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ABSTRACT

The object of the thesis is to investigate, measure and analyse the impact
of liquidity on portfolio value, risk and execution.

We consider the formalism of [Acerbi and Scandolo, 2008] to value port-
folios in markets exposed to illiquidity through the use of Marginal Supply
Demand Curves. We show that future portfolio returns become fat-tailed
when liquidity risk is introduced.

Further, we investigate the market impact model of [Almgren et al.,
2005], who estimates supply curves on equity instruments by considering a
large database of executed orders. Since such data are highly confidential,
we propose to use transaction data to estimate the same supply curves.
This may enable more market participants to assess their liquidity risks and
costs. Transaction data does not contain the same information as order data.
To bridge the information gap between the two data sets, we introduce a
’strategy identifier’. By using regression and filtering techniques we show
that using transaction data together with the strategy identifier give results
comparable to using order data.

Finally, we combine the formalism of [Acerbi and Scandolo, 2008] with
the supply curves of [Almgren et al., 2005] and expand the notion of Marginal
Supply Demand Curves to a stochastic object to model future liquidation
prices. We find that a portfolio owner required to liquidate a large position
will be faced with a trade off between liquidating fast to a high liquidity
cost, versus liquidating over a longer time span but with higher market and
liquidity risk.
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1. BACKGROUND

The subject of liquidity risk has been absent in most mathematical finance
literature. The main focus has relied on market risk, and extensive theo-
ries have been developed to explain the behaviour of the market dynamics.
That may have been rightly: most of the financial risk stems from what we
loosely call market risk, and the golden theory of mathematical finance, the
Black&Scholes formula, manages to value options quite correctly without
taking into account any liquidity risk.

However, liquidity risk is still an important contributing factor to finan-
cial risk. During the financial crisis, several institutions did not go bankrupt
due to the market risk, but due to liquidity risk. The absorption of liquidity
in the market decreased and they were forced to sell assets at large discounts
to raise cash for their obligations. In general, a portfolio thought to be worth
its mark-to-market value may be found to be worth significantly less when
liquidating it in a market, and especially in a stressed market environment.

When speaking of liquidity risk we distinguish between three main sorts
of risks:

• the risk of running out of money,

• the risk of trading in a illiquid market,

• the risk of decreased liquidity in the economy.

We will focus on the first two elements of liquidity risk, although the
third is still relevant.

A promising approach is given by [Acerbi and Scandolo, 2008] and [Cetin
et al., 2004]. Both articles questions the mark-to-market paradigm where
prices are market to best bid or best ask. They argue that the effective price
an investor will buy (sell) by closing down a large positon in a security will
be higher (lower) than the observed best ask (bid). To correctly value a port-
folio, the authors introduce supply and demand-curves for equities. [Acerbi
and Scandolo, 2008] further assumes that a portfolio holder is held under
some liquidity constraint, with a possible need to liquidate his portfolio for
cash within a relatively short time horizon. The risk of having to liquidate
a portfolio on short notice should clearly reduce the value of the portfolio.
This is a reasonable assumption: a hedge fund may be confronted with a
large unexpected withrawal and an insurance company may be confronted
with a large unexpected insurance claim.
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By assuming the existence of supply curves and a liquidity constraint,
[Acerbi and Scandolo, 2008] shows that the value of a portfolio is now an
optimization problem: Given that one may be required to raise liquidity in
the portfolio, the investor would need to choose which securities to liquidate
to minimize some ’liquidity cost’. Fortunately, [Acerbi and Scandolo, 2008]
also shows that under reasonable and weak assumptions, finding the portfolio
value can be formulated as a convex optimization problem.

The above framework builds upon the assumption of a well defined sup-
ply and demand curve. However, it makes no attempt to specify such curves
other than specifying a large class of functions that will work.

[Gatheral, 2010] shows that if market impact is permanent, then no-
dynamic-arbitrage1 imposes that impact is symmetric between buy and sell.

[Almgren et al., 2005] estimates a model for the supply and demand
curves from a large dataset from Citigroup’s equity trading desk. They
separate market impact into a permanent and a temporary element, and
regress their data on historical buy and sell orders. Their findings is that
the permanent impact is linear in number of shares, while the temporary
impact follows a 3/5 power law.

The thesis is organized as follows: In Section 2 we review the formalism
of [Acerbi and Scandolo, 2008] and include some proofs not present in the
original work. In Section 3 we estimate Supply Curves through the use of
transaction data from Oslo Børs over a period of about 2 years in some
selected equity instruments. Section 4 combines the two above sections
and considers how liquidity and market risk affect the portfolio value and
execution horizon decision. Then, we give some general conclusive remarks
in Section 5. The R code used to generate all the numerical results are found
in the Appendix.

1 Not possible to buy and sell over some time without a positive expected cost. See
[Gatheral, 2010] for formal definition.



2. LIQUIDITY VALUATION

2.1 The Acerbi-Scandolo formalism

This section is a summary of the formalism put forward by [Acerbi and
Scandolo, 2008] and introduces the most important concepts and results
found in the mentioned article. The definitions, propositions and theorems
will usually have their counterpart in [Acerbi and Scandolo, 2008], but we
have added proofs and explanations where the original authors have omitted
this.

The main concept to be understood is that there is no such thing as one
price per asset. As observed in the market, a market participant will receive
a higher price if he sells a small quantity of assets than if he sells a large
quantity of assets. In general, the larger quantities of securities being traded
by a participant the less favourable price will be given for the securities. This
is characterized by the Marginal Supply Demand Curve (MSDC).

Definition 1 (Marginal Supply Demand Curve). An asset is a good traded
in the market. The price of an asset at any point in time can be characterized
by the Marginal Supply Demand Curve: a map m : < → < satisfying

1. m(x2) ≤ m(x1) if x1 < x2

2. m is cadlag for x < 0 and ladcag for x > 0.

where x is the total amount of asset sold. x < 0 will be characterized as
buying the asset.

The only general restriction on the prices is that you get less favourable
prices as you buy or sell more of the asset.

A natural concequence of the definition of the MSDC’s is that by selling
or buying a quantity s of an asset, the monetary value gained equals the
integral of m(x) from 0 to s. We will say that a market consists of one
fully liquid asset we will call the Euro (m0 ≡ 1), and N illiquid assets with
MSDCs as in definition 1.

Definition 2. Let a portfolio be defined as a vector p = (p0, p1, ..., pN ) ∈
<N+1 where p0 is the position in the fully liquid asset, and pi is the position
in asset i. One may add a scalar to the portfolio vector p + c, where c ∈ <.
The meaning of such an operation will be the addition of euros to a given
portfolio i.e. p + c = (p0 + c, p1, ..., pN ).
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After defining the market, we can define the first notion of a value of the
portfolio as the value recieved if the portfolio was liquidated straight away:
Definition 3. The Liquidation Mark-to-Market Value of a portfolio p is
defined as

L(p) =
N∑
i=0

∫ pi

0
mi(x)dx = p0 +

N∑
i=1

∫ pi

0
mi(x)dx (2.1)

This definition is in contrast to the definition of a mark-to-market value
of a portfolio when it is marked to the quoted bid/ask prices. Then, the
portfolio is priced given prices of best bid (m+ = m(0+) = limx↘0m(x))
and best ask (m− = m(0−) = limx↗0m(x)) prices.
Definition 4. The Uppermost Mark-To-Market Value of a portfolio p is
defined as

U(p) = p0 +
N∑
i=1

[pim−i 1pi>0 − pim+
i 1pi<0], (2.2)

where 1x = 1 if x is true, and 0 otherwise.
A natural definition of liquidity cost can then be defined as the differ-

ence between marking the portfolio to bid/ask prices, and liquidating the
portfolio immidiately:
Definition 5. The Liquidation Cost of a portfolio p is defined as

C(p) = U(p)− L(p) (2.3)

It is easy to see that C(p) is non-negative, and the natural interpretation
is that a positive value is the cost of liquidation, measured in euro.
Theorem 1. The functions L, U and C are continuous in P. They are also
concave, concave and convex, respectively. Further, for λ ≥ 1
• L(λp) ≤ λL(p)

• U(λp) = λU(p)

• C(λp) ≥ λC(p)
Proof. The continuity is easy to see from the definitions. We refer to [Acerbi
and Scandolo, 2008] for proofs of the concavity and convexity. Hence we will
consider the rescaling of the functions:

L(λp) = λp0 +
N∑
i=1

∫ λpi

0
mi(x)dx

= λp0 +
N∑
i=1

∫ pi

0
mi(λz)λdz

≤ λp0 + λ
N∑
i=1

∫ pi

0
mi(z)dz = λL(p),
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where the equalities follow from the definition and transformation x = λz,
while the inequality follows from the monotonicity assumtion on m.

The scaling for U follows simply by linearity.

C(λp) = U(λp)− L(λp)
≥ λU(p)− λL(p) = λC(p),

where we have used the property for U and L.

We will call a portfolio q attainable from p if q = p− r +L(r) for some
r, and write q ∈ Att(p). Then the portfolios in Att(p) are all portfolios
that can be obtained from starting with p and liquidating some positions r
in the market. Further, it can be shown by considering the derivatives of U
that if q ∈ Att(p) then U(q) ≤ U(p) (Lemma 4.11 in [Acerbi and Scandolo,
2008]).

One of the main innovations in [Acerbi and Scandolo, 2008] is the concept
of a liquidity policy. It is a concept that is separate for each investor holding
a portfolio, and can influence the value of a portfolio considerably as we will
see.

Definition 6. A liquidity policy L is a closed convex set of portfolios satis-
fying

1. p ∈ L ⇒ p + a ∈ L, a ≥ 0

2. p = (p0, p) ∈ L ⇒ (p0, 0) ∈ L

Hence we can always add cash to the portfolio, and there is never any
problem in reducing the position in a illiquid asset.

A liquidity policy should be understood as a requirement imposed on a
portfolio by its owner’s liquidity needs.

For instance, a hedge fund may be obliged to refund one of its investors
within a short notice. We would then say that the hedge fund must have a
portfolio p that can be liquidated to a portfolio q that satisfies a liquidity
policy {p0 ≥ F}, where F is the investor’s withrawal. Such a policy is called
a cash liquidity policy:

Example 1 (Cash Liquidity Policy). A special type of liquidity policies is
the cash liquidity policies L(a), defined as

L(a) = {p|p0 > a}, a ∈ <

It is clear that if (p0, p) ∈ L and b > 0 then (p0, p) + b ∈ L as a < p0 <
p0 + b. Further, the cash liquidity policy does not depend on the position in
any illiquid asset.
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A portfolio is not meant to satisfy a liquidity policy at all times. For
example, a hedge fund may be obliged to refund one of its investors on a very
short notice, and hence will be required to find an amount of cash quickly
through liquidation (a cash liquidity policy). Hence, we will require that a
portfolio p can be liquidated into portfolio q ∈ L(a) quickly. We will say
that the value of the portfolio p for an investor with liquidity policy L is
the best possible partly liquidation of p so that the new portfolio satisfies
the liquidity policy. Formally,

Definition 7. The value of a portfolio p under the liquidity policy L is the
function V L defined as

V L = sup{U(q)|q ∈ Att(p) ∩ L} (2.4)

Going back to our hedge fund as an example, it is not fair for the hedge
fund management to announce that the value of their portfolio is 100m if
they, after being forced to repay 1m, only can claim to be worth 95m. Seen
this way, it is clear that the notion of value found in the mark-to-market
value function can be improved. The mark-to-market function does not take
any liquidity concerns when valuing the portfolio. The concept of liquidity
policies takes liquidation and liquidity into account and incorporates it into
the value function:

Corollary 1. We can rewrite equation (2.4) in terms of the liquidating
portfolio r:

V L(p) = supr{U(p− r) + L(r)|r ∈ CL(p)} (2.5)

where
CL(p) = {r|p− r + L(r) ∈ L}

If CL(p) = ∅ then we define V L(p) = −∞.

A result of practical importance is also found in [Acerbi and Scandolo,
2008]. It gives us a straightforward recipe to value a portfolio constrained
under a cash liquidity policy:

Theorem 2. Let L(a) be a cash liquidity policy. Assume mi(s) are strictly
decreasing and continuous on < for all i = 1, .., n. Then there exists a unique
solution ra to the problem in equation (2.5) which is given by

rai =
{
m−1
i (mi(0)

1+λ ) if p0 < a

0 if p0 ≥ a
(2.6)

where λ is determined by
L(ra) = a− p0 (2.7)
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2.2 Summary of [Cetin et al., 2004]

[Cetin et al., 2004] defines an illiquid market in much the same ways that
[Acerbi and Scandolo, 2008] does. Their market modeling assumptions are
similar if not equal. [Cetin et al., 2004] goes on to use their market to hedge
claims and places much stricter assumptions on their price processes than
[Acerbi and Scandolo, 2008]. We will review the modeling assumptions made
in [Cetin et al., 2004].

