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SUMMARY. Let g be a real, completely solvable Lie algebra whose
nilradical is filiform and of positive codimension in g. The family of all such
Lie algebras is classified up to isomorphisms. Rigidity properties follow.
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1. Preliminaries.

1.1. We denote by Lien(F) the variety of all n—dimensional Lie algebra
structures over a field F. In recent years, a considerable amount of work has
been devoted to the study of the structure of, as well as the classification of
this variety; particularly for small dimensions, [CD], [KN], [N]. We present
here a somewhat different point of view by classifying inductively (up to iso-
morphisms), with respect to dimension, the family FS,, of all completely
solvable Lie algebras whose nilradical is filiform and of positive codimen-
sion, Def.1.10. As an application, rigidity properties of the Lie algebras in
FS, are derived, Thm. 3 (see [C2] and [AG] for previous results in this
direction). Many of the resulting families form projective systems. One par-
ticular example is the prosolvable algebra of polynomial vectorfields on the
line, defined by the basis relations lej,ex] = (k—7)ej+x (J,k=0,1,2,...).
In our setting, this algebra is isomorphic to the projective limit of the family
{fs,x}x (with a suitable choice of parameters), see Ex.4.6. This is just the
first in a countable series of similar projective systems, to be denoted by
{fnk}x (n=15,6,...), Thm. 2 and §§6, 7.

Our classification is complete up to the exact computation of the algebraic
parameter domains S, ; and 5,11’ ¢ of the two series of Lie algebras f, k, resp.
frx (cf. Prop.4.5). We expect these domains to be finite for k > 2n — 2.
Roughly speaking, our method consists in calculating orbits in the second co-
homology space of a Lie algebra under its automorphism group. An adaption
to the context of filiform extensions is outlined below.

1.2. Let g and a be Lie algebras over any field of characteristic 0. We
say that § is an extension of g by a if a isanideal of § and the
factor Lie algebra §/a is isomorphic to g, i.e., we have a short exact
sequence 0 — a — g — g — 0. In other words, "extension” will usually
stand for "left extension.” In our context this is natural, partly because the
class F'S,, is closed under admissible left extensions (Def. 1.3). On the
other hand, we were led not to consider "right” extensions of nilpotent Lie
algebras by abelian algebras of derivations, as they would seem to require a
rather detailed knowledge of the vast class of filiform nilpotent Lie algebras.
It might be a somewhat surprising fact that F'Sy, is small enough to admit a
reasonably simple classification. Of course, the filiform nilpotent Lie algebras
admitting external derivations with only real eigenvalues, are exactly the
nilradicals of the algebras in the class F'S,. Now assume g is solvable and

2

AL R S rmim i




a is abelian. Further, let n be a fixed nilpotent ideal of g containing the
commutator subalgebra [g,g]. If 6: g — Enda isa Lie representation we
may consider the second cohomology space H?(g,6) of g with coefficients in
8, [CE], which we identify to a certain quotient of the linear space C?(g,6)
consisting of all alternating bilinear maps B : g x g — a satisfying the
cocycle identity,

8 B(z,y,2) = ¥ (B(g,[y,2]) +8(z)B(y,2)) =0 (z,y,z€8). (L1

Here the sum is with respect to cyclic permutation of the ordered triple
< z,y,z > . The space H%(g,8) is obtained by factoring out the space of all
exact bilinear maps, i.e. bilinear maps of the form 0pf, where f:g — a

is linear and

9 f(x,y) = flz,y] — 6(=)f(y) + 8(y) f(z) (z,y € 9). (1.2)

We write By ~ By if By — By = 0sf, i.e., if B; is cohomologous to B;. As
in [S1,2] we let H?(g,g/n,a) = |JH?(g,d) where the union is taken over
8

the family of all representations @ of g in a enjoying the two additional
properties,
Kerf62n (1.3)

and

For all z in the nilradical of g, 6(z) is a nilpotent endomorphism

14
(if and) only if z lies in the ideal n. (14)

There is a canonical action of Autg x Auta in |JH?(g,0) (6 an arbitrary
4

Lie representation of g in a) given by

(o, ¢, B) > poBoa (a € Autg, ¥ € Auta, B € UH2(g,0))
]

Here Boa : (z,y) — B(az,ay) (z,y € g).

If B H%(g,6), let B® denote its restriction to n. Welet n(B) = {z e n:
B(z,n) =(0)} be the orthogonal complement of n w.r.t. B°. Alternatively,
n(B) is the radical of the form B°. The zero space of the representation
6 is denoted by Z(), thus Z(f) = {a € a: 8(z)a =0, all = € g}.
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1.3. DEFINITION. Let g and § be solvable Lie algebras, and assume §
is an extension of ¢ by an abelian Lie Algebra a. Let ©t denote the nilradical
of §, and suppose n is a nilpotent ideal of g containing the commutator
subalgebra [g, g]. We say that the extension § is n-admissible if the follow-
ing conditions are satisfied

(i) 8 contains no non-zero abelian direct factor.
(ii) The quotient algebra ©i/a is isomorphic to n.
(iii) a is equal to the center of .

In case n is equal to the nilradical of g, we simply say that the extension g
is admissible.

A 2—cocycle on g defining an (n—)admissible extension, is said to be
(n—)admissible. We are now ready to restate [S1, Theorem 3.8].!

1.4. THEOREM. Let g and a be solvable Lie algebras over a field of
characteristic 0, a abelian. Let n be a nilpotent ideal of ¢ containing [g, g).
The isomorphism classes of all n-admissible extensions § of g by a are in
bijective correspondence with the family of all Autg x Auta orbits Q in
\UH?(g,0) which satisfy the following conditions,

5 .

(i) QN H*(g,g/n,a) is nonempty.

(ii) If B € QN H?(g,0) where 6 satisfies (1.3) and (1.4) then a can not
be written as a direct sum of subspaces, a =U @V, in which U is 6-
invariant and contains the range space B(g,8) of B and, in addition,
(0) #V C Z(6).

(iii) n(B) N3 = (0), where 3 denotes the center of n.

1.5. We shall comment briefly on the various hypothesis of the above
theorem. First, if § is an extension of g by a determined by a representation
9 of g in a and a bilinear B in C?(g,0), then § may be realized on the
vector space g @ a with Lie product

[(g,0),(¢'sa")] = (l9,9'],6(g)a’ — 6(g")a+ B(g,9")) (9,9' € 8, a,d' € @),
(1.5)

in which [g, ¢'] denotes the Lie product of g and ¢' in g. Therefore
(0,8(n)a) = [(n,b),(0,a)] (n€n, a,be€ a),

! Correction: Read ” Aut § x Aut @ — orbits Q with H2(g,8/n,a) N Q # 07, instead of
” Aut @ X Aut @ — orbits Q in H2(g, g/n,a)” in [S1, Proposition 3.5 and Theorem 3.8]
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from which it follows that (1.3) Ker 8 2 n holds if and only if a is central
in fi. Hence (1.3) means fi is a central extension of n by a whenever /a is
isomorphic to n, in particular this holds for n-admissible extensions g. Let
us show that statement (1.4) is equivalent to ii/a = n. In fact, assuming
(1.4), if (z,a) € § then (z,a) € 1 if and only if ad(z,a) is nilpotent, that is
6(z) is nilpotent (by eq. (1.5)), which is equivalent to z € n by (1.4). This
means fi/a = n. Conversely, if fi/a % n, assume z lies in the nilradical of
g. Then 6(z) is nilpotent if and only if ad(z,a) is nilpotent (all a € a),
that is (z,a) € @i (a € a), or equivalently, z € n because fi/a % n. We

have shown

1.6. LEMMA. Let the notation be as above. If B € H?(g,0) where
6 : g — Enda is a representation of g in the abelian Lie algebra a, then
the following are equivalent.

(a) B € H*(g/n,qa) :

(b) The nilradical #t of the extension § = g(B,0) of g by a determined by

§ and B, is a central extension of n by a.

Now, if the center j of the nilradical fi of g is not equal to a, then we may
regard § as an extension of §/3 by 3 where g /3 is isomorphic to a factor Lie
algebra of g. Hence we should focus on extensions § for which } is equal to
a, which is easily seen to be equivalent with the condition n(B)nj; = (0)
of Theorem1.4. Let us show that condition (2) of Theorem1.4 is equivalent .
to Def.1.3(3). In fact, suppose D is an abelian direct factor in the extension
d, D # (0). Clearly, V C Z(6) otherwise we could find v € V, = € g such
that 8(z)v # 0 which gives [(z,0),(0,v)] = (0,8(z)v) # 0, contradicting that
V is central in §. Further, we must have B(g,8) NV = (0) because § may
be written as a direct sum § = §; ® V where §; is an ideal. In particular,
512 {(2,0) : = € 8} so that [(2,0),(y,0)] = (lo,v], B(z,v)) (&, € 8) which
enforces B(z,y) ¢ V whenever B(z,y) # 0.

Thus the sum B(g, g)+V is direct. Let U denote a subspace of g; satisfying
U2 B(g,9) and U@V = a. We show that 8(g)U C U. If, on the contrary,
z€gand u€U satisfy 8(z)u ¢ U, then [(z,0),(0,u)] = (0,8(z)u) & &1
. which is impossible because § = {(z,u) : z € g,u € U} is a subalgebra.

The above observations are summarized in

1.7 .‘LEMMA. Let § be an extension of a Lie algebra g by an abelian
Lie algebra a determined by a representation 6 : g — Enda together with
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a cocycle B in H?(g,6). The following conditions are equivalent.

(i) @ contains a nonzero abelian direct factor.

(ii) a can be written as a direct sum a = U @V of nonzero subspaces U
and V satisfying B(g,8) CU, 6(g)U CU, and V C Z(6).

1.8. For convenience we restate Corollary 2.6 of [S1], it will be used over

and over again below.

PROPOSITION. Let g be a solvable Lie algebra, B € C%(g,6), 6: g —
Enda. Assume a is the center of the nilradical of the extended Lie algebra
9(B, ). Then the automorphism group of g(B, #) is isomorphic to the group

of all matrices (g 3)) , where ag € Autg, ¢ € Hom(g,a), ¢ € Auta,

and

Boag = poB+ 0pp,  Op¢ € B*(g,0)

P~ = foag (1.6)

1.9. NOTATION. Let g be any Lie algebra. We fix a basis E, =
< ej,ez, - ,en > for g. The dual space g* to g consists of all real linear
functionals of g. We denote by w; (or by e}) the functional dual to e;, and
by E; =< w; >, the basis of g* dual to E,. The elementary alternating
2—forms B;;j (1<:<j <n)wrt. E=E, are defined as

n n
Bij(z,y) = wi Awj(z,y) = ziy; — 259 (z= Y aiei, Y=Y yiei € 9).

i=1 =1

They constitute a basis for the space Az(g) of all skew-symmetric bilinear
forms on g. The structure constants of g are denoted by ¢}, (1 < j, k,1 < n),
thus

n

[eks 61] = Z c‘]ilej,

=1
and
[CB, y] = Z Bk,l(l‘, y)[ek,el] = Z ZcilBk,I($> y)ej’ (3773/ € g)
1<k<I<n 1<k<I<n j=1

It follows for z,y,z € g that

Bij(z,[y,2]) = 2: Y el Bra(y,2) — 25 Y, kB, 2)

k<1 k<1




We put

Giki(2,9,2) = Y :Bui(y,2) (z,4,2 €8), (L.7)
<z9>

in which the sum is extended over cyclic permutation of the ordered set
< z,yY,z >. Hence

Giki(e,y,2) = Y wilyez — yizk)

<£)y)z>
Ti Yio oz (1.8)
=|zr Y z|=wiAwjAwl(z,y,z)
7 BT )

Moreover, the form B; ; is a (central) 2—cocycle on g if and only if

> Bij(@ln2) =D (hiGikt — ckiGika)(z,y,2) =0 (Vz,y,z € g),
<z,y,z> k<1
(1.9)

We see from eq. (1.8) that the set of all Gik,; (1 < i < k < n) constitutes
a basis for the space A3(g) of all alternating 3—forms on g. Given a basis
< e; >, for g, all expansions of forms in A3(g), will be relative to the
basis < Gi k1> .

1.10. Let g be a Lie algebra. The lower (descending) central series {C'g}
of g is defined as

C'g=g, C'g=[g,C g (:21).

Now if n is nilpotent, let r be the smallest integer for which C™n = (0). We
say that a nilpotent Lie algebra n is of type {p1,p2, - ,pr} if dim(C*~*n/Cin)
= p; (1 <i < r). The filiform (nilpotent) Lie algebras are the ones of type
{2,1,1,---,1}. We shall say that a solvable Lie algebra is filiform if its nil-
radical is filiform and has codimension at most one. More generally, we make
the following

DEFINITION. We say that g belongs to the class F'Sy if g is com-
pletely solvable and its nilradical is filiform and has codimension k in g.
The subset of F'Sy consisting of all n— dimensional algebras is denoted by
FSk n. Furthermore, we let FSo = |Jzw, FSk.

We remark that any g € FS, contains an ideal [ € F'§; whose factor
algebra g/l is abelian. The classification of F.S,, can be reduced to that of
F'S; (85). Consequently, we start with the family F'S; (§§2-4).




1.11. For any ¢ in F'S; , possessing nilradical n, we may consider the

descending ideal sequence
go2n2Cn2---2C*"3nD2C" %n=(0) (1.10)

Hence we can choose a basis E, =< e; >-; such that e; € g\n, ez, e3 €
n\Cln, and e;y3 € C'n\C/*n (1 < j < n-—3). Any such basis E, will
be referred to as canonical.

Now, assume g is in F'Sy , with canonical basis E = E, and, in addition, §
is an extension of g by a = Re,y; determined by a character 8 : g — Enda,
together with a cocycle B in H?(g,6). Under these circumstances 8 = 6, is
uniquely given by a real ¢ such that

9(61)6n+1 = t6n+1. (111)

We say that the extension § = g(B,0;) is defined by the data (B,6,) or
simply by (B,t). Note that

Z 9($)Bi,j(yaz): E txlBi,j(y)Z)

<z,y,2> <z,y,2> (1.12)
= twy /\wi/\wj(x,y,z) (mayazeg)'

Next, we define

0:B; j(x,y,2) = 9¢B; j(z,y,2)
= > (Bij(wly,2]) +6(2)Bij(y,2) (.9, € 9).
<z,y,z>
(1.13)
In particular, 8;B; ; = 0 if and only if B; ; € C?%(g,0;). We shall often write

OB instead of 0By or 0B;.
Combining eq. (1.9) with eq. (1.12) we derive the identity

LEMMA.
8:Bi,; =(t - C{j — iw1 Aw;i Awj+

Z ‘ (c{lwi ANwr Awp — C',;IL«JJ' ANwi A wz),
k<1, (k,)¢{(1,1),(1,5)}

(1.14)

which will be used frequently in our subsequent calculations of cocycles.




