TWO-PRIMARY ALGEBRAIC
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ABSTRACT. We compute the mod 2 cohomology of Waldhausen’s algebraic K-theory
spectrum A(x) of the category of finite pointed spaces, as a module over the Steen-
rod algebra. This also computes the mod 2 cohomology of the smooth Whitehead
spectrum of a point, denoted WhPH (%), Using an Adams spectral sequence we
compute the 2-primary homotopy groups of these spectra in dimensions * < 18,
and up to extensions in dimensions 19 < * < 21. As applications we show that
the linearization map L: A(x) — K(Z) induces the zero homomorphism in mod 2
spectrum cohomology in positive dimensions, the space level Hatcher-Waldhausen
map hw: G/O — QWP (x) does not admit a four-fold delooping, and there is a
2-complete spectrum map M: WhP¥ (x) — Sg/og which is precisely 9-connected.
Here g/og is a spectrum whose underlying space has the 2-complete homotopy type
of G/O.

INTRODUCTION

Let A(X) be Waldhausen’s algebraic K-theory of spaces functor evaluated on
the space X, see [Wal]. When X is a manifold, A(X) provides the fundamental
link between algebraic K-theory and the geometric topology of X — in particular
with the concordance space, the h-cobordism space and the automorphism space
of X, see [Wa3]. We are therefore interested in evaluating its homotopy type.
It is the aim of this paper to compute the 2-primary homotopy type of A(X) in
the case when X = x is the one-point space. We achieve this by computing the
mod 2 spectrum cohomology of A(*) as a module over the mod 2 Steenrod algebra.
The result is a complete calculation valid in all dimensions; we also compute the
homotopy groups of A(*) modulo odd torsion in dimensions * < 18, and up to
extensions in dimensions 19 < *x < 21.

We begin by discussing some definitions and interpretations of A(X), in order
to explain why this is an important homotopy type.

One way to define A(X) is as the algebraic K-theory of a category with cofi-
brations and weak equivalences R¢(X), whose objects are retractive spaces over X
subject to a relative finiteness condition, see [Wa5]. When X = x this category
Ry (*) is the category of finite pointed CW-complexes and pointed cellular maps,
and is the category of pointed spaces alluded to in the title. The cofibrations are
the cellular embeddings, and the weak equivalences are the homotopy equivalences.

Let hR¢(X) be the subcategory of Rf(X) obtained by restricting the morphisms
to be homotopy equivalences, and let |hR(X)| denote its geometric realization. As
a space, A(X) is defined as the loop space Q|hSeR¢(X)|, where S, is Waldhausen’s
simplicial construction of the same name. This construction can be iterated, and
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in fact A(X) is an infinite loop space with nth delooping IhSSn)Rf(X)| for each
n > 1. There is a canonical map

e: |hRs(X)| — A(X)

from the geometric realization of the category of finite pointed spaces and homotopy
equivalences to the infinite loop space A(X).

There is a natural isomorphism myA(X) 2 Z, and for every object Y € hR;(X)
the image under mo(e) of the corresponding point in |hRf(X)| is the relative Euler
characteristic x(Y,X) = x(Y) — x(X) of Y. From this point of view the map
e is a lift of the usual Euler characteristic that takes values in the integers, to a
map that takes values in the infinite loop space A(X). Furthermore, a diagram
of spaces and homotopy equivalences given as a functor F': C — hR;(X) gives
rise to a map e o |F|: |C| — A(x), which will detect more information than just
the Euler characteristics of the individual spaces in the diagram. For example a
pointed G-space Y gives rise to a map BG — A(x) whose homotopy class is a
refined invariant of Y. We think of e as a homotopy theoretic improvement on
the Euler characteristic, able also to detect information about diagrams of spaces
and homotopy equivalences, rather than just individual spaces, and A(X) is the
receptacle for this improved Euler characteristic.

In fact A(x) is a kind of universal receptacle for homotopy invariants of finite
pointed spaces that take values in infinite loop spaces and are subject to the fol-
lowing additivity condition: for each cofiber sequence Y — Y — Y we have
[Y'] + [Y"”] = [Y] where [Y] € moA(x) denotes the path component in A(x) of the
invariant applied to Y. Of course, the corresponding universal invariant taking val-
ues in an abelian group is just the reduced Euler characteristic. We shall not make
the universality claim more precise in this introduction, but note that a similar
discussion applies for A(X) and suitably additive homotopy invariants of retractive
spaces over X.

Hereafter it will be more convenient to work with spectra than infinite loop
spaces. The infinite loop space A(X) determines a unique connective spectrum,
and from now on A(X) will refer to this spectrum. The body of this paper is also
written in terms of spectra rather than infinite loop spaces, partly because a few
non-connective spectra will appear.

Suspension of retractive spaces over X induces an equivalence on the level of
algebraic K-theory, and so A(X) can also be considered as the algebraic K-theory
of a category of spectra over X. It is simplest to make this precise for X = x, when
A(x) is equivalent to the algebraic K-theory of the category of finite CW-spectra,
with respect to suitable notions of cofibrations and stable equivalences, see [Wad].

Let S be the sphere spectrum in some good closed symmetric monoidal category
of spectra and spectrum maps, for example the S-modules of [EKMM] or the I'-
spaces of [Se] and [Ly]. In either case the ring spectrum S is a monoid object with
respect to the internal smash product, and a spectrum is a module over S, so we can
sensibly refer to spectra as S-modules. Then A(x) can be described as the algebraic
K-theory of a category of S-modules subject to suitable finiteness conditions, and
briefly A(x) is the algebraic K-theory of the ring spectrum S. See [BHM] for a
discussion in terms of FSPs.

More generally, for a unital and associative ring spectrum A we may consider
a category of finitely generated free A-modules, and form its algebraic K-theory,
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see [D2]. These ring spectra are unital and associative monoids in one of the
categories of spectra considered above, and may conveniently be called S-algebras.
For each ring R in the algebraic sense, the Eilenberg-Mac Lane spectrum HR is
an S-algebra whose algebraic K-theory agrees with Quillen’s K(R), see [Q2]. For a
simplicial monoid G the unreduced suspension spectrum X°°(G.) is an S-algebra
whose algebraic K-theory agrees with Waldhausen’s A(X) for X = BG. Thus S-
algebras encompass the previous examples of inputs for algebraic K-theory. Now
S is a commutative S-algebra, so its algebraic K-theory K(S) = A(x) is itself a
ring spectrum, and furthermore the algebraic K-theory K(A) of any S-algebra is a
module spectrum over A(x). Hence every algebraic K-theory spectrum considered
so far is a module spectrum over A(x), which further emphasizes the special role
played by A(x).

The relationship of A(X ) to geometric topology is through the splitting of spectra
A(X) ~ £°°(X;) V WhPH(X) for the smooth category, and the cofiber sequence

of spectra
A(x) A Xy 25 A(X) — WhPE(X)

for the piecewise linear category, see [Wa3] and [Wa6]. Here « is the assembly map,
one construction of which uses that A(X) is a homotopy functor in X, see [WWZ2].

The spectra WhP*(X) and WhP*(X) are the smooth and PL Whitehead spec-
tra, respectively. The topological Whitehead spectrum WhT°P(X) is equivalent to
the PL one by [KS] and [BuLa]. Thus knowledge of A(x) determines WhPH (%)
and is the ingredient needed to pass from A(X) to Wh¥™(X) ~ Wh™P(X). The
underlying infinite loop spaces of these Whitehead spectra are called Whitehead
spaces, and it is perhaps more common to work in terms of these.

When X is a smooth manifold, QwWhDiﬁ(X ) gives the homotopy functor that
best approximates the space CP'f(X) of smooth concordances (= pseudoisotopies)
of X. By Igusa’s stability theorem [Ig] there is a stabilization map

E?{iﬁ . CDiﬁ" (X) N QQQooWhDiff (X)

which is at least roughly n/3-connected where n is the dimension of X. Similar
results relate WhPZ(X) and Wh™P(X) to the PL- and topological concordance
spaces CFY(X) and CT°P(X) when X is a PL- or topological manifold, respectively.

Furthermore there is a geometrically significant involution on A(X), related
through the Whitehead spectra to the involution on concordance spaces arising
from ‘turning a concordance upside-down’, see [H] and [Vog]. By [WW1] there is a
map

DT . Diff (X)/Diff(X) — Q°(ECa; Ag, QWhPHE (X))

which is at least as connected as the stabilization map considered by Igusa. The
Cs-action on QWhPH (X)) on the right is given by the involution, and the homotopy
orbit construction is formed on the spectrum level. This is a space level interpre-
tation of the output of the Hatcher spectral sequence [H], which works on the level
of homotopy groups.

The space Diff(X)/Diff(X) measures the difference between the topological
group Diff(X) of diffecomorphisms of the smooth manifold X and the simplicial
group Diff (X)) of ‘block diffeomorphisms’, which is computable in terms of surgery
theory, see [H]. Thus knowledge of the homotopy orbits for the involution acting
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on the spectrum WhP® (X), or equivalently on the spectrum A(X), can be viewed
as giving knowledge of the homotopy type of the space of diffeomorphisms Diff(X)
in dimensions up to roughly n/3, where n is the dimension of X. Similar results
apply for the spaces of PL homeomorphisms of PL manifolds and homeomorphisms
of topological manifolds. See [WW3] for a more detailed survey.

In this paper we shall determine the homotopy type of the 2-primary completion
of the spectrum WhDiﬂ(*). Since the Whitehead spectrum is a homotopy functor
and preserves connectivity of maps, for any smooth n-manifold X which is roughly
n/3-connected the map @I)%iﬁ composed with the natural map

Q°°(ECy.. Ao, QWhPHT (X)) — Q%(ECy, Ac, QWP (%))

is roughly n/3-connected. Thus when our 2-primary calculation is extended to a
calculation of the Cs-homotopy orbits of WhDiff(*), we will have complete informa-
tion about the 2-primary homotopy type of the space of diffeomorphisms Diff (X)
of roughly n/3-connected manifolds up to dimension roughly n/3. We leave these
calculations for a future paper.

We now turn to a description of the contents of the present paper.

We are able to access the homotopy type of A(x) by means of a comparison of
algebraic K-theory with the topological cyclic homology theory of Bokstedt, Hsiang
and Madsen [BHM], relying on a theorem of Dundas [D1]. In Chapter 1 we review
these notions, and are led in Theorem 1.11 to the homotopy cartesian square

A(x) —2—> K(Z)
trc. trcz

TC(x) —2>TC(Z).

Here TC denotes the topological cyclic homology functor, and the natural trans-
formation trc is the cyclotomic trace map of [BHM]. We are able to access A(*)
after 2-adic completion because the 2-primary homotopy types of the three other
spectra in this diagram are known, together with sufficient information about the
maps in the diagram. More specifically, the homotopy type of T'C(x) was deter-
mined in [BHM], for odd primes p the p-adic completion of T'C/(Z) was computed in
[BM], and the 2-adic completion was determined in [R5]. The 2-adic completion of
K (7Z) was found in [RW], by arguments based on Voevodsky’s proof of the Milnor
conjecture [Voe] and the Bloch-Lichtenbaum spectral sequence [BILi]. The 2-adic
map trez: K(Z) — TC(Z) was also studied in [R5], in sufficient detail that we can
describe A(*) as an extension of TC(x) by the common homotopy fiber of the maps
labelled trc, and trcz in the diagram above.

At odd primes p, the missing information needed to determine the p-primary
homotopy type of A(x) is the identification of the p-adic completion of K(Z), i.e.,
a proof of the p-primary Lichtenbaum—Quillen conjecture for the integers, and the
determination of how A(x) is an extension of T'C(x) by the homotopy fiber of trcz,
after p-adic completion. Since A(x) has finite type, and is rationally equivalent to
K(Z), this would suffice to determine the integral homotopy type of A(*).
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Also in Chapter 1 we make precise a part of the calculation of TC(x) from [BHM],
relating its p-adic completion to the Thom spectrum CP> = Th(—~') of minus the
canonical complex line bundle over CP*°. See Theorem 1.16 and Corollary 1.21,
which when combined yield a homotopy equivalence TC(x) ~ £>°5° VX CP after
p-adic completion.

In Chapter 2 we analyze the 2-primary homotopy type of CP2 by classical
methods. We obtain its homotopy groups in dimensions * < 20 in Theorem 2.13,
by use of the Atiyah—Hirzebruch spectral sequence for stable homotopy associated
to the skeleton filtration of CPS by the subspectra CP?; for s > —1. The El-term
in this spectral sequence is given in terms of the stable homotopy groups of spheres,
72, and the differentials depend on the attaching maps for the cells in CP°]. This
involves primary and secondary operations in homotopy, somewhat along the lines
of Toda’s book [To], and we build on previous work for CP> by Mosher [Mo] and
Mukai [Mul], [Mu2] and [Mu3].

It is much easier to describe CP>§ cohomologically, and in Proposition 2.15 we
find that the mod 2 spectrum cohomology of CP2 is cyclic as an A-module, where
A is the mod 2 Steenrod algebra, and we describe the annihilator ideal C' of the
generator in Definition 2.14. The squaring operations S¢* with ¢ odd together with
the admissible monomials Sq’ of length > 2 form a basis for C' as an Fa-vector
space. Thus H}, .(CP%;Fy) = %72A/C as left graded A-modules. This allows us
to describe the E5-term of the Adams spectral sequence for the 2-adically completed
homotopy of CP in a range in Tables 2.18(a) and (b). Combined with the results
from the Atiyah—Hirzebruch spectral sequence, we are also able to determine the
differentials that land in homotopical degree t — s < 20 in this spectral sequence.
The details of this computation will be applied in Chapter 5, where Adams filtration
and sparseness in the Adams spectral sequence will make it easier for us to study
the homotopy type of A(x) (and Wh™¥ (%)) in terms of its spectrum cohomology
and the differentials in its Adams spectral sequence, rather than by means of the
long exact sequences in homotopy arising from Dundas’ homotopy cartesian square.

In Chapter 3 we familiarize ourselves with the spectrum hofib(trc) defined as the
homotopy fiber of the (implicitly 2-completed) map

trez: K(Z) — TC(Z).

By Dundas’ theorem this is also the homotopy fiber of the map tre, : A(x) — T'C(x).
The principal result is Theorem 3.13, which expresses this common homotopy fiber
as the homotopy fiber of the spectrum map ¢: X "2ku — X*ko given as a suitably
connected cover of the explicit composite map

Yo 20 (P —1) 07 2T2KU — S*KO.

From this description it is easy to extract other homotopical information about
hofib(trc), such as its homotopy groups (Corollary 3.16), its spectrum cohomology
(Theorem 4.4), or its Adams spectral sequence (Tables 3.18(a) and (b)).

