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Infinitesimal incidence in noncommutative algebraic geometry,
with application to noncommutative conic sections

Arne B. Sletsjge

Abstract. We study the geometry of associative (noncommutative) algebras. The concept of interaction or infinitesimal
incidence is explored by considering non-vanishing of certain Ext-groups. As an application non-commutative conic sections

are investigated.




0. Introduction

The fundamental idea of this report is the following: Let & be some field and let Algy, be the category
of associative k-algebras. As a generalization of classical (commutative and reduced) algebraic geometry we
define noncommutative algebraic geometry as the dual Algy of the category of associative algebras. Thus the
geometrical objects are the algebras R € Obj(Algk), and morphisms are reversed k-algebra homomorphisms.
Our purpose is to try to give the algebraic objects a geometrical interpretation, just in the way we do in the
commutative setting. Using a geometrical language, geometrical concepts and hopefully geometrical insight
we will try to come closer to an understanding of the algebraic objects.

With our definition the geometrical object associatied to an algebra always exists. The problem is wether
the geometrical object has a natural geometrical interpretation in terms of classical geometric intuituition.
If it has not, is would be rather difficult to accept the term geometrical object.

A geometrical object can only be visualized through its geometrical properties. To enlighten the different
properties we need some geometrical tools. Our basic tools are the concepts of points, symmetries, incidence
and interaction (or infinitesimal incidence). Once we have studied and understood the geometry of an object
we can look at the embeddings of the this element into other objects. In this way we can build up the
knowledge of geometrical objects in geometrical terms.

Let R be an some k-algebra and let X = Homyg, (R, k) be the set of k-algebra homomorphisms of R on
k. Tt is well-known from Hilbert Nullstellensatz that if R is commutative and reduced X g determines R. For
an object R of the category algreq we can identify Xrg with the dual object R°. Thus X_ : algrea — algy.4
has two geometrical interpretations. Since k € Obj(algreq) and Xy = {e}, this is a natural definition for
the concept of a point. The map ¢ : R — k gives an inclusion X} =~ {pt} — Xg and Xg has a natural
interpretation as the parametrization of the set points of Xg. On the other hand X_ defines an anti-
equivalence between algreq and the dual category algy,,, saying that X g is the geometrical space associated
to the algebra R. Combining these two points of view we obtain the seemingly obvious fact that a geometrical
objects is made up by and completely determined by its points. For noncommutative or non-reduced algebras
this will no more be true. On way of handling this problem is to endove the geometrical objects with some
structure sheaf and say that this is a part of the geometry. Another way of doing this is to say that the
geometry is more than the classical points, i.e. allowing new points with non-trivial symmetry group and
accept that interactions between points, or more general between subsets, are part of the geometry. This
will be our point of view.

In his paper [Ko] from 1992 Kontsevich suggests an approximation to noncommutative geometry by
considering the set X% of homomorphisms from the k-algebra R to the matrix algebra M,(k). This is a
variety and if R is finitely generated, sois X%. This approach is further studied be Kontsevich and Rosenberg
[KR] and Le Bruyn [Lb]. In the search for a non-commutative algebraic geometry Kontsevich and Rosenberg
proposes that “A noncommutative structure of some kind on R, generalizing a commutative structure,
should give an analogous commutative structure on all schemes X%, n > 1”. A crucial point in our approach
to noncommutative algebraic geometry is that the geometry of an algebraic object should be understood
through its building-up from known geometrical objects, their incidence relations and interactions. Thus,
we have to restrict the source category for the functor Xg, i.e. the choice of building blocks. Any choice
must be justified either by classical algebraic geometry methods or by iterated methods in the setting of this
paper. For every choice of building blocks we want to find a subcategory of algebras, such that the objects
in this subcategory is determined by their relations with the building blocks.

The report is organized as follows. The first part is the general part where we study the geometrical
objects corresponding to noncommutative algebras. We also give a kind of Nullstellensatz for extensions of
closed points. In the second part we continue investigating extensions, and in the third and last part we
study the geometry of the noncommutative plane conic sections.