2.2.1 Comparison between assumptions of supply curves

In [Cetin et al., 2004] the authors explore hedging of claims in a market where
prices are not only dependent on time and state of the world, but also on
the traded amount x. The approach is also taken by [Acerbi and Scandolo,
2008], and although different notation, there are several similarities in the
assumption taken on the price processes. In [Acerbi and Scandolo, 2008] one
defines the Marginal Supply Demand Curves m(s) which gives the marginal
price of an asset given a sell (s > 0) or a buy (s < 0). On the other hand,
[Cetin et al., 2004] models the Supply Demand curves S(t, x, ω) directly with
respect to a buy (x > 0) or a sell (x < 0).

The transformation between the two notations is simply

S(t, x, ω) = 1
x

∫ x

0
m(−s)ds (2.8)

and is also identified as what [Acerbi and Scandolo, 2008] calls the Supply-
demand curve.

For comparison, we can transform the assumptions of the MSDCs found
in 1 and 2 to find the equivalent properties for 2.8:

Theorem 3 (Acerbi Supply Curve). Assume that the MSDC satisfies the
assumptions in 1, 2 and is restricted to be an asset. Then, a supply curve
Sa defined as in 2.8 will satisfy the following properties:

1. Sa(x) ≥ 0,

2. Sa(x) is strictly increasing: if x2 > x1 then Sa(x2) > Sa(x1),

3. Sa cadlag og lagcad,

4. Sa is continuous in x.

Let us call functions satisfying the above conditions Acerbi Supply Curves
Sa.

Proof. The first property follows as m is assumed to be positive. The second
property follows as m(-s) is strictly increasing in s: the average (from zero) of
an increasing function is increasing. Third property follows from continuity
of limit. Continuity of S follows from continuity of the integrand.
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Similarly, the assumptions on S in [Cetin et al., 2004] is:

Definition 8 (Cetin Supply Curve). A Cetin Supply Curve Sc ∈ Sc satisfies
the following properties:

1. Sc(t, x, ·) is Ft-measureable and non-negative,

2. x→ Sc(t, x, ω) is non-decreasing in x a.s.,

3. Sc is C2 in x, and its first two derivatives w.r.t. x are continous in t,

4. Sc(·, 0) is a semi-martingale,

5. Sc(·, x) has continuous paths for all x.

Comparing Sa and Sc we can see that the two frameworks are similar.
Both functions are increasing in x, although Sa is strictly increasing. Both
functions are required to be positive. Sc is required to be C2, a stronger
assumption than cadlag og lagcad of Sa. Assumptions about the probability
space is only loosely defined in [Acerbi and Scandolo, 2008].

The assumptions of [Cetin et al., 2004] regarding the supply curves are
much stricter than the equivalent assumptions made by [Acerbi and Scan-
dolo, 2008]. This is due to the fact that the former shall be used to develop
hedging strategies. However, [Cetin et al., 2004] does not account for any
liquidity policies in their valuations, a feature that may alter the end result
of their hedging strategies. A possible investigation would be to see how the
hedging strategy will work under the constraint of a liquidity policy.

2.3 Motivational example of portfolio value under exponential
MSDCs

In this section we will present a simple model of the exponential type pro-
posed in [Acerbi and Scandolo, 2008] where the MSDC of an asset i takes
the form mi(x) = Aie

−kix. The parametric form of the MSDC is simple and
tractable and there exists a closed-form solution of the value function, as
shown in [Acerbi and Scandolo, 2008]. We will aim at showing some stylized
facts about the model, by assuming stochastic dynamics on the variables
Ai and ki. The variable Ai will model the market volatility much in the
same way that standard finance litterature models ut, while ki will be our
liquidity parameter. A large ki will result in a less liquid asset, and the value
of the position will be negatively related to the position size.

By using Proposition 6.1 in [Acerbi and Scandolo, 2008] we can show
that the optimal solution for the exponential model is 1

1 [Acerbi and Scandolo, 2008] must have assumed p0 = 0. We have included this term
for completeness
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λ = a− p0∑N
i=1Ai/ki − a+ p0

(2.9)

rai = 1
ki

log(1 + λ) (2.10)

V La(p) = U(p−ra)− L(ra) =
N∑
i=1

Ai(pi − ri) + a+ p0 (2.11)

There are several interesting points regarding the model:

• The model assumes no restrictions or costs on short selling.

• The optimal liquidation policy ra is independent of the current position-
vector (except p0). This is a consequence of the no short selling re-
striction.

• The portfolio value is linear in each pi, i 6= 0. This is because all
position not liquidated to satisfy the cash policy is valued at the mark-
to-market value.

Let us now introduce some simple stochastic elements in the model.
Assume that we wish to evaluate a portfolio in a future time and that we
know that the distribution of A and k are gaussian: A ∼ N(10, 0.04) and
k ∼ N(0.001, 10−7). By simulating values of A and K we get a distribution
of MSDC curves as seen in figure 2.1.

In 2.1, each line corresponds to the MSDC function with a different
simulated (A, k) pair. The MSDC corresponding to the expected value of A
and k is the thick black line. Due to our gaussian assumption on A there is
no guarantee that the prices are positive. This is a limitation to the model,
but by having sufficient low standard deviations on A we can ensure that
the probability of negative prices is effectively zero.

Also note that the price has a significantly larger spread for buying
positions (pos < 0) than for selling positions (pos > 0). The effect is due to
the nature of the exponential function, and is in our model determined by
the variable k.

We wish to investigate the value and risk of a portfolio in this model,
and how it changes with different assumptions on A and k. Assume we have
a portfolio consisting of a single asset. Following the idea of Acerbi (2007)
we will consider four different scenarios:

1. A normal and k = 0. The gaussian model with no liquidity risk

2. A normal and k ≥ 0 fixed. It is a model with static liquidity risk.
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Fig. 2.1: Simulated MSDCs for different values of A and k. The black line is the
mean MSDC.

3. A, k joint normal with zero correlation. i.e. it assumes independence
of market and liquidity risk.

4. A and k joint normal with a negative correlation. The model assumes
that as asset prices fall, liquidity is likely to decrease.

Assume parameters as given above. The uppermost mark-to-market
value of this portfolio is simply V (P ) = m(0) ∗ P = 10 ∗ 1000 = 10000. By
performing a Monte Carlo simulation on the MSDCs with the parameters
given above, we are able to approximate the distributions of the different
models. The resulting distributions are plotted in 2.3.

The most clear result is that our first model is gaussian with mean at the
uppermost value of the portfolio. By introducing liquidity risk in the form
of a positive parameter k in model 2-4, the expected value of the portfolio
decreases. In fact, it seems like model 2-4 have shifted their peak probabili-
ties to a new point around 9500, which is the centre of the (A,k)-distribution
(which is common for model 2-4). 2 The introduction of liquidity risk de-
creases the general value of the portfolio in this model, as should have been
expected.

More interesting is the comparison between model 2-4. They are each
special cases of the model (A, k) ∼ N(µ,Σ), where µ and Σ are a general
mean vector and covariance matrix. Comparing the empirical distributions,
it is qualitatively clear that the fat tails increases from model 1 to 4. The
fact can be accompanied by testing different risk measures on the portfolios.

2 The value of a portfolio is 9 433 at the point A = 10, k = 0.001.
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Fig. 2.2: Portfolio distributions of model 1 to model 4
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In our Monte Carlo simulation, we can extract estimates of the standard
deviation, 5 pct. Value at Risk and 5 pct. Expected Shortfall. Let us define
these risk measures in the usual way and as the distance from the mean of
the portfolio3. The results are found in table 2.1.

Portfolio Value Std.Dev VaR ES
Model 1 10003 453 743 925
Model 2 9434 486 800 999
Model 3 9413 541 913 1144
Model 4 9405 644 1100 1407

Tab. 2.1: Risk statistics for the four exponentially MSDC models that are being
tested. Numbers denominated in cash value.

We see that with all risk measures, the risk increases from Model 1
to Model 4. Although introducing liquidity risk in Model 2 decreased the
(average) value of the portfolio significantly, the model suggests that adding
stochastic dynamics to the available liquidity has a significant impact on
the risk measures used. Secondly, the correlation between the price variable
A and the liquidity variable k is important, as seen from the differences
between Models 3 and 4, which has a correlation of 0 and 0.5 respectively.

3 Formally defined in chapter 3.
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Fig. 2.3: How cor(A,k) affects the expected shortfall. We can see that only model 4
depends on the correlation between the two models, and that the portfolio
risk is higher when there is a strong correlation between A and k. Model
1 (black), Model 2 (red), Model 3 (blue) and Model 4 (green).
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The correlation effect is significant when executing the model with a cor-
relation varying from -1 to 1, as seen in Figure 2.3, where we modified Model
4 and left the other model outputs with the original correlation assumptions.

There are several stylized results that can be drawn from the example
above. We see that the value of the portfolio decreases as one introduces
liquidity in the valuation model. The effect is an expected result of the
new valuation model. However, it is not before we introduce stochastic
liquidity in the later models that we see a large effect on the tails of the
distributions. The portfolio becomes significantly more heavy-tailed when
stochastic liquidity is introduced. In addition, a negative correlation between
price return and liquidity has the largest effect on the heavy-tailedness.

The results motivate us to investigate stochastic liquidity-models where
we try to estimate the size of the liquidity effect and impose reasonable as-
sumptions on the distribution of the different market and liquidity variables.



3. MARKET IMPACT MODELLING

3.1 Overview Market Impact

The liquidity value model in Section 2 takes the Marginal Supply-Demand
Curves (MSDC) as given in their valuation of asset portfolios. However, the
forms of the MSDCs are of high importance in the models. This research area
investigates the market impacts of agents executing large trading orders.
The focus in the litterature is on supply/demand curves, which consider the
average realized executed price instead of the marginal price studied in the
previous section. There is a 1 to 1 relationship between the two, and we will
bridge the notations in Section 4 when we combine the two research areas.

The literature is mainly focused on estimating expected market impacts
as the data are highly noisy due to the more significant market volatility.
Most established models make distinctions between temporary and perma-
nent impact, as shown in the Deutsche Bank presentation [Ferraris, 2008].
The temporary impact happens as liquidity is taken out of the ’active’ mar-
ket, and the investor is temporary distorting the supply/demand equilib-
rium. However, the temporary impact will decay over time as the market
restores itself to equilibrium. This is when the second impact effect will play
a role: the permanent impact. It can be justified by an information argu-
ment, assuming that there are informed investors among the market noise:
The execution of a large order provides new information to the market place,
and the market will therefore establish at a new equilibrium. An illustration
of the different impacts is shown in Figure 3.1.

[Gatheral, 2010] investigates "no-dynamic" arbitrage principles on a gen-
eralized class of different market impact models. The authors show that the
permanent impact has to be linear in size and symmetric around 0 to satisfy
some general no-arbitrage assumptions.

[Almgren et al., 2005] uses a permanent/temporary impact model where
the permanent impact is linear and the temporary impact follows a 3/5-
power law. It is a discrete model that considers each order as a separate
event, as opposed to a continuous time model where one operates with a
decay factor.

In this section we will base our analysis on the model suggested by
[Almgren et al., 2005], and use various techniques to estimate their model
to market data. The techniques, such as the strategy identifier and filtering
theory, are generalizeable to other models.
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Fig. 3.1: Illustration of how an execution first drains the market of liquidity before
the market again finds an new equilibrium different from the initial state.
Borrowed from [Ferraris, 2008].

One of the main innovations in the section is the introduction of a
’strategy-identifier’ described in Section 3.4. [Almgren et al., 2005] obtains
their data from a large history of executed orders in Citibank. However,
such data is not available to most market participants, and therefore lim-
its the use of their analysis. The strategy-identifier tries to patch this gap
by identifying trading patterns in transaction history that are more often
publicly available. The remaining analysis shows that results comparable to
those of [Almgren et al., 2005] can be obtained using this strategy-identifier.

3.1.1 Model selection

In testing the error of the various models, we will use the Mean Absolute
Error (MAE) instead of the more widely used Root Mean Square Error
(RMSE). There are arguments in favor of both estimators, see e.g. [Will-
mott and Matsuura, 2005] for arguments in favor of MAE as estimating
average prediction power. We believe that in a highly noisy environment
with extreme movements, RMSE would put an unfair high weight on the
extreme "non-expected" events that we are not supposed to measure in the
first place. Therefore, MAE is a more natural choice.

3.2 The Almgren-framework

[Almgren et al., 2005] quantifies market impact from large trades. They
utilize a database from Citigroup, a large bank, containing equity trade
orders between December 2001 and June 2003 (19 months). The authors
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postulates a model describing the effect on stock prices from a large trade.
They distinguish between two types of market impact:

Definition 9 (Market Impact). Permanent (I) and realized (J) market im-
pact are defined as follows:

I = Spost − S0
S0

(3.1)

J = S̄ − S0
S0

, (3.2)

where Spost is the price observed 30 minutes after end of trading,
S0 is the price observed just before trading,
and S̄ :=

∑
j
xjSj∑
j
xj

is the average price realized through trading xj for price
Sj for all transactions j in an order.

Further, as we will utilize and compare these functions over a longer time
span, whenever we speak of the impact functions we will actually consider
the volatility normalized impact functions I ← σI and J ← σJ , where σ is
an estimate of the current volatility level.