The calculations in Chapter 3 are based on the spectrum level description of
K(Z[%]) given in Theorem 3.4, and of K(Q;) given in Theorem 3.6, which were
obtained in [RW] and [R5, 8.1] respectively. The calculation of K (Z[3]) relied on
the proven Lichtenbaum—Quillen conjecture in this case [RW], using essential in-
puts from algebraic geometry [Voe] and [BILi], while the identification of K (Q2) in
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[R5] amounted to the calculation of T'C(Z) completed at 2, which used topological
cyclic homology and calculational spectral sequence techniques from stable homo-
topy theory. The results in Chapter 3 also rely on knowing how the natural map
7't K(Z[3]) — K(Q3) acts on the level of homotopy groups, which was determined
in [R5, 7.7 and 9.1]. Those results depended on knowing the structure of the K-
theory spectra involved, not just their homotopy groups, and were feasible because
the prime 2 is so small, or perhaps because it is regular.

These inputs allow us to obtain a spectrum level description of the homotopy
fiber of 5/ in Propositions 3.10 and 3.11, with a more convenient reformulation given
in Proposition 3.12. The arguments rely on knowing the endomorphism algebras of
the 2-completed connective topological K-theory spectra ko and ku, as well as all
the maps between them, which stems from [MST]. Using Quillen’s localization se-
quence in algebraic K-theory, and Hesselholt and Madsen’s link between K (Zy) and
TC(Z) from [HM, Thm. D], we rework the description of hofib(j’) into a spectrum
level description of hofib(trc) in Theorem 3.13, as desired.

In Chapter 4 we use the cofiber sequence (3.14)

CP% % hofib(tre) & WhP(x)

and the splitting A(¥) ~ ©>°8% v WhP¥ (%), to reduce the identification of A(x)
to that of CP%, which was studied in Chapter 2, to that of hofib(trc), which was
settled in Chapter 3, and the map i between the two. At the prime 2 we are in
the fortunate situation that the mod 2 spectrum cohomology of CPq is cyclic as
an A-module on a generator in degree —2, so because WhDiff(*) is 2-connected it
follows that 7 induces a surjection on cohomology in all degrees. Thus we can omit
any discussion of the linearization map L: T'C(x) — T'C(Z) in Dundas’ homotopy
cartesian square, and still obtain a complete cohomological description of WhDiﬁ(*).

This is achieved in the main Theorem 4.5. We have an isomorphism of left
graded A-modules

Hpoo(A(%); Fy) & Hp (9% Fp) @ Hipoo(WhPH (5); F)
where H,. (X8 0,Fy) = IFy is the trivial A-module in dimension zero, and there
is a unique nontrivial extension of left graded A-modules
S2C/A(Sq, S¢°) — Hioo (WP (x); Fa) — S2A/A(Sq", S¢?)

characterizing H ;‘peC(WhDiﬁ(*);IF 2). Here C C A is the annihilator ideal of the
generator for H3,..(CP29;Fy), introduced in Definition 2.14. The assertion of the
theorem is that abstractly there are precisely two such extensions of left graded
A-modules, and H ;‘pec(WhDiﬁ(*); IF3) is the one which does not split.

In Chapter 5 we turn to a homotopical analysis of the smooth Whitehead spec-
trum WhP' (%), and thus also of A(x). Our approach is to study the Adams spectral
sequence (5.5)

E;t = EXtZt(H:pec(WhDiﬁ(*); IF2)7 F2) = 7Tt~8(WhDiﬁ(*))é\ :

Here we can in principle compute the Fs-term in a large range of bidegrees, but
there will be many families of differentials and a complete determination of the
homotopy groups of WhD‘ff(*) is out of reach.




TWO-PRIMARY ALGEBRAIC K-THEORY" OF POINTED SPACES 7

The cofiber sequence (3.14) displayed above has the special property that its
connecting map induces the zero map in mod 2 spectrum cohomology, so its as-
sociated long exact sequence breaks up into short exact sequences, which in turn
induce long exact sequences of Exta-groups. Thus the Ej-terms of the Adams
spectral sequences for CP23, hofib(trc) and WhP iff(>l<) are linked in a long exact
sequence (5.6). The spectral sequence for hofib(trc) was completely described in
Chapter 3, and in Chapter 5 we use the long exact sequence of Ey-terms to translate
the information from Chapter 2 about differentials in the Adams spectral sequence
for CP%S to information about differentials in the Adams spectral sequence (5.5)

for WhDiff(*). This is a convenient approach, because the Adams spectral sequence
of hofib(trc) is concentrated above the line t — s = 2s + 3, while the differentials in
the spectral sequence for CP° mostly originate below this line. The only subtle
point concerns whether certain h;-divisible classes in bidegrees (s, t) = (4k, 12k +3)
of (5.5) are hit by differentials, but a comparison with [R5, 9.1] reveals that they
indeed survive to the Eo-term. Thus the complexity of determining the homotopy
groups of WhDiﬁ(*) is in practice equivalent to that of determining the homotopy
groups of CP5, which is a well-explored but not exhaustively analyzed subject.

The Adams Eo-term for WhP™ (%) is displayed in part in Tables 5.7(a) and (b),
and the nonzero differentials landing in homotopical dimension ¢ —s < 21 are listed
in Proposition 5.9. This leads to a calculational conclusion in Theorem 5.10, where
the 2-completed homotopy groups of WhP' (%) are listed in dimensions * < 18, and
up to group extensions in dimensions 19 < *x < 21. Previously only the homotopy
groups in dimensions < 3 were known, see [BW]. We do not give names to the
classes identified in 7, (WhP™ (%)), but in Theorem 7.5 we show that the (space
level) Hatcher-Waldhausen map hw: G/O — QWhPf (%) constructed in [Wa3,
§3] induces an isomorphism on 2-primary homotopy groups in dimensions * < 8,
and an injection on 2-primary homotopy groups in dimensions * < 13. Thus the
better known homotopy groups of G/O ~ BSO x CokJ account for much of the
low-dimensional homotopy of WhP' ().

In Chapter 6 we use the known spectrum level description of K (Z) completed at 2
to compute its mod 2 spectrum cohomology in Theorem 6.4, and to show in Corol-
lary 6.8 that the linearization map L: A(*) — K(Z) induces the zero map in mod 2
spectrum cohomology in positive dimensions. Thus the linearization map does not
itself provide a good cohomological approximation to A(x). In Remark 6.9 we ex-
plain why the Hatcher—Waldhausen map hw does not admit a four-fold delooping,
using that multiplication by the Hopf map o € 75 is nonzero on T4 (QWhHPHE (x)),
but is zero on m4(G/0O). We also explain how this relates to the results of [R1],
where an infinite loop map from G/O to a different infinite loop space structure on
QWhP# (x) is obtained.

Following Miller and Priddy [MP], we describe in (6.3) a spectrum g/og as the
homotopy fiber of the 2-completed unit map ©*°S° — K (Z). Its underlying space
G/Og has the same 2-adic homotopy type as the usual G/O. Although there is
no spectrum map %¢/og — WhP® (%) inducing a m3-isomorphism, we construct in
Chapter 7 a 2-complete spectrum map M : WhDiﬁ(*) — 3g/0g which induces an
isomorphism on mod 2 spectrum cohomology in all dimensions * < 9. This is a
best possible approximation, since the cohomology groups differ in dimension 10.
The comparison of WhP# (x) with $g/0g finally allows us to evaluate the Hatcher—
Waldhausen map on 2-completed homotopy groups in dimensions * < 13, leading
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to the previously cited Theorem 7.5.
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1. ALGEBRAIC K-THEORY AND TOPOLOGICAL CYCLIC HOMOLOGY

We commence by discussing the cyclotomic trace map from algebraic K-theory
to topological cyclic homology, and a special case of Dundas’ theorem comparing
relative algebraic K-theory to relative topological cyclic homology.

1.1. I'-spaces and S-algebras. Let S, be the category of pointed simplicial sets,
and let I'°P be the category of finite pointed sets k+ = {0, 1,...,k} based at 0, and
base-point preserving functions. This is the opposite of Segal’s category I from [Se].
Let T'S, be the category of I'-spaces, i.e., functors F': I'? — S, with F'(04.) = *.
Each I'-space F naturally extends to a functor F': S, — S,, which when evaluated
on spheres determines a (pre-)spectrum {n — F(S™)}. We write 7, (F) for the
homotopy groups of this spectrum. The natural inclusion I'? — &, is a I'-space
denoted S, whose associated spectrum is the sphere spectrum. The groups m,(S)
are the stable homotopy groups of spheres.

There is a smash product A of I'-spaces defined by Lydakis in [Ly], making
(T'S., A, S) a symmetric monoidal category. A monoid A in this symmetric monoidal
category will be called an S-algebra. Its associated spectrum is an associative ring
spectrum, conveniently thought of as an algebra over the sphere spectrum.

1.2. Examples of S-algebras. When G is a simplicial group the functor 3*°(G.)
given by X°°(G4)(ky) = G4 A ky is a I-space. The group multiplication and unit
define the structure maps

p: X%°(G4) NEZ(Gy) — 57(Gy)

and : S — X°°(G4) making ¥°°(G4) an S-algebra. Its associated ring spectrum
is the unreduced suspension spectrum on G, with product map induced by the
multiplication on G.

When R is a (discrete) ring the functor HR given by HR(ky) = R{1,...,k}
(the free R-module on the non-basepoint elements in k) is a I'-space. The ring
multiplication and unit define the structure maps

u: HRAHR — HR

and 7: S — HR making HR an S-algebra. Its associated ring spectrum is the
Eilenberg-Mac Lane spectrum representing ordinary cohomology with coefficients
in R.

Let G be a simplicial group, with group of path components m(G), and let
R = Z[mo(G)] be the its integral group ring. The linearization map is the map of
S-algebras L: ©°(G,) — HR taking g Ai € G4 Ak to [g] -1 € R{1,...k}, where
g€ G,i€{l,...k} and [g] denotes the path component of g viewed as an element
of m o(G) C R.

1.3. Algebraic K-theory, topological Hochschild homology and topolog-
ical cyclic homology. Let A be an S-algebra. The extended functor A: S, — S,
comes equipped with a product and unit map making it an FSP (functor with
smash product) in the sense of [B2]. In [BHM] Bokstedt, Hsiang and Madsen
functorially define the algebraic K-theory spectrum K (A), topological Hochschild
homology spectrum THH(A) and topological cyclic homology spectrum T'C(A, p)
of an FSP A. Here p is any prime. An integral functor A — TC(A) has been
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defined by Goodwillie (unpublished), together with a natural p-adic equivalence
TC(A) — TC(A,p) for each prime p.

When G is a simplicial group and X = BG its classifying space we write A(X) =
K(¥*°(Gy)), THH(X) =THH(2*°(G4)) and TC(X,p) = TC(X*(G4),p). Here
A(X) is naturally homotopy equivalent to Waldhausen’s algebraic K-theory spec-
trum A(X) of the space X [Wal], i.e., the algebraic K-theory of the category of
finite retractive spaces over X.

When R is a ring we write K(R) = K(HR), THH(R) = THH(HR) and
TC(R,p) = TC(HR, p). Here K(R) is naturally homotopy equivalent to Quillen’s
algebraic K-theory spectrum K (R) of the ring R [Q2], i.e., the algebraic K-theory
of the category of finitely generated projective R-modules.

We recall from [BHM, 3.7] that there are C-equivariant homotopy equivalences

(1.4) THH(X) ~c 52 (AX,)

for each finite subgroup C C S!. Here ¥ denotes the C-equivariant suspension
spectrum, and C' C S! acts on the free loop space AX by rotating the loops.

1.5. Trace maps. A trace map trx: A(X) — THH(X) was defined by Wald-
hausen in [Wa2], and Békstedt defined a trace map tra: K(A) — THH(A) in [B2],
as a natural transformation of functors from FSPs to spectra. The cyclotomic trace
map trcyg of [BHM] gives a factorization

K(A) 24, TC(A,p) 24 THH(A)

of tr4, although the map to TC(A, p) was initially only defined up to homotopy.
The map B4 is a projection map from the homotopy limit defining T'C'(A, p). When
A =X%(G,) with X = BG or A = HR we substitute X or R, respectively, for A
in the notations trc4, B4 and trs. Thus trcx: A(X) — TC(X, p), etc.

In the case A = ¥°°(G,) with X = BG the six authors of [6A] gave a model for
the cyclotomic trace map trcx as a natural transformation in X. When A = HR,
Dundas and McCarthy [DuMc] gave models for K(R) and T'C(R) such that trcg
is a natural transformation. Finally Dundas [D2] has provided a construction of
functors K, THH and T'C from S-algebras to spectra, and natural transformations
trc: K - TC, 3: TC — THH and tr: K — THH with tr = (8 o trc, which agree
up to natural homotopy equivalence with the preceding definitions.

1.6. Dundas’ theorem. The following theorem of Dundas [D1] generalizes to
maps of S-algebras a theorem of McCarthy [Mc| valid for maps of simplicial rings.
Both results are analogous to an older theorem about rational algebraic K-theory
due to Goodwillie [Go].

Theorem 1.7 (Dundas). Let ¢: A — B be a map of S-algebras, such that the
ring homomorphism mo(¢): mo(A) — mo(B) is a surjection with nilpotent kernel.
Then the commutative square of spectra

K(A) —2 = K(B)

ltrcA ltch

TC(A) —*=TC(B)

18 homotopy cartesian.
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Corollary 1.8 (Dundas). Let G be a simplicial group, and write X = BG and
R = Z[m(X)] = Z|ro(G)]. The linearization map L: ¥°(G4) — HR induces a
homotopy cartesian square

A(X) —E > K(R)
TC(X) —Ls1C R).

In particular, the vertical homotopy fiber hofib(trcx) only depends on the funda-
mental group m1(X), for a pointed connected space X.

For the last claim we used that any pointed connected space X is homotopy
equivalent to BG for a simplicial group G, e.g. the Kan loop group of X. See
[WaT7].

1.9. Whitehead spectra. There are natural cofiber sequences of spectra
£ (X4) - A(X) — WhPH(X)

and
A A XL 2 AX) — WHPE(X)

where WhP (X)) is the smooth Whitehead spectrum of X, and WhF™(X) is the
piecewise linear Whitehead spectrum of X. The sequences are constructed geo-
metrically in [Wa3], where Wh™'®(X) is interpreted in terms of stabilized smooth
concordance spaces and stabilized spaces of smooth h-cobordisms, and similarly in
the piecewise linear case. The identification of the upper left hand homology theory
in X with 3°°(X ) uses the ‘vanishing of the mystery homology theory’ established
in [Wa6].
The composite

D°(X,) 5 AX) 25 THH(X) ~ 5%°(AX,) =% 5°(X,)

is homotopic to the identity. Here ev: AX — X is the map evaluating a free loop
S1 — X at the identity 1 € S'. Hence ev o trx provides a natural splitting for the
cofiber sequence above, as in

A(X) =~ E%°(X ;) v WhPH(X).

We can therefore identify WhP (X) with the homotopy fiber of the splitting map
evotry.