1. Algebras as geometrical objects

1.1. Let k be a field and let R be any associative k-algebra. Consider the functor
Xr = Homayg, (R, —) : Algr, — sets

of k-algebra homomorphisms of R. This functor is called the affine scheme of R. For any k-algebra S the
set Xg(S) = Homay, (R,S) is the set of S-points of Xr. A k-algebra map ¢ : R — R’ induces a natural

transformation
¢* : Xp — X

given by ¢*(¢)) = ¢ o ¢. The functor A'r determines the algebra R up to isomorphism in the following sence:

PROPOSITION (1.2.). Let ¢ : R — R' be a k-algebra map of two associative k-algebras such that
¢* : Xri — Xg is an isomorphism. Then R =~ R.

Proof. By assumption the map ¢*(R) : Xr/(R) — Xr(R) is an isomorphism. Thus we can find
¥ € Xg (R) such that ¢*(R)(¢) = idg, i.e. we can find ¢ : R — R such that %o ¢ = idg. Now consider the
opposite composition, ¢ o9 : R’ — R'. We have

¢*(R)(po) = (pop)og=do(Ppog) =¢oidp =idm 0 ¢ = ¢"(R)(idr)

By assumption ¢*(R’') is an isomorphism and hence injective. Thus ¢ o+ = idgs, proving that ¢ is an
automorphism. O

If the algebra R is commutative the functor xr is the ordinary affine scheme. The set xr(k) is the set
of k-points of Spec(R), i.e. the maximal ideals of R. Other choices for integral domains S produces prime
ideals of R of various height. Let R,y = R/([R,R]) be the quotient of R by the two-sided ideal ([R, R])
generated by all commutators in R. For any commutative k-algebra S we obviously have Xg(S) = Xg,, (S).
If S = k we use the notation Xr = Xr(k) for the closed points of Spec(Rqp). The surjection B — Rap
induces a natural inclusion Xg,, <+ Xg. Thus the classical geometric object is part of the more general
geometry. Notice that Xg,, = Xg so the closed points of the two functors Xg,, and Xr are the same.

1.3. The above construction defines a functor

X @ Algy — setsAlor
given by X(R) = Xr(—). For any associative algebra S the functor A" induces in an obvious way a con-

travariant functor
Gs : Algx, — sets

given by Gs(—) = X()(S). Thus as Xr(-) gives the affine geometry of R, Gs(—) is the S-point functor,
returning the S-points Gs(R) = Ar(S) of an argument algebra R. An other way of saying this is that R or
rather g is the algebraic object we want to study, and the righthand S represents the geometrical tool we
are using in our investigation.

DEFINITION (1.4.). Let C be some subcategory of the category of associative algebras and let 1 : C —
Algy, be the inclusion functor. The subcategory C is called o geometrical quotient of Algy if there exists
a left adjoint functor g : Algy — C for the inclusion functor.

Let C be a geometrical quotient of Algy. The composition o¢ = tgis a projection functor of Algy on C.

1.5. For any family of associative k-algebras S let Algy be a maximal geometrical quotient of Algg
such that Gs(—) o os = Gs(—) for all S € S. Here we have used the notation os = 0 4,45 - In general such a
geometrical quotient does not exist. If it exists it is not obvious wether it is unique.




DEFINITION (1.6.). Let S be a family of associative k-algebras such that a mazimal geometrical
quotient os : Algr, — Alg,‘cS exists. Then the pair (S,0s) is called a geometry pair.

On the other hand, given any projection functor o : Algy — Algy, let C = Algg be the fixed subcategory.
We call a family S of k-algebras a representation model for C if ¢ = 05, i.e. (S,0s) is a geometry pair.

1.7. Example. For S = {k} we have Al gF ~ algy, is the subcategory of commutative, reduced algebras
and the projection is the algebra quotient where we divide out by the radical of the commutator ideal.
On the other side, for S = algy the category of commutative algebras we have Alg,‘:lg’“ = algy and the

projection is the identity.