2. Some basic results.

In what follows we shall apply Theorem 1.4 inductively to the class of all
F'S; over R (the classification is essentially the same over C). Because of the
uniform structure of such Lie algebras, several simplifications are possible.
First of all, observe that no § in FS; can be an extension of a filiform
nilpotent g. Infact,if §/a =g in which a is abelian and dim g>1,
we have @i = [§,§] is nilpotent of codimension one in g. Consequently,
[9,8] = fi/a has codimension onein g, and g can not be nilpotent. We
state this simple, but basic observation as,

2.1. PROPOSITION. Any element in F S1,n of dimension greater than
three is a one-dimensional extension of an element in FSipn1.

The above result shows that any g in FSyn can be obtained recursively
from one of the three-dimensional Lie algebras listed below by performing
repeatedly n — 3 one-dimensional extensions. In view of this, Prop. 2.1
forms the basis for the classification of all such Lie algebras, as given in the

following sections of this work.

2.2. Next, we list all elements in FS; of dimension three and four. As
usual, we give a minimal number of nonzero Lie relations relative to a basis
< e >[.; (those relations which follows by anti-symmetry are not listed).
We shall find it convenient to denote these Lie algebras by new symbols, the
notation of [BC, p. 180] is given in parenthesis. -

(1) g2 X g1 : [e1,e2] = ez
(2) fs(a) (ae0,2,a1) : [e1, 2] = (@ — L)eg, [e1, €3] = €3 (& g3 a(a — 1))
(3) b3 : [61,62] = ez + €3, [61,63] =e3 (% 93,3)

(4) &s(B) (B>0):  [e1,e2] = Bea — es, [e1, €3] = €3 + Bes (=2 93,4(8))

In dimension four we have the following list. Only the Lie relations which
must be added to the corresponding three dimensional relations above, are
given. For instance, a4 is an extension of a3 by Rey, and is as such defined by
the data (B,t) = (By,3,1) which give the additional Lie relations [e, e5] =
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€4, [61, 64] = €4.

(1) ag:  [ez,e3] = ey, [e1,e4] = €4 (94,1)
(2) f4(0!) (0! € [0, 2], « -‘,é 1) : [62,63] = ey, [61,64] = ey (= 94’9(01))
(3) ba: [ez,e3] = ey, [er,e4] =2e5 (= 84,10)

(4) ea(B) (B=0):  [es, €3] = ey, [e1,64] = 28es (= g4.11(8))

We give in Prop. 2.11 below some "principal” families of filiform extensions
of the above Lie algebras in arbitrary dimension n (n > 4). A complete list
will be given at the end of the paper (cf. §85,6, and 7).

2.3. In general the space H?(g,g/n,a) need not be Autg x Auta stable.
In fact, n need not be Aut g-invariant. However, if g belongs to F'S; then n
must always be equal to the nilradical, which is invariant under all of Aut g.
Moreover, 6 = 6, is Aut a-fixed whenever the dimension of a equals one:
VOl =0, (0#£¢e R). We proceed to study the action of Autg on 0;.
Put, for e; € g\n, s € R,

Auts g = {a € Aut g : a(e;) = se; modulo n} (2.1)

Note that Aut, g is independent of the choice of e1. Auty g is equal to the
common fix-point group under Aut g of all the representations 6, (t #0).
We shall prove below (Prop. 2.7) that Aut; g = Autg for all ¢ in FS; of

dimension greater than 4.

First, let ¢4(3) and fs(a) (e € [0,2], @ # 1) be as in 2.2. It is not hard to
verify that ¢4(3) admits no filiform extensions. Moreover, the automorphism
group of f4(a) is given as follows (a proof can be found in [S2)).

2.4. LEMMA. The automorphism group Aut fa(a) has the following ma-

trix representation relative to the basis < e; >t

1 0 0 0
. r a 0 0 _ —1
a € (0,2)\ {1} : s 0 4 0l ad #0, u=(1-a)lrd,
t as u ad
1 0 0 0 -1 0 0 0
r a 0 O r 0 b 0
a=0 s 0 d ol ad # 0; < . 0 0 , bc#0
t as rd ad t —er —bs —bc
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1 0 0 O
a=2 : (cz Z g , co=ad—bc#0, u=as—cr, v=bs—dr.
t u v ¢

In particular, Aut;f4(a) = Autfs(a) whenever a # 0, and Aut; f4(0) U
Aut-l f4(0) = Aut f4(0)

2.5. It turns out that the only five dimensional filiform extensions of g =
f4(a) are (within isomorphisms) the Lie algebras § = fs(a) (@ € [0,2]\ {1})
and § = gs(a) (a« € (0,2) \ {1}). They are given by the extension data
(64, B) in which

t=2a—1, B=DByy, forfs(a)

and
t=a+1, B=Bsy, forgs(a).

More details will be given in Sec. 4. According to Prop. 1.8, the automor-
phisms of these Lie algebras have matrix representations

Az(@o 3)), Ag € Autg, 4 € Hom(g,R),0#£ ¢ €R, (2.2)

in which

BoAy =1 - B+ 0i¢, 0 =00A,. (23)

It follows from this and Lemma 2.4 that Aut § = Aut; § except possibly for
8 = f5(0). An easy calculation shows that Aut f5(0) consists of all matrices

1 0 0 0 0
r o a 0 0 0
A=]s 0 d 0 0 |, ad#0,
‘ rs as rd ad O
t u %r2d rad a%d
which shows Autf5(0); = Aut f5(0). In fact, Ag € Aut_; g admits no solu-
tion @, of eq. (2.3) since f104¢ = 0_;.

Using the above lemma together with an inductive argument based on eq. (2.2)
and (2.3), we have the following result on Aut fo(a) which will be needed
in Sec. 4.
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COROLLARY. Let fp(a) in FSy n be realized with the basis relations,

[e1,e2] = (@ —1)eq, [e1,€]=((i—3)a—(i—4))e; (3<i<n),
[62,6,;] = €41 (3 <i1<n- 1), a € [0,2] \ {1}

Then Aut f,(a) has the following matrix representation relative to the basis
<e >y, N=5:

0 0 O 0
a 0 O 0
0 d 0 0
ad 0 , a€[0,2)\ {1}. (2.4)
. .
a”3d
1 0 0 O 0
r a 0 O 0
s ¢ d 0 0
ad 0 5 ad—bc;éO, a =2 (25)
* :
a™3d

2.6. In dimension four, the following result holds, as is readily verified
(cf. Lemma2.4).

LEMMA. Let g bein FS) 4.

(a) Suppose g is non-isomorphic to e4(0) and f4(0). Then Aut; g = Aut g.

(b) If g is isomorphic to one of the algebras ¢4(0) and f4(0) then Autg =
Auty gU Aut_; g.

(¢) e4(B) admits no filiform extensions (8 > 0).

We are ready to prove,

2.7. PROPOSITION. Let § be an element in F'S; of dimension greater
than four. Then Aut; § = Autg.

Proof. We argue by induction on the dimension dim § of g. As we have
seen above, the result is valid for dim g = 5. Now, if ddmg@=n > 5 and @
belongs to the class F'S} ,, then § is an extension g(B,0) ofa g € F'S1 n1
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by an abelian Lie algebra a of dimension one. Consequently each A in Aut g
is of the form

A:(a,z)— (Y- a+d(z),A(z)) (a€a,z€g),

. where

AO € AUtg3¢ EHom(g,a), d’ € R, "»b 7407

BoAo = - B + 9p¢, BoAy =,

Prop. 1.8. Let < e; >, denote a canonical basis for the algebra g. in

i=1

FS; n. In light of the above and the inductive hypothesis,
Ae; = Age; + d(e1)en = Ager  (mod i),

so that A € Aut; g. The result follows by induction. Q.E.D.

2.8. If V is a vector space we let GV denote the space of all k-dimensional
linear subspaces of V, i.e., the Grassmannian. Let H2(g) denote the linear
space of all central 2-cocycles of a Lie algebra g, taking values in the field of
g. We restate [S1; Corollary 3.6] as

PROPOSITION. Let g be a Lie algebra, } its center. The isomorphism

classes of all Lie algebras § with center 3 of dimension k,§/3 = g, and

without nonzero abelian direct factors, are in bijective correspondence with

those Aut g-orbits Q in Gy H?*(g) enjoying the property that (| g(B)N; =
BeV

(0), for all V in Q. Here g(B) = {z € g : B(z,g) = (0)}.

2.9. Next, we give a simplified version of Theorem 1.4 applicable to the
class F'S;. Let 8 = 6, be a character of g € F'S; (t #0). By Prop.2.7, the
fix-point group of 8 is all of Aut g. Therefore, the Aut g X Aut a orbit of any
element B of H?(g,8) is contained in H?(g,#6). Moreover, the Aut a-orbit
of B lies in H?(g,0) since dim a = 1. Consequently it suffices to consider
all Aut g-orbits in H?(g,6). We recall that n(B) denotes the radical of the
restriction of a bilinear form B to the nilradical n, and 3 denotes the center

of n.
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2.10. THEOREM. Let g € FS;, over R,assume that n > 4. The
isomorphism classes of all filiform extensions of g by a one-dimensional Lie
algebra, are in bijective correspondence with the set of all Aut g-orbits Q in

U H?(g,6:) with n(B)N 3 = (0) for all B € Q. (Here we let H?%*(g,0) =
tER

H?(g).) Moreover, H*(g,8;) is Aut g-stable for each real number t.

COROLLARY. Let g bein FSy, (n > 4). If By € H*(g,6,) and
B, € H%(g,0,) with r # s, then the corresponding extensions 8(B1,6;) and
8(B2,05) are nonisomorphic.

2.11. For convenience we list at this point certain "principal” families
in F'Sy. From these all other elements of F'S; are obtained as extensions
in a way to be described explicitly in the following sections. As usual the
Lie algebras are defined in terms of all nonvanishing Lie products between
the elements of a fixed canonical basis E, =< e; >T_, . Relations obtained
by antisymmetry of the Lie product are omitted. The next proposition will

follow from the results in sections 3 and 4.2

PROPOSITION. The Lie algebras an, by, ty(a), 05(a), es(B), fn(B),
9n(B), bn, described below are well-defined, are pairwise nonisomorphic and
belong to F'Si n.

(a) ap (n>4):

[e1,e2] = €2, [e1,€;] = (4 — B)ei, [e2,eim1] =€; (4 <i<n)
(0) b, (n>5):
le1,e2] = €2, [ea,e3] = ey, [e1,6:] = €; (4 < i < n), les,ei]l = i1 (4 < i <n-1)
(c) c5:
[e1,€2] = €2 + €5, [e1, eq] = €4, [e1,€5] = €5, [e2, €3] = €4, [e3, 4] = e5.
tn(a) (n>5, a>0):
[e1,e2] = €2 + €5 4+ aen, [e1,e] =i —eiys (4<i<n—2),

[elaen—l] = €n-1, [617611] = €n,

le2,e3] = eq, [es,ei] =eip1 (4<i<n-—1)

% The Lie relations of €,(a) and O,(a) (n > 7) were incorrectly announced in [S3] (put
o = =..an—¢ =0, an—s > 0).
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(d) 05 .

[61,62] = €3 — €5, [61,64] = é4, [61,65] = €5, [62,63] = €4, [63,64] = €5,

op(a) (n>5,a>0):
[e1,€2] = €2 — €5 + aen, [e1,ei] =ei+eir2 (4<i<n-—2),
[61, en-l] = en-1,[e1, en] = €n,
[e2, e3] = €4, [e3, €i] = eit1 (4<i<n-1)
(e) ea(B) (B20):
[e1, €3] = Bes — €3, [e1, €3] = €2 + Bes, [e1, 4] = 2Beq, [e2, €3] = €.

¢4(8) has no filiform extension (8 > 0).

(f) fa(B) (n>4,8€(0,2], B#1):
[e1,e2) = (B —1)ez, [ex, 6] = (1= 3)B — (1 —4))es (3<i<n),
ez, ei] =eiq1 (3<i<n—1).
(9) 8a(B) (n2>5, B€(0,2), B#1):
le1, €2] = €2, [e1, €] = (B + (1 — 4))ei (3 < <),
| [e2,e3] = —eq,[ea,€il =€ip1 (<1 <n— 1).
(h) bn (n25):
[e1,62] = €2 + €3, [er,ei] = (1 —2)e; (3<1 < n),

[62763] =64,[63,6i] = €i+1 (4S'l Sn_l)

2.12. REMARK.

(a) Let ng (k > 3) denote the k-dimensional nilpotent Lie algebra whose
nonzero basis relations are given by [e2, ;] = eit1 (2 <1 < k). Observe that
all the Lie algebras listed above have nilradical isomorphic to n for some
k.

(b) We shall find it convenient to extend the parameter domain of the Lie
algebras fn(8) and gn(B) to all of Rx\{1}. Note that T : fa(B) —
gn(—ﬁ%) e u; (4<i<n)e - (B—1)ug, e2 — ug, €3 — U, defines
an isomorphism. Consequently, the family gn(8) can beincluded in fn(B),
and vice versa. In the sequel we shall focus on the algebras fn(B), cf. §4.
We remark that an isomorphic copy of the solvable subalgebra tﬂ'\’[t]% of
the Lie algebra of derivations with polynomial coefficients, is obtained by
forming repeated filiform extensions of gs(3) (or of f5(3)).
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2.13. NOTATION. (a) Let V be a vector space, < v; >; a fixed basis
for V. Let v =) ; a;v; € V. We say that v > v; if a; #0.

(b) Let g be in FS;, with canonical basis < e; >, . Assume B =
Ei<j @; ;B; j is an alternating 2—form on g. We say that B is based on
the form B; , if B > Bin (ie., ajn #0).

With notation as above, the filiform extensions of g are the ones obtained

from cocycles B based on B; p for some i (1 <t < n).

2.14. LEMMA. Let the notation be as in 2.13. Assume [e;,e;] = ey, for
some i and j. Then no cocycle on ¢ is based on By, n-

Proof. We observe that 8gBm n > wi Aw; Awy (recall w; = er). Further,
09Bap # wi Awj Awy for (a,b) # (2,7) since < e; >; is canonical. Let B
be any alternating 2—form based on By, n. In view of the previous remarks,
9B = w; Awj Awy, and B is no cocycle. Q.E.D.

The following result reduces the extension problem (for the algebras listed
in Prop.2.11) to the study of cocycles based on Bz, and Bs,s.