1.10. The smooth Whitehead spectrum of a point. Suppose G = 1, so
X = %. Then ev: AX — X is the identity map, THH(x) ~ %°°S° and the
splitting above identifies WhP' (%) with the homotopy fiber of tr,. We obtain a
map of horizontal cofiber sequences of spectra:

tr.

WhPH (x) — A(x) —> THH (x

- =T

TC(x) — TC(+) — == THH(x




12 JOHN ROGNES
Here TE(*) is ‘defined as the homotopy fiber of S, and frc is the induced map
of homotopy fibers over trc, and the identity map on T'HH (%). The unit map
$2°8Y — A(x) — TC(*) and B, yield a splitting

TC(x) = £®°8°VTC(x).
Theorem 1.11. The two squares

L

WhPH () A(¥) K(Z)

l{;’c ltrc* ltrcz

TC (+) — TC(x) —=TC(Z)

are homotopy cartesian, and induce homotopy equivalences of vertical homotopy
fibers
hofib(trc) = hofib(trc, ) — hofib(trez) .

We denote either. of these by hofib(trc). O

1.12. The topological cyclic homology of a point. The topological cyclic
homology T'C(X,p) of a pointed connected space X was computed by Bokstedt,
Hsiang and Madsen in [BHM]. We recall their result, making precise a point that
was omitted in the published argument. See [Ma, §4.4] for more details about the

following review.
Fix a prime p. From 1.4 there is an equivalence TH H (X )" ~ DI (AX,)Crm
for each n > 0. The Segal-tom Dieck splitting

5 (AX )%~ [[ B°(BCH xc, AXTm*)y
k=0

and the power map homeomorphisms A;‘“k: AX = AX%"* combine to give an
equivalence

(1.13) THH(X)%" ~ [[ S°(ECy xc, AX)y.
k=0

The pth power map A,: X*AX; — 3*°AX_ is induced by taking a free loop
S* — X to its precomposition by the usual degree p map S* — S'. Let
tp: EOO(ECpn XCpn AX)_|_ — EOO(ECpn—1 XConoa AX)_|_

be the Becker—Gottlieb transfer for the principal Cp-bundle ECpn-1 XCpnot AX —
ECyn x¢,» AX. There are restriction and Frobenius maps R, F': THH (X YO —
THH(X)"=*. Up to homotopy these are given by the formulas:

R(zo,z1,...,%n) = (To,T1,- -, Tn-1)
F(zo,z1,...,2n) = (Ap(zo) + tp(x1), tp(z2), .. ., tp(2n)) -
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Here zj, refers to the factor in X*°(ECp: x¢ , AX )+ in the equivalence 1.13, and
the formulas must be interpreted as giving maps defined in terms of this splitting.
Writing

(1.14) TR(X,p) = hohmTHH(X ~ H 2% (ECp Xcpm AX)+
n=0
we have R(zo,71,%2,...) = (%0, %1,T2,...) and F(zo,21,%2,...) = (Ap(zo) +

tp(21), tp(@2), tp(xs), . ..) up to homotopy. The topological cyclic homology spec-
trum T'C(X, p) is defined as the homotopy equalizer

- R
TC(LE,p) —_— TR(X> p) ——F—> TR(X7 p) )

and is homotopy equivalent to the homotopy fiber of 1 — F': TR(X,p) — TR(X,p).
Let T, D: TR(X,p) — TR(X,p) be given up to homotopy by the formulas:

T(.’IJO, T1,T2,... ) = (tp(flil),tp(xg), tp(ﬂ?g), .. )
D(CCo,xl,ZBQ, .. ) = (Ap($0), O, 0, e ) .

The following observation allows us to calculate TC(X, p).

Lemma 1.15. The composite (1—T)o(1—D): TR(X, p) — TR(X,p) is homotopic
to (1—F).

Proof. In terms of the splitting 1.14, it is clear that (1 — D)(zo,21,%2,...) =
(zo — Ap(w0), 21, T2,...) is mapped by (1 —T) to (0 — Ap(z0) — tp(T1), 21 —
tp(z2), T2 — tp(z3),...), which is homotopic to (1 — F)(zo, z1,T2,-..). O

Given such a choice of commuting homotopy for the right hand square below,
there is an induced map of horizontal fiber sequences

TC(X,p) — TR(X, p)————>TRXp

c e

C(X,p) —= TR(X,p) == TR(X,p).

Here we have written C(X,p) for the homotopy limit holimy, ; X°°(ECyn Xc,n
AX) ., which is homotopy equivalent to the homotopy fiber of 1—T" in view of (1.14).
When ax is determined by the commuting homotopy, the left hand square is strictly
commutative and homotopy cartesian. Let pr: TR(X,p) —» THH(X) ~ X*AX,
denote projection to the zeroth term in the homotopy limit defining TR(X,p).
Then there is clearly a commuting and homotopy cartesian square

TR(X,p) ——= L®°AX,

|s-2 ll_A,,

TR(X,p) ——= D®°AX, .

We can combine these two homotopy cartesian squares horizontally. Then the upper
composite Bx = prom: TC(X,p) — TR(X,p) —» THH(X) ~ Y*°AX, agrees
with the natural transformation 8 of 1.5. The lower composite is the projection
pro: C(X,p) — 2°°AX, from the homotopy limit system over the Becker—Gottlieb
transfer maps to its zeroth term.
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Theorem 1.16. [BHM, §5] Let X be a pointed connected space and write C(X,p) =
holimy, 1, 2°(ECpn X¢,n AX) . The diagram

TC(X,p) —= C(X,p)

lﬂx lpro
1-A,

TRAX, —=3¥FAX,
homotopy commutes, and there exists a commuting homotopy making the diagram
homotopy cartesian.

This is now clear. (The proofs in [BHM] and [Ma] only show that the horizontal
homotopy fibers in this diagram are homotopy equivalent, not necessarily by the
map induced by Bx and pry.) Specializing to X = % we have the following corollary,
which is what we will use in the rest of this paper.

Corollary 1.17. There is a cofiber sequence of spectra

TC(x,p) — holim £ (BCpn) % £%5°.
n,tp

For each n > 0 there is a dimension-shifting S*-transfer map
trfg: X°(X(CPY°)) — X°(BCpny)

associated to the S'-bundle BCpn — BS! ~ CP*. See [K], [LMS] or [Mul]. These

induce a map
E(B(CPYr)) — holtim X (BCpny)

which is a homotopy equivalence after p-adic completion. Hence we can identify the
map pro above with the S!-transfer map trf%l, briefly denoted trfg:, after p-adic
completion. Combined with the p-adic equivalence T'C/(x) — T'C(*,p) we obtain:

Corollary 1.18. [BHM, 5.15] There is a homotopy equivalence
TC(*) ~ hofib(trfg1 : B®°(S(CP)) — £°5°)
after p-adic completion, for each prime p.

1.19. A Thom spectrum. Let CP° denote the truncated complex projective
space with one cell in each even dimension greater than or equal to 2k, interpreted
as a spectrum when k < 0. There is a homotopy equivalence

CP° = Th(ky')

where the right hand side is the Thom spectrum of &k times the canonical complex
line bundle over CP*°, see [At]. We shall be concerned with the case k = —1, i.e.,
with the spectrum CP°}, which can be thought of as the Thom spectrum of minus
the canonical line bundle on CP*°.

Theorem 1.20 (Knapp). There is a homotopy equivalence
SCP% ~ hofib(trfgi : T°°(S(CP5)) — £°85°).
See [K, 2.14] for a proof. Bringing these results together we have shown:
Corollary 1.21. There is a homotopy equivalence
(SCPX)h =~ TC(x)h
of p-adically completed spectra. [
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2. TWO-PRIMARY HOMOTOPY OF CP%

In this chapter we study the 2-primary homotopy type of the Thom spectrum
CP*5 of minus the canonical complex line bundle over CP*°. We first use a rein-
dexed Atiyah—Hirzebruch spectral sequence for stable homotopy to compute the
2-completed homotopy groups m.(CP23)5 in dimensions % < 20, and next com-
pare with the Adams spectral sequence with the same abutment to determine the
differentials in the latter spectral sequence in the same range of dimensions.

The reindexed Atiyah—Hirzebruch spectral sequence in question is derived from
the stable homotopy exact couple associated to the filtration of CP2] by the sub-
spectra CP?, for s > —1. Its E'-term is

(2.1) By, = mes(CP2, /CPITY) 2l

for s > —1, and zero elsewhere. Here 7 = 7 (2°°S°) is the kth stable stem.

To determine the differentials in the reindexed Atiyah—Hirzebruch spectral se-
quence, we compare with the computation by Mosher [Mo] of the differentials in the
~ corresponding spectral sequence for the stable homotopy of CP*. The E'-term
of the latter spectral sequence is obtained from (2.1) by restricting to filtrations
s > 1, i.e., by omitting the columns s = —1 and s = 0, and the collapse map
j: CP> — CP* induces a map of spectral sequences. From here on we often use
the same notation for a based space and its suspension spectrum, such as writing
SO for %089,

The differentials in (2.1) landing in filtration s = 0 are always zero, due to the
splitting CPg° = CP® ~ CP>V S0, The differentials in (2.1) landlng in filtration
s = —1 arise from the connecting map in the cofiber sequence S=2 — CP%
CP%°. This is the wedge sum of the (desuspended) S'-transfer map CP> — S 1
and the (desuspended) multiplication by 7 map S° — S~!. The image of the 51
transfer map was computed in dimensions * < 20 by Muka1 in [Mul], [Mu2] and
[Mu3], and we use these results to determine the differentials in (2.1) landing in
filtration s = —1 in the same range of dimensions.

For ease of reference we use similar notation for classes in our spectral sequence
(2.1) as in [Mo]. Thus we write 8s € E; ,, for the class corresponding to § € T,
and write Z/n(8) for a cyclic group of order n with generator . In Tables 2.5
and 2.12 we briefly write n(3) for Z/n(8) and () for Z(3), to save some space.
Hereafter we concentrate on the 2-primary components, and all spectra and groups
are implicitly 2-completed. Differentials are mostly given only up to multiplication
by a 2-adic unit.

In dimensions * < 22, we will use the following presentation for the stable stems
7%, following the tables in [To, XIV] and [Ra, A3.3].

m = Z(), 7y = Z/2(n), m5 = Z/2(*), 75 = Z/8(v), 7§ = 0, 1§ =0,
n§ = 2/307), 1 = 2/16(0), 8 = 2/2(0) & 7/2(6), 7§ = L/2(°) & Z/2(ne) &
Z/z(/")a 7TISO = Z/2(77M)a 7Tlsl = Z/S(C)a Wf2 = Oa 7T153 = Oa 7"-154 = Z/2( ) ©® Z/Z(K’)a
s = 2/32p) & Z/2(nr), w5 = L/2(n") © L/2(np), w7 = L/2(m") © L/2(vK) ©
Z)2000) OL/2(R), 5y = /8" O/, 7y = Z/2(2)OL/8(0), m5o = Z/8(F),
75 = 7./2(vv*) ® Z/2(nR) and 75, = Z/2(v5) ® Z/2(n?R).

For a fixed r, the d’-differentials in the spectral sequence for 72 (CP) are
periodic in the filtration degree s, see [Mo, 4.4], and this periodicity propagates
to the spectral sequence (2.1). Hence Mosher’s description of the d!-, d*- and d*-
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differentials for CP*° in [Mo, 5.1, 5.2, and 5.4] extends to give the formulas 2.2, 2.3
and 2.4 for the corresponding differentials in (2.1). Let 8 € m2.

Proposition 2.2. d*(8;) =0 for s odd and d*(Bs) = nBs—1 for s even.

Proposition 2.3. d?(8,) = vB._2 for s = 0,1,4,5mod 8, d*(8,) = 2vfs_2 for
s=3,6mod 8 and d*(8;) =0 for s =2,7 mod 8.

Proposition 2.4. d*(3,) = 0 for s odd. If s is even then d*(03,) = 7ys—s3, where
for s =4mod 8 and v € (v,n, ) + (n,2v, B) for s =6 mod 8.

The d'-differentials in (2.1) are given by the following multiplicative relations in
72, see [Ra] and [To].

nov=nn-n=ninn=4w,nv=0n1=0,n0=0+¢n v=0>
e=mne,nvP=0,nne=0,np=nunnu=4¢n-¢=0,1-0> =0,k =1k,
p=mnp,n-mk=0,n-1" =", n-np=np,n-nN* =4, n-vE=0,1-17p
B=np,n-vt=0,n-np=4(,n-06=0,n-¢(=0,n-K=nk,n-vv =0
‘MK = 772/%.
For example, & = (v,no,c),s0 n-a = —(n,v,no)o = 0 with zero indeterminacy.
The d?-differentials in (2.1) are given by the following multiplicative relations in
72, see [Ra] and [To.

va=vv-v=1vv-1t=1vo=0v-0=0,v-v>=0,v-nc =0,
vopu=0,v-¢=0,v-02=0,v-k=vk,v-p=0,v-nk=0,v-7* =0, v-vk = 4R,
vnlp=0,v-ag=0,v-v*=w*v-ni=0,v-0d =15 and v- ¢ = 0.

The d3-differentials are given by the following secondary compositions, from
[MT], [Mo, 10.1] and [To].

(v,n,v) =, (n,v,2v) = (n,2v,v) = {¢, 7}, (1,1, () € {0, np}, (n,v,¢) = {0,mp},
(v,n,0%) =3, (v,n,2p) = {0,4R} and (v,n,nk) = +2F by [MT].

The resulting E*term is shown in Table 2.5, accounting for all differentials
landing in total degree s+t < 20.

In lemmas 2.6 to 2.11, we only consider differentials landing in total degree
s+t <20.

I I3 3

Lemma 2.6. The nonzero d*-differentials in (2.1) are d*(2u3) = 20_1, d*(45) =
801, d*(4i6) = 803, d*(v7) = 203, d*(8t8) = 804, d*(419) = 405, d*(2t10) = 206 and

Proof. The d*-differentials landing in filtration s > 1 and total degree s +¢ < 19
are determined by those in the spectral sequence for 72 (CP*°), and are given in
[Mo, 5.6 and 6.4].

In total degree 20, d*(¢s) = 0 by the computation of 75,(CP®) following [Mu3,
4.2], and d*(o7) = 0 by the proof of [Mu3, 4.3] (the formula vso = 2i6’0).