Both of these variables can be observed in the market, and the hypothesis
is that a large trade will affect the market in two ways: Firstly, it will
temporarily affect the price as the agent demands liquidity over a (short)
period of time. Secondly, a large order will distort the general view of the
price and permanently affect the price.

[Almgren et al., 2005]’s model assumes that all orders are executed at a
constant (normalized) trade rate v throughout the order’s time span, and
this affects the drift of the stock price. In order to normalize trades over a
longer time span we will normalize the trade by the daily volume. Therefore,
we will use v := X

V T where X is the total order size, V is an estimate of the
daily volume and T is the trade duration.

The dynamics of the stock price St is

dSt = Stg(v)dτ + StσdBt (3.3)

where v is defined as the normalized trade rate of the agent, g is the per-
manent impact function, τ is the volume time, Bt is a standard Brownian
motion and the other variables are as usual.

In addition to a permanent price impact, [Almgren et al., 2005] assumes a
separate temporary impact of the trade, giving an average price of execution
slightly worse than an indenpendent observer would see in the market. The
price received from our trades is assumed to be modeled as

S̃τ := Sτ + S0h(X/T ) (3.4)
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where h(v) is the temporary impact function and Sτ is the process in Equa-
tion (3.3).

[Almgren et al., 2005] shows that in this framework, we can express the
normalized impact functions in the following way:.

Modeling Assumption 1. The normalized impact functions, defined by
Definition 9, in the model described by Equations (3.3) and (3.4) can be
expressed as

I = σTg( X
V T

)+ < noise > (3.5)

J = I

2 + σh( X
V T

)+ < noise > (3.6)

where
σ is the market volatility of the security, T is execution horizon, X is the
trade size, V is daily market volume, g is the permanent market impact
function, h is the temporary market impact function, and < noise > is some
white noise coming from market risk with zero expected value.

Further, [Almgren et al., 2005] proposes the analytic forms g = ±γ|v|α
and h = sgn(v)η|v|β. 1

Proof. We will show how to obtain the permanent model. A proof of the
temporary equation can be found in [Almgren et al., 2005].

By applying Ito’s formula on equation 3.3 we get

S(τ) = S0exp(g(v)τ − 1
2σ

2τ + σβτ )

where t = τ is the post-trade period and t = 0 is the start of the order
period. Then, using definition 9,

I = exp(g(v)τ − 1
2σ

2τ + σβτ )− 1

= exp(g(v)τ)− 1 + exp(−1
2σ

2τ + σβτ )

≈ g(v)τ + exp(−1
2σ

2τ + σβτ )

where we have used the approximation exp(y)− 1 = y for small y in the
last step.

We see that the last step is a so-called "noise"-element with zero ex-
pectation. To get the volatility-normalized version of the equation simply
normalize the impact by I ← σI.

1 Note that we have omitted the cross sectional term in g, as our analysis focuses at
each stock separately for permanent impact.
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By a Gauss-Newton optimization [Almgren et al., 2005] found the expo-
nents to be α = 0.891± 0.1 and β = 0.600± 0.038, and postulated that the
exponents α = 1 and β = 3/5 could be used in further analysis. We will
(naively) adopt this assumption.

Then, [Almgren et al., 2005] regresses Equation (3.1) onto the models in
Equation (3.5) and (3.6) to estimate γ and η. Their estimates are significant
and has R2 values of less than 1%. The explanatory power is expected to be
low as the noise of the model is the market volatility. However, they show
that the residuals are independent and have zero means. They do however
have fatter tails than the assumed Gaussian distribution.

3.3 Strategy Identifyer

The largest advantage of the data set in [Almgren et al., 2005] compared to
our data set is that the former has well identified orders with starting and
ending time points. This enables the authors to know when an order starts
and when it ends.

Unfortunately, large quantities of order data of this form are not publicly
available. This causes limitations to the use of [Almgren et al., 2005]’s model,
and one could argue that their model is based on a weak form of ’insider
information’. For the results to be useful, it requires a practitioner either
to blindly trust the model and parameters found, or to have access to large
quantities of order data in a suitable form.

In comparison, our dataset contains only transaction information. Such
data are often made available by the different exchanges on an exchange
member level, and is in specific available for Oslo Børs. 2 Therefore, if
one is able to use publicly available data to reproduce the results found in
[Almgren et al., 2005], the approach would be far more promising.

The main difference between order data and transaction data is that in
the latter one does not know when the agent started or stopped his order.
Therefore, in order to identify orders we need to find out when an order
starts and when it ends. We will propose one method which considers the
largest difference in position of each agent per day and then identifies this
as one order:

Definition 10 (Largest Daily Trade strategy). Let us assume that we can
observe the position ht of an agent in a particular stock over the trading day.
We define the maximum and minimum position of the agent as

htmax
:= maxtht

htmin
:= mintht

Then, the trade order is identified as
2 See e.g. "http://www.oslobors.no/markedsaktivitet/stockOverview?ticker=SEVDR"

where "Kjøper" and "Selger" is identified per transaction for the stock SEVDR.
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• If tmin < tmax we call the event a ’buy order’ with size htmax − htmin.

• If tmin > tmax we call the event a ’sell order’ with size htmin − htmax.

Further, if the trade size is below the trade size threshold |htmin−htmax | <
K, we assume that there has been no trades for the given agent on the given
day.

Our strategy identifier will capture large orders that an agent executes
over the trading day. It also filters out any unwanted ’noise’ on those days
that the agent is not actively trading any large quantities by defining the
trade size threshold K.

However, we stress that our strategy identifier in Definition 10 is a large
simplification. A large order may be executed over several days, and our
identifier will not capture this effect. Estimating the timing of large orders
may also be problematic with this approach. Consider an agent who buys a
large order at the start of the day, then does nothing until afternoon when a
small end-client requests a small amount of shares. In this case, the timing
of the order will be recorded to be the whole day, and our trade rate v will
be significantly underestimated.

There are therefore many possible improvements to our simple identifier
function. The main complication of using the model is to correctly set
the trade size threshold K. Choosing that K is too low will include large
quantities of noise in the model, while setting it too high will remove all
observation points.

3.4 Initializing data for analysis

This section handles all the preprocessing of data needed to perform the
analysis. It describes the raw data, discusses assumptions and approxima-
tions and establishes necessary time series to normalize the data such as
volatility and volume estimates.3

3.4.1 Data description

The data set consist of transaction data from October 2010 to January
2014 (39 months) on Oslo Børs (OB). For each transaction, it identifies
the time of trade, identification of stock traded, the buyer, the seller, the
quantity of shares and price agreed. The buyers and sellers are identified by
the members of Oslo Børs: brokerage firms and investment banks. In the
dataset, there is no information of bid-ask prices or spreads.

In the analysis we will conduct the numerical study on three equities
listed on Oslo Børs: Statoil (STL), Yara International (YAR) and Schibsted

3 The source code of the data initialization is found in section .1.2.
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(SCH). They are in decreasing market volume and from low volatility to
high volatility stocks respectively.

The main advantages of utilizing transaction data is that they are public
and that they are in vast quantities. Models are allowed to be more flexible
and can be updated faster to new observations. In Figure 3.2 we show the
cumulative positions of some of the exchange members in one stock over
time, calculated from transaction data.

There are three main issues using transaction data instead of inside
order-information:

1. there is no information whether a trade is buyer- or seller initiated,

2. there is no information when a trader starts and stops her trading
strategy,

3. one looks at aggregated behavior over several agents within the ex-
change member, and

4. there is no observation of trades executed outside of the exchange:
OTC trading, future markets, dark pools, MTFs4, etc.

Issue 1 clouds our visibility of who hits each transaction. However, it
should not have a large impact on our analysis. The importance is that
the agent is buying/selling a significant amount, distorting the assumed
equilibrium. Whether the agent actively places an order close to the market
cross or hit the bid/ask should not alter the fact that he is demanding or
supplying large quantities of securities. Considering issue 3, one could argue
that one is not considering real agents. However, the rest of the market
cannot observe the agent behind the exchange member. Their perception
will be the same whether it was one agent that bought x number of shares
or whether there were two agents under the same member that bought x/2
each.

Issue 2 poses a bigger problem, and one would have to look at the trans-
action data to observe trends. This issue is addressed by our strategy iden-
tifier described in Section 3.3. Issue 4 is a real problem that is a limiting
factor in our analysis. A developed model that is used to take trading deci-
sions should be expanded to these additional sources of market into account.
However, this should not affect the subsequent analysis, and we will proceed
as if we have all the information.

3.4.2 Raw data treatment and slot specification

An institution that is observed in the transaction data may execute a large
number of transactions during very short periods of time. We are not inter-
ested in these micro level details, and we will therefore sample transaction

4 MTF: Multilateral Trading Facilities. Alternative market places that may trade the
same securities



3. Market Impact Modelling 25

0 2000 4000 6000 8000 10000 12000

−
1e

+
07

−
5e

+
06

0e
+

00
5e

+
06

Slot

P
os

iti
on

 S
iz

e

Fig. 3.2: The cumulative position for some of the exchange members in one stock
over the observed slot periods. The position is calculated from transaction
data and starts at zero.

data into 30 minute slots over the trading day: the first slot starting at 09.15-
09.45 and the last slot being 15.45-16.15. Currently, the opening hours of
Oslo Børs are 09.00-16.25, while the opening hours were 09.00-17.30 before
6. August 2012 5. This implies that we do not observe trading occurring in
the opening and ending periods at Oslo Børs. This is reasonable, as trading
in these time periods involves auctions which are significantly different in
nature from the trading in between opening and close.

In addition to recording the transaction data we also collect supplemen-
tary data, such as volume and turnover traded in each time slot.

3.4.3 Time series related to stock: supportdata

In the framework given, we need to harvest various time series to explain
the impact: volatility of the stock, the average volume traded per day, price
of the stock and the average price each agent traded on in that time slot.

5 http://www.oslobors.no/Oslo-Boers/Om-oss/Presserom/Nyheter-fra-Oslo-
Boers/Oslo-Boers-reduserer-aapningstiden



3. Market Impact Modelling 26

Volatility

We apply an intraday volatility estimate per time slot. To estimate volatil-
ity, we use the Exponentially Weighted Moving Average (EWMA) estimator
with λ = 0.99, as made popular by [J.P.Morgan, 1995]. Since we are dis-
counting on a slot-to-slot basis, the daily λ value will be closer to 0.86. 6

Hence, our estimator is quickly adapting to new regimes and short periods
of high volatility.

Our volatility estimate is as follows:

σ2
k = λσ2

k−1 + (1− λ)r2
k (3.7)

where ri is the log return at time k. The initial estimate is simply σ2
1 = r2

1.
More complex initial values could have been assigned, but the estimates will
normalize sufficiently fast.

Note that the volatility estimate is quite simple: it does not give any
weights to the observed returns (by turnover, etc.), which would be a rea-
sonable extension of the model.

To standardize the values, we scale the volatility estimate to a daily
figure by multiplying σ by the square root of the number of slots in a day
(
√

14).

Average daily volume

The daily volume estimate at timeslot k is estimated by the Exponentially
Weighted Moving Average ([J.P.Morgan, 1995]) with λ = 0.985. By the
same reasoning as in Section 3.4.3, it gives an effective daily λ of 0.78.

Vk = λVk−1 + (1− λ)vk (3.8)

where vk is the total number of shares traded in slot k.
To standardize the values, we scale the volume estimate to a daily figure

by multiplying V by the number of slots in a day (14).
The volume estimator is simple. It does not account for e.g. systematic

intraday differences.

Transaction price

We would like to estimate the realized price (3.4) an agent receives from
trading in a time slot. Since we know both the agents’ total value traded
and the total number of shares traded in each slot, we can find the implied
realized price by dividing the two quantities in each time slot for each agent.

The approach causes an issue for some time slots when an agent has a net
change in holding of close to zero and has a profit or loss on its trading. It

6 Found by solving x : 0.99 ∗ ∗14 ∗ 14 ∗ 0.01 = x ∗ (1 − x), assumes constant signal in the
slot-type estimator.
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Fig. 3.3: Volume and Volatility estimators for the Statoil stock over time (measured
by slots).

creates a delicate "divide-by-zero" problem which we will solve by removing
all slot trades less than 5 shares in either direction. The tweak of the data
will not affect the result substantially, as 10 shares has little impact on large
order.

3.4.4 Strategy identifier: Transform transaction data to orders

We apply the strategy identifier in Definition 10 to all cumulative positions
of all the identified agents in our dataset. The trade size threshold is deter-
mined in the data cleaning set in Section 3.4.5. The value is determined by
first finding all trade strategies when K = 1, and then increasing K until
only some percentage of the data is remaining.

As an example, if the position is 0 at time slot 1, 1000 at time slot 4 and
-1000 at time slot 10, then the strategy is between 4 and 10 (identifying a
sell order of 2000 shares).

In Figure 3.4 we can observe the accumulated positions of a member
(bars). The grey vertical lines identify different days. The red lines identify
the strategies. We can see that the upper plot gives several non-interesting
strategies (which will fall below the trade size threshold), while the lower
plot gives us something that looks like reasonable start and stop periods of
a strategy.
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Fig. 3.4: Examples of identifying strategies. Positions over time and identified
strategies (red). The vertical lines (grey) separate different days.