1.8. The geometrical interpretation of a k-algebra homomorphism ¢ : R — S is as an S-point of R, i.e.
an inclusion ¢* : Xs — Xg. In the special case R = S an automorphism « : R — R induces an automor-
phism o* : Xgr — Xg of the functor Xg. In the geometrical setting automorphisms are called symmetries.
In general the set Xs will have non-trivial symmetry group. For any automorphism o : S — S the two S-
points ¢ and o o ¢ represents the same geometrical impact, the difference sits in the internal structure of S.
The symmetry group I's = Aut g, (S) obviously acts on Gs(R). The set Gg(R)/T's is the S-geometry of R.

1.9. A special case of associative k-algebras are the matrix-rings M, (S) and their subrings T»(S) of
(upper) triangular matrices. We shall use the notation GP(—) = G, (x)(—) for the M, (k)-points of any
affine scheme, and we let

X3 (~) = Homaig, (R, Mn(~))

be the level n geometry of the affine scheme R. For the subgeometry corresponding to the upper triangular
matrices we use the notation

TI%(_) = Homayg, (R, Tn(_))

If the argument is the ground ring k we simply write 772. We can consider T, (k) as the quiver algebra of
the quiver
o) — 0y — ... Oy

i.e. a system of n points with a directed tangent of interaction. The set 75 parametrizes all such systems
in the affine geometry X'r. For any two-sided ideal in a associative k-algebra R we define rad(I) to be the
set of nilpotent elements in the quotient R/I,ie. all elements r € R such that r™ € I for some m > 1.

THEOREM (1.10.). Let k = k be an algebraically closed field and let R = k(z1,...%,)/1 be some
finitely generated, associative k-algebra, defined by some two-sided ideal I. Then

ﬂ ker ¢ = rad([R, R])"
¢ETE

Proof. The inclusion
rad([R,R)" C () ker¢
bETE

follows from well-known properties for upper triangular matrices.
We shall prove the other inclusion by induction on n. For n = 1 we have Th = k and the result is precisely
the Hilbert Nullstellensatz.
Assume the inclusion is valid for m = n — 1. There are two algebra maps T, (k) — Tn-1(k), projections
on the first, respectively on the last n — 1-dimensional subspaces. Composing ¢ : R — Tn(k) with these
projections we obtain the inclusion
ﬂ ker ¢ C rad([R, R])"™"
PETE




Let r € N eTn ker ¢ and suppose s = r™ € ([R, R])"!. Since the commutator operates as a derivation on
each factor we can assume that s is a sum of expressions on the form

§= f(l)[xh ) xﬁ]f@) [:I:'L'z’sz] s f(n_l)[xin—uwjn—l]f(n)

Thus ¢(s)s; = 0 for all pairs (,) except for the upper rightmost corner (1,n). This coefficient is given by

¢(S)17’L :¢(f(1))11¢([mi17xj1])12¢(f(2))22¢([.’1:1;2,a’,'jz])23 -
(Y 10y Ijn—l])n—l,n¢(f(n))n'n

Assume f™ ¢ [R,R] for all m = 1,2,...,n. Since k is an infinite set there are som ¢ € Tg such that
A(f™)mm # 0 for all m = 1,2,...,n. These expressions only involve diagonal elements of the images of the
generators z; and there are enough degrees of freedom to choose ¢ such that all ¢([zs,,,Zs,])mm+1 # 0,
obtaining a contradiction and the assumption must be wrong. Thus s € [R,R))"™'. O

For any k-algebra R we define R(,,) to be the quotient R/rad([R, R])". In particular we have R(;) = Rap.
Let Al g,(cn) be the category of k-algebras of commutation nilpotence degree n, i.e. algebras R such that
rad([R, R])™ = 0, and let o(,) be the projection o(,)(R) = R(n).

COROLLARY (1.11.). The pair (Tn(k),0(n)) is a geometry pair.

Proof. An immediate consequence of the theorem. O




2. Extensions and geometry @,

2.1. Let k = k be a field and R some associative k-algebra. We shall denote by My = M> (k) the algebra
of two-by-two matrices with entries in the ground field k, and T = T2 (k), the subalgebra of upper triangular
matrices. The algebra T, is the smallest possible non-commutative k-algebra. It is of dimension 3 over k
and may be considered as the path-algebra of the path

*e—> @
spm

where s2 = s, m® =m and sp = pm = p. The rest of the products vanish. Observe that [s,p] = [p,m] = p.
Thus for any one-dimensional representation p : Tp(k) — k we must have p — 0 and the only possible
representations are the two projections on the diagonal. The two projections add up to a surjective map
inducing a map

pre : T2(R) = (XR)?

where 73(R) = Homg, (R, T2(k)) and Xr = Homgg(R, k) are the k-points of R. The automorphism group
of M, is the special linear group SLy, acting by conjugation. For the group Aut asg, (T2(k)) of automorphisms
of the k-algebra T (k) we have the following.