The differentials landing in filtration s = 0 are always zero, as noted above.
The differentials landing in filtration s = —1 are determined by the computation
of the S'-transfer in [Mul] and [Mu2]. Thus d*(2t3) = 20_1 by [Mul, 13.1(iii)],
d*(o3) = o2, by the proof of [Mu2, 5.3] (the formula g,6’ = ¢?), d*(v3) = 0 by
the proof of [Mu2, 5.3] (the formula ggiv = nx), d*(u3) = 0 by the proof of [Mu2,
5.4] (the formula g4fi = 0), and d*(¢3) = 0 by the proof of [Mu2, 5.5] (the formula
gam$7(CP%) =0). O
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0
0 4(2Ro)
2(R-1) | 2(d0) |2(27)
@
8(¢o)

4(C-1) | 8(w5) |2(a) | O  |32(ps)

4(vry) | 2(veo) | 2(n7) |16(2p2)| 2(03) | O

SY S
2(n*po) 2(ks)
2(p-1) | 0 |32(p1)] O 0 0 | 4(¢)
2(n*4) [16(2p0)| 2(07) | O 0 |8(Ca)| 0 |2(nes)
S
2(nko)
32(p-1)| 2(c3) | O 0 |4(¢)| 0 [2(ps)| 0 [16(07)
2(62)] 0 0 |8(¢) | 0 [2¥3)] 0 [8(20) O 0
©® SY
2(k-1) 2(nea)
0 0 |4(C)| 0 |2(ms)| 0 [16(os)] 0 0 | 0

0 8(Co) | 0 | 2(ne2) | 2(7s) |8(204)| 2(¥3) | O

(el Nl Nell Nan}
[N}
—~
NN
S
N—r
o
(e

4¢-1) | 0 |2(m)| O 16(os)| O 0 0 0 | 0 [(2u0)

0 2(v3) 0 |8(202)| O 0 0 | 2(vs) 0 |(4eg)
®
2(neo)

2(u—1)| 0 |16(c1)| O 0 0 |2(2u5)| O 0 | (8s)

0 |8(200)|2(¥3)| O 0 0 0 0 | (¢7)

16(c_1)| 2(13) | O 0 0 0 0 | (4e)

0 0 0 0 0 0 | (4s)

0 0 0 0 0 | (8a)

0 8(rp) | O 0 | (2)

0 0 0 | (2u)

0 0 | (4u1)

0 (2t0)

(¢-1)

TABLE 2.5. E* in total degrees s +t < 20.

Lemma 2.7. The nonzero d°-differentials in (2.1) are d°(8tg) = p1, d°(16us) = s
and d®(16110) = ps.

Proof. The d°-differentials landing in filtration s > 1 and total degree s +¢ < 19
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are determined by those in the spectral sequence for 72 (CP>), and are given in
[Mo, 6.5].

In total degree 20, d®(neg) = 0 by the calculation of 75, (CP®) following [Mus3,
4.2].

The differentials landing in filtration s = —1 are d°®(84) = 0 by [Mul, 13.1(iv)],
d®(204) = 0 by the proof of [Mu2, 5.4] (the formula 9520 = 0mod po), d®@3) =0
and d®(nes) = 0 by the proof of [Mu2, 5.5] (the formulas gs* = 0 mod {4v*, nii}
and gsA = 0, where \ was chosen as a coextension of n%c before [Mu2, 4.7]), and
d5(C) = 0 by [Mu3, 5.1]. O
Lemma 2.8. The nonzero d°-differentials in (2.1) are d%(8t5) = (_1, d®(8u7) =
2(1, d6(3268) = 2(2, d6(16bg) = Cg, d6(32L10) = 4(4, d6(21/5) = K_-1, d6(0'5) = I/il
and dS(o7) = 2v}.

Proof. The differentials landing in filtration s > 1 and total degree s +¢ < 19

come from [Mo, 6.6], and d®(o7) = 2v5 by [Mu3, 4.3] and its proof (namely, yso =
25’0 = 2iv*).

Also d(8t5) = ¢_1 by [Mul, 13.1(v)], d®(2vs) = k_1 by the proof of [Mu2, 5.3]
(the formula 9s(i20) = x mod o2), d®(v2) = 0 by the proof of [Mu2, 5.4] (the
formula goiv? = w*n mod ivk), and d®(o5) = £v*; by the proof of [Mu2, 5.5] (the
formula gs5”" = zv* mod np where z is odd). O

Lemma 2.9. The only nonzero d” -differential in (2.1) is d" (ve) = 1% .

Proof. We have d”(vg) = n*; by [Mu2, 5.4] and its proof (the formula g-0" = w*).
All other d"-differentials are zero by [Mo, 6.7] or bidegree reasons. [

Lemma 2.10. The nonzero d®-differentials in (2.1) are d®(16u7) = 2p_1,
d®(6419) = 16p;1 and d®(64t10) = 16p2.

Proof. These follow from [Mul, 4.3] since 2p generates the complex image of J in
dimension 15, and from [Mo, 6.8]. O

Lemma 2.11. The remaining nonzero differentials in (2.1) are d®(2"110) = i1 and
d(27u9) = (1.
Proof. These follow from [Mo, 6.9] and [Mul, 4.3], since { generates the complex

image of J in dimension 19.

This leaves us with the £°°-term shown in Table 2.12, in total degrees s+t < 20.
Recall the convention that n(3) denotes a cyclic group of order n, generated by 3.

Theorem 2.13. The 2-primary homotopy groups of CP%q in dimensions x < 20
are as follows:

m_2(CP2]) = Z(v-1),
w_l((CPf’i - O,
Wo(CPﬁ = Z(2Lo),




TWO-PRIMARY ALGEBRAIC K-THEORY OF POINTED SPACES

19

0
0 | 4(2Ro)
2(k-1)| 2(00) 0
S
8(¢o)
0 8(1g) 0 0
0 |2(vro) | 2(n7) |8(202) | 2(03)
D S2)
2(1%po) 2(k3)
2(a—1)] 0 |16(p1)] O | O | ©
0 |16(2p0)|2(0%)| O 0 [4(C)| O
S
2(nko)
20p-1)] 2(63) | 0 0 0 0 0 0
0 0 0 [2(&)] 0 [2ud)] 0 0 0
@
2(nes)
0 0 |2(¢)| © 0 0 0 0 0
0 | 8(C) | 0 |[2(ne)|2(ms) |4(204)|2(W3)| O 0 [2(4vg)| O
0 0 0 0 0 0 0 0 0 0 0 |(2%10)
0 [2w3) | 0 [4209)| O 0 0 0 0 0 [(2%)
S
2(neo)
20u—1)| 0 |[8(c1)| O 0 0 0 0 0 |(27s)
0 |8(200)|2(¢3)| © 0 0 0 0 [(28:7)
2(0_1)| 2(v3) 0 0 0 0 0 [(16e)
0 0 0 0 0 0 |(32ts)
0 0 0 0 0 | (8ta)
0 8(vp) | O 0 |(16c3)
0 0 0 | (2t2)
0 0 | (4n)
0 (2[,0)
(1)
TABLE 2.12. E* in total degrees s +t < 20.
m5(CP2) = Z/2(0-1),

WG(CPS?

) =7Z/2(v3) ® Z(1613),
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m7(CP2Y) = Z/2(p-1) x Z/8(200)
> 7,/16(200),

ms(CP%) = Z/2(v}) ® Z(8ua),

mo(CP%3) = Z/2(v5) ® Z/2(neo) ® Z/8(01),
m10(CP) = Z(32t5),

m11(CP2Y) = Z/8(Co) ® Z/4(202),

m12(CP2) = Z(1616),

m13(CP2Y) = Z/2(p-1) X Z/2(C1) * Z/2(ne2)

= 7/2(p—1) X Z[4(nez2),
714(CPX) = 7Z/2(02) @ Z./2(73) ® Z(2%¢7),
m5(CP23) = Z/2(f—1) X Z/16(2po) ® Z/2(nko) % Z/2((2) » Z[4(204)
>~ 7./32(2p0) ® Z/2(nko) X Z/2(C2) X Z/4(204),
m16(CP%) = Z/2(0?) @ Z./2(v3) @ 7(271s),
m17(CP) = Z/2(vko) @ Z/2(n"po) @ Z/16(p1) % Z/2(v§) ® L/2(nes)
Z/2(vko) ® Z/2(n*po) @ Z,/32(nes) & Z/2(v3),
Z)2(F—1) % Z/8(v5) % Z/2(n}) ® Z(2%19),
(G
(6
(

I

7F18(C )
m19(CP%) = Z/2(50) ® Z/8(Co) ® Z/8(2p2) » Z/A(Ca) X Z/2(4vs)
= 7./2(60) & Z/8(Co) @ Z/64(4vs),

7T20((CP ) Z/4 2K ) X Z/Q(O’g) @Z/Q(K,g,) GBZ(28L10).

Proof. Up to extensions, this can be read off from the E°°-term above.

In dimensions * = 9,11, 14,17, 19 the subgroup in filtration s = 0 is split off by
the composite map CP? — CP{° — S0 followed by a retraction of 72 onto the
kernel of n: 72 — w5 .

The extension in dimension 7 will follow from the proof of 2.21 below, in view
of ho-multiplications in the Adams spectral sequence for 7, (CP23).

The right hand extension in dimension 13 can be read off from

mi3(CP?) 2 Z/8(nez) ® Z/2(v3),

see [Mu2, p.197].

The left hand extension in dimension 15 can be read off from m{y(CP?)
7% (CPY,), see [Mu3, p.133].

The splitting in dimension 16 can be deduced from the injection m16(CP2y) —
m16(CP>®) = (Z/2)® & Z, see [Mu2, 1(ii)).

The right hand extension in dlmenswn 17 can be read off from 71'17((CP4) see
[Mu2, 4.7 and 4.8]. Note that n?c = v® + ne, so twice the coextension X of n’o is
twice a coextension of ne.

The middle and right hand extensions in dimension 19 follow from [Mu3, 3.2]. O

[

We proceed to compare these results with the Adams spectral sequence for
12 (CP%)%. Let A= A(2) be the mod 2 Steenrod algebra, generated by the Steen-
rod squaring operations Sq¢. For each sequence of natural numbers I = (i1, ...,%,)
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let Sgf = S¢** o--- 0S¢ be the composite operation. The sequence I, or the
operation S¢!, is said to be admissible if is > 2is11 for all 0 < s < n. The set of
admissible S¢! form a vector space basis for A.

Definition 2.14. Let C be the left ideal in A with vector space basis the set of
admissible Sq! such that I = (iy,...,%,) has length n > 2, or I = (¢) with 4 odd.
Then A/C is a cyclic left A-module, with vector space basis the set of Sq* with
1> 0 even.

Let us briefly write H*(X) for the mod 2 spectrum cohomology H3,..(X;F2) of
a spectrum X. It is naturally a graded left A-module.

Proposition 2.15.
H*(CP%)=xn"24/C

as graded left A-modules.

Proof. 1t is clear that H"(CP%]) = Fy for n > —2 even, and 0 otherwise. In
H*(X°CPs°) 2 Fo{y’ | j > 0} with deg(y) = 2 the squaring operations are given
by S¢**~1(y7) = 0 and S¢*(y’) = (!)y**7. By James periodicity and stability of
the squaring operations the same formulas apply in

H*(CP29) = Fofy’ | j > -1},

also with j = —1. Then Sq¢*(y~?!) = 3! since (_11) = 1 mod 2. To prove the
proposition it remains to show that Sq’(y~1) = 0 when I = (i1, ..., i) is admissible
of length > 2. Let z = Sq'»(y~!). Then z has dimension (i, — 2) and lifts to the
ordinary cohomology H*(CPS°;F;) of the space CP$°, which is an unstable A-
module. Thus Sq¢»~*(z) = 0 since i,_1 > i, — 2, and so Sq¢/(y~1) =0. O

Lemma 2.16. In CP%q, the lowest k-invariant
k': X7?HZ — SHZ

is nontrivial, and has mod 2 reduction the class of Sq® mod ASq!.

Proof. The lowest homotopy group of CP°] is detected by a map CP%] — Y2HZ.
On cohomology it induces a surjection ¥ 24/ASq' — X72A/C, whose kernel
»~2C/ASq' begins with ¥ ~25¢® mod ASq! in degree 1. This is the cohomology
operation represented by the lowest k-invariant k. O

Consider the Adams spectral sequence
(2.17) ES' = Ext% (H*(CP%),Fq) = m_s(CP%)5 .

Its Fy-term can be computed in a range from a (minimal) resolution of ¥ 724/C,
either by hand or by Bruner’s Ext-calculator program [Br]. The Es-term in ho-
motopical degrees t — s < 20 is shown in Tables 2.18(a) and (b). The notation ,x
represents a class arising in the Adams FEs-term for CP?,, mapping to the class
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° ° ° o ° o
° ° ° o ° o
° ° ° o ° o
. ° ° o ° o
° ° . o ° o
° ° ° o ° o
° ° ° o ° o
° ° ° o ' e - Z) ) o -
-
° ° ° o N - o o~ -
/
° ° - _ ®,h2hy O _ ~%-1e0 © 047/53:
VT R AW S
®_1h3 ®h3 1@3 - ohohz o * o7 . © ©1h3
| — 177 /
®_iho .dﬁo/‘ .652/— ®ho Oghy
|
._11
-2 -1 0 1 2 3 4 5 6 7 8

TABLE 2.18(A). The Adams Ep-term for CP°3

named z in the Adams E2 term for CP®,/CP*7! = %258% The dlstmctlon be-

tween classes marked as ‘e’ or as ‘o’ will be explalned in §5.
The cofiber sequence of spectra

cpP°, 5P L cpe

induces a short exact sequence in mod 2 spectrum cohomology, and thus gives a
long exact sequence of Ext-groups relating the Adams Fa-term (2.17) to the Adams

FE5-terms

(2.19) 5t = Ext%"(H*(CP%,),Fq) = m—s(CP%)

o
o
o
o
o °
o o °
O_1Rhy0 - oe
;o o _o
;o 0 3h2h8 O 4hd
/
o O5h2  Oyhohs
O1hs
9 10 11
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_ 0 "ohoh8 © sco

—
—
—

10 11 12 13 14 15 16 17 18 19 20 21

TABLE 2.18(B). The Adams Ej-term for CP>

and
(2.20) "ESt = Exty (H*(CP™),Fy) = m_s(CP*)5 .

Knowledge of the stable homotopy of CP%; ~ X ~4CP? and CP* in a range allows
us to determine the differentials in the spectral sequences 'E, and " E, in a similar
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range. This is comparatively easy for CP?;, and was done for CP** by Mosher in
[Mo]. Using the long exact sequence

. P 5
—>/E§’t Tk E;’t J //Es,t ———>/E§+1’t O

and the geometric boundary theorem [Ra, 2.3.4] we can transfer some of these
differentials to (2.17). (The careful reader should come equipped with the Ext
charts for CP?; and CP* to check the details in the following proof.)