3.4.5 Data Cleaning

Before we can start to execute statistical analysis of obtained data, we need
to limit our strategies. So far, we have included all strategies with a non-
zero position. However, limiting both too small trades and outliers will be
done before we start the data analysis.

Trade size Threshold

It is natural to expect that small position strategies will both be abundant
and irrelevant to the analysis. The impact of small trades is expected to be
mainly white noise, and thus the trades brings little new information to the
market.

We will only conduct an analysis on the 6% largest strategies identified.
As an example, this excludes roughly all trades that are less than 5% of
the daily volume. The trade size threshold is arbitrary, but should not be
so high that we do not have sufficient data to analyze. We have observed
that the explanatory power of the below regressions is greater the higher
threshold we set. This has an upper limit until the dataset is too scarce,
and where noise becomes the dominant factor. Therefore, the choice of 6%
was done as a trade-off between quality and quantity.
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Outliers

We are attempting to model a process consisting of a large amount of noise.
One should expect large outliers in the data set, and assume they are nor-
mal. However, extreme events in the dataset may just as likely be due to
misspecifications and treatment of the data. After careful examination of
the data, we have chosen some thresholds to remove the most unnatural
data points.

We will remove some data points that have a very high ’order size-to-
impact’ ratio. Specifically, we will remove the 1% data points with highest
’order size-to-impact’ ratio for both realized and permanent impact (0.5% of
either side). The level was chosen by investigating the data and ensuring that
only the very extreme points were removed. Note that neglecting outliers
could accidentally remove tail events that one wants to measure.

The data cleaning above was done using all the raw data each time. The
same data point is likely to be in both of the cleaning criteria. For example,
a large order with very little impact may be in both outlier categories.

3.5 Regression

After identifying the investment strategies in Section 3.2 we want to estimate
the liquidity gradients η and γ in (3.5) and (3.6). Assuming that these
parameters are time-independent, we may use a regression approach. The
permanent and temporary impact are regressed using the data obtained in
Section 3.4. In the following section we will use the analysis obtained from
STL to examine the regression results, unless otherwise stated. Then, we
will present the main statistics using the same techniques examine the other
equity instruments 7.

3.5.1 Parametric Regression

Loyal to the model specified in Section 3.2, we regress the impact functions
to find the liquidity gradients η and γ. To test the predictability of the
models, the data has been randomly grouped into training- and test data,
where 70% is categorized as training data. Then, the liquidity gradients η
and γ were estimated using the training data, and predicted on the input
variables in the test data. The prediction power is benchmarked against the
zero-hypothesis {η = 0, γ = 0}, and mean absolute errors of the models are
computed relative to the null hypothesis.

MAE =
∑N
i=1 |predicted Impacti −Observed Impacti|∑N

i=1 |Observed Impacti|
(3.9)

for all test data 1 to N.
7 The source code used to produce the results in this section is found in section .1.3.
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##
## Call:
## lm(formula = I ~ I(XV * sigma) - 1, data = train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.08134 -0.00937 0.00059 0.01107 0.05610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## I(XV * sigma) 1.578 0.458 3.45 0.00058 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0195 on 1338 degrees of freedom
## Multiple R-squared: 0.00881,Adjusted R-squared: 0.00807
## F-statistic: 11.9 on 1 and 1338 DF, p-value: 0.000581

Fig. 3.5: Regression output in R by regressing the training data onto the permanent
model in Equation 3.5 for Statoil.

Test/Train data

We divide the data randomly into a training set and a test set, giving a 70%.
probability that a data point is categorized as training data. By fitting the
impact models to the training data and then testing the error on the test
data, the approach should give us a good unbiased estimate of the error of
the model.

The permanent model regression on Statoil reported in Table 3.5.1 shows
that the regression analysis estimates a positive coefficient, as expected. The
estimate is about two standard deviation of the standard error, and is weakly
’significantly different’ from zero. The regression explains around 1% of the
deviance in the data set.

The temporary impact regression on Statoil reported in Table 3.5.1 shows
that there is a significant positive coefficient estimate, and that the R2 value
is around 0.6%.

When testing the model on the test data, the explained deviance nat-
urally decreases. We will benchmark the mean squared errors (MAE) of
the model with the null model as described in 3.9. Hence, our MAE ratios
are 0.997 and 0.995 for the permanent and temporary models, respectively.
Both the permanent and temporary models seem to have R2 values between
0.5% to 1.0%. The results are in line with what is found by [Almgren et al.,
2005].
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##
## Family: gaussian
## Link function: identity
##
## Formula:
## I(J - I/2) ~ h_dat - 1
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## h_dat 0.1806 0.0652 2.77 0.0057 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.00533 Deviance explained = 0.565%
## GCV = 7.5478e-05 Scale est. = 7.5422e-05 n = 1352

Fig. 3.6: Regression output in R by regressing the Statoil data onto the temporarly
model in Equation 3.6. Note that the variable hdat is the parameterized
function h.

Similar results are found for YAR and SCH, as shown in Table 3.1 and
3.2.

gamma Stddev R-sq MAE
STL 1.580 0.460 0.009 0.997
YAR 1.410 0.440 0.008 0.994
SCH 0.230 0.210 0.002 0.999

Tab. 3.1: Regression coefficients from training data on permanent impact.

We see that both STL and YAR have better out-of-sample performance
than SCH. The main reason of this is probably the availability of data. STL
and YAR have significantly more trading than SCH over the same time
horizon. This makes the SCH analysis very prone to noise.

The data seems to be too volatile relative to the amount of data collected
to get reliable liquidity gradient estimates when dividing into training and
test data. By changing the seed of the train/test separation sampling, dif-
ferent data points will be assigned to train and test. If there is a sufficient
degree of randomness in the data set, it may not be possible to correctly
estimate a prediction error: The observations assigned to the less abundant
test set may not display the underlying trend of the data. In such a case
we may have calibrated a good predictive model, but will not be able to
realize when gauge the model against the ’flawed’ test data. To show the
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eta Stddev R-sq MAE
STL 0.180 0.070 0.005 0.995
YAR 0.100 0.050 0.003 0.996
SCH 0.100 0.040 0.006 1.007

Tab. 3.2: Regression coefficients from training data on temporary impact.

effect, we have changed the seed of the permanent impact model of STL. As
seen in Table 3.3 the estimated liquidity gradients spans over a wide range,
depending on which values go into the training data. For example, seed 5
seems to estimate half the gradient of the other seeds. Similarly, the MAE
ratio changes significantly in the different runs, ranging from 99.4% of the
null model for the "best" prediction to as poor as the null model.

gradient stddev MAE
1 0.519 0.454 0.997
2 0.539 0.455 0.996
3 0.165 0.472 0.999
4 1.099 0.450 0.996
5 1.319 0.444 1.001
6 1.016 0.445 0.994

Tab. 3.3: Liquidity gradients with different seeds

Similar results are found for the temporary impact and for the other
equity instruments. The results indicate that the data set is too small to ac-
curately both predict and estimate the prediction error using a test/training
method. Further analysis of changing seeds would be similar to the approach
of cross validation, and we propose this as a good method to estimate the
prediction error.

Cross validation

By applying cross validation to estimate our prediction error, we are using
a 10-fold approach where all data is randomly divided into 10 groups. For
each group, we train a model using all data except the data points in this
group. Then, the prediction error is benchmarked to the null model. 8 The
cross validated coefficients for STL have mean estimates of 1.066 and 0.208
for γ and η.

The prediction and error analysis of the 10-fold cross validation method
can be seen in Table 3.4 and 3.5.

When employing the algorithm, we tested different seeds to create dif-
ferent groupings. The gradient coefficients and prediction errors variability

8 For more information on cross validation, see [Hastie et al., 2009].
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gamma MAE
STL 1.070 0.994
YAR 0.920 0.995
SCH 0.180 0.998

Tab. 3.4: Regression coefficients from cross validation on permanent impact

eta MAE
STL 0.210 0.994
YAR 0.140 0.996
SCH 0.050 1.001

Tab. 3.5: Regression coefficients from cross validation on temporary impact

obtained in 3.5.1 were not found with the cross validated approach. This
suggests that the cross validated figures are more reliable. We see that the
models can explain about 0.5% of the market noise for STL and YAR. The
SCH data seems to be too scarce to predict a good model, even with a cross
validation approach.

Estimating Temporary Impact across stocks

One may assume that temporary impact is not stock specific, but equal for
all stocks. Then one may regress (3.6) across all three datasets: STL, YAR
and SCH. The approach allows for a larger dataset, but may decrease the
precision since there may be stock specific features of the temporary impact.
However, the permanent impact I will still be stock-dependent, as we regress
on J − 1

2I.

Estimate Std. Error t value Pr(>|t|)
h_dat 0.0979 0.0239 4.09 0.0000

Tab. 3.6: Temporary regression on data from all stocks

In (3.6) we estimated η by standard regression. We see that the regres-
sion identifies a significant positive coefficient.

If we employ the same 10-fold cross validation approach to estimate the
errors, the estimated model has an out-of-sample mean absolute error of
0.997 compared to the null model. Mean absolute errors on each of the
individual stocks are reported in Table 3.7.

Compared to the results in Section 3.5.1 the common temporary impact
model is an improvement for SCH, no change for YAR and a worsening for
STL. The common temporarly impact model seems to have predictive power
for all equities, while the former only managed to predict the temporarly
liquidity gradients of STL and YAR with reasonable precision.



3. Market Impact Modelling 34

ticker MAE
1 STL 0.996
2 YAR 0.996
3 SCH 0.997

Tab. 3.7: MAE using a common temporary impact model
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Fig. 3.7: Liquidity Impacts for STL. Realized (red), Permanent (green), Temporary
(grey), 10 pct. volatility

Example of Impact costs

Given daily volatility of 10% and a trading time of 0.2 days and the results
found above we calculate the expected liquidity impacts on STL, as seen in
Figure 3.7.

We see that by buying 10% of the daily volume the expected price in-
crease is about 20 bps. This is a small price difference, but in line with what
[Almgren et al., 2005] and other literature found. [Almgren et al., 2005]
estimate that the realized cost of buying 10% over 0.2 days of IBM and DRI
is about 25 bps. and 43 bps.

In [Ferraris, 2008] the authors investigate their own market impact model
over an order database from January 2007 to March 2008. They find that the
realized impact ranges from -30 bps to around 90 bps with volumes ranging
from 0.05% of daily volume to 10% of daily volume. Although difficult
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XV Ibp Jbp
1 -0.20 -21.40 -31.70
2 -0.15 -16.05 -25.70
3 -0.10 -10.70 -19.20
4 -0.05 -5.35 -11.82
5 0.00 0.00 0.00
6 0.05 5.35 11.82
7 0.10 10.70 19.20
8 0.15 16.05 25.70
9 0.20 21.40 31.70

Tab. 3.8: Impact as a function of order size

to compare, these figures seems to be on the upper end of our findings.
However, this should be expected as they operated in a more volatile market
environment.

3.5.2 Smoothing regression

The section above considers a specific, parametric form of the Supply Curve.
The analytically tractability of such models is desireable, but limits the
possible prediction power of the data. In this section, we will investigate
non-parametric forms of the supply curves. The basis will be the set of
Generalized Additive Models, where we smooth the explanatory variables
with thin plate splines. Thin plate splines smooths a d-dimensional surface
by minimizing the distance plus a penalizing term given by the square of
the second order derivatives. The smoothing factor will be found using cross
validation within the training set.

We will perform the analysis using the temporary impact of STL as an
example. Two non-parametric models were regressed against J − 1

2I:

• A 1 dimensional thin plate spline of the original covariate X
V T , and

• A 4 dimensional thin plate spline using all our relevant covariates:
Position size (X), Daily Traded Volume (V ), daily volatility (σ) and
execution time (τ).

Using a train/test approach, as described in Section 3.5.1, we find the
out-of-sample prediction power in Table 3.5.2. We see that the original linear
model have the same prediction power as the 1 dimensional smooth model
with the same input variable variable. The four dimensional smoothing
model seems to give an improved prediction power, at the expense of being
a significantly more complicated model to work with outside the scope of
prediction. In addition, the four dimensional smoothing model bears the risk
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Model MAE
Original 0.997

1-dim Smooth 0.997
4-dim Smooth 0.990

Tab. 3.9: Out of Sample Mean absolute errors on test data for the one dimensional
smoothing model and the four dimensional smoothing model when pre-
dicting temporary impact on STL.

of attaching non-explainable effects to the calibrating values of the model.
It has a significant smoothing term and a high in-sample R2 value, as seen
in the following R summary:

Family: gaussian
Link function: identity

Formula:
I(J - I/2) ~ s(X, V, sigma, tau, bs = "tp")

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0006495 0.0002230 -2.913 0.00365 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(X,V,sigma,tau) 60.42 77.37 3.265 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.15 Deviance explained = 18.8%
GCV = 7.0031e-05 Scale est. = 6.683e-05 n = 1344

However, the train/test approach suffers, as we demonstrated in Section
3.5.1, from unstable results. Therefore, we conduct a 10-fold cross valida-
tion to get a more relieable estimate of the prediction power of the four
dimensional smoothing model.