2.15. PROPOSITION. Let g be any of the Lie algebras in Prop. 2.11
(a) — (h) with its given basis < e; >[-; . Then every admissible cocycle is
based on By, or B; ,. Moreover, no cocycle is based on B;, where i > 3.
If, in addition, g # b, then every cocycle is cohomologous to a cocycle not

based on Bj .

Proof. The Lie algebras of Prop. 2.11 obey one of the basis relations
[es,ei] = eiy1, [e2,ei] = eiy1 (3 < i < n—1). Consequently, no cocycle is
based on Bjt1n, 1 +1 > 4, Lemma2.14. It follows that each admissible
cocycle B must be based on B; , for some ¢ € {1,2,3}. Assume B is based
on B; , and on no other B;,. Then the restriction of B to the nilradical n
has a radical containing the center Re, of n. Hence B is nonadmissible.
Finally, assume g # h,. We prove by induction on the dimension n of g
that each cocycle is cohomologous to a cocycle not based on By . The as-
sertion is readily verified for n = 5. Assume it holds in all dimensions less
than n. Now g is an extension of a filiform algebra b by Re,. We denote
the corresponding extension data by (C,t). Let p: g — § be the canonical
map. On g we have 0 ~ e}, = (t — to)Bi,n — Cop. If t —to # 0, we can
assume the coefficient of By, in B is equal to t —to (multiplying B by a
nonzero constant). Hence B is cohomologous to the cocycle B — Jey,, which
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is clearly not based on Bj .

Assume t —t) = 0. We write C = Z(i,j)el @; ;B; ;. Then we have 0B, , =
Z(i,j)el a;jw; A w; A wj. Now the cocycle C is admissible so the induc-
tive hypothesis implies that a;n,_; # 0 for i = 2 or 3. Hence 8B; , -
w1 Aw;jAwn_y (2 =2or 3). We proceed to show that By ¥ wi Aw; Awp_y
whenever (7,5) # (1,n). For, suppose By | > wj Aw;Awp_1, where 1 < k < [.
If ] =n—1, the relation [ey, ¢;] = ex must hold. However, this relation does
not occur in Prop. 2.11 (a) — (g) for ¢ = 2,3 (contrary to this, b, does
admit the relation [e1, e3] > e3). If, on the other hand, [ # n — 1, we must
have | = n and [e;,en—1] > €5 or [e1,€n—1] = €n. The latter relation does
not occur in our list, whereas the first relation implies k¥ = 1, contrary to
what we have assumed. It follows that for any form B based on Bj ,, we
have 0B > wy Aw; Aw, (1 =2 or 3), and B is no cocycle. This completes
our inductive argument. Q.E.D.

2.16. REMARK. As we shall see below (Lemma3.11), h, does in fact
admit a nontrivial cocycle based on By p.

3. The a, b, ¢, o and h—series.

We are now ready to begin our classification of F'S;. See Prop. 2.11 for
notation. Notice that, throughout this article, the dimension of a given
Lie algebra will always be the sum of its indices without braces (whenever
such occur). For example, the Lie algebras denoted by b% and fflr)z ‘have

dimensions n + k and n + 2, respectively.

3.1. LEMMA. Let g be a filiform extension of a4 of dimension 5. Then
¢ is isomorphic to exactly one of the Lie algebras as, bs, ¢5,95. Moreover, if
0:(e1) = tes, Ker 6; = n(ay) (the nilradical of a4 ), then H?(ay4,6;) is equal
to: (By3) if t =0, (By,2,Bs4) if t =1,(Bsy4) if t =2, and (0) otherwise.

4
Proof. Let f = ) fief € a;. Using the defining relations of a4 (cf.
=1
Sec2.2)

[ela 62] = €2, [62’63] = €4, [61a64] = €4,

we find by means of eq. (1.2)

Oif = —t(faB12+ fsBis + faB1a) + faB12 + fa(B1,a + Ba3)
= fa(1 = t)B12 — f3tB1 3+ fa((1 —t)B14 + Bz 3).
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Hence the trivial cocycles are,
B2(a4,9t) = ((t - 1)31’2, tBl,3, (t — 1)31,4 - 32’3) (31)
Further, easy calculations using eq. (1.13) or (1.14) show (as usual w; = e¥),

0By =0B;3 =0,

0B1,4 = w1 Awp A ws, 0By 3 =(t —1)w; Awy Aws
0By 4 = (t — 2)w1 Awy Awy

0B3 4 = (t — 1w Aws A wy

(3.2)

Combining eq. (3.1) and (3.2) we derive the statements about HZ(ay,#).
Now, as straight forward calculations show, the automorphism group Autay
can be represented as the group of all matrices

(ab # 0) (3.3)

o O Q O

0 0
0 0
b 0
—b

QRLO O —~

c ab
relative to the basis < e; >f_; (see Prop.1.8). Hence we find

By 40U = ab2B2,4
(Bi2 + B3 a)oU = a(By 2 + b*Bs 4)
(B1,2 — B3,4)oU = a(By 2 — b*Bs 4)
B; 40U = ab233,4,

where the calculations are carried out modulo coboundaries. Except for the
"degenerate” orbit of Bj s (corresponding to an extension whose nilradical
has two-dimensional center), we obtain three Auta, x AutRes orbits in
H?(ay,1). Thus there are exactly three nonisomorphic extensions of a4 in
this case, and they can be realized by the cocycles B3 4,B34 + B; 2, and
Bj 4 — By 3. Further, H?(ay,2) consists of the single orbit (Bz,4). Altogether
we obtain (within isomorphisms) exactly the filiform extensions bs, cs5, 05,
and as. In addition, the orbit of By 3 corresponds to a (non-filiform) central
extension of a; whose nilradical has two-dimensional center. This completes
the proof. Q.E.D.
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3.2. LEMMA. The only filiform extension of the Lie algebra c5 (resp. ds)
of dimension six, is ¢s(a) (resp. ¥s(a)), a > 0.

H?(c5,0,) is equal to: (By3) for t =0, (By2,B35— B14) fort =1, (Ba,4)
for t = 2.

H?*(95,0;) = (B12,Bas + B1,4), for t =1, (By3) for t =0, and (B3,4) for
t=2.

Proof. We consider ¢5, the argument being similar for 5. Recalling the

basis relations,

[61,62] = ey + es, [61,64] = €4, [61,65] = ées, [62,63] = €4, [63,64] = &5,
one finds easily, using eq. (1.2),
B?(¢s5,0;) = (t—1)Biy, tB1s, (t—1)B1a—Bas, (t—1)Bys— Bz —Bs ).
Further, by eq. (1.14) we calculate (letting w; = €}),

0By3 =0B13=0, 0B14 =w; Awz Aws, OBy 5 = wy Aws Awy,

0By 3 = (t — 1wy Aws Aws

0B 4 = (t — 2)w; Aws Awy

0By 5 = (t — 2)wy Awz Aws + wa Aws Awy

OB3 4 = (t — 1)w; Aws Awy

OB3 5 = (t — 1)w; Aws Aws +wy Awy Aws

OBys = (t —2)wy Awg Aws + w1 Aws Awg + w1 Aws Aws — wy Awg A ws

Hence no linear combination Y. «;;B;; can be a nontrivial cocycle
1<i<j<5
unless a3 4 = —ag 5. It follows that ¢; has an extension by Reg for which

the nilradical has center of dimension one, if and only if ¢ = 1. Further,
By 3 and B; 3 + B34 are trivial cocycles for ¢ = 1, so that By 2 and —Bs 4
are cohomologous (and nontrivial). Moreover, By 3 is nontrivial iff ¢ = 0,
and B;4 is a cocycle iff ¢ = 2, and is nontrivial. Hence the statement
about H2(cs,8) follows. Next, we check the various extensions ¢s(Bs5 —
Bi,4+sBi132), s € R, for isomorphisms. Recall that ¢5 is an extension of a4
determined by the character 6;(e1)es = es, Ker 6; = n(a,), and the cocycle
B =B+ B34 € H*(a4,60;), Lemma3.1.

In view of Prop.1.8, the automorphisms of ¢ are of the form A = (‘:11,0 3,) ’
where A € Autay, ¢ = ()i, € af, 0 # ¢ € R, and Body = ¢B +
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014. This gives ¢3 = bd, ¢4 = —be, b = a, and 4> = 1. Hence ¢ =
(¢1,¢2,¢ed,—€e), b =€, 1 = a in which € = £1, and we are using the no-
tation of eq. (3.3) in the proof of the preceeding lemma for the matrix of
Ag € Aut ay. Therefore

1 0 O 0 0
c a O 0 0
A=|0 0 e 0 O (a #£0; ¢,d,e,u,v € R). (3.4)
d e —e e 0
u v ed —€e a

(In particular, Aut cs has four connected components.) Using this we derive,

(B3’5 — Bl,4 + aBl,g)oA = :I:a(B3,5 — B1,4 + aBlyg) - 6B1,2 + (C — u)Bl,g
- CB3’4 F ’UB2,3 ~ :I:a(B3,5 — B1’4 + aBl,z)

since —B3 4 ~ B12,B13 ~ 0, and By 3 ~ 0. It follows that the Autcs x
Aut R-orbit of By = B3 s—B; 4+aBj 2 consists of all B, and all tB_,, t #
0. Thus we have precisely a one-parameter family of (pairwise nonisomor-
phic) filiform extensions of ¢5 by Reg, that is ¢s(a), a > 0. This completes
the proof. Q.E.D.

3.3. The Lie algebras ¢,(a) and ?,(a), @ > 0, are defined induc-
tively by letting ¢n41(8) = ¢n(0)(8B1,2 + B3,n — Bint1,61) and 0,41(8) =
0,(0)(#B1,2 + B3,n + Bi,n-1,61), respectively (n > 5, § > 0). Accordingly,
a set of basis relations of ¢,(a) can be specified as,

[e1,e2] = €2 + e5 + aey,

e1,¢e;| = e; —e; 4<1<n-2),
[e1, €] +2 ) (3.5)

[el,en—l] = €n-1, [613611] = €n,

[62,63] = €4, [6376i] = €i41 (4 S t S n-— 1)7

cf. Prop.2.11 (c)-(d). In order to classify all filiform extensions of c¢,(a)
we shall need the following result on the automorphisms of such algebras. A
similar result is valid for ¥,(«).

LEMMA. Let ¢g (8 > 0) be the extension of ¢,(0) by Renyy with cocycle
Bg = fB12+ Ban — Bin1 € H2(c5(0),6;), n > 5.

(a) If A= (a;j) € Autcy(a) then a11 =1, azp =ann=0a#0, a3; =
azp =0, az3 = %1, ag4 = a33a, and a; ; =0 for : < j.
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b) Let Ag € Aut cg,
B B

Aﬂ=(¢ ¢) $= Zq&, € ¢n(0)*, ¥ #0, A € Aut ¢u(0), A= (a; ;)i ;.

Then ¢ =a, (]54 + an2 = 0 if ass = 1, ¢4 —an,2 = 0 ifa3,3 = -1.

Proof. Since a > 0), it follows readily that Bg satisfies the cocycle iden-
tity, cf. (3.7) below.
(a) is shown by finite induction on the basis of Aut ¢5 ( eg. (3.4)). The induc-
tive step is taken care of using Prop.1.8 and the fact that cx41(a) (5<k<n—1)
is the (Bsk — By,k-1 + aBy 2,01 )-extension of ck(0). We omit the straight
forward details.
(b) : Using the defining relations on ¢,(a) we calculate,

0146+ ¥Bg =
— ¢3B13+ ¢4Bo3 + ¢5(B1,2 + B3 a) + ¢6(Bss — Br o)+
4+ ¢n(aB12+ B3 n—1 — Bi,n—2) + Y(BB12 + B3 n — B1,n—1).
Further, for A € Aut ¢,(a) we find,

BgoA = a3 3(+faB1y — an1B13s —an2Bas + anaBs s+ -+ annBsn)
—(an-1,2B12+ an-13B13s+ -+ an-1,nB1,n)

Now BgoA = t¢oBg+ 01¢, Prop.1.8, hence (¥ — ann)Bsn =0 and (¢4 +
a3 3an2)By3 = 0, the forms B;; being linearly independent. This clearly
implies ¥ = apn = a, ¢4 +aszan2 =0. Q.E.D.

3.4. LEMMA. The only filiform extensions of the Lie algebras , ¢,(a)
(resp. 0,(a)), n > 5, of dimension n + 1 occurs for @« = 0 and are the
algebras cp41(a) (respectively Op41(a)) (a > 0).

H?(cp(a),8) is equal to:

(B13), t =0; (Bi2,B3yn — Bin-1), f a =0 and t =1; (Bys) if a >0
and t =1; (By4), t =2; (0) otherwise.

H?(0,(a),6,) is equal to:

(Bi3), if t = 0;(B12,B3n + Bin—1), if @ = 0 and t = 1; (B1p) if
a>0; (Bzy4), t=2; (0) otherwise.

Here a = (a1,0a2,...,0n-5),0; 20, 1 <i<n-—5.

Proof. We consider ¢,(a), the argument being similar for 3,(a). On let-
ting ¢,(a@) = ¢,, a > 0, the statement of our lemma becomes valid for n =5
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by Lemma 3.2. We argue by induction on the dimension n, assuming the
result for Lie algebras of dimension less than n, where n > 5. Recalling the
defining basis relations of ¢,(a), (3.5), we calculate easily,

B2(Cn(a), et) =

((1—1)By,2,tB13,(1 —t)B1a + Baa, (1 —t)B1s + Bi2 + Ba g,

(3.6)
(1-t)Byg — Bia+ Bss, -,
(1 —t)By n — Bi,n—2 + B3,n-1)
Further,
0B1n =wi Awz Awn-1, OB1n—2 =wi Awz Awn-_3,
OB;3 n—1 = (t — w1 Awz Awn—1 + w1 Awz Awn—3,
0By 5 = (t —Dwi Awz Awp +wr Awz Awn—1 + w1 Awz Awn—2
OB3 p = (t — 1)wi Aws Awn + aw; Awy Aws + w1 Awz Awn—s
O0B1,n-1 =w1 Aw3g Awn—2
OByp=(t—1wi Awg Awp+ w1 Awg Awp— —ws Awg A wn—1
OB;p=(t— 1w Awj Awp + w1 Awi Awp—3 —ws Aw; Nwp_1—
w3 Aw;i—1 Awp 4+ awy Awr Aw; (5<i<n—2) (3.7)

OBys =t —2)wi Awg Aws —w1 Awg Awy —wz Aws A ws,
OBy, = (t —2)w1 Awy A wj — w1 Awg Awj—g — w3 Awg Awjy
(6<j<n-2)

0Bs; = (t —2)w; Aws Awj — w1 Aws Awj—g — w3 Aws Awj_1

—wiAwa Aw; (6<j<n-2)

OBs ¢ = (t —2)wy Aws Aws — w1 Awa A we

OB; ;= (t —2)wi Awi Awj +wi Awi Awj—2 + w1 Awi—2 A wj

—w3 Awi Awj_1 —w3 Awi—1 Awj (6<i<j<n-1),
where as usual w; = ef. Let B be any cocycle on g. In view of Prop.2.15
no cocycle is based on B; , unless 7 =2 or 3. Further, the only elementary
form B; ; satisfying 0;B;; > w1 Aws Awn is B3 n (t #1). Hence B is not
based on Bj, for t # 1. If, on the other hand, o = 0 and ¢ = 1 then
B3, — By -1 is a nontrivial cocycle by the fourth line of (3.7). Next, the

3—form ws Awz Awn—1 occurs with nonzero coefficient only in the expansion
of 8;B3 , so that B is not based on Bj . It remains only to study cocycles

22




B for which a;n» =0 (1 <i < n). In this case, B lifts to a cocycle Bop
on the factor Lie algebra c,(a)/Re, = ¢,_1(0) via the canonical map p. By
our inductive hypothesis then,

Bop ~ a12B1,2+ a1 3B13+ az 4B s + a3.n—1(B3 n—1 — By n—2).