Proposition 2.21. In the Adams spectral sequence (2.17) the nonzero differentials
landing in homotopical degree < 20 are:
(i) dy®(sh1) = _1co.
2,12 3,13 4,14
; (’L’L) d2’ (5h%) = hg - 1hs, d2’ (5h8) = hé - 1hs = _1Phy and d2’ (5h61) =
hO . 1h3 = _1h0Ph2.
, (21,2) d;’13(6h02)15= ho - 2hohs + h1 - 5h%, d§’14(6h(2)) = h% - ohghs, dg’ls(ghg) =
h’O -ohohs and d2’ (5h0h2) = _1dp.
) 55’16(6’12) S ho-oh3, d3"" (ho - 6ha) = ohodo, d3**(h§ - 6ha) = ho - ohodo and
d3’ (ho . th) = hO - ohodp = _1Pcg.
(v dy™8(shs) = ho - 183, d3"*(ho - shs) = B3 - 1h3 = _1fo and d3™ (A - shs) =
1h0d0'
(vi) d>?(z) = K2 - 4haco with ho - # 0, dy®(ho - ) = h3 - ahico, dg**(oh§) =
h,(7)'5h3, d;’zs(ho-ghg) = h(8)'5h3 = _1P2h2 and dg’QG(hgghg) = h8'5h3 = _1h0P2h2.
(vii) d®* £ 0, d3%° £ 0, 5% £ 0, dy™™ # 0, dy**(3ha) # 0 and dy*" # 0 all
have rank 1.

Proof. We compare the Adams Es-term in Table 2.18 with its abutment 2.13. Each
ho-torsion class in the Eo-term of (2.17) comes from an ho-torsion class in the Fa-
term, and so is represented by a 2-torsion class in m,(CP23). (The proof of this
assertion goes by induction over the subspectra CP?; of CP%.)

In each degree t—s < 5 the order of the 2-torsion in 7, (CP29) equals the order of
the ho-torsion in Table 2.18, hence there are no nonzero differentials in this range.

(i): In degree t — s = 6 the 2-torsion in the abutment is Z/2, while the Ep-term
has two ho-torsion generators, so one of these must be hit by a differential. For
bidegree reasons the only possibility is dé’8(3h1) = _1cp, and then there is no room
for further differentials landing in degrees t — s < 8.

In degree 7 of the Fo.-term there is then a nonzero multiplication by h3, showing
that the extension in m7(CP9) is cyclic.

(ii) and (iii): We turn to degrees 9 <t — s < 13. The Adams spectral sequence
for CP>°, denoted " E, in (2.20), has differentials “dz(5h3) = 1h3hs and "da(sho) =
ho - shohs + hi - sh2. This uses w5 (CP™) = Z/8 and 77, (CP>) = Z/4, see [Mo,
7.2].

The map of spectral sequences j.: Fo — " E5 is an isomorphism in bidegrees
(2,12) and (1, 13), so these differentials lift to .

Regarding the first /do-differential, both basis elements in Eg 13 o Fo{h3-1hs, h1-
4h3} map to 1h3hs in " Ey'®. Hence da(5h2) equals one or the other of these basis
elements. It cannot be hy - 4h3, because then da(sh3) = 0 by ho-multiplication,
and more classes would survive to the Fo.-term in degree 9 than the abutment
7o(CP%) =2 7/2 B 7/2 & 7/8 allows. Thus dy**(5h3) = h3 - 1hs. Multiplication by
ho implies dy*®(5h3) = hé - 1hs and dy'*(shg) = h3 - 1hs in (2.17).
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In bidegrees (2,12), (2,13) and (3 14) the map j,. is an isomorphism, so the
second ”dy-differential lifts to cl1 (6ho) = ho - 2hohs + h1 - sh2. Multiplication
by ho, h2 and hy implies d>**(sh2) = h3 - shohs, dy'°(chd) = hi - 2hohs and
d2 15( hohg) = _1dp, respectively. There is no room for further differentials landing
in degree t — s < 13.

(iv): We turn to degrees 14 < t —s < 15. For bidegree reasons the class
oh? € Eg 16 survives to E+, and the classes hg - 0h? and 3co in ES 17 can only
be affected by a dp-differential from ghy € Ey''°. The 2-torsion in m14(CP%}) is
(Z./2)?, so the class hg-oh% cannot survive to Eo, i.e., there is a nonzero differential
dg(ahz) = ho : ohg in E*.

The Adams spectral sequence for CPY;, denoted 'E. in (2.19), has a differential
/d3(0h0h4) = ohodo. (ThlS lifts the usual differential d3(h0h4) = hodo in the Adams
spectral sequence for 5. Multiplying this by h3 gives the differential 'd3(ohihs) =
_1Pcy, arising from the hidden multiplicative relation n - {h3ha} = {Pco} in the
stable 16-stem.)

The map of spectral sequences i,: 'Ey — Eso is injective in bidegree (2,17),
‘taking ghohs to hg - ghe. For in'Ey we know that hg - ghoha = ho - ohohy. Thus the
image of ghohy4 in F3 is such that hy times it is divisible by ho, and by inspection this
property characterizes hg - gha € Eg A7 Thus we have another nonzero differential
ds(ho - 6h2) = ohodo in E,. Multiplication by ho and h? leads to the differentials
dg (h% . 6h2) = ho . ohodo and d3 (hg . 6h2) = h% . OhOdO == _1PCO, respectively. There
is no room for further differentials landing in degrees 14 <t — s < 15.

(v): Next we consider differentials landing in degree t — s = 16. For bide-
gree reasons the two classes hy - ghg and 1h3 in Eg 18 survive to FE,, and since
716(CP%3) =2 Z & (Z/2)?, the remaining ho-torsion classes are hit by differentials.
Thus d’ 18( h3) = ho - 1h2 and d3'%(ho - shs) = h - 1h3 = _1 fo.

To determine the last differential landing in degree 16, we compare once again
with the Adams spectral sequence ”FE, for m,(CP>). Comparing the " Ep-term
and the " Eo.-term given in Table 7.2 of [Mo] we deduce that there are differentials
//d2(1h4) 1h0 2 //dg(ho 1h4) = 1h0d0 and ”dg(h% . 1h4) = 1h(2)d0. In particular,
the cited table asserts that ”da(4h1co) = 0 does not interfere with the second ”ds-
differential. Also ”dz(hz . 71) = h,g . /ld2(71) = O, and ”dg(hg . 71) = 0 follows from
m5(CP>®) = 7. & (Z/2)°.

The map j.: Fy — "Ej is an isomorphism in degree t — s = 17 and Adams
filtration s < 4, while in degree t — s = 16 the kernel consists of the class h -
1h? = _1fo only. Comparing d2 d1 18 it follows that shg € E% )18 maps to
1hamod hg - 71 € ”E1 18 Thus dg(h sh3) maps under j. to 1h3do, and we have
proven that dy?°(h3 - sha) = 1h3do in E..

(vi): In degree t — s = 17, the abutment has order 2% and the Ep-term has 16
classes. Hence there are five differentials landing in degree 17, in addition to the
three differentials we have just found leaving that degree. The 2-torsion in the
abutment in degree 18 has order 2°, and the Ep-term has seven ho-torsion classes.
Hence at most two differentials leave the ho-torsion in degree 18, and at least three
differentials leave the hg-periodic part of the Fo-term. For bidegree reasons this

extreme case is precisely what occurs, so ds>*(oh8) # 0, dy*®(ohf) = _1P%hy and
d3?®(oh8) = _1hoP2%hy, and there are no nonzero differentials landing in degree
t—s=18.

To precisely pin down the differential dg’24 we use the same argument as for
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dg’lz. The map j.: By — "E, is an isomorphism in bidegree (6,24) and surjective
in bidegree (8,25), so the relation hy - gh] = h - 1hy in " ES*® and the differential
"dy(oh8) = KT - 1hy implies that dy(ohl) is either hy - ghd or hf - shs in Ey*°.
Multiplying with hy and comparing with d;’% eliminates the first possibility, so in
fact d5®*(ohS) = hi - 5ha.

Considering ho- and hy-multiplications in the Fs-term, either do = 0 on all ho-
torsion classes in degree t—s = 18, or dy’2*(z) = h2 - 4hico on the classes z € Fy**
not divisible by hg, and dg’23(ho cx) = h3 - 4hico. In the former case, the ds-
differential dg’” would propagate by hg- and ho-multiplications to three nonzero
ds-differentials from the ho-torsion in degree ¢t — s = 18, which is incompatible
with the abutment. Thus the two do-differentials given above are correct, and this
accounts for all the differentials from degree t — s = 18.

(vii): The proofs in degrees 19 < ¢t — s < 21 are left as exercises for the reader
who needs these results. U

3. THE FIBER OF THE CYCLOTOMIC TRACE MAP

When localized at p = 2, the homotopy type of the spectrum K (Z) is known.
This involves the Bloch—Lichtenbaum spectral sequence relating motivic cohomo-
logy to algebraic K-theory, Voevodsky’s proof of the Milnor conjecture, which re-
lates motivic cohomology to étale cohomology, and knowledge of the étale cohomo-
logy of the rational 2-integers Z[1].

Similarly, the p-adic homotopy type of the spectrum T'C(Z, p) is known for each
prime p. They were determined by Bokstedt and Madsen in [BM1] and [BM2] for
p odd, and by the author in [R2], [R3], [R4] and [R5] for p = 2. When p = 2
the homomorphisms induced by trez: K(Z) — TC(Z,2) on homotopy groups are
known after 2-adic completion. In this chapter we use this to describe the homotopy
fiber of the cyclotomic trace map as a spectrum.

Let all spectra be implicitly completed at 2, throughout this chapter.

3.1. Some two-adic K-theory spectra. We say that a (—1)-connected spec-
trum is comnective, and a 0-connected spectrum is connected. Let KO and KU
denote the real and complex topological K-theory spectra, let ko and ku denote
their connective covers, and let bo and bu denote their connected covers, respec-
tively. Write bso and bspin for the 1- and 3-connected covers of KO, and bsu for
the 3-connected cover of KU, as usual.

Complex Bott periodicity provides a homotopy equivalence 5: Z2KU — KU.
There is a complezification map c: KO — KU and a realification map r: KU —
KO. Smashing with the Hopf map n: X85! — %80 yields a map also denoted
n: KO — KO. We use the same notation for the various k-connected covers of
these maps. There is a cofiber sequence of spectra

2 ° —1
(3.2) Sko 2 ko % ku =22 $%ko.

This follows from R. Wood’s theorem KO A CP% ~ KU. See also [MQR, V.5.15].
Here we write 27 o 87! for a map 9: ku — X2?ko that satisfies 8 o 8 = X?r. This
determines the map up to homotopy, even though 8: ¥2ku — ku is not exactly
invertible.
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Theorem 3.3 (Quillen). There is a cofiber sequence of spectra

i3 | 03
K(F3) = ku —— bu — XK (F3). O

This is the spectrum level statement of Quillen’s computation in [Q1].

The computation in [RW] by Weibel and the author of the 2-primary algebraic K-
groups of rings of 2-integers in number fields relies on Suslin’s motivic cohomology
for fields [S2], Voevodsky’s proof of the Milnor conjecture [Voe] and the Bloch—
Lichtenbaum spectral sequence [BILi]. In the case of the 2-integers Z[] in Q the
result implies that there is a 2-adic homotopy equivalence K (Z[1]) ~ JK(Z[3]),
where the latter spectrum was defined by Bokstedt in [B1]. This leads to the
following statement:

Theorem 3.4 (Rognes—Weibel). There is a cofiber sequence of spectra
1., =
Sko — K(Z[3]) ™ K(Fa) 9 22k
where 73 is induced by the ring surjection Ts: Z[%] — F3. The connecting map O
1s homotopic to the composite

i3 22T0ﬁ_1 2
K(F3) — ku — X*ko.

Proof. Bokstedt’s JK(Z[3]) can be defined as the homotopy fiber of the composite

3_
ko 5 ku 2L b
By [B1, Thm. 2] there is a map ®: K(Z[}]) — JK(Z[3]) inducing a split surjection
on homotopy. By [RW], [We] these spectra have isomorphic homotopy groups,
hence ® is a homotopy equivalence. There is a square of horizontal and vertical
cofiber sequences:

JK(Z[3)) ko bu
is P3—1 ‘

K(F3) ku bu
o 2roB~t l
>2ko Y2ko —> *

The left hand vertical yields the asserted cofiber sequence. Bokstedt’s cited con-
struction of the map & identifies the composite K (Z[1]) — JK(Z[}]) — K(F3)
with that induced by the ring homomorphism 73. [

3.5. The reduction map. Let us recall the Galois reduction map from [DwMi,
§13] and [R5, §3]. Let ¢® € Gal(Q2/Q2) be a Galois automorphism of the algebraic
closure Qy of the field Q, of 2-adic numbers, such that ¢({) = ¢2 when ( is a
2-power root of unity, i.e., in pge C QF. We may further assume that ¢3(+\/— ) =

++/3. Then ¢* induces a self-map of K (Q,) which is compatible up to homotopy
with 1% ku — ku under Suslin’s (implicitly 2-adic) homotopy equivalence K (Qg) ~
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ku from [S1]. Hence the inclusion K(Qz) — K (@2)"" to the homotopy equahzer

of ¢® and the identity on K(Q3) yields a spectrum map K(Qz) — — (ku)™’. The
connective cover of the target is identified with K (F3) by Quillen’s theorem, which
defines the Galois reduction map

red: K(Qsz) — K(F3).

Theorem 3.6 (Rognes). There are cofiber sequences of spectra

E™4(Qy) — K(Qg) 2% K (F3) 2 SK™4(Qy)

and
SK(F3) 25 K4(Q,) — Sku 2 2K (Fs) .

The former connecting map O is determined by its composite with XK red(Qy) —
Y2ku, which up to a two-adic unit is homotopic to the composite

) -1 -1
K (F3) 2 ku 222 bu 2 2ku.

~

The latter connecting map 01 is homotopic to the composite

-1
Sku 257, sy 2%, 92K () |

Both connecting maps induce the zero map on homotopy, and the extensions

K74 (Q2) — Ku(Q2) == K. (Fs)
and
T (SK(F3)) 225 Kr4(Qy) — ., (Sku)
are both split. [J

This is the conclusion of [R5, 8.1]. Consider the ring homomorphisms j: Z — Zy
and j': Z[1] — Q..

Theorem 3.7 (Quillen). There is a map of horizontal cofiber sequences of spectra

K (F3) — K (Z) — K(Z[3])

Ly

K(Fy) — K(Zz) — K(Q2)

inducing a homotopy equivalence hofib(j) — hofib(j"). O

This is the spectrum level statement of the localization sequences in K-theory
from [Q2].
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Theorem 3.8 (Hesselholt—Madsen). In the commutative square of spectra

K(Z) — > K(Z,)
ltrcz trez,

TC(Z) —2> TC(Zy)

the right hand map induces a homotopy equivalence on connective covers. The lower
map is a homotopy equivalence, and there is a cofiber sequence of spectra

hofib(j) — hofib(trcz) — X 2HZ. O

This is Theorem D of [HM], which uses McCarthy’s theorem [Mc].