The out-of-sample MAE ratio on the four dimensional smoothing model
were found to be 99.1%. This indicates that the four dimensional smoothing
model outperforms our original linear model.

The result indicates that the 3/5 power law described in Model 1 is
ill-posed, and that there may exist functional forms that performs better.
Finding a functional form is important, as the four dimensional smoothing
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model is intuitively complicated and difficult to work with when confronted
with follow up calculations such as combining it with the formalism put
forward by [Acerbi and Scandolo, 2008].

3.5.3 Conclusions and improvements on regressions

We have conducted regression analysis of the models postulated in Model 1.
All regressions predict positive liquidity coefficients for both temporary and
permanent impact. The liquidity gradients are in the same order of mag-
nitude as [Almgren et al., 2005] and [Ferraris, 2008] finds in their analysis
of the Citigroup and Deutsche Bank order data, respectively. The results
therefore suggest that the strategy identifier defined in Section 3.3 is a good
bridge from transaction data to a full order history, which the original model
was calibrated to.

However, analysis of the train/test data shows that there are high un-
certainties in the results. Therefore, a careful cross validation is done to
increase the use of the data and reliability of the results. Also, a simplified
version of the temporary model is designed which does not distinguish be-
tween the different stocks, but regresses the temporary model on all three
stocks. The out-of-sample MAE ratios of this model performs averagely well
among the three other models. Since the simplified parametric model has
less assumptions on the temporarily impact (no assumptions that the im-
pact is different), it may be correct to conclude that the stock-independent
temporary impact model is more suitable. Stock specific elements should
then be captured in the permanent impact model.

A non-parametric regression analysis using a multivariate smoothing
spline outperform the simpler parametric models. This suggests that the
form of our impact functions can be improved by changing the impact func-
tions g and h. However, due to the difficulty in handling such smoothed
functions analytically in future analysis, we will keep to the more analyti-
cally tractable Model 1.

There are several possible improvements of the model. For the above
analysis, we have chosen to keep each stock separate for the permanent
impact. This may be one of the main drawbacks, as it reduces the possible
scale of the dataset by a third. By including the ’inverse turnover’-variable
in [Almgren et al., 2005] a higher precision model could possibly be created.

We have assumed the same impact functions g and h as [Almgren et al.,
2005] in the analysis. Specificly, we did not investigate the exponents found
in [Almgren et al., 2005], α = 1 and β = 3/5. These exponents were
found using different equity instruments in different markets. The non-
parametric regression analysis in Section 3.5.2 suggests that other forms and
exponents should be investigated. Implementing an algorithm to estimate
the exponents could give different estimates and improved out-of-sample
results.
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The ’simplest’ solution to any regression problem with large quantities
of noise is to use more data. It is also reasonable that if more data is
available, either by an extension in time period or inclusion of alternative
market places or the futures market, prediction power would increase.

There are several ways of buying exposure to a stock, and a natural
extension of the above analysis would be to include the futures and forward
market. Buying a futures would give you the same exposure as buying the
underlying asset, while at the same time not necessarily stress the underlying
market. Care has to be taken to examine how buying a future contract
affects liquidity. If you are buying from a market maker that would hedge
himself in the spot market, little is gained by adding this liquidity.

Including more market places that trades the same equities would im-
prove the dataset. Oslo Børs does not have market monopoly on its instru-
ments, and STL and YAR are traded on alternative exchanges. Harmonizing
trade data from the different exchanges and aggregating it on the same bro-
kers is an obvious path to obtain better data.

However, caution must be taken, as stocks are not stationary companies
but evolve over time. In the regression analysis we have assumed that γt = γ
and ηt = η are time independent. It is reasonable to assume that a company
evolves with time: the project risks a company is exposed to and the risk
factors determining its stock price may be completely different after some
time. For example, the daily volume of STL on Oslo Børs has decreased from
10m shares in 2010 to about 2m shares in 2013. Also, in 2011 Statoil bought
Brigham Explorations for $4.4 billion, about 5% of the value of Statoil, to
exploit oil shale in North Dakota. These are factors that make it difficult
to model Statoil as the same company over time. A significant source of
error could therefore be time dependency. Classical regression approaches
do not accommodate for time dependency easily, and alternative solutions
should be evaluated. Using time series analysis is a possible approach and
state space models could possibly be used to estimate the liquidity gradient
coefficients.

In addition, using randomized train/test data in a regression distort the
prediction power of the model. The test data are evenly spread out over the
investigated time period, and will be predicted using data points obser ed
in time. Therefore, the information in the test data may have already been
given to the model.

Finally, a relevant point is that we have not been able to compare the
results in this section with order data from the same stocks in the same
period. Including this would the the proper test to see whether it is possible
to use transactional data for liquidity cost analysis.
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3.6 Liquidity Gradients via filtering theory

3.6.1 The Kalman Filter

State-space models were first introduced by [Kalman, 1960] in aerospace-
related research. The models estimate an unobservable stochastic under-
lying process from noisy observations of a different process. The liquidity
gradients can be considered to be such unobservable processes. The given
observations are equity returns which include a large amount of market
noise.

Among state space models there are both discrete and continuous meth-
ods. As the current data is a discrete and finite set of orders, we choose to
focus on a discrete Kalman filter to model the liquidity gradients. Further,
we use a time-dependent version of the model.

Let us first define some necessary assumptions and notation:

Definition 11 (State Space). We wish to produce estimators of the unob-
served signal xt ∈ Rp given some observations Yt−1 = {y1, ..., yt − 1} where
ys ∈ Rq is an observable vector. We assume that the dynamics of xt and yt
are

xt = xt−1 + wt (3.10)
yt = Atxt + vt, (3.11)

where At is a q × p matrix giving a linear map on how yt is affected by
xt,
wt ∼ N(0, Qt) is the random noise of the unobservable process xt with zero-
mean and covariance matrix Qt, and
vt ∼ N(0, Rt) is the noise of the observable process yt with zero-mean and
covariance matrix Rt.

Furthermore, we define

xst := E(xt|Ys) (3.12)
P st := E[(xt − xst )(xt − xst )>], (3.13)

where s ≤ t.
Then, we can state the main result:

Algorithm 1 (The Kalman Filter). Given the state space in Definition
11, with initial conditions x0

0 ∈ Rp, P 0
0 ∈ Rp and covariance matrices Rt ∈

R
q×q,Qt = Q0 ∈ Rp×p. Then, the minimum mean-squared error9 of all linear
9 See [Shumway and Stoffer, 2011] for a formal definition
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estimators is found by applying the following algorithm: for t ≥ 1:
Prediction step:

xt−1
t = xt−1

t−1

P t−1
t = P t−1

t−1 +Qt

Filter step:

xtt = xt−1
t +Ktεt

P tt = [I −KtAt]P t−1
t ,

where

Kt = P t−1
t A′t[Σt]−1 is called the Kalman Gain,

εt = yt −Atxt−1
t is the prediction errors (innovations), and

Σt := var(εt) = AtP
t−1
t A′t +Rt is the covariance matrix of the prediction errors

A proof of the optimality of the algorithm can be found in [Shumway
and Stoffer, 2011].

3.6.2 A Kalman Filter for a market impact model

Assume we have historical orders executed over a time period between 1 to
T . We want to estimate unobservable liquidity gradients on permanent and
temporary impact. By constructing the problem as a filtering problem we
may extract the liquidity gradients as a time series, which can incorporate
changes in impact over a period of time.

We assume that the permanent liquidity gradient γ and the temporary
liquidity gradient η have the dynamics

γt = γt−1 + εγt

ηt = ηt−1 + εηt ,

where εγt and εηt and zero-mean gaussian noise. Then, we can define a two
dimensional column vector

zt :=
[
γt
ηt

]
= zt−1 + wt,
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where
[
wγt
wηt

]
:= wt ∼ N(0, Q). The first element of zt is the permanent

liquidity gradient, while the last element of zt corresponds to the temporary
liquidity gradient.

Further, we can write the model yt :=
[

It
Jt − 0.5It

]
as

yt = Atzt + vt (3.14)

where

At := σt

[
xt
Vt

sgn(xt)Tt| xt
VtTt
|

3
5

]

vt ∈ Rq ∼ N(0, Rt) and

Rt =
√
Tt

[
R11, R12
R12, R22

]
∈ R2×2

Using the notation above, we can implement the Kalman Filter in Algorithm
1, repeating all the observations t = 1, ..., T to estimate a time-series of the
liquidity gradients zt.

3.6.3 Implementing the Kalman Filter

We investigate three stocks over 835 observation days. One issue that arises
in the implementation of the Kalman Filter is that there may be several
orders starting in the same slot, across all participants and stocks. Therefore,
if there are several orders on the same slot we choose to use the largest trade,
on the assumption that it contains more information than the smaller order.
The data extracted in Section 3.2 is mapped to the variables as defined in
Section 3.6.2.

Initial parameters

An extensive attempt of fitting the maximum likelihood initial parameters
using the whole path of the Kalman Filter was done by implementing a mod-
ified Newton Method. However, the algorithm tended to fail, or the variables
tended to explode in value. For example, when setting R0 and Q0 by max-
imum likelihood, the algorithm needed to ensure that both matrices were
positive definite. As there is no such mechanism in the Newton Method, the
algorithm used the method of [Higham, 2002] to ensure we were handling
a positive definite matrix. However, the inclusion of such steps altered the
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stepwise modification and was not helpful in the Newton Method. Also, as
we observed that the developing algorithm predicted unrealistic high volatil-
ity parameters, boundaries were imposed. However, such boundaries only
resulted in the algorithm finding the optimum at the boundary.

The initial parameters were instead set by considering the results found
in the regression section, and the uncertainty parameters were set to be
relatively stable for the whole observation period.

Temporary impact

We estimate the temporary impact time series using Algorithm 1 10, with
modification of zt = ηt. Data from all three stocks is used as demonstrated
in Section 3.5.1, and sorted by the starting slot. If there are more than
one order starting in the same time slot, we only consider the largest order,
measured by the assumed temporary impact (σ X

V T ). The method will thus
filter out only the most dominant orders observed at the same time horizon,
and we rely on the assumption that there are more information in larger
trades.

The results show the temporary liquidity gradient to be in the same
range as found in Section 3.5, varying around 0.1 . The predicted standard
deviations

√
P st are on average 0.04, and show a decreasing trend from the

initial value of 0.044 to 0.036. This gives a weak predictor with a large
uncertainty, as seen in Figure 3.8, but the model suggests that the variable
is non-zero by a 95% confidence level most of the time.

We calculate the mean absolute error by comparing the filter model
prediction at time t (xt−1

t ) against the observed temporary impact at time
t. The Mean Absolute Error ratio for the temporary filter model across all
stocks is 0.992 compared to the null model. The figure is well below the MAE
value of 0.997 found by the equivalent regression model in Section 3.5.1. The
deviation could be due to the decrease in the number of observations in the
dataset when requiring only one observation per slot. In fact, by running
the Kalman filter naively on the larger dataset, the filter model seems to
perform as well as the time independent regression model.

An interesting feature of the filter model is how it apparently is calibrat-
ing itself to better performance over time. By dividing the prediction into
four equally large groups we find that the MAE is higher in the first period
than the succeeding three. In the first period, the filter model performs
worse than the null model. In the succeeding periods, the filter model is
performing better, an indication that the parameters are calibrating during
the first period.

Based on the above analysis, we conclude that it is appropriate to model
the liquidity gradient as a time-dependent state space variable. Although

10 Source code found in Appendix .1.4.
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Fig. 3.8: Above: Estimate of temporary liquidity gradient. The grey area is the 95
pct. confidence interval. Below: Mean absolute error (MAE) in different
time intervals. The filter model seems to improve as it recalibrates its own
values.
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the filter model is not outperforming the regression model overall, it seems
to calibrate itself and explains a somewhat increasing amount of data in the
later time periods. The model also predicts non-zero temporary liquidity
gradients at a 95% confidence level over the time period.

3.6.4 Possible improvements of the implemented Kalman Filter

Many of the arguments put forward for the regression analysis are also rele-
vant for the Kalman Filter. In addition, we have some filter-relevant issues
that will be dicussed in this section.

The initial values of the filter play a large role in the estimation. As an
example, when the above implementation was run with a different initial
z0 the filter did not adapt quickly to the ’correct’ level. This is due to
the assumed volatility parameters of z0 in Q, which restrict how fast the
parameters can adapt. By choosing initial parameters more carefully, for
instance by improving the method outlined in Section 3.6.3, a model with
better prediction power may be obtained.

The implemented Kalman Filter is a discrete filter which is updated
whenever a significantly large trade occurs. The discrete version of the
Kalman Filter was chosen because the underlying permanent/temporary im-
pact model by [Almgren et al., 2005] gives discrete observations. However,
if a continuous market impact model was chosen such as those described
by [Gatheral, 2010], a continuous filtering technique, described in e.g. [Øk-
sendal, 2010], could be used. Non-linear filtering techniques may also be
used to take into account the results found in Section 3.5.2.