Here a3 n—1 =0 if ¢t # 1, whereas B3 n_1 — By n—2 is a nontrivial cocycle
whenever ¢ = 1. Further, By ~ 0 unless ¢t = 1, Bi3 ~ 0 unless t =
0, az,4 = 0 unless ¢ = 2, and By 4 is a nontrivial cocycle if ¢ = 2. Finally,
for ¢ = 1, the form B3 n_; — By ,—2 is cohomologous to 0 on tn(a@), as
is seen from B?(cn(a),6), (3.6). Hence the statement about H2(c,(a),f)
follows.

It remains to show that all the cocycles Bg = 8By 5+ B3 ,, — Bin_1(8>0)
give pairwise nonisomorphic extensions of ¢,(0) for ¢ = 1, and that the Lie
algebra given by Bpg is isomorphic to ¢,41(8). To this end, we calculate
the orbit of Bg under Aut ¢,(0). Thus let (a; ;) denote the matrix of A €
Aut ¢,(0), relative to < e; > . From the basis relations, ¢,(0) is an extension
of ¢;,—1(0) by Re,, and Lemma 3.3 applies. In particular, a;; = 0 for
¢ < j. Hence, using that H?(¢,(0),1) = (B 2, B3, — Bin-1), we find BgoA
cohomologous to:

+ (iﬂaz,zBm ~ ¢1B13 — ¢2By 5 + ¢sB3 s+ -+ ¢p_1B3n_1 + ¥ B3 ,)
—(@n-12B12+an-13B13+ -+ an—1,n-1B1,n-1)
=a(Bs,n — Bi,n—1+ BB12) + (an—1,2B12 + ¢4B34) + T ~ +aBis + T,

in which the projection of T' on the subspace of H?(¢,(0),8;) generated by
B,,; and By is zero.

Now H?(¢,(0),6,) = (B1,2,B3,n — B1,n—1), as shown above, hence T must
be cohomologous to 0, and

BﬂoA ~ :l:aBiB.

This completes our proof. Q.E.D.

3.5. We summarize the above results in the following extension graph, in
which arrows indicate direction of extensions. Accordingly, quotient maps
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run in the opposite directions.

as
I/cs —  cg(a) (=0 @59 (@) (=9
(e=0) (a=0)
ay — 05 — (@) — ... o dfa) ST (a20)
N
bs

3.6. The Lie algebras a, in F'S; are defined inductively by letting a,+; =

an(B2,n) 0n—2)>
(n > 4). The corresponding basis relations of a, are,

[61762] = €2, [elaei] = (Z - 3)6,‘, [62)61'—-1] = €4 (4 S ? S 'I‘L)

LEMMA. Let n > 5. The only filiform extensions of a, of dimension n+1

are Gp41 = Gp(Bap,n —2) and G, = an(2:=o(—1)iB3+i,n_,~,n -3)(n=

2r + 4). Furthermore, the second cohomology spaces of a, are as follows,
H2(Cln, Gt) = (B1’3), t= 0; (Bl,g), t= 1; (Bg,n), t=n— 2;

(> o(=1)'Batik—i), t=k—3(k=2r +4, 3<k <n); (0) otherwise.

Proof. We calculate easily for the Lie algebra a,,

B*(an,6;) =((1—t)B1,3,tB13,(1 —t)B1s + Bs 3,

(3.8)
(2 — t)Bl,5 + 32,4, ceay (n ot 3 -_ t)Bl’n -I- Bg’n_l)

and

0B1i=wi Awz Awi—1 (2<¢<n),

0By =(t—(1—2)wi Awz Aw;, (3<e<n),

OB;j=(t—-1—j+6)w1 AwiAwj —wr Aw; Awj_1 —ws Awi_1 Awj

(3<i<j<n).
(3.9)

We argue by induction on the dimension n, assuming the result for the
algebras a;j, 5 < j < n. Now, in view of (3.8) and (3.9) By 3 is a nontrivial
cocycle iff ¢ = 0, B; o is nontrivial iff t = 1, and By, is a (nontrivial)
cocycle iff t = n — 2. For t # n — 2 the form w; A wy A w, occurs with
nonzero coefficient ¢ — (n —2) in the expansion of ;B2 n, and the coeflicient
of w; Awg Awy, is seen to vanish in all other 0;B; ; (1 <1< j < n). Hence if
B =3 a; ;B; ; is a nontrivial cocycle on a,, we have ay, =0 if t #n —2.
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Now, by Prop.2.15 no admissible cocycle can be based on B; , unless i = 2
or 3.

Consequently it remains only to study the coefﬁaent azp. ft #n -3
the projection on the line (wy A w3 Awy,) is nonzero only for 9;Bj; ., hence
a3 n = 0. For t = n—3, the projection on the line (wy; Awz Awn_1) is nonzero
only for 0;B3 n, and 0;By n—1 = —ws Awsg Awp—2 —ws Aws Awp_1. Similarly,
the coeflicient of we Awy Awy—o is nonzero only in 6tB4,n_1 and 0;Bs 2 =
—wg Aws A wp—3 —wy A wg A wp—y. Proceeding recursively, the last step to
consider is 6tB3+,-,4+,- = —w? A W34r A W34y — W2 A Wo4r A Wetpr, N = 2r + 4.
This yields the cocycle Z:=0(—1)i33+5,n_,- and the corresponding extension
is al. Observe that for n = 2r +5 we do not obtain any cocycle, as the term
—wy A w3gr Awgtr of O¢Bsyrsir can not be cancelled.

More generally, a similar argument gives the cocycles Y i_o(—1)"Bayik—;
(k=2r+4, 3 <k <n). They are non-admissible unless k = n.

Let p: a, — a,/Ren, & a,_1 denote the quotient map. For any nontrivial
cocycle B =3 «; jB;j, B—asaBs, is acocycle for all ¢ because B, , is a
cocycle if t = n—2, and @y, = 0 otherwise. Similarly, B' = B— a3 n B n—
asn Z;—o( 1) B3+, n—i is a cocycle for each ¢ (if n is odd or ¢t # n—3 then
a3 n = 0). Moreover, B' = Bop where B is a cocycle on @,y since a;, =
0, 7 # 2,3. By our inductive hypothesis, H?(a,_1,6;) is equal to (Bl,g),t =
0; (B12), t = 1;(Byn-1), t =n—3, and (3 1_o(=1)'Bstik—i), t = k —
3(k=2r+4, 3<k<n-—1). Hence we can write

T
B' ~a13B13+a12Bi2+asn-1B2n-1 +ask Z(‘l)’BHi,k—i,
1=0
where a3 ,—1 = 0 if t # n — 3. We observe, for t = n — 3, that By 1 is
cohomologous to zero on a,. Therefore B is cohomologous to

r
a1,3B13+a1 2By 2tz nBantask Z(—l)'Bs+i,k—i (k=2r+4,3 <k <n),
1=0
in which at most one of the coefﬁc1ents a;; is nonzero. The statements
about H%(ay,,0) follows.

Finally, as we have seen above, only t =n — 2 or t = n — 3 can give filiform
extensions of a,, and in this case the extensions are all isomorphic to a,,4; or

al, because the cocycles are of the form sBy , or s _o(=1)'Batin—i, s #
0. Q.E.D.

The following is readily verified.

25




3.7. LEMMA. The Lie algebras a,; (n even, n > 6) admit no filiform
extensions.

Proof. As usual, forms B; 41 (¢ > 3) need not be considered since w; A
Wi—1 Awgn4y does not cancel (cf. Prop.2.15). Further, the coefficient matrix
of the system O0B2nt1,0Bs,n, 0B5sn-1, ...,0Brt1,r4+3 has a determinant,

1 -1 1 .. (=)t (-
-1 -1 0 .. 0 0
Apy=[ 0 -1 -1 .. 0 0 [=-Ar_24(-1)"=(-1)"(r-1),
o o o .. -1 -1
which is nonzero, so we obtain no cocycle using Bj; ;. Finally, The linear
span of B3 n41,B4n-1,... contains no admissible cocycle since the term

—w2 Aw3 Awpn— in the expansion of §;By n—1 can not be cancelled.. Q.E.D.

3.8. In view of the above results, the tree structure of the a—series is as
follows.
an,1 (n even)

ay — as - ... = a, —

3.9. We define the subfamily {b,} (n > 5) of FS; inductively by letting
brt1 = ba(Bs,n,01). The corresponding basis relations of b, become,
[e1, e2] = ez, [e2,e3] = €4, [e1, €] = €; (4 < i < n),
[63,6,'] =ei+1 (4<i<n-1)
Further, one readily checks that b, admits the cocycles Bj , + B;,2 and
B3 n— B; 2 in C?%(by,,6;). We denote the corresponding extensions of b,, by
bn,1 and b}, respectively. Now, as we shall see below, these two Lie algebras
are isomorphic if and only if n is odd. Next, we define inductively by, 4,
(resp. bX¥1 5 even), as the extension brki+1 = bnk(Bs,ntk — B1,k+3,01)
(resp. bX*! = b¥(B; o 4x — B1,k43,0:1)). Again, existence is readily verified.
For t = 2 there are some less obvious cocycles B;,, on b, defined by B,,, =
By om + E;’;’;z(—l)i‘133+g,2m_;. If n is even this yields admissible cocycles
B=8B, +Z:§ B2;B2j (P2 € R). Calculating the Aut b,,—orbit of B, we
obtain the pairwise nonisomorphic Lie algebras b ,(ay, a;, ..., az_4) (o€
R, ag # 0) in which the first nonzero a; (i > 1) following aq is taken equal
to 1. See the proof of the following lemma for more details.
We have the following classification of the ” b—series” of F'S;.

(3.10)
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LEMMA. (a) Within isomorphisms, the only filiform extension of b,

of dimension n + 1 are: bpy1 and bny (n = 5,6,7,...), b, (n even,

n > 6) and, in addition, b, ba(a0,0,...,a3-4) (n > 6, n even) where

(a0, 01,...,024) € Dy. Here the parameter domain D, is given by : a; €

R, ap # 0, and the first nonzero a; (i > 1) following a is taken equal to

1 or —-1.

(b) The only such extension of b, (resp bk) of dimension n + k +1 is

b k+1 (resp. bE*1, n even), k > 0.

(c) The Lie algebras b, admits no filiform extensions.

The second cohomology spaces of these Lie algebras are as follows:

(Bl,3)7 t= 0; (B1,2) B3,n), t= 1;

H%(b,,,6 ={ ;
(680 (Bo,k + X i1 (—1)" ! Botik—ideckgn, (1 =2, k= 2r —2);

H?(b,k,0:) = (B1,3), t = 0; (B1,2, B3,ntk — B1k43), t=1;
H%(b%,6,) = (B1,3), t = 0; (B1,2, B3,ntk — B1,k43), t =1 (n even).
All the above cohomology spaces are (0) for t ¢ {0,1,2}.

Proof. In view of the above basis relations, (3.10), straight forward calcu-

lations show,

B*(b,,6,) =
(1=1)B1,2,tB1,3,(1 —t)B1g + B23,(1-)B1s + Bse, (311
R } (1 - t)Bl,n + B3,n—l)

and (letting w; = e?)

0By 32 =0B;3=0, 0B; 4 = w1 Awz Aw3,0B23 = (t — 1)w; Aw; Aws,
0Byi=wiAwzAwi—1 (<1< n)

0Bz =(t—2)wi Awr Awi+ws Awz Awi—; (4<i<n)

OBz ;=(t—-1lw AwsAw; (4<i<n)

OBy ;i =(t—-2wi Aws Aw; —ws Awg Awi1 —w2 AwzAw; (5<i<n)
O0Bij=(1—-2wi Awi Awj —w3 Aw; Awj_1 —w3 Aw;_1 Awj

(5<i<j<n)
(3.12)
Now, if B = Y a;;B;; (1 <i < j < n) is a nontrivial cocycle, it follows
from eq. (3.12) that ¢t = 1 or t = 2. Further, in view of Prop. 2.15, we
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may assume that a;, = 0 unless i € {2,3}. Hence the statement about
H?(b,,6,) follows by induction as above. Next, we discuss the question of

isomorphisms between extensions.

We note first that the automorphism group Autbs may be realized as the
group of all matrices

1 0 0 0 0
ca 0 O 0
Ag=]0 0 b 0 0 , ab#0.
d e =bc ab O
u v bd —b ab®

This follows from the fact that bs/Res = a4, and Prop. 1.8. Hence, for
t=1,

(B3,5 + Bl,g)vo = a(baBa,s + Bl,z) ol ubBl,a - vng,;; - b2B3,4
~ a(bsB3,5 + Bl,g).

Since b occurs with odd power in the coefficient of B3 s, we obtain exactly
two Aut bs orbits. The corresponding filiform extensions of bs, are bg (co-
cycle B3,5) and 55,1 (cocycle B3’5 + B1,2)- Next, let A € Aut bs, A=

(‘4¢0 g) ’ ¢ € b;, ¢ ?é 0, where B3,50A0 = ¢B3,5 +6t¢’ PI'OP. 1.8.

Easy calculations show that ¢ = ab3. We may proceed inductively to prove
apn = ab™ 3, whenever A = (a;;) € Aut(by,), n > 5.