Theorem 3.9 (Rognes). The natural map j': K(Z[3]) — K(Q2) induces an
isomorphism of 2-adic homotopy groups modulo torsion, in each positive dimension
x*=1mod4. [J

This is the content of [R5, 7.7]. By a homotopy group modulo torsion we mean
the quotient of the homotopy group by its torsion subgroup. Hence the assertion
is stronger than just saying that j’ induces a homomorphism whose kernel and
cokernel are torsion groups.

Proposition 3.10. There is a map of horizontal cofiber sequences of spectra

Sko — K(Z[3]) —— K (Fs)

-

Kred(Qy) — K(Q) —2> K (F3)

such that the right hand map 7 is a homotopy equivalence. Hence there is a homo-
topy equivalence hofib(51) = hofib(j").

Proof. Suppose we have shown that the composite

’
red

Tko — K(Z[3]) L K(Q2) * K(Fy)

is null homotopic. Then a choice of null homotopy defines an extension 7: K (F3) —
K (F3) of redoj’ over m3, as well as a lifting j**4: ko — K™ (Qz). By the cal-
culations of [R5, §4 and §7] the composite red oj’ is surjective on homotopy in
dimensions 0 < % < 7, hence in all dimensions by v{-periodicity. Thus 7 induces
surjections on homotopy in all dimensions, and must be a homotopy equivalence.
This then completes the proof of the proposition.

To show that the composite map Yko — K(F3) is null homotopic, it suffices
to show that precomposition with the connecting map 9: K(F3) — $2ko in 3.4
induces an injection between the groups of homotopy classes of maps to LK (F3):

[%2ko, B (Fs)] 25 [K (Fs), K (Fs)]
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Here 0 is the composite of i3: K(F3) — ku with the map denoted Y2rofB7t: ku —
$2ko. Thus it suffices to show that both homomorphisms i} and (2270 8~1)# are
injective.

There is an exact sequence

b, SK(F3)] 20 [, SE (F3)] 2 (K (Fs), SK (Fs)]

Any map bu — XK (F3) has the form 93 o ¢, for some operation ¢: bu — bu. Thus
its precomposition with (3 —1) is null homotopic, because ¢ and (1*—1) commute
and 03 o (1) — 1) ~ . Hence the left hand map is null and sz is injective.

There is also an exact sequence

# 2,08-1)#
[Sko, K (F3)] 25 [S2ko, K (F3)] 227, [ku, SK (Fs)] .
From 3.3 we see that [Zko, K (F3)] is zero, because postcomposition with (33 — 1)
acts injectively on the homotopy classes of maps ko — ku, see [MST]. Thus also
(327 o B~1)# is injective, which completes the proof. [

Proposition 3.11. There is a cofiber sequence of spectra
K (F3) — hofib(5") — %%ko 5 SK (F3) .

The connecting map O is homotopic to the composite

ko 25 22w L5 bu 25 SK(F) .

Proof. The map Yko — K(Z[4]) induces an isomorphism on 2-adic homotopy mod-
ulo torsion in dimensions * = 1 mod 8, and multiplication by 2 times a 2-adic unit
in dimensions * = 5 mod 8. By 3.9 the same holds for the composite map from
Sko to K(Qy), and by 3.6 the same holds for the lift j7¢: Sko — K™4(Qsy), as
well as the composite map Yko — Yku. Any such map factors as a self-map ¢ of
Yko followed by the suspended complexification map Yc: Y¥ko — Xku. Since the
suspended complexification map induces the identity in dimensions * = 1 mod 8§,
and multiplication by 2 in dimensions * = 5 mod 8, it follows that ¢ is a 2-adic
homotopy equivalence. We obtain the following diagram of horizontal and vertical
cofiber sequences:

K(Fy) x SK (Fs)
fc
hofib(j7e4) Sho — = K red(Qq)
~|¢
20— Tho — 22> Sku

The connecting map 9: X%ko — XK (F3) is detected by its precomposition with
Y27 0 371 ku — X2ko, because [Lko, XK (Fs3)] = 0. By the diagram above, the
composite 9o X270 371 is the desuspended connecting map ¥718; = 30 (1 —91)
from 3.6. Thus 9 = 05 o B o0 X2¢ in the stable category, by the calculation
Oz0B0%%co¥?roft=0830(1 — Y

which uses cor =1+~ and ¥* o 8 = Bo X2(ky*). O
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Proposition 3.12. There is a cofiber sequence of spectra
>3ko — hofib(j7°%) — ku 2, S4ko.

The connecting map O is homotopic to the composite

3_ -1 2(92,.03-1
b 2Ly 2 w2gy, ZETP) ey

~

with the same notation as in 3.2. It is characterized by the following homotopy
commutative diagram

ku 2 Y4ko
l $P-1 B =i l
KU KU <— Y*KU — %*KO.

The maps labeled cov are k-connective covering maps, for suitable k.

Proof. We use the factorization of the connecting map in 3.11 to form the following
diagram of horizontal and vertical cofiber sequences:

3ko — hofib(j*¢d) —— ku

‘ Fro(p -1
¥3ko E—2> ¥2ko e s Y2 ku
G 8308
* ——> LK (F3) =—— XK (Fs3)

The right hand column is a variant of the sequence in 3.3. It follows that the
connecting map ku — X*ko for the top row is the composite of

3 -1
ku vl bu A Y2 ku

~

and the connecting map for the middle row, i.e., the double suspension of the
connecting map 0: ku — %2ko of 3.2.

The covering maps induce an injection covy: [ku, $*ko] — [ku, B*KO] and a
bijection cov”: [KU, L*KO] & [ku, 2*K O], and the connecting map 9 corresponds
to X4 o 3720 (¢ — 1) in [KU,X*KO]. Hence 9 is characterized by the given
diagram. [

The following theorem is the main result of this chapter.

Theorem 3.13. There is a cofiber sequence of spectra

¥»3ko — hofib(trc) — S 2ku 2 $tko.
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The connecting map § is characterized by the following homotopy commutative dia-

gram
§

22k Mo
lCO’U lCO'U
3_q 2 4
N2KU 4 KU 2> KU ~2— stk y 25 $4K0

The maps labeled cov are suitable covering maps.

Proof. Consider the following diagram of horizontal and vertical cofiber sequences
of spectra, obtained by combining 3.7, 3.8, 3.10 and 3.12:

»3ko — hofib(j) ——— ku

»3ko — hofib(tr¢) —— X

|

* ———> V27 =——=Y"2HZ

Here X is the cofiber of the composite map %3ko — hofib(j) — hofib(trc). It is
classified as an extension of X"2HZ by ku by an element in [S"?HZ, Sku] & Z,
whose mod 2 reduction is detected by the composite k: X 2HZ — Yku — S HZ
in [X"2HZ,YHZ]) = 7Z/2. (Here Xku — L HZ is the map inducing an isomorphism
on 7r1.) This composite k is the k-invariant of X relating the homotopy groups in
dimensions —2 and O.

Since ¥3ko is 2-connected, this lowest k-invariant is the same for X as for
hofib(trc). By combining 1.11 with 1.21 we obtain a cofiber sequence

(3.14) CP% % hofib(tre) - WhP (x)

whose connecting map is identified with trc. Since WhDiﬁ(*) is connected, it follows
that the lowest k-invariants for hofib(trc) and CPS are equal. By 2.16 the latter
is nonzero. Hence k is the essential map.

It follows that X is classified by a map u - @ where 8: X 2HZ — Yku classifies
Y 2ku and u is a 2-adic unit. We get a homotopy equivalence of cofiber sequences

X ——>y-217 22> vky

-

N 2ky —> Y "2HZ — Yku.

Hence X ~ Y "2ku, as claimed.

To characterize §, we compare with the connecting map 0 of 3.12. Precompo-
sition with B: ku — Y ~2ku, or its K-localization, induces the vertical map in the
commutative diagram

(52w, S4ho] %[22y, $AK 0] <20 82K U, 54K O]

e )

lku, S4ko] —* = [ku, 4K O] <20 [KU, S*KO)]




TWO-PRIMARY ALGEBRAIC K-THEORY OF POINTED SPACES 33

Here the maps labeled covy are injective, and the maps labeled cov¥ are bijective.
The class § in [©~2ku, X*ko] maps to 0 under B#, which in turn maps to X*r o
B2 0 (¢ —1) in [KU,2*KO] by 3.12. The right hand % is bijective, so this
characterizes the image of § in [N 2K U, 2*K 0] as Z*ro 3720 (¢ —1)o 7. This
characterizes § up to homotopy, by the injectivity claims above. [

Remark 8.15. By [6A] or 1.8 this theorem also determines the homotopy fiber of the
cyclotomic trace map trcx: A(X) — TC(X) completed at 2 for any 1-connected
space X, since the natural map

hofib(trcx ) — hofib(trc)
is a homotopy equivalence.
Let vy(k) be the 2-adic valuation of k.

Corollary 3.16. In positive dimensions (n > 0) the homotopy groups of hofib(trc)
are

(0 forn=0,1mod 8,
Z for n =2 mod 8,
o (bofibtrc)) & { 216 for n =3 mod 8,
Z/2 forn = 4,5 mod 8,
Z formn =6 mod 8, and
| Z/2v2(R) 4 forp = 8k — 1.

Also mp(hofib(trc)) = Z for n = —2 and n = 0. The remaining homotopy groups
are zero.
Proof. This is a routine calculation, given the action of ¥ — 1 and X*r on homo-
topy. O

The spectrum cohomology of hofib(trc) is given in 4.4 below. The Adams FE»-
term
(3.17) Ey" = Ext%"(H* (hofib(trc)), F3) = m;—, (hofib(trc))s .

is then easily deduced from the Es-terms in the Adams spectral sequences for
7. (k0)y and m.(ku)%. Furthermore only one pattern of differentials is compatible
with 3.16: There is an infinite ho-tower of nonzero d"-differentials from column
t—s = 8k for all k > 1, with » = v2(k) + 2, and no other differentials. The spectral
sequence is displayed in Tables 3.18(a) and (b) below.

4. COHOMOLOGY OF THE SMOOTH WHITEHEAD SPECTRUM

We now determine the mod two spectrum cohomology of the smooth Whitehead
spectrum of a point, as a module over the Steenrod algebra.

Consider the following diagram:

(4.1) 3% ho ——> hofib(tre) —— 5—2ky —>—> S0

53ko —> WhPH (x) —— S hofib(€) — T4ko




34 ' ~ JOHN ROGNES
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TABLE 3.18(A). The Adams Es-term for hofib(trc)

The middle row is the cofiber sequence from Theorem 3.13, and the left column
is (3.14). We let € be the composite map CP> — hofib(trf) — X~ 2ku. Then the
right column and bottom row are cofiber sequences.

Proposition 4.2. The map € induces the unique surjection of A-modules
S2A/A(Sq", S¢°) = H* (S 2ku) < H*(CP) 2 £24/C.

Hence
H* (X hofib(e)) = 72C/A(Sq*, S¢?)
as an A-module.

Proof. We use that S*ko and WhP (x) are connective spectra. Hence ¥ hofib(e)
is connective, and so € induces an isomorphism in dimension —2. This determines
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O——O0——O0——O0——O0
e —— 00— 06— 06— 06— 0

0 11 12 13 14 15 16 17 18 19 20 21

TABLE 3.18(B). The Adams Fa-term for hofib(trc)
€* since H*(X72ku) is a cyclic A-module, and €* is surjective because H*(CP>)
is a cyclic A-module. We identify H*(X hofib(¢)) with ker(e*). O

Proposition 4.3. The connecting map § induces the zero homomorphism on co-
homology.

Proof. In fact, the group of A-module homomorphisms
H*(S%ko) =2 24 A/A(Sq, Sq?) — B72A/A(SqY, S¢®) = H* (X %ku)

is zero. For AJ/A(Sq', Sq®) is F2{Sq®, Sq*Sq?} in dimension 6, while Sq' 0 Sq® # 0
and Sq? 0 Sq¢*Sq? # 0 in this A-module. 0O
Theorem 4.4. The mod two spectrum cohomology of hofib(trc) is the unique non-

trivial extension of A-modules

Y 2A/A(SqY, Sq®) — H*(hofib(trc)) — X2 A/A(Sq!, S¢?).
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Theorem 4.5. The mod two spectrum cohomology of WhDiﬁ(*) is the unique non-
trivial extension of A-modules

»"2C/A(Sq, S¢%) — H*(WhP (%)) — 52 A/A(Sq*, S¢?) .
The mod two spectrum cohomology of A(x) is given by the splitting of A-modules
H*(A(x)) = H*(WhPT (+)) @ Fy .

Here Fy = H*(S°) denotes the trivial A-module concentrated in degree zero. We
prove these two theorems together.

Proof of 4.4 and 4.5. We apply mod 2 spectrum cohomology to 4.1. By 4.2 the map
e induces a surjection in each dimension, so ¥~?ku — ¥ hofib(e) induces an injec-
tion in each dimension. By 4.3 the map § induces the zero homomorphism in each
dimension, and combining these facts we see that ¥ hofib(e) — X“ko also induces
the zero homomorphism in cohomology. Thus the long exact sequences in cohomo-
logy associated to the middle and lower horizontal cofiber sequences in 4.1 break
up into short exact sequences. These express H* (hofib(trc)) and H* (WhP (x)) as
extensions of A-modules, as claimed.

Z—2A/C _— E—2A/C
(4.6) SPAJA(Sq, Sq?) <—— H*(hofib(trc)) <—— N2 A/A(Sq', S¢°)
|

23 A/A(SqH, Sq?) <—— H*(WhPH (%)) <— X72C/A(S¢*, S¢®)

It remains to characterize the extensions, which are represented by elements of
Ext}. Recall that H* (ko) = A/A(Sq', Sq*) = A//A; where A; C A is the sub-Hopf
algebra generated by Sq' and Sq?. Hence there are change-of-rings isomorphisms

Exty (S2A//A1, 572 AJA(Sq", Sq°)) = Bxty, (B°F, B 2A/A(Sq", S¢%))
and
Ext}y (52A//A1, S 72C/A(Sq, S¢°)) = Extly (Z°F2, ©72C/A(S¢", S¢°)).

An A;-module extension of X2A/A(Sqt, S¢®) by 23F, is determined by the values
of Sqg* and S¢? on the nonzero element of X3F,, and these are connected by the
Adem relation Sq'Sq¢?Sqt = Sq?Sq>.

By inspection of X2 A/A(Sq!, S¢®) and X ~2C/A(Sq!, S¢®) as A;-modules, there
are precisely two such Aj-module extensions in both cases; one trivial (split) and
one nontrivial (not split). Furthermore the map of extensions induced by 4.1 induces
an isomorphism

7)2 = Extl (2°F,, 22A/A(S¢}, S¢%)) =
Ext}, (5°F, ©2C/A(Sq", S¢%)) 2 Z/2.

e
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Thus to prove that each extension is the unique nontrivial extension of its kind, it
suffices to show that H*(WhP™ (x)) does not split as the sum of 34/A(Sq!, Sq¢?)
and X2C/A(Sq*, Sq?).

