re)R®%Zy = (K'8|'J~+2(RE) ®Z3) P Z2[P]/2. We are thus reduced to study the
two—primary part of K8]+2 (Rg). Lemma 5.17 implies that rk K§}+2(RE) =s—1
where s is the number of dyadic primes of E. Thus K8]+2(RE) ® Zy is the trivial
group if s = 1. There is also a formula for the number of elements in Kg'j 12(RE)®Zs.
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Proposition 5.21. If the hypothesis of Theorem A are satisfied, then we have the
equality #K;'j_i_z(RE) ® Zy ~2 [Ty $L(—4j — 1,971) where ¢ runs over all the
2-characters of P, modulo equivalence.

Proof. Apply Corollary 4.16. O

We now determine the Galois module structure of Kg"j 4o(REp) for the number
field £ = Q(,/p) where p = 1 mod 4 is a rational prime.

Proposition 5.22. Let p = 1mod 4 be a rational prime and let E = Q(,/p). Let
P = Gal(E/Q) be generated by o, and let 1) be the nontrivial character of P. Then:

ZQ[O']
(1+0,3L(-4 — 1,9))

Kg;_l_z(RE) ® Z2 =

Proof. By Lemma 5.17 we know that rks Kg'}H(RE) < 1. Actually the two—
rank equals 1 if p = 1 mod8 and 0 if p = 5mod 8. Hence K'S"J.+2(RE) ® Zs
is a cyclic Zo—module. Since Kg"j +2(Z) ® Zy is the trivial group we derive that

(14 0) K;}'+2(‘RE) ® Zgy = 0.. Moreover, from Proposition 5.21 we derive the

equality $L(—4j — 1,9) K¢, ,(RE) ® Zy = 0. We have shown that the ideal
I =(14+0,7L(—4j — 1,¢)) annihilates the cyclic Z,[c]-module Kg’H_Z(RE) ® Za,
and hence we are done since #Zs[c]/I = # Kg"j_|_2 (Rg)®Zs. O

Remark 5.23. The ideal I in the proof of Proposition 5.22 is the Zs[o]|-Fitting

ideal of Ké"j+2(RE) ® Zg. Since the ideal I is not principal for p = 1 mod 8, we

see that it 1s impossible to extend Corollary 5.13, and therefore Theorem A, to the
trivial character.
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