This enables us to compute the Autb,-orbits of the cocycles B = B3, £
B2 € H?%(b,,1) as follows (n > 5):

BoA = a(b"'zB3,n + Bl,Z) - an’lel’a - a,,,szm + a,,,4bB3,4 +---4
+ @p n1bB3n-1 ~ a(b"2B; n £ By ,2),

because a3 ; =0 (i #3), a33=>, and a, , = ab™ 3,

It follows that all the cocycles B , + tB; 2 (t # 0) give isomorphic exten-
sions of by, if n is odd. For n even we obtain exactly two nonisomorphic
extensions, b, ; and bl, given by the cocycles B3+ Bi2 and B3 n — By 2,
respectively. In addition, we always have the extension b,y (cocycle B3 ,).
It remains to discuss the case t = 2, n even. To this end, let B,, =
B2 om + 2212(—-1)"‘133.4.,-,2,,._.-. It is readily seen that, within cohomol-
ogy classes, the Autb,—orbit of By, consists of all cocycles of the form
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a2b>™-3B,... Hence, taking linear combinations, the orbit of B = B, +
n—-2
Z?:: B2;B2; (B2j € R), consists of all

a2b%(B6Bs + b2 BsBs + -+ + b" 2 Bn_2Bn_2 + 8" °B,) (ab#0) (3.13)

Accordingly, in the space of all lines in H?(by, 82), orbits are curves of degree
2 —4. They can be parametrized in R% ~3 by coordinates (ap, a1, ..., aa_4),
in which the first nonzero a; (i > 1) following ay, is taken equal to =*1.
For example, the case a; = 1 corresponds to curves of the form

(o, £, aat?, ,a.g._4t= =4) (¢t > 0). This representation is derived from
eq. (3.13) by lettmg B6 = ao, t = b?|Bs|,a; = ﬁ,-a (2<i<2-3;n>10)
(take B, = 1). In particular, a; = sign(fs). We denote the corresponding
Lie algebras by b, b,(a0,a1,...,22_4), n even, n > 6.

Hence all the filiform extensions of b, of dimension n+1 have been classified.

Let us show that 6, admits no filiform extensions. First, the occurrence
of the non-cancellable term —w3 A wi—1 A wnt1 (—w2 Aws A wny if ¢ =
4) in the expansion of 9;Bjn41, shows that no admissible cocycle can be
based on Bjn41 (i > 4) (see also Lemma 2.14). Now, for any cocycle
B e Hz(lb,,(ao,al,...,a%_4),0t) based on Bz n41 we must have t = 3.
However, this is clearly impossible since none of the remaining elementary
forms B;; has t — 3 as coefficient of w1 Aw; Aw; (it is readily seen that
B3 n41 is no cocycle). Accordingly, any admissible cocycle must be based
on Bj3p4+1. Combining B;; linearly with other B;j—s, we are lead to a
”diagonal block” system as indicated below.

OB3 41 =(t — 2w Awz Awnp1 — w2 AwgAwnp +---+

+ (-1 3w Aw 242 Awnss + (terms linearly independent of the previous ones)
OByn=(t—2)w1 Awg Awy —wa Awz Awn + w3 Awg Awp_y
OBsp-1=(t—2wi Aws Awy —w3 Awsg Awn_1 + w3 Aws Awn_2

6BL;._2,,._;_¢_ = (t — 2)w; /\w%-_z Aw.n_# —w3Aws /\w%»_e tws Awsz /\wﬂzi

(3.14)

The cocycle condition is satisfied if and only if each diagonal block matrix
of this system is row dependent. However, the first block matrix of (3.14) is

29




quadratic 252 x 252 whose determinant is equal to the Aa_z = (-1)"_;2‘ 22
of §3.7. Consequently we have shown that B,(ap,a,... yap —4) admits no
filiform extensions.

We turn next to the possible extensions of b,_;,; and b},_, (n > 6). Now,

for b,_1,1 the 8B, j-s are the same as for b,, except for

0B;3 = (t — )wy Aws Aw, —wy Awz Aws,
OByp=(t—-2)wi Aws Awp — w3 Awg Awn—1 —w2 Awz Awn + w1 Awz Awy,

OBin=(—-2)w1 AwiAwn —w3 Aw; Awp_1 —w3 Awi—1 Awn + w1 Awz Aw;

(4<i<n-1).
(3.15)
Further,
B*(bp_1,1,6) = ((1 —t)B1,;2,tB13,(1 = t)B1a + Ba3,- -, (3.16)

(1 —t)By,n1+ B3,n—2,(1 —t)By,n + B3,n_1+ B1,2).

In particular B3,y ~ —By2,for t=1.Let B=) @;;B;;(1<i<j<n)
be a nontrivial cocycle on b,_;,;. We show a;, may be assumed equal to
0, 7 # 3. The elementary 3—form w; AwzAwy, occurs with nonzero coefficient
only in ;B3 (t # 1) so that a3z, =0 (t # 1). On the other hand, if ¢ =
1, w; Awg A ws occurs with nonzero coefficient only in 0;B3 » and 0:B; 4 =
w1 A wg A w3, which gives the cocycle B; , — By 4. Similarly, only 0;B;
and 0;B; 1 (t # 1), have nonzero w; A w3 A wy,—1—components. However,
(1 — t)B1,n + Ba,n-1 is cohomologous to the trivial cocycle —Bi (¢ #
1), as is readily seen from (3.12). If t = 1, only 9;B1,» has a nonzero
wy Aws Awn;l—component. In view of all this, we may assume a;,, =0 for
all t.

Further, w; A wz A wy, occurs with nonzero coefficient only in 8;Bs n, t # 2.
If t =2, only 8;B2n and 8¢Byn—1 = —~w3AwgAwp_1 —w2 AwzAwn—_1 have
nonzero w, Aws Aw,_1—components. In addition, w3 AwsAwy,_; occurs with
nonzero coefficient only in 0¢By,n—1 and in 0;By n = —w3 AwgAwp_1 —w2 A
w3 Awp + w3 Aws Awy. However, wg Aws Aw, occurs with nonzero coefficient
only in 8;By n, so that asn =0 = ay,,. Similarly, ajn =0 (t > 4) because
w3 Aw;i_1 Awy, occurs with nonzero coefficient only in 0,B; . Consequently,
the statements about H2(b,_;2,0;) follows by induction on the dimension
n, passing to the quotient algebra b,_;1/Re, = b,_;. The argument is

analogous for bl_; (n —1 even).
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Finally, we discuss briefly extensions of b, & (and bY). The basis relations
on by i (k > 1), associated to their inductive definitions, are:
le1,e2] = ez + €nt1, [e1,6i] =€i—enyiz (4<i<k+2),
[62,83] = e4, [63,6.‘] = €i+1 (4 S 1 < n) (317)
ler, e =ei (k+2<i<n+k).

It follows readily that Bz n+k — B1,k+3 € H?(bn,k,0:1). Arguing as above, it

further follows that this yields the only filiform extension of b, i, i.e. bg k+1-

The proof for b is similar. Q.E.D.

3.10. In light of the above, we have the following picture of the b—series.

a4
N
bg — be — U — ban — bangr -
l < LN v N\ 1
bs,1 'bg b be,1 Y020 (a0,---s0n—4) b3, b2n,1 ban41,1
1 l l 1 1 1
b2 . be,2 62, ban,2
1 l 1 1 l l
bs.k . : . . b2n+l,b
l l 1 l l l
: 'J: bs.k b;,. b2n,k :
l l l 1

3.11. The Lie algebras h, (n > 4) are defined inductively by letting
Bnt1 = Bn(B2,n,0n—1). The corresponding basis relations for the algebras

hn (n 2> 4) are:
[e1,e2] = ez + €3, [e1,€6i] = (1 —2)ei (3Li<n),
[eg,eg] = €i+1 (3 <i< n).

LEMMA. Every n + 1—dimensional filiform extension of b, (n > 4) is
isomorphic to §,4;. Further, the second cohomology spaces of b, in g, are

(Bl,3), t= 17

H(h,,0) = { Ponh t=n=1

k+1 )
(Bigk+1+ X (1) Biok_it3), t=2k-1<n—-2,k > 2.
=3
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Proof. The result is easily verified for n = 4. We proceed by induction
on the dimension, assuming the statements made on the second cohomology
space, for all algebras f,, with m < n. From the basis relations the space

of coboundaries is seen to be,

B*(B,,6:)

= (B1,2,(t —1)B1,3,(t —2)B14 — B2;3, * ,(t —n+2)B1,n — B2,n1)
(3.18)

Further (letting w; =€),

0By =0B13=0, 0B =w1 Awz Aw;i_1 (4<i<n)
0By i=(t—i+ 1w Awa Aw; (3<i<n)
OB3i=(t—i+DwiAws Awi—wi Awz Awi —wa Aws Aw;_1 (4 <i<n)
aBi,j =(t—i—j+4dwi AwiAwj—wr Awi_1 Awj —w2 Awi Awj
(2<i<j<n)
(3.19)
Let B = ) @;;B;; be a nontrivial cocycle. We show that a;, may be

assumed equal to zero, except possibly for : = 1 and ¢ = 2. First, the
form w; A wg A w,_; occurs with nonzero coefficient only in the following

expansions

agBl,n =wq A Wwo A Wn—-1,% 6,32,,, = (t —-n+ 2)0)1 A Wwo Awn__l,

OtB3pn_1=(t—n+2)wi AwzAwp_1 —w1 Awz Awp_1 —wz Awz Awg_2.

If t # n—2 then (t—n+2)B1,n—Ba, a1 is a trivial cocycle and we may assume
a1 n =agzn_1=0.Incase t =n—2, w; Awz Aw,_; occurs with nonzero
coefficient only in 0;B1,, and 0;B3n_1 = —w1 AWz Awp_1 —wz AwzAwn_3.
Furthermore, ws Aw3z Awy,_2 occurs with nonzero coeﬁicient only in 0;B3 n—1
and in 0;By n_2 = —waAw3zAwn_2—wr2AwsAwy_3, and soon. At an arbitrary
step we find that 3;By1 n—i+1 = —W2 AWi AWn_it1 — w2 AWit1 Awn_i (21 <
n). Now, for n = 2k even, we find at the very last step, : = k — 1, that
the form ws A wi A wi41 occurs with nonzero coefficient only in the basis
expansion of 0By itz = —wz A wi—1 A w42 — w2 A Wi A wiy4y. Clearly,
this implies a3, = 0 (the term —w; A wi A wi4; can not be cancelled).
Similarly, assuming n = 2k + 1 odd, w2 A wig A w42 occurs only in the
expansions of 3;Bg k43 = —w2Awk_1Awik 3 —w2AwiAwgy2 (2 =k—1) and
6,B,,+1,,,+2 = —wW AWE AWk 42— W2 AWk 41 AWk 41 = —W2 AWEr AW 42 (i = k)
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Hence we arrive at the nonadmissible cocycle (it is nonadmissible since the
radical of its restriction to n contains the center of n)

k+1

Bl,n + E(—l)i+lB."n_i+2 (n =2k+1,t=n- 2),

=3
which is nontrivial in view of the formulas in (3.18) describing B2(hn,0:).
As a conclusion, we may assume aj,, = 0 unless t =n —2 and n is odd.

Similarly, we find the (nonadmissible) cocycles

| k+1
Biges1i+ 3 (-1 Bigk_its, t=2k-1<n-2,k22,

i=3
for which a;, = 0 (their existence is also part of our inductive hypothesis).

Next, 8;B3,» = (t — n + 1)w; Aw; Aw,. Hence By, is a nontrivial cocycle
if and only if ¢ = n — 1. Moreover, the only 0;B;; in which the elementary
form w; A w3 A w, occurs with nonzero coefficient is 0¢B3 . Consequently,

a3, =0 whenever t #n —1.

Furthermore, regarding aj ,, we observe that w; Aws Aw, can occur with

nonzero coefficient only in 8;B3 p, so that azn =0 incase t #n —1. If

t =n—1, 8B is the only 0,B;; possessing a nonzero projection on the

line (w; A wz Awy,) (since 8Bz, = 0). Hence a3, =0 for all ¢.

Finally, we have a;, =0, 3 <t < n, by Prop.2.15.

Summarising the above, we have B = B1+B; inwhich By = Y  «;;B;;
1<i<j<n

k41
and By = a3 nBy, (t=n—1) or By = aia(Bin+ i (=1)"*1B; nit2)
(n = 2k+1 o0dd,t = n —2). Now, by the inductive'i;fpothesis we must
have B; ~ 0 (since t = n—1 or t = n — 2). Hence the statement about
cohomology follows by induction.
Considering next the question of filiform extensions, we may clearly assume
B~ a3 ,Byyn and t=n—1since t =n—2 gives a nonadmissible cocycle.

It follows that all filiform extensions are isomorphic to hp41. Q.E.D.
3.12. In view of the above, the h—series admits the following simple
extension graph.

by — by — -+ —bhy —
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4. The f§-series.
We proceed to study all filiform extensions of the family fu(c).

4.1. LEMMA. The only filiform extensions of f,(a) (n > 5), a € R\ {1},
of dimension n + 1 are the families listed below. These Lie algebras are
determined by the extension data (8:,B),B € H*(fn(a),0:), t € R, as
indicated.

(1) fat1(@): t=(n—-2)a—(n—-3), B=B;,.

(2) ff.',fl) P t= 3,{'5((22,'—1“3, B = By n+Bs2r—Bagr—1+ - +H(=1)"" Bri1,r42,

a= -;—:%%%, 4 < 2r < n. ( We shall often use the notation

fn,l = fle,)l

(3) Yn(a): t=(n—3)a—(n—5), B=Bsn—Bsn_1+ --+(—1)"Bri1,r2,

n=2r (r23).

The 2Lie algebras given above are pairwise nonisomorphic, except that $.(2) =
f("+)

ni (n even).