Now %72C/A(Sq*, Sq?) is 3-connected, and by [BW, 1.3] the bottom homotopy
group of WhP# (%) is 7g(WhP'® (%)) = Z/2. Hence there is a nontrivial Sq' acting
on the nonzero class in H*(WhP(x)), which tells us that %3 A/A(Sq", Sq?) does
not split off from H*(WhP (x)).

This proves that both extensions are nontrivial, and completes the proofs. [

Remark 4.7. By (4.6), we see that the lifted cyclotomic trace map
tre: WhP(x) — TC(x) ~ RCP>,

induces the zero homomorphism on mod 2 spectrum cohomology. The map is
nevertheless very useful.

Question 4.8. The map e lives in the group
[CP%, 5 ku] = [CPY°, ku] = KU (CP>) = Z[[y']]

where the first isomorphism is the Thom isomorphism in complex topological K-
theory for the virtual complex bundle —y! over CPg°. To which power series in At
does € correspond 7

Proposition 4.9. The linearization map L: TC(x) — TC(Z) and the suspended
map Ye: SCP> — Y~ Yku induce the same homomorphisms up to 2-adic units, on
homotopy groups modulo torsion in dimensions * = 3 mod 4.

Proof. The suspended map e is the composite
SCP% — TC(x) = TC(Z) — S hofib(tre) — S~ ku.

The first map splits T'C(x), the second is the linearization map, the third is the
connecting map in the cofiber sequence generated by trcz, and the fourth suspends
a map that appears in 3.13. The first map induces an isomorphism on homotopy
groups modulo torsion in all positive dimensions, since the other summand %°°.S°
has finite homotopy groups in positive dimensions. The third and fourth maps
also induce an isomorphism on homotopy groups modulo torsion in dimensions * =
3 mod 4, by the calculation of trcz in [R5, 9.1], and the description of § in 3.13 [

5. TWO-PRIMARY HOMOTOPY OF Wh™ (x)

Let ._5 be the generator in dimension —2 of H*(X~%ku) = ©"24/A(Sq*, S¢3),
and let t3 be the generator in dimension 3 of H*(X%ko) = 23 A/A(Sq!, Sq¢?). By 4.2
the map ¢: CP* — Y 2ku of (4.1) induces a surjection on cohomology, and we
regard

ker(e*) = X 2C/A(Sq*, S¢®) c 2 A/A(Sqt, S¢®) = H* (S 2ku)

as a submodule of H*(X~2ku). It is thus spanned by suitable monomials Sq’t_o
taken modulo A(Sq', Sq®)t_o. By inspection ker(e*) is 3-connected. The bottom
cofiber sequence in (4.1) induces the nontrivial extension

0 — ker(e*) — H*(WhP" (%)) — H*(23ko) — 0.
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z € H*(Wh™ (%)) | Sq'(z) Sq*(x) Sq*(x) Sq* (=)
<
3 | Sq*Sq?i_g Sq s Sqtis Sqtis
4 | Sq¢*Sq?i_y 0 Sq%Sq%i_s 0 Sq®Sq*Sq%i_s
5 |SqTi_g 0 Sq%u_g Sqlli_y Sqt3SqL_g

= 5¢"Sq%_o +Sq*Sq*_s
6 |S¢®Sq*i_q Sq°1_g 0 Sq°Sq%_s Sq10S¢*Sq*i_y
= 5q"Sq%1_ '
7 18q¢°%_s 0 0 Sq'tSq?i_,
= 5¢"Sq%_y

Sqtis 0 Sq8u3 Sq'3i_y
8 |S¢®5¢%_o 0 Sq'0Sq?L_g Sq'2S5q%_,
9 Sqtti_g 0 Sqt3i_s Sq138q%_s

Sqbus Sq"L3 0 Sqt3Sq?L_o

+Sq"1Sqt_,
+Sq'03

10 | Sq'°Sq%i_, Sq1Sq%i_s 0 0

S®Sqt_s 0 Sq0Sq*i_q Sq28q*_g

Sq7 13 0 0 Sqtleg
11 | Sq'3i_y 0 0

Sq'1Sq?i_, 0 Sq*3Sq%i_,

Sqduig Sq8Sq*Sq?i_y | Sq'0u3
12 | Sq¢'25¢%_, Sqt3Sq%i_y Sq*4Sq?i_q

Sql%Sqti_, Sq'tSqti_s 0

S¢®Sq*Sq?i_s 0 Sqt9Sq*Sq?i_y
13 | Sqg*®_s 0

Sq*3Sq*_, 0

SqttSqti_g 0

Sqlobg Sqllbg
14 | Sq¢**Sq%_,

Sq125q4b_2

Sq105q45q2b_2

Sqllbg

TABLE 5.1. H*(WhP™ (%)) in dimensions < 14.

We let 15 € H3*(WhP™ () denote the unique lift of 13 € H3(33%ko). With these
notations we list a basis for H*(WhP (%)) in dimensions * < 14 in Table 5.1,
together with generators for the A-module structure.

We now consider the Adams spectral sequences associated with the spectra in
the cofiber sequence of spectra

(5.2)

CP* 5 hofib(trc) 2 WhPHT ()
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appearing vertically in"(4.1). They are

(5.3) E5T = Ext%' (H*(CP%),Fy) = m—s(CPX)%
(5.4) + B3t = Ext%* (H* (hofib(trc)), Fo) = m¢— (hofib(trc))y
(5.5) WwES = Ext$ (H* (WhPH (%)), Fa) = m,_ s (WhPH (x))5 .

The prefix ‘c’ refers to the truncated complex projective space, ‘f’ refers to the
homotopy fiber of the cyclotomic trace map, and ‘w’ refers to the Whitehead spec-
trum. The spectral sequence .F, was already studied in 2.17, 2.18 and 2.21, while
the spectral sequence ;E, appeared in 3.17 and 3.18. The spectral sequence  E.
is displayed below, in Tables 5.7(a) and (b).

The diagram (5.2) induces a short exact sequence of A-modules in cohomology,
by (4.6), and thus a long exact sequence of Ext-groups

T i t g t 0 1t
(5.6) R Y N O T

By the geometric boundary theorem [Ra, 2.3.4], the connecting map 0 is induced
by the spectrum map trc: WhP (x) — SCP extending (5.2), and so each map in
the long exact sequence is part of a map of spectral sequences. Furthermore these
maps are compatible with the maps in the long exact sequence in 2-completed
homotopy induced by (5.2).

The Ep-term of the Adams spectral sequence (5.5) for WhP™ (x) is displayed in
dimensions t — s < 21 in Tables 5.7(a) and (b). This was obtained from a minimal
resolution of H*(WhP® (%)) in internal degrees t < 14, using Table 5.1, and using
Bruner’s Ext-calculator program [Br] in higher dimensions. The notation in these
tables is that the maps in (5.6) take a class denoted ‘e’ in one spectral sequence to
a class denoted ‘o’ in the following spectral sequence, i.e., ® — o.

Proposition 5.8. The map i: CP° — hofib(trc) induces a map
Ty ! CEg’t — fES’t

of Adams E,-terms, which is surjective in dimensions t —s < 2, t —s = 4 and
t —s = 5,6 mod 8. In positive dimensions t — s = 3 mod 8 its image equals the
three hq-divisible classes. In other dimensions the map is zero.

Proof. Note that ¢E, has dimension 0 or 1 in each bidegree. In the range of bide-
grees displayed in Tables 2.18, 3.18 and 5.7, the claim follows by a dimension count
using exactness in (5.6). Since hofib(trc) agrees with its Bousfield K-localization in
dimensions * > 1 by 3.13, the result propagates to higher dimensions by applying
suitable periodicity operators. [J

Proposition 5.9. In the Adams spectral sequence ., E. the nonzero differentials
landing in homotopical dimension < 21 are

(i) d5*T® #0 for s > 0.

(ii) d5° T #£ 0 for s > 1, with image divisible by hi™.

(iii) d5*T £ 0 for 0 < s < 3. The image of dy*® contains ho -z + hy -y for
nonzero classes ©,y. The image of dy'*™® for 1 < s <3 is divisible by h§*.

(iv) dy™® # 0 has image divisible by h3.

"
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TABLE 5.7(A). The Adams Fy-term for WhP™ (x)

(v) do'® # 0 has image divisible by h.

(vi) 55T £ 0 for s > 1 is zero on the ho-torsion classes.

(vii) d*T18 £ 0 for s =0,1.

viii) d>%° £ 0 is zero on the h1-divisible classes.

3

(iz) d*t1 £ 0 for s = 3,4 is zero on the hy-divisible classes, and takes ho-
torsion values.

(z) d5°T° #£ 0 for s > 5, with image divisible by hi™>.

(i) 22 20, do2 £0, d520 £0, d2 #0, d02 #0, d0®2 £ 0 and d5*7 #0
all have rank 1.

Proof. The differentials in sF, given in Tables 3.18(a) and (b) induce differentials
in , F, by naturality with respect to the spectral sequence map j. in (5.6). Likewise
the differentials in .E, given in 2.21 lift by the the connecting map 9 in (5.6) to
detect differentials in , F,. Taking the hg-multiplications in ., F5 into account, this
gives rise to all the differentials listed above.

It remains to check that there are no further differentials in ., F,.. Any such
would have to map from classes ‘e’ detected by O to classes ‘o’ in the image of
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TABLE 5.7(B). The Adams Ey-term for WhP' (x)

j«. For bidegree reasons the only possible targets are the hj-divisible classes ‘o’
in bidegree (s,t) = (4k,12k + 3) with & > 1. These classes are the image of
Tarrs(hofib(tre)) in merys(WhPH (x)). Now the generator of msg s (hofib(trc)) =2
7,/16 maps to the order 2 class n?usgs1 in Ksry3(Z) & Z/16, which generates the
kernel of the cyclotomic trace map trcz to mert3(TC(Z)) =2 Z & Z/8 by [R5, 9.1].
Hence by the diagram in 1.11, the image of mggy3(hofib(trc)) in mgkys (WhDiﬁ(*))
is nontrivial, and so the cited class in bidegree (4k,12k + 3) must survive to the
Eo-term. Hence it is not hit by a differential. [

Theorem 5.10. The 2-primary homotopy groups of WhDiff(*) in dimensions x <
21 are as follows:

T (WhP(4)) =0 forn <2,
73 (WhPH () = Z/2
)
)

0
75 (WhPH (%)) = Z
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T6(WhPH () = 0
w7 (WhPH (x)) = Z/2
mg(WhP (%)) = 0

mo(WhPH () =Z/2 @ Z
m10(Wh™ (x)) = (2/2)* © /8
m11(WhP (x)) = Z/2
m12(W thH(*)) =Z/4
m13(WhPH (5)) = Z
T1a(WhPH (4)) = 2 /4
m15(WhPH (%)) = (Z/2)?
T16(WhPE (3)) = Z/2 @ Z/S
m1r(Wh™'(x)) = (2/2)* @
ms(Wh™'(x)) = (2/2)° ® Z/ 32
710(WhPH (5)) = Z/2 % 7,/2 % 7./8 x Z.,/2
a0(WhPH (5)) = #27
mo1(WhPH (x)) = #2* @ Z

In the long exact sequence in homotopy induced by the cofiber sequence
CP% % hofib(tre) -5 WhP (x)

the image of j. is Z/2 in dimensions n = 3 mod 8 and zero otherwise, for n < 21.

Proof. This follows by inspection of the Eoo-term of the Adams spectral sequence
for WhP (x), and the long exact sequence

e o 70 (CP%) 25 7 (hofib(bre)) 25 7 (WHPE () 252 7, (CPSY) —

The long exact sequence shows that m1g(WhP™ (%)) 2 7117(CP), which was
found in 2.13. Next m1o(WhP# (%)) is an extension of the torsion in 715(CP%) =
Z/2X7/8 X728 7 by Z,/2. Also mao(WhP (%)) is the kernel of a homomorphism
from m19(CP>) £ Z/2 ® Z/8 ® Z/64 with image Z/8. This is some group of order

27, denoted #27 in the statement of the theorem. Lastly o1 (WhP (%)) is the sum
of a group of order 2* and an infinite cyclic group, as can be read off from the
FEo-term of ,F,. 0O

Regarding multiplicative structure, we have the following addendum.

Lemma 5.11. The homomorphism 1y : m,(WhP(x)) — m, 1 (WhP™ (%)) has
image (Z/2)* for n =9, image Z/2 for n =10 and is zero for all other n < 14.

The homomorphism vy : m,(WhP' (x)) — Tnts(WhP (%)) has image Z/2 for
n =7 and is zero for all other n < 14.
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The homomorphism o4 : T (WhPHE (%)) — 7,17 (WhP (%)) has image Z/2 for
n =5 and is zero for all other n < 11.

Proof. The nonzero multiplications listed are all detected by nontrivial Ay, hy or
hs-multiplications in the Adams spectral sequence (5.5) for WhP' (). To see that
there are no other nonzero multiplications in this range one can use Adams filtra-
tion arguments in this spectral sequence, combined with naturality with respect
to the map trc: WhP#(x) — TCP%. For example, T14(WhPH (%)) is detected
in m13(CP%), but the image of m7(WhP™ (%)) in 76(CP) is divisible by v and
ov=0,s004 =0forn=7 01

6. COHOMOLOGY OF K (Z) AND THE LINEARIZATION MAP
We continue to implicitly complete all spectra at 2. Bokstedt’s spectrum JK (Z)
is the homotopy fiber of the composite

’gbg—l . c
ko — bspin — bsu.

It is also homotopy equivalent to the algebraic K-theory spectrum K(Z), by [RW],
[We]. Hence there is a diagram of horizontal and vertical cofiber sequences of
spectra:

bso bso * Ybso
n ¢ 7

spin ¢ J ko ¥l bspin
(6.1) c i ‘ c
su——-s K(Z) ko bsu

Yibso Ybso * %2bso

The right hand column is a connected covering of (3.2), and the second row defines
the connective real image of J spectrum j. We let ¢ = ( on be the composite of the
Bott map 7n: bso — spin and the connecting map (: spin — j.

Miller and Priddy [MP] define spectra g/og and ibo as the pullbacks in the
following diagram:

g/0g 1bo SO

(6.2) l l l
n . ¢ .
bso spin J

(More precisely, they define the underlying infinite loop spaces G/Og = Q%°g/o0g
and IBO = Q>ibo.) Here e: S° — j is the map representing the real Adams
e-invariant. Its fiber ¢ is the cokernel of J spectrum, which is K-acyclic. Thus
the unit map i: S° — K(Z) factors, uniquely up to homotopy, as e composed with
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i: 7 — K(Z). By (6.1) the cofiber of the bottom composite in (6.2) is K (Z). Hence
there is a cofiber sequence

(6.3) g/og — S° 5 K(2)

of 2-complete spectra. Thus there is a fiber sequence G/Og — QS° — K(Z) of
underlying infinite loop spaces, and we might write G/Og = IK(Z) as the ‘ideal’
in QS° = 0°°59 defining K(Z) (at the prime 2).