It is natural to assume that the change in liquidity among securities
have a common driver. Hence, if one expands the variable zt to include
more stocks one could assume or estimate correlations between the liquidity
gradients of the different stocks. Then, by assuming or estimating corre-
lations between the stocks one can get an updated state variable of stock
A by observing a signal on stock B. Such a noise reduction technique may
improve the filter.



4. RISK MANAGEMENT IN ILLIQUID MARKETS

In Section 2 we investigated how to value a portfolio under liquidity con-
straints. Taking some marginal supply and demand curves (MSDCs) as
input, we found that the actual value of a portfolio held by an owner with
some liquidity constraint is lower than the mark-to-market price. In Section
3 we estimated some supply-demand curves from market data. In this Sec-
tion we will show the one-to-one relationship between the supply-demand
curves and the MSDCs. During the analysis in Section 3, we observed both
a large amount of noise and an indication that the liquidity gradients are
stochastic themselves. We combine the work done in the previous sections
and define Stochastic Marginal Suppy Demand Curves (SMSDC) that is
used to evaluate both market and liquidity risk in portfolios. Further, we
investigate how the introduction of liquidity risk and execution horizon af-
fects the portfolio value distribution. An implementation of the model is
performed and numerically investigated. 1

4.1 Coherent measures of risk

The concept of a coherent risk measure was introduced by [Artzner, 2009].
They proposed four axioms that any risk measure should satisfy for all types
of financial risk. A risk measure should be a real-valued function mapping
a random variable representing the portfolio value distribution to a unit
stating a financial loss in a given reference instrument (e.g. Euro). Loosely
speaking, we should be able to say that "under risk measure ρ the risk
of portfolio X is ten million Euros". For simplicity and without lack of
generality, we will call the reference instrument "Euro".

Definition 12 (Coherent Measure of Risk). Let X,Y be random variables
representing portfolio values. Then, a real valued function ρ : M → < is
called a coherent risk measure if it satisfies four axioms:

(T) Translational Invariance ρ(X + e) = ρ(X)− e

(M) Monotonicity ρ(X) ≤ ρ(Y ) if X ≥ Y

(S) Subadditivity ρ(X + Y ) ≤ ρ(X) + ρ(Y )
1 The source code of this section can be found in Appendix .1.5
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(PH) Positive homogeneity ρ(λX) = λρ(X)

The first two axioms are not controversial and straight forward intuitive:
The Translational Invariance property (TI) states that if you add Euro to
your portfolio, the risk decreases linearly. Monotonicity (M) assumes that
if portfolio Y is worth less than portfolio X, then the risk in portfolio Y is
higher.

Subadditivity (S) is also intuitive, but not that easy to fulfill. It states
that for two portfolios, the risk of the portfolios separately will be higher
than if the risk of the two together. It captures the well accepted diversi-
fication effect. However, the widely used Value at Risk measure does not
fulfill (S) at all times.

Positive Homogeneity (PH) states that if you increase the portfolio value
by a factor, the risk of the portfolio will increase by the same factor. The
axiom has been widely debated when considering liquidity and concentration
risk. The argument is that risk may not be linear in position: if a position
in an asset is doubled, the risk will be more than doubled as the market will
be impacted when liquidating the position.

The argument has given rise to a weakened set of risk axioms, called
’convex risk measures’ and proposed by e.g. [Follmer and Schied, 2002]. The
convex risk measures replace (PH) and (S) with a convexity requirement (C)
on the risk measure:

ρ(θX + (1− θ)Y ) ≤ θρ(X) + (1− θ)ρ(Y ) (4.1)

where θ ∈ (0, 1).
A convex risk measure still takes into account diversification, as a diver-

sified portfolio ρ(θX+(1−θ)Y ) will have lower risk than the two separately.
However, it does not guarantee that the risk will increase linearly with an
increase in position.

[Acerbi and Scandolo, 2008] counter this weakening by arguing that it is
not the risk measure axioms that are wrong, but merely the notion of value.
They argue that the real deficiency is not due to the coherent risk measure,
but the notion of value. In the same way the critics of coherent risk measures
argue that portfolio risk is not linear in position, [Acerbi and Scandolo, 2008]
argue that it is the portfolio value that is not linear in position.

It is common to assume a linear relationship between position and value
as in Definition 3. However, [Acerbi and Scandolo, 2008] argue in favor of a
portfolio value under a liquidity policy, which we introduced in Section 2.1.
They conclude that the risk of a portfolio is linear in portfolio value. The
non-linearity must come from the value function.

We will focus on two examples of risk measures: The Value at Risk and
the Expected Shortfall. Value at Risk is a widely used risk measure in the
industry first introduced by [J.P.Morgan, 1995].
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Definition 13 (Value at Risk). Given a random value X representing the
portfolio value, a probability measure P and a quantile α ∈ (0, 1), the Value
at Risk is defined as

V aRα(X) := −F←(α) (4.2)
where F←X (p) := inf{x|F (X) ≥ p} is the inverse of the cumulative distribu-
tion funtion FX(x) := P (X < x).

Value at Risk is an intuitive risk measure which is simply the quantile
of the portfolio value distribution. It is therefore easy to coin the measure
as "the largest loss that can occur with a certainty of 99%". The measure is
widely used and popular among regulators. However, the measure fails to
fulfill the subadditivity axiom, and is therefore not a coherent risk measure.

Remark 1. Value at Risk is not a coherent risk measure.

Proof. We will show this by counterexample. Consider two assets X, Y inde-
pendent and identical distributed that are subject to occasional, independent
shocks:

X =
{

0 with probability 0.991
−1 with probability 0.009

(4.3)

Then, V aR1%(X) = 0. However, the probability that X + Y = −1 is

P (X + Y = −1) = P (X = 0, Y = −1) + P (X = −1, Y = 0)
= 0.991 ∗ 0.009 + 0.009 ∗ 0.991
= 0.018

so V aR1%(X + Y ) = −1.

Definition 14 (Expected Shortfall). Given a random value X representing
the portfolio value, a probability measure P and a quantile α ∈ (0, 1), the
Expected Shortfall is defined as

ESα(X) = − 1
α

∫ α

0
F←X (p)dp (4.4)

where F←X (p) := inf{x|F (X) ≥ p} is the inverse of the cumulative distribu-
tion funtion FX(x) := P (X < x).

Remark 2. Expected shortfall is a coherent risk measure.

Proof. Translational Invariance: Assume we have e ∈ <. First observe
that FX+e(x) = P (X + e < x) = P (X < x+ e) = FX(x− e). We also have
that

F←X+e(α) = inf{y|FX+e(y) ≥ α}
= inf{y|FX(y − e) ≥ α}
= FX(α) + e
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Where the last step follows from substitution x = y − e and the linearity of
inf. With these results, it is easy to see that

ESα(X + e) = − 1
α

∫ α

0
F←X+e(p)dp

= − 1
α

∫ α

0
F←X (p) + edp

= ESα(X)− e

Monotonicity: First we observe that if X ≥ Y a.s. then FY (z) ≥
FX(z)∀z and by taking the inverse we have that F←Y (p) ≤ F←X (p)∀p ∈ (0, 1).

Then,

ESα(X) = − 1
α

∫ α

0
F←X (p)dp

≤ − 1
α

∫ α

0
F←Y (p)dp = ESα(Y )

Subadditivity: Subadditivity can be shown by using an finite order
statistic and taking the limit as in [Alexander J. McNeil, 2006] or by a more
direct version as in [Acerbi and Tasche, 2002]. Both methods require some
more notational work, and we omit it here.

Positive homogenity: Let λ ∈ <. Observe that

F←Xλ(α) = inf{z|P (Xλ ≤ z) < α}

= inf{z|P (X ≤ z

λ
) < α}

= λF←X (α)

Then it follows that

ESα(Xλ) = − 1
α

∫ α

0
F←Xλ(p)dp

= − 1
α

∫ α

0
λF←X (p)dp

= λESα(X)

4.2 Liquidity risk under illiquid pricing

In [Acerbi and Scandolo, 2008], the value of a portfolio depends on the liqui-
dation prices when a partial liquidation of the portfolio occurs. The authors
assumes an immediate liquidation given the respective MSDCs. However,
immediate liquidation is only possible if you liquidate to the prices present
in the order book of the exchange. In reality, portfolios are liquidated over
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some time period often ranging from a few minutes to a full day. During
this time, the portfolio is exposed to market and liquidity risk. These risks
can be modeled as a Stochastic Marginal Supply Demand Curve (SMSDC,
Definition 15). The value concept of Section 2 should therefore be extended
to a function of the Stochastic Marginal Supply Demand Curves. It implies
that the value of a portfolio is no longer deterministic.

In the following section we will first bridge the notation of the MSDC
and the Supply curves used. Then, we will define the SMSDC. Using an
example we investigate the value distribution of a portfolio. Finally, we
investigate how the liquidation horizon affects the expected value and the
risk in a portfolio.

4.2.1 Bridging notation between the Marginal Supply Curves and the
Supply Curves

We have used the concept of Marginal Supply Demand curves in Section 2,
which is different from the more familiar Supply Curve that we have used
in Section 3. The MSDC can be seen as the derivative of the total cost of
an order, while the supply curves give the average cost. In this Section we
will bridge the notational gap between the MSDC and the Supply Curve.

Assuming the framework in Section 3.2 we obtain the following model
by substituting Equation 3.5 and 3.6 into Equation 3.1:

Modeling Assumption 2. The realized price of an order of X shares
executed over a period of length τ is given by

S̄(X) = S0(1 + 1
2γσ

X

V
+ ησsgn(X)| X

V τ
|3/5 + σε), (4.5)

where S0 is the price before the order, γ and η are given liquidity gradients,
V is the daily volume traded, σ is the daily volatility and ε is some white
noise with mean zero (standardized by the return volatility).

We have reduced market risk into the single variable ε. However, as we
have seen in Section 3, it is the main driver of S̄, and should not be ignored.

Modeling Assumption 3. The realized price of an order in Model 1 can
be expressed as a Marginal Supply Demand Curve with respect to an order
size s 6= 0:

m(s) = S0 + S0εσ − sgn(s)S0σ(γ |s|
V

+ 8
5η|

s

V τ
|3/5), (4.6)

where s is the amount sold (s < 0 is buying), τ > 0 is the execution horizon,
S0 is the price before the order, γ and η are given liquidity gradients, ε is
the market risk varaible, V is the daily volume traded, and σ is the daily
volatility.
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To validate the model above we need ensure that the following statements
are true: The above formula is correct and that m(s) is a MSDC according
to Definition 1.

By assuming that x2 > x1 it can be shown that s→ m(s) is a decreasing
function:

m(x1)−m(x2) =S0σ( γ

|V |
(sgn(x2)|x2| − sgn(x1)|x1|)

+ η

|V τ |3/5
8
5((sgn(x2)(|x2|)3/5 − sgn(x1)|x1|3/5)))

is positive for all combinations x2 > x1 > 0, x2 > 0 > x1 and 0 > x2 > x1.
Since m(s) is also continuous, m(s) satisfies the definition.

The cost of buying X shares is C(X) = S̄(X)X. First, we substitute
X = −s to obtain the same sign for buy and sell as in Section 2. Then, the
cost function reads C(s) = S̄(−s)|−s|. The total cost function is the infinite
sum over all prices from 0 to X. Hence, the Marginal Supply Demand Curve
is

m(s) = d

ds
C(s)

= d

ds
S0|s|+ S0|s|σε− S0σsgn(s)(1

2γ
s2

V
+ η| s

8/5

V τ3/5 |

= S0 + S0σε− sgn(s)S0σ(γ |s|
V

+ 8
5η|

s

V τ
|3/5)

as required.
Then, by applying Theorem 2 to the MSDC and using the results in

Theorem 2 and Equation (4.7) we obtain an example of an explicit solution
for the value of a portfolio:

Remark 3. Assume there exist i = 1, ..., n MSDCs mi(s) in the form of
Equation (4.6). Given a cash liquidity policy L(a) there exists a unique
solution to the problem

V L(p) = sup{U(p− r) + L(r)|r ∈ CL(p)} (4.7)

which is given by

rai =
{
m−1
i (mi(0)

1+λ ) if p0 < a

0 if p0 ≥ a,
(4.8)

where λ is determined by
L(ra) = a− p0 (4.9)

and mi is given by Equation (4.6).
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There is no explicit solution of the inverse of Equation (4.6), but as we
have shown it is one-to-one and can therefore be inverted numerically.

Solving Equation (4.7) requires us to implement an algorithm performing
two nested root findings: First we need to find the inverse of Equation (4.6),
and secondly we need to solve for λ in Equation (4.9). The power of the
above result is that we now can value a portfolio with a cash constraint over
some short time horizon τ for any market- and liquidity conditions (η, γ, ε).

An investor’s free variable, given a large market order, is the liquidation
horizon he execute his order over. His natural aim is to have the largest
possible value of his portfolio after the execution, and he may wish to max-
imize the expected value of his post-trade portfolio. Considering liquidity
alone, the best strategy would be to execute the trade over a long period of
time, reducing the market impact. At the same time the investor is exposed
to market risk, which, if assuming a standard Brownian motion, is propor-
tional to the square root of time. There is a trade-off between market risk
and available liquidity in the market.