*

Proof. First we calculate the trivial cocycles of fa(a). Let f = 3 fief:
i=1
fn(a) = Rep41 be linear, and assume 8(e1)ent1 = tentr, Kerf =
(ez, €3, y€n). Recall the basis relations on fu(a) (a€R\{1}):
[e1,e2) = (@ —1eq, [e1,ei] = ((i —3)a— (1 —4))e; (3<i<n),
[e2,e5] =€j41 3<j<n—1)
Consequently
Oif(z,y) = 6(z)f(y) - 0(y)f(2) — flz, 4]
= (#(f2Bi2+ faB1s+ -+ + faB1n) — (@ = 1)f2B12 — s3f3B13 — f454B1 4
— o+ —8pfnBin— faB23— fsBaa — - — faB22a1)(2,Y), 2,y € fala).
Here sj = (j —3)a—(j—4), 3 < j < n+1 Therefore the space of

coboundaries is

B%(fn(a),0) = ((t — (« = 1)) B1,2, (t — 53)Bu3,

(4.1)
(t —34)B14— Bag, -+ ,(t —8n)B1,n — Byn—1)-

In particular, no linear combination of the forms Bi; (3 <k < j < n)
can be a trivial cocycle. Next we calculate the sums 0;B;; (1 <i<j <n),
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using eq.(1.12). First,

Bth,j = (t -85 — (a - 1))&)1 A wy ij + wg A wo /\wj_l

4.2
=({t—-sjp)wAwzAw; (3<j<n) 42

sinee sit(a—-1)=@G-3a-(j—4)+a-1

=(j—2)a—(j —3) =3+
This shows that B;; is a cocycle iff t = sj41. From (4.1) it follows that,

for such ¢, By j is trivial whenever 3 < j < n. Hence Bz, (t = Sn+1) is the
only nontrivial cocycle of this type. Furthermore (letting w; = €7),

0¢B1,j = w1 Awa Awjy +((] —3)a—-(j—4)w Awi Awj +tw; Aw; Awj

so that
0B1j=wiAwrAwj_; (3<j5<n). (4.3)

Consequently B 3 is always a cocycle, however, it is trivial unless ¢ = s3 by
(4.1). In addition we derive from (4.2) and (4.3) that

B;—(t—sj+1)Brjy1 (4<j<n-1)

satisfies the cocycle identity, giving coboundaries by (4.1). We proceed cal-
culating

0:Bi,j =
E—(GE+j—6)a+(i+]—8) w1 AwiAw; —w2 Awi Awj_1 —wz Awi_1 Awj,

or

B,B,-,,- =(t - (3,‘ + sj))wl Aw; A wj —wr Awi Awj; —w2 Awi_1 Aw;j
(3Li<j<n)

} (4.4)
We conclude from (4.4) that Bs 4 is a nontrivial cocycle iff ¢ = a + 1, and
B;; (3 <i < j < n) is never a cocycle for (i,5) # (3,4).
Consider next linear combinations B = Y. a; jBi j, in which az, # 0. In

i<j

view of (4.2), our first choice is to search for sums 0,B;; in which terms
containing the polynomial wy Awy Aw, occur. Now (4.4) reveals that wy A
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wy Awy, only occurs in the expansion of 8;B; ; for (3,5) = (2,n). Accordingly
the only possibility is

() B=Bap, t=3sn41=(Mn—-2)a—(n-3),

which leads to the extension fn41(a).

As our second alternative, we search for cocycles B in the linear span of
{Bi,j}(i.j)#(2,n) assuming t = 8n41 for some a. Any such B; will combine
with Bz , to give admissible extensions of f,(a). Observe that Bj, is the
only elementary 2—form solving this problem. As we have seen above, it
occurs for t = a + 1. Thus t = 2"‘35, a = 2=2, and the corresponding
extensions of fn(2=2) are described by the data,

.. 2n -5
(N) B = aB3,4 +B2,n, t= —’?_—3-, a ?é 0.

Letting a =1 in (iz) we find the Lie algebra

2n -3
1 (Ban+ Bag, ——3)
We show all the extensions F(a) of fn(2=2) given by (i) are isomorphic to
fs,l’)l To this end let T denote the linear map defined by

T(64) = aeéy, T(Cn) = ae,,,' T(e,,.H) =daén+1,
T(ei) =€y, t ¢ {4’ n,n+ 1}’ ‘

where a is fixed. It is easily verified that T sets up a Lie algebra iso-
morphism between F(a) and ff,l’)l (both algebras being equipped with the
standard basis < ej,€3, -+ ,€ent1 >). (Another way of seeing this would be
by calculating (B2 n+ B3 4)oA for A = (ai;) € Aut fo(2=2), using Cor.2.5.
In fact, one finds that the projection of (B3 n+ Bs4)oA on the subspace gen-
erated by B, , and Bj4 takes the form a"~?dB; ,+ad’B;s, (ad #0).) It
remains to show that By n+B34 and B; , give non-isomorphic extensions of
fu(2=2), ie., f 2 fa+1(2=2). However, this is a consequence of Cor.2.10.
Hence our discussmn concerning linear combinations of B34 and Bj, is
complete. Similarly, ff: and f,,_,,l(" %) are seen to be nonisomorphic (cf.

the following discussion concerning fn’l
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We wish to explore if any other linear combinations ) a;;B;; in which
az,n # 0, can possibly be a cocycle. Consider first linear combinations of
B3,n, B;,; and Bi,;. By (4.2) and (4.4) the only interesting solution is the
triple :
By, Bys, Bsg (n > 6).

In this case we must have
t=(t+j—6)a—(1+j—-8)=3a-1

and
t=(n-2)a—(n-3),

using (4.4) again. Hence

giving the cocycles
B, =By n+38(Bss—Bss) (s#0,n>05)
For n = 6 we obtain, as a particular case, the admissible cocycle
BV =B;5—Bys (t=3a—1)
This gives a one-parameter family of Lie algebras (cf. fg? below),

lfs(a) :t=3a - 1, B = B3’,6 - B4,5.

Now let F(s) denote the extension of f,(2=%) corresponding to B, and
t = 28=T We claim the algebras F(s) are pairwise isomorphic (s # 0). In

fact, the linear map T defined as
T(e;)=se; (3<i<n+1),T(e;)=e1,T(e2)=¢
is a Lie isomorphism F(s) — F(1). From now on, we shall use the notation
(2) _
fn,l - F(l)
We wish to remark at this point that fg} > X(2). In fact, the Aut f(2)-

orbit of B3¢ — Bys in G1H?(fs(2),0s) consists of all 1—dimensional sub-
spaces generated by the cocycles a*d(cBag+d(B3—Byys)); c € R, ad # 0.
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As usual, this follows on calculating (B3 — By,s)oA, where A€ Autfg(2)
is arbitrary. We omit the straight forward details, giving only the standard
matrix representation of an arbitrary A € Aut fg(2) (cf. eq. (2.5)):

1 0 0 0 0 0

r a 0 0 0 0

s c d 0 0 0

t as —cr —rd ad 0 0o |’
u v ir’d -rad a®d 0

w —%(ad+v) —3r®d ir’ad —ra’d o*d

where ad # 0, v = {(at — r(as — cr)), and r,s,t,u,w are arbitrary real
numbers.

The more general problem of determining all admissible cocycles of the form
B3, + By is solved using arguments similar to the above. We find the
following series of extensions, in which the first two terms are the algebras
f(l) and fs,z,)l discussed above.

n,1
(=1, , _ 2n —(2r +1)

Fan " t= TG oy B = BentBaar o 4 (=)™ Bri1,rt2
n—(2r-2)

>2r 2> = ——).

(n>22r2>4, a n—(2r—1))

We proceed to determine all cocycles of the form B = By, n+ By in which By
denotes a linear combination of elementary forms B; j, (¢,7) # (m,n), (3,7) #
(2,n). First, in view of Prop.2.15, we have m = 3.

Using arguments similar to the above, we find as the only solutions the one-
parameter family ,(a) (B =Bsn— Bin-1+--+(-1)"Bry1,r42 (n=
2r,r > 3), t = (n—3)a—(n—>5)) as described in statement (3) of the lemma.
For odd n, the algebras f,(a) do not exist since the term w; A w3 A w,_;
occurs in §;B; ,. The Lie algebras !f,(a) are readily seen to be pairwise
nonisomorphic ( Cor.2.10). Finally, as in the case n = 6 discussed above, we
find %,(2) = fE77. Q.E.D.
The two following results are readily verified.

4.2. LEMMA. The only filiform extensions of the algebras f:; (r #
1) occur for r = [252]. They are the algebras ffg given by the following
extension data, :

2
Bymt1+1B3a_1—(r—=1)Byp2+---+(=1)""'Brygri3, t = nt y (n even)
1
BZ,n+1 + rB3,n - (T - 1)B4,n—1 +-- 4+ (_l)r—le+2,r+49 = z -2'- ’ (n Odd)a
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and its extensions
f0(B) (neven, BER):
Bomiat (D By~ (C )B4t

5~
_ n+2
(-1)""'BB3iratr, t= 3

i(s n+2

— 1)
2 )B2+t,n+2—u t= )

. r
) (nodd) : Bantz+ 3 _(-1)(ri—

i=1
Proof. As in Prop.2.15, one needs only look for cocycles based on B3 n43
a.nd B3,n+3.
ff::)l : The only admissible cocycle is seen to occur for r = [252] and t =
242 (n even) and t = 21 (n odd); and this does indeed give the extensions
ffgz of the lemma.
fs,':)z : The argument is similar. For odd n the coefficient matrix of the
cocycle equation 3B = 0 with B = E::ll T;Bit1,nt3—i and t = -'-‘—‘,_f—z has
dimension r X (r + 1), and is as folows,
( r -1 0 0 O ... ces 0 0 \

r—1 1 1 0 O
r-2 0 -1 -1 0

r—i 0 0 0 0 ... 0 (=1)% (=1 ... 0 0

\'1 0o 0o 0 0 .. (-1 (=17
This system has the solutions z; = (—=1)*((: —1)r — L3-_—1¥ﬁ2)1' (=12,...,
r+ 1) in which 7 can be taken arbitrary. Consequently, the cocycle listed
under ff::; (n odd) in our lemma is a representative for the Aut()‘ff,)2 -orbit
in H(f, 22).

For n even, the corresponding matrix has rank r — 1, and we get the one-
parameter family of extensions fff 3 (B €eR).

f:;(ﬂ) (n even): Here, B3 n43 (resp. Bjny3) fails since the non-cancellable
three-form w3 A wr42 A wria (T€sp. w2 A wrps A wrys) occurs in 0¢B3 a4

(resp. atBr+4,r+G)-

ff,':?, (n odd): The equations ;B = 0 for cocycles based on B2 43 has only
the nonadmissible solution Bj pn4+3—Byn41+- -+ (—=1)"Briz,rt4 (t= %’—3)
Finally, no nonzero cocycle can be based on Bj 3. Q.E.D.

39




4.3. LEMMA. The Lie algebras ,(a) (a € R~ {1}) admit no filiform

extensions.

4.4. In order to complete our classification of the f—series of filiform
solvable Lie algebras we shall need the following family of recursively defined
polynomials, {pn;} (n >2,i>0), which appears naturally when forming
extension cocycles on the algebras f, 1 = ff,l’)l of Lemma 4.1.

Pl,o(Olo) =1, Pz,o(ao) =1 (a.ll Qg € R)
P2r10(0, -y 0r) = ay (r>1)
i-1
Prrt1,i(@0, -y ar) = Y (=1) 7 pa,j(ao, oy o) +(—1)'er (1<i<T,)
Jj=0
r—i—1 . '
Pari(aoy . ar_1) = Z (=1 1py 1 r—j—1(@o, .y ar—1)
=0

(0<i<r-1,r>2)

(4.5)
We let pn; =0 if i > [2] ([t] denotes the greatest integer in ¢).
Note that the variable aq is used only for formal reasons; all the polynomials
Pn,i are constant in ag. Hence we shall often supress ao. We have the relation

Pn,i+1 = Pn—1,i — Pn,is (4.6)

which can also be used to define the polynomials (together with the above
"boundary” conditions on py, ).

As we shall see, the algebras f, i(ay,... ,a[#]) (k —n > 0) are defined
on algebraic parameter domains S, depending on the polynomials py ;.
We notice that algebras f, i do exist for each integer k > n since we have
(1,...,1) € Sy k. To determine exactly the sets Sy ; is a nontrivial problem.
However, the number of parameters of the algebras fy, i is [%], whereas
the number of linearly independent equations (of second degree) seems to be
at least k¥ — n. In fact, calculations for small n, indicate that S, is finite
for k—n>n—2 (i.e. k—n> [55]). For instance, S5 (k > 8) consists
of two and only two elements, corresponding to a; =1 and a3 = %, see
Ex.4.6.
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4.5. PROPOSITION. The only filiform extensions of fa; (= f$)) (n >
5) are the following pairwise nonisomorphic Lie algebras (a; € R),

(1) fﬂ,k(ali K a[!-;l])’ ((al) vee 1a[L;_1.]) € R[L;ll) 2<k< n)
fn,u+.'(a1,...,a[u§-_1]), (al,ag,...,a[ﬁ;;l]) € Snntis--- (P 25,12
0).
) Here, the parameter domains Spn+i are nonempty algebraic sets and
(1, 1,..., 1) € Sn,n+i-
2) (@) n=2m+1,m>1:
}n,l’ f}n,s(al)’ 33,5(a1’ az), cey f}a,2r—1(al’ azy..., ar—l)’ X
®) n=2m,m>2:
3:,2v 31,4(01)’ f};,s(al’ a2)7 AR f}u,zr(al’ Q2y..-, ar—l), e
In (1), fnx(ai, ...,a[%__l]) is defined inductively as the extension of

fn,k—l(al, -..,a[L-rz]) given by the data

t=2(n+k—6)n-3)",
(531
Bf;.l =By nyk-1+ Z pk,i(ao, a1, ---aa[L;_L])B3+i,k+3—-i (k>1)

1=0
In (2a) and (2b) fy k(an,..., ) (n+k even) is the extension of f, i
defined on an algebraic (possibly empty) parameter domain S,l‘, ¢ by the data
25

t=@Bn-9+k)(n-3)"'(1<k<n-2), Bj,= Z (=1)'Bsyintk—i-

1=0
Proof. We recall the basis relations of fn,; (n > 5):
[e1,ea] = (n —3)"les, [en,ei] =(n+i—6)(n—3)"e; (3<i<n+1)
lez,ejl=€j+1 (B3<ji<n), [es,es] =enpa

We find first all extensions of dimension n + 2. This will be the first step
in our inductive argument. Let t; ; be the real number such that ¢ —¢;; is
the coefficient of w; A w; A w; in the basis expansion of 9,B;; (relative to
< wi Aw; Awj >i1<k<i<j<ntl, Wi = e?). The following relations hold:

0Bz 1=t —tant1)wr Aws Awnyr +wr Awz Awy
6¢B3,5 = (t — t3,5)w1 Aws Aws — w2 Aws Awy,
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in which t2,"+1 = t3,5 = (2n - 4)(n - 3)—1 . Consequently, B2,n+l + B3’5 is
a cocyle if and only if ¢ = (2n —4)(n — 3)~!. This gives the Lie algebra fn 2.
Further, if n = 2r + 3 is odd we have,

6B3,,,+1 = (t - t3,,,+1)w1 Aws A Wp4l1 — W2 Aws Awy
OBy p=(t—tyn)w1 Awg Awy —w2 Aws Awy —wz Awg Awn_y

6B5,,,-1 = (t - t5,,,_1)w1 Aws Awp_1 —wr Awg Awp_) —ws Aws Awyp_2

OB3ratr = (t —tagratr)wr Awspr Awgy, —wa AWogr AWggr

If instead n is even, say n = 2r + 4, the last equation above becomes
OBsirstr = (t — ta4r54+r)W1 Awsir A wspr — w2 AWayr Awgyr
In the first case (n = 2r 4 3) the linear combination
B§',’,’, =B3nt1 — Bsn+Bsn-1+ ... + (—1)"Bry3,r44
becomes a cocycle if t = %3 541, since
t3nt1 =tan = . =trparpa = (3n —8)(n —3)~*

However, the second case (n = 2r +4) does not yield any cocycle since the
term wg A wr43 A wryq can not be cancelled. On the other hand, the above
is the only way Bj n4; can be combined with other forms to yield a cocycle,
the term —w; A w3 A w, occurring only in 0;B3 n41 and 0;B; 5. The above

gives the extension

fli: t=@Bn—8)(n—3)"Y, B=B{") (n=2r+3)

of fn,l .
Next, observe that, for i > 3,

atBi,n-l-l =

(t - t.-,,,.,.])wl A Ww; A Wp41 — W2 A Wi—1 A Wp41 — W2 A w; A wn + wé A Wy A wy,

in which —ws Aw;_3 Awp41 occurs in no other 9;B; j. Consequently, we get
no cocycles involving B; n41 (i > 3).
Finally, we must check if any other forms B;; may combine so as to give
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cocycles (i < j < n+ 1) whenever t = t3pn41 or t = t2541. Now the
condition

tij = 2n+(i+5)-12)(n=3) " =t pt1 = (2n—4)(n-3)"! (3<i<j<n)

yields i 4 j = 8, which is easily seen to give no cocycle. Finally, ¢; ; = t3 n41
implies ¢t + j = n + 4, and we are reduced to By n,Bsn_1,.s Bri3,r44
as treated above. Observe also there is exactly one n, n = 4, for which
(3n —8)(n—3)~1 = (2n —4)(n —3)~1, however this n is not permitted. We
conclude that f, . and f,l,’l are the only filiform extensions of f,; having
dimension n + 2.