We compute the mod 2 spectrum cohomology H* (K (Z)) by means of the cofiber
sequence su — K (Z) — ko, where su ~ ¥3ku. In view of (6.3) this also determines
H*(g/og). Miller and Priddy conjecture in [MP] that G/Og =~ G/O as infinite
loop spaces. If confirmed, this would also lead to a calculation of the spectrum
cohomology H*(g/0). It is known that G/O ~ G/Ogq as 2-complete spaces, and
that H,(G/O;Fy) = H.(G/Og;F2) as Hopf algebras over the Steenrod— and Dyer—
Lashof algebras, by unpublished calculations of J. Tornehave.

Theorem 6.4. The mod two spectrum cohomology of K (Z) is the unique nontrivial
extension of A-modules

AJA(SqE, Sq?) — H*(K(Z)) — S2AJA(Sq", S¢°) .

The A-module H*(3g/og) is the connected cover of H*(K(Z)), i.e., the kernel of
the augmentation H*(K(Z)) — Fa.

Proof. We use the cofiber sequence K(Z) — ko — bsu where the right hand map
is the composite of 92 — 1: ko — bspin and c: bspin — bsu. The induced map

SAA/A(SqY, SqP) = H* (bsu) — H* (ko) = A/A(Sq, Sq?)

is the zero homomorphism. For the complexification map ¢ induces multiplication
by 2 on 74, and thus the zero map on H*. Thus the long exact sequence in spectrum
cohomology decomposes as the A-module extension above. The second claim follows
from the cofiber sequence S° — K(Z) — %g/og.

It remains to characterize the extension. There are precisely two such A-module
extensions, since

Ext} (X2A/A(Sq, Sq®), AJA(SqY, S¢?)) = Exty, (5°F, A/A(Sq', S¢*)) = F,.

Here E; C A is the exterior algebra generated by Sq¢' and Sq¢®. We know that
H*(K(Z)) is a nontrivial extension, because Hy' ““(K(Z);Zs) = m2(g/0e) = 7/2
so there is a nonzero Sq! from dimension 3 to dimension 4 in H*(K(Z)). O

We list a monomial basis for H*(K(Z)) in dimensions < 14 in Table 6.5. It
differs from H*(Zg/og) only in dimension 0. The notation is that 1o € H°(K(Z))
pulls back from the generator of H°(ko), while 13 € H*(K(Z)) is the unique lift
of the generator in dimension 3 of H*(su) = 23A/A(Sq*, S¢®). We have chosen
Sq%(13) = Sq*Sq®(13) as the lift in H*(K(Z)) of Sq°ts = Sq"Sq?1s in H*(su).

The linearization map L: A(x) — K(Z) from [Wal] and 1.8 is compatible with
the unit maps from S°. When combined with the pullback diagram (6.2) defin-
ing g/og it yields the following spectrum level diagram with horizontal cofiber
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ze H (K(Z))|Sq¢'(z) |S¢(z) | Sq*(z) Sq®(x)
0 |ew 0 0 Sq4L0 SqSLO
1
2
3 |3 Squo SqPus Sq*u3 Sq°us
4 | Sq* 0 Sq8uo 0 Sq¢®Sq*io
5 | Sq%i3 0 Sq" o Sq*Sq?is Sq¢®Sq*is
6 | Sq%u Sq 1o 0 Sqt%0 Sq°Sqtuo
7 Sq7L0 0 0 Sqllbo

Sqtis 0 Sq8us Sq¢%Sq%3
8 |Sq%uw 0 Sqt% Sqt?ug
9 |Sq¢8:3 Sq" 3 0 Sqt9s

+5¢%Sq%u3

Sq*Sq*is 0 Sq%Sq?%us | Sq*uo
10 | Sq%q Sq'lig 0 0

Sq" s 0 Sq®Sqty | Sqtlis

+5¢%13

11| Sqtteg 0 Sq3ig

SqBus Sq°3 Sqt%s

Sq¢%Sq%u3 Sq®Sq*y | 0

+Sq9L3

12 Sq*?u0 Sq Sqttig

Sq®Sqtuo 0 Sq'0Sqig

Sq%13 0 Sqt0Sqeg

= Sq"Sq%3

13| Sq¢'3e 0

Sqt0u Sq'lus

Sq®Sq%us 0
14 | Sqteg

SquSQ4L0

Sq11L3

TABLE 6.5. H*(K(Z)) in dimensions < 14.
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sequences:
SO ? A(*) Wthff(*)
} lL L
(6.6) 0 —'> K(Z) —— Sg/og

Proposition 6.7. The reduced linearization map L: WhP® (x) — Bg/og is a ra-
tional equivalence, but induces the zero homomorphism between the bottom homo-
topy -groups w3(WhP'® (%)) 2 7Z/2 and 73(Xg/og) = Z/2. The induced map on
spectrum cohomology

L*: H*(Sg/og) — H*(WhP™ (x))
18 zero in all dimensions.

Proof. The linearization map L: A(x) — K(Z) is a rational equivalence between
spectra of finite type, by [Wal, 2.2], so its 2-adic completion is also a rational
equivalence. Comparison with (6.6) shows that also L is a rational equivalence.

The homomorphism 73(L) is induced from the homomorphism

by passage to the quotient with respect to subgroups 78 = 7./24 on both sides.
Algebraically, the only possibility is that m3(L) = 0. :
In cohomology we have the following map of extensions of A-modules:

*

H*(Sg/0g) — H*(K(Z)) — F,

C

H*(WhP (%)) —— H*(A(x)) =—F,

The lower extension is split, as in 4.5. Here H*(K(Z)) is generated as an A-module
by classes o and ¢3, as in 6.4 and 6.5. The class (o maps to the split summand [y
of H*(A(x)), hence the submodule it generates maps to zero in positive degrees.
Likewise t3 maps to zero by the ms-calculation above and the Hurewicz theorem.
Thus L* is zero in positive degrees, and L* is zero in all degrees. [

Corollary 6.8. There is a long exact sequence in mod 2 spectrum cohomology

tre* —L*

- HYTC@) LB, g (TC() @ H* (K(Z)) =55 H*(A() 2 ... .

Here L: A(x) — K(Z) and tre,.: A(x) — TC(x) induce zero maps in positive dimen-
sions, O induces an injective map in positive dimensions, and L: TC(x) — T'C(Z)
and trcz: K(Z) — TC(Z) both induce surjections in all dimensions.

Proof. The sequence arises by applying mod 2 spectrum cohomology to the homo-
topy cartesian square in 1.8 for X = x. The assertions for L: A(x) — K(Z) and
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trc, follow from 4.7 and 6.7. The rest follows by exactness. In fact L* @ trcy will
be surjective in positive degrees, which is stronger than the stated conclusion. [

Remark 6.9. The rigid tubes map from [Wa3, §3] provides a space level map of
horizontal fiber sequences

G/O — > BSO —> BSG

lhw [8 lw
QWHPH () —= QS0 —S= A(x).

We call the left vertical map hw the Hatcher—Waldhausen map. It was proved
in [R1] that this gives a diagram of infinite loop maps if one uses a multiplicative
infinite loop space structure on each of the spaces in the lower row. However, these
are generally different from the additive infinite loop space structures we have been
considering in this paper. Let QWhgiﬂ(*) denote the spectrum with underlying
infinite loop space given as the homotopy fiber of the unit map i: SG = Q(5°); —
A(x)1 with the multiplicative infinite loop space structures.

It can be read off from Tables 5.1, 5.7 and 6.5 that the (space level) Hatcher—
Waldhausen map hw: G/O — QWhP# (%) does not admit a four-fold delooping,
when the target is given the additive infinite loop space structure. For by [Wa3],
mo(hw): Z/2 = 7Z/2 is an isomorphism, and a k-invariant argument (see 7.5 be-
low) shows that m4(hw): Z — Z is a 2-adic equivalence. If hw admits a four-fold
delooping then o - hw(z) = hw(o - z) for any z € m4(G/O). But m11(G/0O) = 0,
while the minimal resolution leading to Table 5.7 shows that there is a nonzero
hs-multiplication from the class representing the generator of m4(QWhP™ (%)) to
the class representing the element of order 2 in 1 (QWhP#(x)). See also 5.11.
This contradicts the existence of the four-fold delooping. Note that we did not
specify a choice of four-fold delooping of G/O in this argument, so it applies to
both Q°°(X%g/0) and Q°°(Z%g/0g), in case they are different.

The spectrum map g/o — QWhgiﬁ(*) constructed geometrically in [R1] thus

shows that the spectra WhPH () and Wh2 (%) cannot be homotopy equivalent.
&

7. A SPECTRUM MAP FROM WhP¥ (x) To $g/0g

Observe by inspection of Tables 5.1 and 6.5 that H*(WhP¥ (%)) and H*(Zg/0g)
are abstractly isomorphic as A-modules in dimensions * < 9. In this chapter we
construct a spectrum map

M : WhP (5) — $g/0g

inducing an isomorphism in these dimensions. As before, all spectra are implicitly
2-completed in this chapter.

Lemma 7.1. There is a spectrum map m: hofib(trc) — K(Z) making the following
diagram of horizontal cofiber sequences commute:

hofib(trc) — %2k =y,

lm lrﬂ_l lﬁ224c
ce(4®-1)

K(Z) ko bsu .
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Proof. The maps in the right hand square are characterized (up to homotopy) by
their K-localizations, and after K-localization we can compute

BrtcoLgd=F%0X%conrof 2o -1 ot =c(®—1)orp™t.

Hence the right hand square commutes. We let m be the induced map of horizontal
homotopy fibers. [

Lemma 7.2. There is a spectrum map M: WhP® (x) — Xg/og making the fol-
lowing diagram of horizontal cofiber-sequences commute:

CP% — s hofib(tre) —2= WhPH# (+)

T

§0 ———= K(Z) ——= 5g/0 .

Proof. We must show that the composite map
CP% N hofib(trc) =% K(Z) — Yg/og
is null homotopic. Consider the diagram of horizontal and vertical cofiber sequences
G0 =——— g0

% %

c(y3—1
K(z) ko <D pey,

¥g/og —> ko/S® — bsu

We have [CP%, su] = 0 by an application of the Atiyah-Hirzebruch spectral se-
quence, so we can identify [CP°q, K (Z)] with the kernel of

c(yp® —1)g: [CP, ko] — [CP, bsu] .

By another calculation with the Atiyah—Hirzebruch spectral sequence using [Ad]
and [AW], this kernel is isomorphic to Z, and is generated by the composite map

CP% — CP® — S° L K(Z).

The left hand map pinches the bottom cell to a point; the middle map retracts
CP*> to a point. The composite maps to zero in [CP%], Xg/0g]|, so m extends to a
map M as claimed. [J

Lemma 7.3. The map M: WhPE(x) — Sg/og induces an isomorphism on 3.

Proof. Consider the maps of long exact sequences of homotopy groups induced by
the diagrams in 7.1 and 7.2. The isomorphism 74(3?%4c): Z = Z passes to quotient
isomorphisms 73(m): Z/16 =2 Z/16 and 7s(M): Z/2 = Z/2. O
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Theorem 7.4. There is a spectrum map
M: WhP# (%) — $g/0g

inducing an isomorphism on mod 2 spectrum cohomology in dimensions * < 9. So
M is precisely 9-connected, and induces a map of spaces

QM : QWhPHE () — G/Og ~ G/O

such that 7. (QM) is an isomorphism for x < 8.

Proof. The A-module homomorphism M*: H*(Sg/og) — H*(WhP (%)) is an iso-
morphism in degree 3 by 7.3. We can then compute M* in dimensions * < 14 from
Tables 5.1 and 6.5, finding that H* (hofib(M)) is 9-connected, has rank 1 in each di-
mension 10 < % < 13, and has rank > 1 in dimension 14. Thus QM is 8-connected,
and the surjection mg(Q2M) is in fact an isomorphism, since both its source and
target are isomorphic to Z®Z/2. O

Theorem 7.5. The Hatcher-Waldhausen map hw: G/O — QWhP™ (x) induces
an isomorphism on 2-primary homotopy in dimensions * < 8, and an injection
on 2-primary homotopy in dimensions x < 13. Its 2-completion is thus precisely
8-connected.

Proof. Let P"X denote the nth Postnikov section of a (simple) space X. The map
P?(hw): P*G/O — P2QWhP'T (x)

is a homotopy equivalence by 7.3. The k-invariants of G/O and QWhP™ (x) all lift
to spectrum cohomology, since these are infinite loop spaces, and are abstractly
isomorphic for n < 8 by 7.4. They can be partly read off from the minimal resolu-
tion for H*(WhP™¥ (%)) that was used to generate Table 5.7, yielding the following
facts: Let B1: K(Z/2,n) — K(Z,n + 1) be the mod 2 Bockstein map, and let
i1: K(Z,n) — K(Z/2,n) be the mod 2 reduction map. Then i18; = S¢*. For
m >nlet p*: P™X — P™X be a projection in the Postnikov system. Then

k°: K(2)2,2) ~ P2QWhPH (x) — K(Z,5)

is 315¢2, while .
kT PAQWRPE (x) — K(Z/2,7)

factors as Sq°p3. The last k-invariant we consider is
K =k x k3: PSQWHPT (x) —» K(Z/)2®72,9) ~ K(Z/2,9) x K(Z,9).

Its projection kj to K(Z,9) factors over p§, and the composite

. 9
K(Z,4) — P*OWhPE(x) 22, K (2,9)

is 41Sq*i;. Here k3 = k3 o p§. .
Considering the maps of Postnikov sections P"(hw): P"G/O — PrQOWhP (%)
and comparing the k-invariants for G/O and QWhP'® (x), it follows that also P*(hw)
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and P%(hw) are homotopy equivalences, and that P®(hw) induces an isomorphism
on 7g modulo the torsion subgroups. Hence 7, (hw) is an isomorphism for * < 7.
In particular the image of v? € ms(SG) = 78 in mg(G/O) maps to the generator of
76 (QWhPH (x)).

The 2-torsion in 7g(G/0) is the image of 7 € 73 (SG) = n§, satisfying n-v = v-1/2.
The image of 7 in mg(QWhP¥ (%)) is nonzero, because 7 - hw(v) = v - hw(v?) is
nonzero, as can be seen from Table 5.7(a) or detected by QM. Hence mg(hw) is also
an isomorphism on the torsion in dimension 8. So hw is 8-connected, but cannot
be 9-connected because my(G/O) = (Z/2)? cannot surject to 7o (QWRPH (%)) =
(Z)2)?*®Z/8.

The nonzero multiplications by 7 in m, (QWhP# (%)) given in 5.11 then imply
that m,(hw) is injective for 9 < n < 11 and n = 13. Finally m15(hw) is injective
since m12(G/0) = Z and hw is a rational equivalence [B1]. [
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