PROPOSITION (2.2.). The automorphism group of Tx(k) is given by

Aut g, (Ta(k)) = k* x k

with group operation (a, b)(c,d) = (ac,bc + d).

Proof. A simple computation, using the relations among k, m and p, shows that an automorphism
¢ : Ty(k) — To(k) is given by k = k + bp, m — m — bp and p > ap where a # 0. The group law is given by
composing two such automorphisms. O

Since the field k is assumed to be algebraically closed the automorphisms can be identified with conjugations
by upper triangular matrices with determinant equal to 1 via the identification

(i 1)

Automorphisms of T (k) induce automorphisms of the one-dimensional representations and it is easily seen
that these are the identities.

2.3. The level 2 geometry of an algebra R is given by the affine scheme X2(-), and in particular by
the k-points Xl(f) = X% (k). The Ms(k)-geometry of R is given by the quotient

X /SL,
In the next example we shall describe this set for the affine quantum plane R = k(z,y)/(zy + yz).
Example (2.4.). Let R = k(z,y)/(zy + yz) and let ¢ € Xl(f) be the map given by
sma= (20 ven= (i)
such that AB + BA = 0. Thus we have the following set of equations

T11y11 + T12y21 + T21Y12 + Ta2y2e =0
(711 + T22)y12 + T12(Y11 + Y22) =0
(711 + T22)y21 + T21 (Y11 + Y22) =0

T11y11 — T22y22 =0

6




This map correspond to a R-module structure on V =~ k2, via the map ¢ : R — End(V) C M (k).
The equation AB + BA = 0 gives AB — BA = 2AB, hence
det(AB — BA) = 4det Adet B
From [AS] we know that if R = k(A, B) is the k-algebra generated by two 2 x 2-matrices A and B, then
R = M,(k) if and only if det(AB — BA) # 0. Thus the representation give by z + A, y = B is irreducible
if and only if det A, det B # 0.
Some straightforward, (but rather tedious) calculations shows that the set ac( ) C AS (zij,vi;) has four
components
xP=YUAUBUZ
of dimensions 5,4,4 and 4 respectively and sits inside the quadratic hypersurface V(221111 +212y21 +Z21¥12)
with additional equations:
Y = V(tA,tB) A= V(A) B=V(B)
Z =V (da,dB,z11y11 — T22Y22,tAY12 + T12t B, tAY21 + T21tB)
Here we have used the notation t4 = Tr(A) and d4a = det(A). The irreducible representations are
parametrized by an open set of Y — Z.
The set A C A* has a discriminant D C A given by the equation D = V((tp)? — 4dg). Outside of this set
the R-module V splits, the discriminant parametrizes the indecomposable modules.
Dividing out by the automorphism group we get for each component a non-algebraic set. The sets A and B
give rise to copies of the affine plane with an extra diagonal embedded, according to the Jordan normal form.
The quotient of Z consists of pairs of points (Xg)? and all the irreducible modules sit as a two-dimensional
torus inside Y.

2.5. For any pair (¢1, ¢2) € (Xg)? the fiber prit (¢, ¢2) is a subvariety of 73(R). The automorphism
group k* x k of Ty(k) acts on T3(R) fixing (¢1,#2). Consequently it acts on the fiber pr;*(¢1, ¢2).