Example 2 (One stock universe with cash liquidity policies). Assume that
the value of a portfolio is given by Equation (4.7). Consider an investor
that may be required to fund NOK X m. on short notice. If there are no
short-selling restrictions, we can for simplicity assume that he has no open
positions in the market, and will short-sell to fund his liquidity needs. This
is not a restrictive assumption: As seen in Remark 3, the optimal liquidation
strategy r is independent of the investor’s current positions p.

We will assume that there exists one stock in the market, and use cal-
ibrated values from Section 3 for the stock STL. Using Remark 3 we can
find portfolio values given different cash liquidity policies. In Figure 4.1 we
can see the effect on an increasing cash liquidity policy. When the cash liq-
uidity policy is close to zero the portfolio value is close to zero, as expected
(mark-to-market value of a zero position). As the cash liquidity policy in-
creases, the portfolio value decreases concavely. This is due to the fact that
the investor’s market impact increases as he is selling larger quantities of
the stock to fund his liquidity needs. We can also observe that the numerical
first derivative of the portfolio value is linear.

The effect can also be seen in Figure 4.2, which shows how the liquidation
strategy r (amount of stocks sold in STL in our case) depends on the liquidity
policy. Clearly, when a increases, so does r. In addition, r has an increas-
ingly positive first derivative with respect to a. When the total cash liquidity
policy is low, the investor is selling close to the mark-to-market price. How-
ever, for large cash liquidity policies he is selling at a significantly lower
price and has to sell more stocks for the same amount of liquidity (in our
example approximately 4% more stocks than at the mark-to-market price).
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4.2.2 Stochastic modeling of market- and liquidity risk

So far we have considered the deterministic dynamics of the value function.
The Supply Curves in Section 3 assume stochastic variables in the price level
return ε and the liquidity gradients η,γ. They also require the owner of a
portfolio to liquidate any position over an execution horizon τ . By assigning
stochastic dynamics to the risk factors in the MSDC function, we can find
the portfolio value distribution for any execution horizon.

Definition 15 (Stochastic Marginal Supply Demand Curve). Assume that
χt = (ηt, γt, εt) is a stochastic process (χ0 = (0, 0, 0)) defined on a proba-
bility space (Ω,F , P ), where the process χt is Ft adapted and Ft its natural
filtration.

We will assume that χt is a diffusion of the form

dχt = AdBt (4.10)

where Bt is an m-dimensional Brownian motion and A is a 3 ×m matrix.
Note that A determines both the level of volatility of the liquidity itself and
the correlation among the χt variables.

Then, we can define a Stochastic Marginal Supply Demand Curve (SMSDC)

m(s, τ) = S0 + S0ετσ − sgn(s)S0σ(γτ
|s|
V

+ 8
5ητ |

s

V τ
|3/5), (4.11)

where s is the amount sold (s < 0 is buying), S0 is the price before the order,
ετ , γτ and ητ are stochastic processes determining market and liquidity risk,
V is the daily volume traded, and σ is the daily volatility.

We have emphasized the execution time τ in the function, as it is a
variable that the agent has the power to control.

The model is a Gaussian model where χt = ABt. Hence, the volatility of
the process increases by a factor of

√
t over time. An example of a SMSDC

can be seen in Figure 4.3.
We are assuming that the liquidity gradients are adaptable, but this

should probably be relaxed in an extended model. It is clear from Section 3
that it is questionable whether the liquidity gradient processes are observ-
able. Also, the simple Gaussian model in Equation (4.10) can be extended
to include mean reversion by using an Ornstein-Uhlenbeck process or simi-
lar. We have purposely avoided the drift in Equation (4.10) as we believe it
is of lesser importance. This could also be extended in a future model.

We will investigate the impact on both liquidity valuation and liquidity
risk for the overall risk of the portfolio by an example.
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Example 3 (Distributional properties of an illiquid portfolio). Assume η,
γ and ε follow the dynamics in Equation (4.10). Then, given the filtration
at time t,

χt := (ηt, γt, εt)T (4.12)
χt+1 − χt ' N(0,Σt) (4.13)

where Σt is a suitable covariance matrix.
The portfolio holds initially no positions, but has the possibility of trading

in one security. It also has a cash liquidity policy of 10% of the daily market
volume of the security.

We will test four different models, similar to what we did for the expo-
nential MSDC model:

1. η = γ = 0. The Gaussian price model with no liquidity risk.

2. χt+1 > 0 but the covariance matrix has zero standard deviation for the
liquidity gradients. It is a model with constant liquidity.

3. χt+1 > 0 and Σt is a diagonal matrix. The model assumes indepen-
dence between market and liquidity risk.

4. χt+1 > 0,

cor(ηt+1, εt+1) = −0.5,
cor(γt+1, εt+1) = −0.5, and
cor(ηt+1, γt+1) = 0.5

The model assumes negative correlation between the market risk and
liquidity risk: As asset prices fall, liquidity is likely to reduce.

We perform a Monte Carlo simulation to find the value distribution of
the portfolio given by Equation (4.7), using the SMSDC in Definition 15.
Then, we apply the risk measures in Section 4.1 to estimate the risk in the
portfolio for the different models.

Expected_value Stddev VaR95 CVar95
Model 1 0.0 0.0 0.0 0.0
Model 2 -1.2 0.1 0.2 0.3
Model 3 -1.2 0.2 0.4 0.5
Model 4 -1.3 0.3 0.5 0.6

Tab. 4.1: Different risk measures on the various market models with one asset.
Figures are reported in percentage of cash liquidity policy (a)
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Model 1 will value the sold securities at the same price as they were sold
for. Therefore, it does not have a negative expected value. All models with
liquidity risk have a negative expected value, while the models with stochastic
liquidity gradients have heavier tails than the constant liquidity model (Model
2). The results are qualitatively in line with the exponential MSDC-model
in Section 2.3.

We see that the introduction of liquidity (Model 2) decreases the value,
while the introduction of liquidity risk (Model 3,4) mainly influences the risk
of the portfolio.

These models assume that we can fairly accurately predict the present
state of the SMSDC. This may not be the case, as seen in the difficulty of
estimating the liquidity gradients in Section 3. It is likely that the return
distributions would be even more heavy tailed should this assumption be
relaxed.

Portfolio value for different liquidation horizons

An interesting problem in the SMSDC framework is to determine the exe-
cution horizon of a trade. Analyzing the dynamics of our illiquidity pricing
formula in Remark 3, together with the stochastic dynamics of Equation
(4.10), it is clear that the investor faces a trade-off between risk and market
impact when deciding on the execution horizon. A longer execution horizon
affects the portfolio value distribution in two ways: It decreases the market
impact by (4.6), while at the same time increase market and liquidity risk
through (4.10).

There are several ways that an investor would want to evaluate this trade-
off. A risk neutral agent would be interested in the expected payoff, while a
risk averse agent would weigh the larger losses higher than the profits. We
will limit ourselves to a specific optimization problem where we assume that
the investor is risk averse and wants to maximize his profit minus the risk
contribution of the portfolio. Mathematically, the problem would be to find
a τ such that we optimize the risk adjusted value of the portfolio:

E[Vτ ]− ρ(Vτ ) = maxt∈[0,T ]E[Vt]− ρ(Vt) (4.14)

where ρ is a risk measure.
Generalizations of (4.14) by e.g. weighing the risk measure differently is

possible, and would follow through in the following example.

Example 4. Assume that we are in Model 4 of Example 3. The investor
is subject to a liquidity policy that states he has to raise an amount A Eu-
ros within a total time period of two days, T = 2. He still has to decide
how he will execute the order that raises the amount needed. In our Gaus-
sian/Brownian model the volatility increases with the square root of time,
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while the market impact decreases the longer he spends on the execution.
Given that his utility function is as in (4.14), he wants to decide his execu-
tion horizon τ , bounded above by two days.

We have shown earlier that our value function (4.14) is too complicated
for analytical solutions. We will therefore resort to a Monte Carlo simulation
to solve for the optimum.

By creating a grid on [0, 2] χt can be simulated for different possible
execution horizons. Then, by applying Remark 3 and using the SMSDC in
Definition 15, the value distributions for the portfolio can be obtained. It
is then possible to value the utility function (4.14) for different execution
horizons.

Figure 4.4 shows the result of the simulation. It shows the expected loss
as a ratio of the cash liquidity policy (blue), and the sampled confidence
intervals in grey (90% and 99%). As the expected value increases so does
market uncertainty. When the portfolio is executed quickly, there is little
uncertainty, but the execution cost is high. On the other hand, a long liq-
uidation horizon gives a moderate expected loss, but a larger uncertainty on
the loss size. The trade-off is clearly visible in the example. By choosing
ρ = V aR99% in (4.14) we find that the investor’s optimal strategy is to set
his liquidation horizon to 6 hours (75% of a trading day).

Note that in the example above we assume that the investor has to
decide his execution horizon ex-ante. Another approach could be that he
adapts his trade rate continuously during the trade. The problem can then
be formulated as a stochastic control problem.
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5. CONCLUSIONS AND FURTHER RESEARCH

Conclusion

In this thesis we have investigated the notion of portfolio value and risk
in the presence of illiquidity. We adopted the formalism of [Acerbi and
Scandolo, 2008] on valuing portfolios. They propose an alternative definition
of value, that depends on the liquidity constraints of the owner. The authors
show that this new definition of value can be defined in terms of a convex
optimization problem under mild assumptions.

In Section 3 we explored the market impact model of [Almgren et al.,
2005]. The authors estimate Supply Curves from historically executed orders
obtained from Citibank. These data are strictly confidential and therefore
unavailable to many institutions willing to construct such Supply Curves.
We propose an alternative method of obtaining the same Supply Curve
estimates by using publicly available transaction data. The method involves
constructing a strategy identifier that can identify when an agent is trading
large quantities of an asset. The results give market impact figures that are
in the same order of magnitude as [Almgren et al., 2005] and with roughly
the same prediction power. By using thin plate spline regression we seem to
outperform the model described in [Almgren et al., 2005]. However, it should
be noted that the prediction power is generally weak. General market risk
acts as a highly noisy element in the analysis. We utilized cross-validation
to obtain a more reliable out-of-sample prediction power.

In Section 4 we combined the illiquidity model of [Acerbi and Scandolo,
2008] with the market impact model of [Almgren et al., 2005]. We introduced
the concept of a Stochastic Marginal Supply Demand Curve (SMSDC) as
an extension of the MSDC. It is a stochastic function of both the position
size and execution period, and will depend on future market conditions. We
explored the distributional return properties for portfolios subject to SMS-
DCs and a cash liquidity policy. When illiquidity is added to the model, the
value of the portfolio decreases. Including stochastic liquidity parameters
makes the return distributions heavy tailed, as seen in Figure 2.3.

The introduction of SMSDCs illustrates that a portfolio can obtain a sig-
nificantly higher expected value if some short-term market risk is accepted.
We investigated a case where an agent needs to liquidate some positions
within a certain time period. The investor then needs to choose to either
liquidate his portfolio quickly, with high liquidation costs but low risks, or
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split his order over a longer period of time giving him lower liquidation costs
but higher liquidity- and market risk. We propose to weigh this trade-off
by considering a ’risk-adjusted portfolio value’, and then finding the execu-
tion horizon that maximizes this adjusted value. We solve for the optimal
execution horizon by a Monte Carlo simulation using the calibrated market
liquidity model.

The formalism of [Acerbi and Scandolo, 2008] combined with the esti-
mated Supply Curves of [Almgren et al., 2005] provides a promising model
for valuing and assessing the risk of portfolios. The liquidity adjusted value
defined by [Acerbi and Scandolo, 2008] provides a liquidity adjusted value
of the portfolio, provides heavy-tailed price distributions and may be more
informative than the mark-to-market pricing. We further believe the use of
transaction data to estimate supply curves is a contribution to the market
impact field independent of the formalism in [Acerbi and Scandolo, 2008].

The main drawbacks of the models are the increased computational dif-
ficulties and the loss of intuition. The liquidity adjusted value of a portfolio
requires an optimization algorithm and several numerical inversion of func-
tions. Estimating Supply Curves requires extensive data analysis on a large
set of data. Using popular risk management techniques such as Monte Carlo
simulations on top of these processes requires a large computational burden,
as we experienced in Example 4. Analytical and intuitive tractability is lost
when several of the steps have to be computed numerically even just to find
the portfolio value. Therefore, finding sufficiently simple models that can
increase the tractability and decrease the computational burden is necessary
for the success of such a model.

Further research and improvements

There are several possible paths for further research in the area of liquidity.
We have suggested improvements throughout the thesis, and will summarize
some of them here.

In order to perform a full model validation of the transaction-based mar-
ket impact model we described Section 3, we propose to test it against a
data set of order data for the same period and the same equities. This could
serve as a final test to see whether transactional data has the prediction
power we observe in the analysis.