(I) : We prove next the inductive step for algebras fn i satisfying k£ < n.
The inductive step consists of two parts according to the parity of k.

(a) : Consider first extensions of fu 2r4+1(a1,a2,...,a;) (3 <2r+1 < n-3).
We find, letting a = (ay, ..., a;),

0B3 ni2r+1 = (t — tant2r—1)w1 Aw2 A Wnyor1+

r
Z Part1,i(@)wz Aws i Awaris—i

=0
0B3 3,45 = (t —t32r45)w1 Aws Awyrys —we Awz Awaryg

OBy 2ria = (t —taar4a)w1 Aws Aworps — w2 Aws Aworpg — w2 Awg Awzrys

OByi2,rt6 =

(t—try2,r+6)w1 Awry2 Awrys — w2 AWrp1 AWrpe — w2 Awrg2 AWrys

OB, y3,r45 =
(t—tryar4s5)w1 Awrgs Awrps —w2 Awrga Awrys — w2 Awrgs Awrpg
4.7
r
Ta.kmg linear combinations, Bz,n+2,-+1 + E a,-+,'+lB3+,',2r+5_,‘ (C!,-+,'+1 €

i=0
R), the cocycle condition gives the following linear system of equations for

the coefficients «;,

Qryit1 + Qrpiv2 =p2r41,i(l@) (0<i<r-1),

(4.8)
Q2r41 = P2r41,r(@)
which has the solution
r—i+1 ) )
Qryi = Z (=1t "y r—j(en, 02,...,a,) (1<i<r+1).
=0
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Hence each a,4; (1 < ¢ < r+ 1) has been expressed as a polynomial, say
P2r+2,i—-1(a1,az,...,a,). Now eq. (4.8) may be reformulated as

p2rt2,i+1(@) = p2rt1,i(@) — par42,i(a) (0<i<r-1)

Prra20(@) = (-1 parpa,ej(@)
=0

(4.9)

We have found the extension
fazri2(@1ymar): t=(n—-3)"1(2n+2r-35), B=Bj.(a1,...,ar),
in which
B{,n(al, ey ar) = B2,n+2r+l + szr+2,i(011, ceey ar)B3+i,2r+5—i-
1=0

These Lie agebras are pairwise nonisomorphic for (aj,...,a,) € R", since the
corresponding quotients fa2r41(@1,...,ay) are nonisomorphic.

(b) : Assume next the statement of the lemma holds for extensions of
fn,1 of dimension < n + 2r (r > 2). Accordingly, the basis relations for

fn,2r(a1,az,...,ar_1) are as follows:

[e1,e2) = (n — 3) e,
ler,ei]=(n+i—6)(n—3)"le;(83<i<n+2r).

le2,ej] = €41 (B3<j <n+2r—1), [es,e4] = €41,

[es, ] = pj—s,0(ar, -, (i) _s)entj—s (4 <j < 2r +3)

[es, €] = pj—2,1(a1, ...,(1[;2'_]_1)6"4.1‘_2 B5<j<2r+2;r>2)

les, ;] = pj—1,2(aa, ...,a[;_]_l)e,,_,.j_l 6<j<2r+1;r>3) (4.10)

[6r+1, ert2] = P2r—1,r-2(al, vy Or_1)€n42r—1,
[ert1,€r43] = Pzr,r—z(al, vy @ )€ntar
[6r+2, 6r+3] = P2r—1,r—l(al7 ceny ar—l)en+2r—l,
[6r+2, 6r+4] = Pzr,r-l(al, ey ar)en+2r

As usual, [t] denotes the greatest integer less than or equal to ¢. We must
determine the (filiform) extensions of fy, 2r(a1,as,...,ar_1). First, if 2r <

44




n —2 (so that [eq,ej]=0if n+j—2=2r+4,j>4), wefind

OB3 nia2r = (t — ta,np2r)w1 Awz A wpiart

r—1

ZPni(als vy @r—1)w2 A wai Awarys—i

=0
0B3 3r44 = (t — t32n+4)w1 A w3 AWonis — w2 Awsz Awzrys
OBy ar43 = (t —tyant3)w1 Awg Aworps — w2 Awz Awzrps — w2 Awg Aworyr

OBs 2r+2 = (t — t52n42)w1 A ws Awary2 — w2 Awg Awarpz — w2 Aws Awaryr

OBr42,r45 =

(F—trt1,r40) W1 AWrt1 AWrgs — W2 AWrp1 AWrps — w2 AWrys Awriy

aBr'-l-l‘l,r—iui =
(t—trpo,rt3)w1 Awrgs AWrgs —Wa AWrj2 AWrpg — w2 AWrpa Awieys
(4.11)
Hence, forming the linear combination,
r
B = Bz,n+2r + Z ar+i—lBS+i,2r+4—i (ar+i—l € R),
=1

we conclude that B is a cocycle if and only if

Orpitl + Qrpi = pg,.,,-(al, ...,ar_l) (0 <i<r- 1) (412)

This linear system has the following solution for a,4+; (1 < i < r), as a
polynomial p;,4;,; in the r first parameters (ay,...,a,) (1 <i<7),
i1 -
Qryi = Z(—l)'"-’“pg,.,j(al, vy @r—1) + (—=1)'ar = p2rp1,i(ay, ..., ay)

i=0

Thus, letting pa,41,0(a1,..,a,) = a,, we have the cocyle

r—1

B3 ni2r + P2rt1,0(@1,..,ar)B32rys + ZP2r+1,i(ala az,...,0r)Bits oryai,
=1 .

(2r £ n —2) whenever t =t3 py2r = 132044 = ... =trj2r43 = (2n+2r —

5)(n—3)~1. We have proved the existence of the Lie algebra fp, 2r+1(c1, a2, ..., @r)
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2r+1=1,3,...,n-1).

It is readily seen that this is the only way of forming cocycles with nonzero
B3 nti component.

(II) : Now, if k =2r > n, 0;B3 2,44 contains the term

P2r—nt4,1(01, ..., a,.,.z_[;;])wa A wg A war_nte which cannot be cancelled for
all values of the parameters a;. A similar observation applies to the case
k = 2r + 1 > n. However, we may still form extensions f, 41 as above,
with domains of definition restricted to the solution set S, of a certain
system of polynomial equations given by the p; j—s. Indeed, the form B:,;l
of our proposition will satisfy the cocycle identity if and only if the coefficient
matrix of the system of 0,B;;j—s (compare (4.7) and (4.11) above) is row
dependent. This yields a system of (2-nd degree in the parameters a;) poly-
nomial equations defined in terms of sums of products of pairs +p; ;. (For
example, one such equation is ¢} = pi43,1Pn+i,0 — Pi+2,0Pn+i,1 +Pntii+2 =0
(n 2 t+4,k =n+i)) The sets S, are never empty. In fact, using
that p2,41,(1,...,1) = 1 and p;;(1,...,1) = 0 if j # 0, we find that
(aq,... ,a[._.z.l_]) =(1,...,1) always gives the cocycle, B nt2r + B3 2r44.
Similar arguments apply to the algebras f},, x> however, in this case it is not
clear that the corresponding algebraic parameter domains S}, , are always
nonempty (in fact, one can show that fé,k does not exist for k> 7).

Next if 1 > 3, we have

OtBint2r = (t — tint2r)w1 Awi Awnyar — w2 Awicy AWngor—
— wg A w; A Wpyar—1 + "other terms”.

Observe that wy Aw;_;1 A wpt2, occurs in no other 9:B; j, hence no cocycle

possesses a nonzero component along B; nt2r. (The argument is similar for

Bint2r+1-)
Finally, we must check if any other forms B; ; may combine to give cocycles

(1 < j < n+2r) whenever t = t3 n42r Or t =13 ny2,. Now
tii=Cn+(+5)-12)(n—3)"! =t3n42r = Bn +2r — 9)(n — 3)!

yields
t+j=n+2r+3,

and we are reduced to the case of B3, above.

Similarly,
tij=tonp2r=(2n+2r-5)(n—-3)"' (3<i<j<n)
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implies
i+j=2r+7 (2r<n-2).

Thus we get the forms
B3,2r+41 seny Br+3,r+4-

However,this yields only the admissible cocycle B3",, as treated above (fa,k+ 1)-
Q.E.D.

4.6. EXAMPLE. We conclude this section indicating the extension graph
of the family fs i The arguments are similar for the algebras fn with
n > 5, however, in general the equations are of course harder to treat.
First, Ss5 = Ss¢ = Z(qi,1), q1,1 = P3,1Ps0 — Psa + ps;2 (Z(p) stands
for the zero-set of a polynomial p). Next, one readily verifies that Ss57 =
Ss,6NZ(g2,1,42,2) = S5,6NZ(g2,1), since g2,1 = P5,1P7,0—P4,0P7,1 P73, 92,2 =
Ps.2P7,0 — Paopr,2 + P13 and g2.1 + g2,2 = q1,1. Now, calculating fs,3 as an
extension of f5,7, the 3-forms 6,32,12,6,B3,15,6tB4,14,...,6tBs,m must be
linearly dependent, so that the corresponding coefficient matrix

P10 P1a P12 Pz O 0 0
-1 0 0 0 pG,l P6,2 O
-1 -1 0 0 -pso O D52 (4.13)

6 -1 -1 0 0 —pso —P1a
0 0 -1 -1 -1 0 P31
must be row dependent. Multiplying the i-th row by pgi—2 (2<:<5) and
performing row operations using eq. (4.6), the first row can be transformed
into
(00 0 0 gs1 932 933); (4.14)
in which ¢31 = ps,1Ps,0 — P5,0P8,1, 93,2 = P3,1P8,3 — P4,1P8,2 T P5,2Ps,1, and
43,3 = —P4,0Ps,2 + Ps,2Ps,0- Invoking eq. (4.6) again we find,

g3 +¢s2 =¢2,1 and g3 2 + ¢33 = q2,2-

Hence it follows that Ssg = Ss57 N Z(g3,1) = Z(41,1,92,1,93,1)- We observe
that because of (4.14), it would have sufficed to discuss row dependence of
the matrix ‘
q31 q3,2 q3,3
Ps1  DPe2 0
M2)=|-ps0 0  bps2 (4.15)
0 —P4po —DP4,1
-1 0 P31
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in place of (4.13). The argument is similar for f,, n > 5, moreover, the
corresponding matrix M turns out to depend only on k —n, rather than on
n and k; we write M = M(k —n).

Eliminating the parameters a; and a3 from the equations ¢;; =0, ¢2,1 =0,
and ¢33 =0, we end up with the equation

10a® — 5903 + 14504 — 190a? + 140a? — 5501 +9 = (10a; —9)(ay —1)° = 0.
(4.16)

Consequently, S5 = {(1,1,1),(s%, 3, 15)}- The extension tree of fs is as

follows,

fs(a)
(a=3})

fs,1 —fs,2 —fs,3(c1)—fs,4(a1)— fs,5 (ar,a2) — f5,6(a1,02) = fs,7(1,02,03) —f5,8 —f5,9—-..
Sg,5=2(91,1) Ss5,6=2(q1,1) S5,7=%(91,1,92,1) S5,8 55,9

. N(a1=3) N\ N N
f;'l fk,s fé’s(al €{0,2}) f§,7(a1=5i{1—°) Noeztension
r3,1+p2,0+1=0 rgs,1+p3,0+1=0 r7,1+p6,0+1=0

We note that the solution a; = -1-93 yields a Lie algebra isomorphic to the
prosolvable subalgebra tR[t]%& of the polynomial vectorfields. Further, the
two real algebras f} ;(S3 ;) of dimension 13 are rigid, possessing nonrational
structure constants. Here, Sé,-, = Ss57 N Z(p7,1 + pPe,0 + 1) is determined by
the solutions of the equation 15a% —40a3 + 44a? — 36a] +9 = 0, whose real
solutions are the irrational numbers a; = 54'153@ (the nonreal solutions are

1:|:i212)
3 .

5. Main classification theorems.

5.1. We summarize our previous results in the following classification

theorem.

THEOREM 1. Let g be areal Lie algebra of dimension greater than three,
and assume g € F'S;. Then ¢ is isomorphic to one of the following pairwise
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nonisomorphic Lie algebras (for some integers n, k)

Up, Uy 1 (1 even), bp, 160(q0, ..., @z _s) (1 even,@ € Dy), bak, b3y, €a(@),
da(a) (a > 0), () (B20), fu(B) (BERN{1}), fo) (2<2r Sn—4),
14,(8) (n even, B € R~ (1), fi (n 0dd), 357 P §5F (1) (n even, 7 € R),

fn,;s) -(n Odd)r fn,k(ﬂl, ceey [k_;l_]) (1 < k),
frlz k(B1,--- aﬁ[.k;l_]) (k> 1, n+k even), bn.