PROPOSITION (2.6.). Let X(¢1,¢2) = prit(¢1,d2) be the fiber over (¢1,¢2). Then we have
X (41, ¢2)/Aut(T(k)) = Extp (g1, ¢2) /K

<¢1 (r) B(r) )
0 ¢2(’f‘
= ®(r)®(r’) forces f : R — k to be a derivation § : R —

Proof. Let ® € pr;1(¢1, ¢2) be given by

where the ring homomorphism condition ®(rr’)
Hom(¢s, ¢1) given by
' Blrr") = 1 (r)B(r') + B(r)g2(r)
The set Hom(¢, ¢1) has an ¢1 — ¢o R-bimodule structure. An automorphism (g, p) fixes ¢; and the action
on f is given by

B @B+ py(¢s — 61)
The map p(¢z — ¢1) is an inner derivation and g gives a scaling. Thus & corresponds, up to automorphisms
to an element of Ext}h (41, #2)/k* and vice versa.  [J

2.7. For any pair (¢1, ¢2) € (Xr)? of k-points we define the order of interaction as

d(¢1, ¢2) = dimy (Extk (41, ¢2))

The order of self-interaction is denoted by d(¢) = d(¢, ¢). The embedding dimension of R is defined as the
embedding dimension of Rgp,i.e e(R) = e(Rgsp).

In the paper [CQ] J. Cuntz and D. Quillen define quasi-free (or formally smooth) algebras. An algebra
R is quasi-free iff it satisfies the lifting property for nilpotent extensions, i.e. for any algebra B, a two-sided
nilpotent ideal I C B, and for any algebra homomorphism f : R — B/I, there exist a lifting f:R— B.
There are some easily proved consequences of this definition.




THEOREM (2.8.). If R is a quasi-free algebra, then R is hereditary, i.e. the category rmod has
homological dimension < 1.

Proof. [CQ] O

An equivalent formulation of this theorem is that if R is quasi-free, then every R-module admits a
projective resolution of length 2.

PROPOSITION (2.9.). Let R be a quasi-free algebra. Then

_ e(¢1) -1 if¢1 # ¢
d(é1, ¢a) = {e(¢1> if 6 = o

Proof. Since R is quasi-free it is hereditary. The complex
R* — R — ) k

where e = e(¢;) is therefore a resolution of ¢;. Applying the functor Hompg(—, #2) to this resolution gives
the result. O

2.10. Proposition 2.6. is easily generalized to the situation where the modules ¢;, ¢ = 1,2 are no more
one-dimensional k-vector spaces. So let V, W be left R-modules. Then the ext-group Exth(V, W) is given
by the set of k-algebra homomorphisms

Endy (V) Homy(V, W)
R—*( i End, (17) )

up to some automorphisms. Now suppose we have given to extensions

End, (V) Homy(V, W) End, (W) Homy (W, Z)
R—>< " %‘I‘:gk(w) ) and R—)( e OE?S,C(Z) )

The existence of a k-algebra homomorphism

Endg (V) Homg(V,W) Homy(V,Z)
R — ( 0 Endx (W)  Homy (W, Z))
0 0 Endy(Z)

corresponds to vanishing of a certain element in Ext%(V,Z). Thus the geometrical interpretation of the
group Ext%(V, Z) is closely connected to incusions of the geometry of the quiver algebra of the quiver

e —> 0 —e

2.11. Given a (non-commutative) polynomial F in the associative k-algebra R = k(z1,...,%,) and a
closed point p = (a1,...,a,) € k", such that F(p) = 0. Let fi,..., fn be polynomials of degree d°f; <
d°F — 1 such that

filzr —a)) +...+ fo(zn—an) =F

By a constuction type argument, starting from the highest degree terms of F' and using reversed induction
and finally using the fact that F'(p) = 0 we see that such polynimials always exist. In the commutative case
the right factors are easily calculated by Taylor series expansion at the point p, but in general this does not
work.




DEFINITION (2.12.). The matriz (f1 ... fn), as defined above is called the left factor of F' at
p=(ai,...,a,) € k™ and denoted jp(F).

The left factor jp(F) has obviously rank 1 in the ring R = k(z1,...,2,). We are interested in the rank
of the left factor evaluated in some point ¢, i.e. the rank of the matrix jp(F)g.

DEFINITION (2.13.). Let F and p be as above. We define the left shadow S(p, F) of the point p

with respect to F' as the set
S(p, F) = {q € V(F)|rank jp(F)q = 0}

With some modifications in the definitions we see that in the commutative case S(p, F) = {p} if p is a
singularity for F'. In a regular point the shadow is the empty set. Notice also that if ' = 0 then S (p,0) = A2,

REMARK (2.14.). There is of course a counterpart to the above text, substituting left by right. In the
next chapter we shall see that in some special cases there are some nice connections between left and right
shadows.




3. Geometry @, for conic sections

3.1. Let R be a non-commutative conic section, i.e.
R = k(z,y)/(az® + bzy + cyz + dy?> +ex+ fy+9)

The quadratic part of the equation can be written

K(z,y) = (2 y)<i Z) (2)
e (s @) e (S T)6)

A linear shift of basis diagonalizes the first matrix and keeps the second one. Thus we can write the quadratic
part as
K(z,y) = Az’ +7y* + d[z, 4]

So a general noncommutative plane conic section has the form
R =k{z,y)/(O2® +vy® + [z, y] + ex + fy +9)
Let ¢ : R — M(k) given by ¢(z) = A, ¢(y) = B. Then we have the equation
S[A,Bl+ (Mta+e)A+ (vts+ f)B—(Ada+vdp—g) =0

where we use the notation ¢, for the trace and djs for the determinant of M.

PROPOSITION (3.2.). The k-algebra R = k(z,y)/I as given above (I # 0) has irreducible 2-
dimensional representations if and only if the following conditions are satisfied.
i) 0=0
i) At least one of A,y # 0
ii) If \ =0 then e =0 and v = 0 implies f = 0.
Proof. Having 2-dimensional irreducible representations is eqvivalent to the existence of a surjective
¢ : R — Ms(k) given by ¢(z) = A, ¢(y) = B i.e. linear independence of the set

{I,A,B,[A,B]}

If § # 0 this set is obviously dependent. If § = 0, choose some M and N such that det[M, N] # 0 and such
that M2, N? # 0. Then det[uM, N] # 0 for u # 0 and det[M +vI,N] # 0 for any v € k. Thus there exist a
solution (4, B) € M(k)? with det[A, B] # 0 and such that

Ma+e=vtg+f=Ada+vdp—9g=0

thereby satisfying the defining equation for R. O

THEOREM (3.3.). Up to isomorphism the following list gives a complete classification of all noncom-
mutative plane conic sections:

1) The pure quadratic ones z* +y2%+ g+ 6]z, y] where either g = 1 (smooth case) or g =0 (ordinary double
point/quantum plane).

2) The parabolic case z* +y + g + [z, y]

8) Two parallell lines 2 + g + d[z,y], including the degenerate case g =0 (a double line)

4) A simple line z + 0[z,y]

5) The first Weyl algebra 1 4 6]z, y]

6) The affine plane [z,y]
Proof. Just take care of all possibilities for the coefficients X, 7,06, f,g. O
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3.4. Let ¢ = (a,b) € k? be some k-point of R, i.e.
Xa? 4% +ea+ fb+g=0
Then we have

(Az — 0y + e+ Aa+6b)(z — a) + (bz+yy + f — da+b)(y —b) =
- Az? +yy? + 0z, y] +ex+ fy+g

Consider the system of linear equations

Az —d0y+e+ra+db=0
dx+yy+f—d0a+vb=0

A solution 1 of this system is called a left shadow of ¢ in R. (see 2.13 for a more general definition) Using
the notation from the previous chapter we see that in this situation 4 is a left shadow of ¢ if and only if
d(¢,¢) = 1+ 64.4. Notice that in the Weyl algebra case there are no k-points.

PROPOSITION (3.5.). Assume that Ay + 6% # 0 and that R is not the first Weyl algebra. Then every
point (a,b) in R has a unigque left shadow l(a,b). Furthermore we have I(a,b) = (a,b) if and only if one of
the following is true:

i) R 1is the affine plane
i) The point (a,b) is the origin of the quantum plane
ii) The point (a,b) lies on the double line =2 + 8[x,y].