If k < n, the family fn i is defined on Sy x = R(=5"1. If k > n, the parameter
domains Sy of the Lie algebras fq k(B1,- - -, ﬂ[k 1]) are nonempty algebraic
sets, given as the solution sets of finitely many second order equations defined
by sums of polynomials of the form +p; ;pi,m. Finally, the parameter domains
s1 1 of the Lie algebras fn e(Bryeees ﬂ[u_;l]) are algebraic, possibly empty,
sets.

5.2. COROLLARY. Let g € FS;, withn > 4. If the center of ¢ is
nonzero then ¢ is isomorphic to the Lie algebra f,(% a4

5.3. Let U, (n > 4) be the subclass of F'S} consisting of all Lie algebras
given uniquely within isomorphisms by their nilradical. '

COROLLARY. (a) FS;n\U, consists of all Lie algebras isomorphic to
one of the following, dn,bn,ca(a),da(a) (@ >0),fn(B) (6 € R\ {1}), and
Bn.

(b) The nilradical of each g € U, has a one dimensional maximal torus (cf.
[Br]).

(¢) The algebras g = Re; ® n (n =the nilradical) of FSi,n for which e, is

adg-semisimple, are (within isomorphisms) ¢n(a),ds(e), and bn.-

5.4. In light of Thm.1, the algebras in F'Sy 41\ Upn41 all have nilradicals
isomorphic to n, whose nonvanishing Lie relations are [es,e;] = eiy1 (1 =
3,4,...,n). Now consider the class D, of all completely solvable real Lie
algebras g = a @y n (semidirect product), whose n-dimensional nilradical
n is filiform of codimension k > 0. We note that D, coincides with the
class FSy nt1. If ¢ € Dy with k > 1, it follows from Cor. 5.3 (a) that
n is isomorphic to n, and the eigenvalues of each ad(a) must be of "type”
Gnt1; Bni1s Cat1(a), 9nga(a) (a 2 0), fat1(B) (B € R~ {1}), or bpnyy. Con-
sequently, we arrive at the following classification of Dy, i :
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COROLLARY. Let g € Dy, k > 1, and write g = a®g n as above.
Then we can choose a basis < e; >%_, for a such that the eigenvalues of
each ad(e;)|n are (within isomorphisms) among the following types:
ap: (1,0,1,2,...,n— 3), by, cp(a) and 2,(e) : (1,0,1,1,...,,1),
fa(B): (B—-1,1,8,28-1,..,(n—3)8 —(n—4)), b,: (1,1,2,3,...,n—4).
I, in addition, a is adg-semisimple, only the types a,,b,, and f,(8) can

occur.

5.5. LEMMA. Let a and n be nilpotent Lie algebras, a abelian. Assume
we can form the Lie algebra extension of a by n with the corresponding
extension data 6 : a — Der(n), a representation, and C € H?*(a,n;0) a
two-cocycle. Assume further we can find a basis < e; >, for n satisfying

(7) ez, ei] = eix1 (2< i< n),

(i?) there isanr € {3,4,...,n — 1} such that [e,,e;] =0 (i # 2).
Then C is center valued.
Assume in addition to the above:

(#ii) there is an a € a such that 6(a)e, = te,, (t#0).
Then C vanishes.

Proof. We form the solvable Lie algebra extension g of a by n associated
to the data (6, C) by identifying the space of g to the direct sum a@®n and
defining the Lie product as follows,

[(v,m), (w,n)] = (0,8(v)n—68(w)m+C(v,w)+[m,n]) (v,w € a, m,n € n).
We note that, in this realization, we have 6(u,0)(0,n) = (0,6(u)n) and
[0(u), 0(v)] = ad C(u,v) (u,v € a, n € n). The Jacobi identity and the fact
that each 6(u) (u € a) is a derivation of n, gives the following cocycle
identity for C : (u,v,w € a;k,m,n € n),
0= {8(v)C(v,w) + [k, C(v,w)]}

where the sum is taken over cyclic permutation of the triple (u, k), (v,m),
(w,n). Now, letting k =m =n =0 we find Y 6(u)C(v,w) = 0. Next, write
C =Y 1, Cie;i. Letting k = m = n = e3, condition (i) yields

n-—1

0= ) [e2Cw,w)]= Y > Cj(v,w)ejsr.

<u,v,w> <u,v,w> j=3
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Consequently, C; =0, j=3,4,...,n—1. Similarly, taking k=m =n =e,
and applying condition (i¢), we find Cy = 0. Accordingly C = Chre, is
center valued. Finally, using condition (¢:7) we have

0= Z 8(a)C(v,w) = t(C(v,w) 4+ C(u,v) + C(w,u)) (u,v,w € a),
<u,v,w>

which clearly implies C' = 0 Q.E.D.

5.6. THEOREM2. Let g be a completely solvable non-nilpotent Lie al-
gebra whose nilradical n is filiform. Then g decomposes into a semidirect
product a @g n, where a is an abelian subalgebra.

Proof. If g has trivial center, we can find an @ € g — n such that ad(a)
does not commute with the one-dimensional center Rz of n. Consequently,
ad(a)z = tz for some nonzero real t. Since the ideal generated by a and n
belongs to F'Sy, n satisfies the first two conditions of Lemma 5.5, and we
conclude that g is a semidirect product (the cocycle vanishes). Finally, if g
has nontrivial center, the ideal generated by n and a is either isomorphic
to fn41(2=3) (Cor.5.2), or else it is a direct product of R and n. Observe
that 6 # 0, since otherwise g would be nilpotent. Hence we can find a basis
< e; >k | for a such that 8(e;) =0 (: = 2,3,...,k) and the eigenvalues of
f(ei)|n are 1,n—3,,n—4,...,0. But then n® Ef=2 Re; is a nilpotent ideal,
contrary to our assumptions. The theorem follows. Q.E.D.

5.7. On the basis of Thms.1 and 2, rigidity properties of the class F'Sy
can be worked out. In fact, we have the following more general result:

THEOREM 3. Let g be a completely solvable non-nilpotent Lie algebra
whose nilradical is filiform and of dimension > 4. If g is rigid, then either g
is the unique element in Dy 5 (n > 2) of mixed type by, fn_i_l (B) for any
B # 1 (they are all isomorphic), or else g belongs to the class F'Sy and is
isomorphic to one of the following Lie algebras (for some n > 4) :

n—3 n—38
(2 <2r <n—2),fnp, fETD U7 (nodd), £l 4 (k= 1,2)
and, in addition, all elements of the families

f}z,k(ﬂl,...,ﬁ[%]) (n+k even) andfn’k(ﬁl,...,,@[k%l]),
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whose parameter domains S}, , and Sy 1 (resp.) are finite.

Proof. Assume first that g does not belong to F'S;. If g ¢ Dy non-
rigidity follows from [C1, Prop. 3.1]. If, on the other hand, g € D, then
k=1 or 2 by [AG, I1.2]. If £ = 2 the result follows from the theorem in
[AG,IL.3].

Finally, if g € F'Sy is rigid, let e; be any nonzero element of g — n. We
can find a basis {e,...,en} of the nilradical n consisting of eigenvectors
of ad(e;) and which satisfies the relations [eq, €;] = ej11 (2 < i < n), [AG,
Lemme I1.1.1]. Using this and the rank theorem in [AG], we derive quickly by
inspection of the algebras listed in Theorem 1 that g must be an extension
of fm(B) for some m > 5. Further, excluding parameter families, we end
up with the Lie algebras of Thm.3. Finally, rigidity follows along the lines
of [C2, Prop.(4.3)]: Note first that all the Lie algebras listed in the second
part of Thm. 3 decomposes as semidirect products t @y n of the (adg-
semisimple) torus t = Re; and the nilradical n. Moreover, the eigenvalues
of ad(ey) are of the form 0,«,2a,...,na for a positive a, depending on g.
Replacing e; by a~le;, we can assume a = 1. Furthermore, by Cor.5.3 (ii),
t is a maximal external torus for n. In fact, any such g is uniquely given
(within isomorphisms) by its nilradical. It follows that H'(g, g) = (0) (all
the derivations of g are in the conjugacy class of t).

We denote by V. the intersection of the following subsets of the variety
Lien11(R) :

V={g: Hg,9) = H(g,9) = (0)} (i.e. g is complete).

V; consists of all g whose maximal torus in Aut(g) has dimension less
than 2.

U, consists of all g for which there exists an z such that the spectrum
of adgz (within permutations) is contained in the open ball with radius € in
Rmt1 centered at (0,1,2,...,n). v

Observe that the above sets are open in Lieny1(R) with respect to the
metric topology, hence they are also Zariski open. Now, for e sufficiently
small, the Levi factor must vanish for any g € V. (since g € U,). It follows
that g can be written as a semidirect product t @ n of its one dimensional
maximal torus t and its nilradical n. Next, for Lie algebras of a fixed di-
mension there is only a finite number of conjugacy classes of maximal tori,
[Br]. Consequently, we can choose € so small that the weights of t are of
the form (0,«,2a,...,na) for some a > 0. The remaining part of the proof
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is partitioned into several subcases.
First, let W, be the Zariski open subset of V, consisting of those algebras
whose structure constants satisfies

(a): c%"}l #0(3<j<n+1) and 03+zzr+2 L F0(2<2r<n—4, =
0,1,...,7 — 1), where r € {1,2,...,[”23]}

An inductive argument- similar to the proof of Lemma 4.1, shows that
g/Renqy is isomorphic to f,(f) for some B. By Thm.l and the second
condition in (@), g must then be isomorphic to )‘( ") for some r. We have
shown that W, is contained in the GL,41(R) orblt of fx)l The remaining
cases are similar, the conditions on the structure constants to consider are
as follows:

If in addition to (a),

(b) cg:ii:zln 2—4 ?é 0 (7' =0,1,.,r— 1)7 r= [n_;é],

then g = fﬁfll,z, r=[254].

If in addition to (a),

(c): C?j-zln—l i #0 (1=0,1,..,r=1),r= [112;5]

then g = fn 93 T = [25].

Suppose (a) holds with r =1 and

(d): et #0,

then g = f,—10.

Let g be a Lie algebra with basis {ej,ea,..., entkt1}, (n > 4,k > 2)
whose structure constants are cf .. Assume c"l'1 £083<j<n+1).If

(o) Tt #0(i= 0,1, [551]),

then g = §, p41(aq, ...,O{[k;_l]) for some & € Sy k1.

(Accordingly, these algebras are rigid whenever the corresponding parameter

domains Sy, x+1 are finite, cf. Ex.4.6).

If n+k is even and

(f): it #0(=0,1,.., 255 —2),

then g & fn’k(al,...,a[%]), for some (O[l,...,a[k%l]) € S,lz’k.
(As a consequence, these algebras are rigid whenever the parameter domains
Sy i are finite). Q.E.D.
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tions.
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6. Extension graphs of the class FS;.

Note: The arrows indicate direction of extensions; quotient maps run in the opposite directions

46,1 a,,1 (n even)
/ ~

ag — Qg —> - — Qg —_— oee
T s — ca(a) C0 o W (o) D

a4 — 05— Vg(a) — @=D .. (2= O)a (@) @=9...

(a2>0)
N\
bs — be — — ban — bont1 -
1 7 LN < LN 1
bs,1 b b b6,1  'b2n(0,..,0n—_4) 63, b2n,1 bant1,1
l 1 1 1 1 1
: bg 66,2 bgn bzn,2 :
! 1 1 1 1 l
bs,k : bant1,k
1 1 1 1 ! 1
: b’é b6,k b’;,, b2n,k :
1 ! 1 ]
e4(B) (82>0)
fa(B) — fs(8) — fe(8) — — fa(B)  —-- (BER\{1})
1(8=3/2) ' (n even),” l(ﬂ=,,—_”(;—,.—2;—15)
fsn fo(B) fe u(8) )
(2€2r<n-2)
L\ 1 (=11 N N
. n—3 n-—3
fs,2  f51 fe,2 o o1 ffz[22 o fEL32 :
(n odd) n odd
1 1N 1 N
fs,3(8) fo,a(B1)  fs,2 fn,2k—1(B1,-,Bk—1) f([—r])( )
AN ! L Nmeay
fs,a(B) fis fe,4(B1) fr, 26 (B1r-sBr—1) fr ok_1(B1yesBr-1)
(0<2k<n) (1<2k-1)
l ! N 1 N(n even)
: fo,5(81,82)  f3 4(B1) fr 2k (BrrsBr-1)
(1<2k)
by — by — - —bp —




7. Tables of filiform solvable Lie algebras.
TABLE 1

E—— T

T+u( u'eg 1—u
(uons u) ) (e<4 ‘4z=u) . .
(&) g (1) -+ g g | (g -uw) —g(e—w)| {1}
(el o= (1+ag)—u | (1t4g)—u :
M.M.w% =it .-+mm.~AH| mo.ll.umw + u Nm. Amﬁ.—.L@IQN 47—u Anvﬁw
(g)'+ v (e-w-dc-w| {1hu
o< .
(0)T+¥q —¥ig 4+ v'eg + ¢igm ! (0)*e
0<®
(0)T+4) UG — weg 4 igo I (0)*
(*@ Do ‘usns u) (z—42=9) ..|x...+»ma|..ﬁlvmﬁw..““w+x.«mﬂxm
Amlmda....caveam :m.vlmdn_:...u_:wma@.*lomoﬁ 2
(usra u)
9 “ig —v'tg !
g “ig +v'tg ! “q
~+=& :.nm 1
(uaaa u) (4z=u)
T'uy et thig (1=) 4 ...+ T-¥%g — v'eg e—u
T+uy vg z—u up
(p‘g)8 =28 g 2phoon (1a)g .Hwﬂaemw ]




TABLE 2

Cocycle B

g =9(B,0)

g Qﬁmuv
@Pw 1 " Ba,n4k—B1,k43 ﬁa.»+~
@M 1 B3 ntr+Bi,k43 m.w+u
(n even)
2n+k—5 (4] _
%:,wAQT ceey Q_wuv I:M.Hm.ll w».:+m+MU~:"+r..Ao:...:Qaw_ku+..._.+¢|.. *?w+HAQ? ceey QHW_V
=0 @ €ESn k41, k20
Sntk e T
ku.lw|lo Bg,ntk+ MU AIS.+~mu+...=+T.. w.»?&? e ,Q_»Imuv
=1 n+k even, (a1,...,a k—1,)ESL ,
St M
r—1
mmmvu .Fwtlw. mu.:+~+MUAIC..?.I..VNut.alpl.. %M.MW (n even)
n."_“.awlwu =0
r—1
2L By g1t 3 (<1 (r=i) Bagines £ (n 0aa)
1=0
(r) n43 = i/ (r=i)(r41-i R A ()
fn2 3 Bania+ ) (-1)¥( 7 =¥)Bsti,n—i ?.wsv (V€R)
r=[253] i=0 (n even)
B2 By et I~ (ri— E ) By mhw
=1

(n odd)
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