Proof. The linear system defining [(a,b) has determinant Ay + 62, proving the first statement of the

proposition. The solution is given by

(5) =t (5 2) (5)- (156 7))

This gives (after some computations)
z a) _ -1 v 6 e A 0)[a
() - (0) =mw (5 () =G ) 6)
z\ a . .
Thus <y> = (b) if and only if

If A\ # 0 we assume in our classification that e = 0 giving a = 0 as the only solution. Similarily for v # 0.
For v = 0 we have infinitely many solutions, preasssumed that f = 0. |

e+2xa=f+2vb=0

3.6. If Ay + 62 = 0 we have a quite different situation. Then there are either no left shadows at all or
I(a,b) ~ Al. There are two cases where there are no solution at all, using an appropriate isomorphism they
can be written in the form zy — 1 (correspond to A = =1 and § = =% in the smooth case) and y — 2% — 1.
On the other hand, there is one case of infinite shadow, corresponding to the quantum plane zy + gyz with
g¢=0. Then [(0,b) = A'(y = 0) and I(a,0) = A (z = 0).

3.7. Assume R belongs to case 1) in the classification 3.3, i.e. A, # 0 and move the origin such that
the linear terms vanish. A scaling of z and y allows us to assume A = v = 1. Then there are two possibilities,
22 +y2 — 1+ 0[z,y] or 22 + y® + d[z,y]. Assume & # 0 and consider the inhomogenous case (¢ =1). Then
there are no irreducible 2-dimensional representations. The closed points of R are obtained be considering
the quotient of R in the plynomial ring k[z,y], i.e. let [z,y] = 0. Thus the closed points are given by the
classical conic section @ : 2% +y? —1=0.
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Pick a point (1,0) € @ and consider the left R-module 4k given by ¢(z) = 1, ¢(y) = 0. A resolution of 3k
as a left R-module is given by

0—R¥E R PR 4 k—0
where
My=(z-6y+1 dx+y—4) and Moz(x;1>

Apply the contravariant functor Homy_a1g (—,y%) and compute cohomology to obtain the following result:

k ifo=1
EXt]R(tﬁkmp k)= { k if ¢ = (cosv,sinv) where v = arctg%
0 elsewhere
The resolution above is constructed from the“factorization”

2+ 9y? —140[r,y)=(z—dy+1)(z—1)+ (6z +y —0d)y
Thus the left shadow is rotation by an angle v in the (z,y)-plane.

The homogenous case z? +y? + d[z,y] is equivalent to the quantum plane zy + gy via a shift of basis,
setting ¢ = i{%. In this case the left shadow of the point (a,b) is given by

) = _._L(_ 1-62 26 a)y
y)  Ay+9o? -26 1-06%)\b
or if we put cosu = _Tlfade: sinu = 725

()= 2 (3)

Thus once again the left shadow is a rotation by an angle u in the complex 2-plane. Notice also that 60
gives u — 7 and 6 — oo corresponds to u — 0.

3.8. It is also somewhat remarkable that for the double line [(a,b) = (a,b), but for the simple
line © + 6[z,y] we have 1(0,b) = (0,b+ 7). For the case of two parallell lines z? — 1 + §[z,y] we have
I(1,0) = (1,b+ ).

3.9. Notice that we have choosen to work with left structures. We could of course as well have choosen
right structures. In the plane conic section case there is a nice connection between left and right shadows.
Suppose that every point (a,b) has unige left and right shadows (e.g. in case Xy + 6> # 0). Use the notation
r(a,b) for the right shadow of (a,b). -

LEMMA (3.10.). Let R be a non-commutative plane conic section and suppose every point (a,b) has
unige left and right shadows. Then | and v are inverse constructions, i.e. l(r(a,b)) = (a,b) and vice versa.

Proof. Let R = k{z,y)/(F) and suppose F'(a,b) = 0. Let
fla=—a)+gly—-b)=F

be the left factorization of F in (a,b). Then (c,d) = l(a,b) is the unique common zero of f and g. Thus we
can write

f=Mz—c)+X(y—d, g=mn@—c)+rly—d
for some A1, Ao, 71,72 € k. But then we have
z-of +y—dg =F

where we can give f',g" explicitely and their commen zero is (a,b). O

3.11. In general the picture is slightly more complex. For a polynomial F' and a zero point p of F, p
is a right shadow for all its left shadows, but there is of course no uniqueness.
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