In addition, there are several possible improvements on the market im-
pact models: Obtaining a complete overview of one security by incorpo-
rating alternative market places and derivative markets is likely to improve
the regression results. Another consideration is to compare some alternative
models to the ones we estimated in (4.6) and test the predictive power of
each model. Such models may be continuous time models with discount
factors and continuous time filtering techniques. Our analysis suggests that
introduction of other regressional methods, such as non-parametric impact
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functions, may improve the prediction power of the models. Including jumps
in the liquidity gradient variables is a realistic extension, as liquidity squeezes
often come quickly and without warning. Further, more care in cleaning and
initial filter parameters may give enhanced results for the methods.

As we proposed in Section 2.2, extending liquidity policies in option
pricing theory could create interesting problems.

In Example 4 we consider how the value of a portfolio depends on the
liquidation horizon. Determining the liquidation horizon requires the eval-
uation of a value vs. risk trade-off. This may be formulated as an optimal
stopping problem where the investor can adjust the trade rate during liqui-
dation.
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.1 Source code used to analyse data

The thesis consist to a large degree of organizing and analysing data. In
order to provide as much information as possible, we have appended the
used source codes that implements the results. The files presented in this
section are usually Sweave-files, which means it will be raw latex and raw R-
code combined in the files. The syntax is such that R code is found between
’«»=’ and ’@’. Outside these areas we are in standard tex-environment and
one may see comments or text that explains the R code.

As there are extensive amount of code all is not necessarily well written
with good comments. However, we hope that proividing these details will
allow the interested reader to dig into the basis of the results found in the
thesis.

.1.1 Example of exponential liquidity model

The following is the source code of the exponential model described in section
2.3. As this example is hard-coded into the thesis, it is merely the same
section but includes the R code.
\Sexpr{ s e t_parent ( ' . . / . . / oppgave/main .Rnw ' ) }

<<funt ions , echo =FALSE>>=
l i b r a r y ( "MASS" ) ; l i b r a r y ( " x tab l e " )

m. exp = func t i on (x ,A, k ) A∗exp(−k∗x )
lambda . exp <− f unc t i on (a ,A, k ) a ∗ (sum(A/k )−a ) ∗∗(−1)
r . exp <− f unc t i on (a ,A, k , p0 = 0) {

i f ( a>p0 ) l og (1+lambda . exp (a ,A, k ) ) /k
e l s e rep (0 ,A)

}
U. exp <− f unc t i on (p , a ,A, k , p0 = 0) sum(m. exp (0 ,A, k ) ∗p) + p0
L . exp <− f unc t i on (p , a ,A, k , p0 = 0) sum(A/k∗(1−exp(−k∗p) ) ) + p0
V. exp <− f unc t i on (p , a ,A, k , p0 = 0) {

i f (k>0) {
r_a <− r . exp (a ,A, k )
U. exp (p−r_a , a ,A, k , p0 ) + L . exp ( r_a , a ,A, k , 0 )

} e l s e i f ( k==0) sum(p∗A)+p0
}
V. exp . d i r e c t <− f unc t i on (p , a ,A, k , p0 = 0) sum(A∗ (p−r . exp (a ,A, k

) ) ) + a

sample_one_a s s e t <− f unc t i on ( sample_in fo , r e tu rne r = "ES" ) {
l i b r a r y ( "MASS" )
P = sample_i n f o $pos
a = sample_i n f o $ cashreq
rho = sample_i n f o $ rho
p0 = sample_i n f o $ cash
A. hat = sample_i n f o $A
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k . hat = sample_i n f o $k
sds = sample_i n f o $ sds
D = l i s t ( )

# Scenario 1 : k == 0 , p = 0
A. hat = 10
cov0=diag ( c ( sds [ 1 ] ∗ ∗ 2 , 0 ) )
s e t . seed (1 )
AK <− mvrnorm(n ,mu=c (A. hat , 0 ) , Sigma = cov0 )
D$pv1 <− s o r t (mapply ( func t i on (A,K) V. exp (P, a ,A,K, p0 ) , AK[ , 1 ] ,

AK[ , 2 ] ) )

# Scenario 2 : k > 0 and f i x e d

cov0=diag ( c ( sds [ 1 ] ∗ ∗ 2 , 0 ) )
s e t . seed (1 )
AK <− mvrnorm(n ,mu=c (A. hat , k . hat ) , Sigma = cov0 )
AK[ which (AK[ ,2 ] <0) , 2 ] = 0
D$pv2 <− s o r t (mapply ( func t i on (A,K) V. exp (P, a ,A,K, p0 ) , AK[ , 1 ] ,

AK[ , 2 ] ) )

# Scenario 3 : k > 0 and normal , p = 0
cov0=diag ( sds ^2)
s e t . seed (1 )
AK <− mvrnorm(n ,mu=c (A. hat , k . hat ) , Sigma = cov0 )
AK[ which (AK[ ,2 ] <0) , 2 ] = 0
D$pv3 <− s o r t (mapply ( func t i on (A,K) V. exp (P, a ,A,K, p0 ) , AK[ , 1 ] ,

AK[ , 2 ] ) )

# Scenario 4 : k > 0 and normal , p < 0
cor0 = matrix ( c (1 , rho , rho , 1 ) , nrow=2)
cov0 = sds%∗%t ( sds ) ∗ cor0
s e t . seed (1 )
AK <− mvrnorm(n ,mu=c (A. hat , k . hat ) , Sigma = cov0 )
AK[ which (AK[ ,2 ] <0) , 2 ] = 0
D$pv4 <− s o r t (mapply ( func t i on (A,K) V. exp (P, a ,A,K, p0 ) , AK[ , 1 ] ,

AK[ , 2 ] ) )

D = data . frame (D)

q = f l o o r (0 . 05∗n)
# Value at r i s k :
VaR = D[ q , ]
# Expected s h o r t f a l l
avg = apply (D, 2 ,mean)
ES = avg−apply (D[ 1 : q , ] , 2 , mean)

i f ( r e tu rne r=="ES" ) {ES
} e l s e i f ( r e tu rne r == "D" ) {D
} e l s e i f ( r e tu rne r == " avg " ) {avg

}
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}

@

In t h i s s e c t i o n we w i l l p re sent a s imple model o f the
exponent i a l type proposed in \ c i t e { a c e rb i } where the MSDC of
an a s s e t i takes the form $m_i (x ) = A_i e^{−k_ix }$ .

The parametr ic form o f the MSDC i s s imple and t r a c t ab l e and
there e x i s t s a c losed−form so l u t i o n o f the value funct ion , as
shown in \ c i t e { a c e rb i } . We w i l l aim at showing some s t y l i z e d
f a c t s about the model , by assuming s t o c h a s t i c dynamics on

the v a r i a b l e s $A_i $ and $k_i $ .
The va r i ab l e $A_i $ w i l l model the market v o l a t i l i t y much in the

same way that standard f i nanc e l i t t e r a t u r e models ut , whi l e $
k_i $ w i l l be our l i q u i d i t y parameter .

A l a r g e $k_i $ w i l l r e s u l t in a l e s s l i q u i d as se t , and the value
o f the po s i t i o n w i l l be n ega t i v e l y r e l a t e d to the po s i t i o n
s i z e .

By us ing Propos i t i on 6 .1 in \ c i t e { a c e rb i } we can show that the
optimal s o l u t i o n f o r the exponent i a l model i s \ f oo tno t e {\ c i t e
{ a c e rb i } must have assumed $p_0 = 0$ . We have inc luded t h i s
term f o r completeness }

\ begin { a l i g n }
\lambda &= \ f r a c {a−p_0}{\sum_{ i=1}^N A_i /k_i−a+p_0} \\
r_i ^a &= \ f r a c {1}{k_i } \ log (1+\lambda ) \\
V^L{a}(\mathbf p) = U(\mathbf p− & \mathbf r^a ) − L(\mathbf r^a )

= \sum_{ i=1}^N A_i (p_i−r_i ) + a + p_0
\end{ a l i g n }

There are s e v e r a l i n t e r e s t i n g po in t s r egard ing the model :
\ begin { i t em i z e }
\ item The model assumes no r e s t r i c t i o n s or c o s t s on shor t

s e l l i n g . \\
\ item The optimal l i q u i d a t i o n po l i c y $ r^a$ i s independent o f the

cur rent po s i t i on−vec to r ( except $p_0$) . This i s a
consequence o f the no shor t s e l l i n g r e s t r i c t i o n . \\

\ item The p o r t f o l i o va lue i s l i n e a r in each $p_i $ , $ i \neq 0$ .
This i s because a l l p o s i t i o n not l i q u i d a t ed to s a t i s f y the
cash po l i c y i s valued at the mark−to−market va lue .

\end{ i t em i z e }

Let us now int roduce some s imple s t o c h a s t i c e lements in the
model .

Assume that we wish to eva luate a p o r t f o l i o in a fu tu r e time and
that we know that the d i s t r i b u t i o n o f A and k are gauss ian :

$A \sim N(10 , 0 . 0 4 ) $ and $k \sim N(0.001 ,10^{ −7}) $ .
By s imu la t ing va lue s o f A and K we get a d i s t r i b u t i o n o f MSDC

curves as seen in f i g u r e \ r e f { f i g : exp_sampled } .

<<l a b e l=" parameter ">>=
sample_i n f o = l i s t (
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pos = 1000 , # p o s i t i o n o f a s s e t
cashreq = 3000 , # l i q u i d i t y p o l i c y a
cash=0, # cash he l d p0
k = 0 .001 ,
A = 10 ,
rho=−0.5, # c o r r e l a t i o n between A and k
sds = sq r t ( c ( 0 . 2 , 1 e−7) ) # standard d e v i a t i o n s o f A and k

)

@

<<exp_sampled , echo=FALSE, f i g . he ight=4, f i g . cap=" Simulated MSDCs
f o r d i f f e r e n t va lue s o f A and k . The black l i n e i s the mean
MSDC. ">>=

cor0 = matrix ( c (1 , sample_i n f o $rho , sample_i n f o $rho , 1 ) , nrow=2) #
c o r r e l a t i o n matrix

#cor0 = diag (2)
cov0 = sample_i n f o $ sds%∗%t ( sample_i n f o $ sds ) ∗ cor0
s e t . seed (1 )
P = seq ( −1000 ,1000 ,100)
AK <− mvrnorm(20 ,mu=c ( sample_i n f o $A, sample_i n f o $k ) , Sigma =

cov0 )
msdc_va lues = outer (AK[ , 1 ] ,P, func t i on (A, p ,K) m. exp (p ,A,K) ,AK

[ , 2 ] )
matplot (P, t (msdc_va lues ) , type = " l " , x lab = " Pos i t i on " ,

y lab = " Pr i ce " )
l i n e s (P,m. exp (P, sample_i n f o $A, sample_i n f o $k ) , lwd = 2)

@

In \ r e f { f i g : exp_sampled } , each l i n e corre sponds to the MSDC
func t i on with a d i f f e r e n t s imulated $(A, k ) $ pa i r .

The MSDC correspond ing to the expected value o f A and k i s the
th i ck black l i n e .

Due to our gauss ian assumption on A there i s no guarantee that
the p r i c e s are p o s i t i v e .

This i s a l im i t a t i o n to the model , but by having s u f f i c i e n t low
standard dev i a t i on s on A we can ensure that the p r obab i l i t y
o f negat ive p r i c e s i s e f f e c t i v e l y zero .

Also note that the p r i c e has a s i g n i f i c a n t l y l a r g e r spread f o r
buying p o s i t i o n s ($ pos <0$) than f o r s e l l i n g p o s i t i o n s ($ pos
>0$) .

The e f f e c t i s due to the nature o f the exponent i a l funct ion , and
i s in our model determined by the va r i ab l e k .

We wish to i n v e s t i g a t e the value and r i s k o f a p o r t f o l i o in t h i s
model , and how i t changes with d i f f e r e n t assumptions on A

and k .
Assume we have a p o r t f o l i o c o n s i s t i n g o f a s i n g l e a s s e t .

Fol lowing the idea o f Acerbi (2007) we w i l l c on s id e r four
d i f f e r e n t s c e n a r i o s :

\ begin {enumerate}
\ item A normal and $k = 0$ . The gauss ian model with no
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l i q u i d i t y r i s k
\ item A normal and $k \ge 0$ f i x ed . I t i s a model with s t a t i c

l i q u i d i t y r i s k .
\ item A, k j o i n t normal with zero c o r r e l a t i o n . i . e . i t assumes

independence o f market and l i q u i d i t y r i s k .
\ item A and k j o i n t normal with a negat ive c o r r e l a t i o n . The

model assumes that as a s s e t p r i c e s f a l l , l i q u i d i t y i s
l i k e l y to dec rea se .

\end{enumerate}

Assume parameters as g iven above .
The uppermost mark−to−market va lue o f t h i s p o r t f o l i o i s s imply $

V(P) = m(0) ∗P = 10∗1000 = 10 000$ .
By per forming a Monte Carlo s imu la t i on on the MSDCs with the

parameters g iven above , we are ab le to approximate the
d i s t r i b u t i o n s o f the d i f f e r e n t models .

The r e s u l t i n g d i s t r i b u t i o n s are p l o t t ed in \ r e f { f i g : d i s t r } .

\ begin { f i g u r e } [ h ] \ l a b e l { f i g : d i s t r }
\ capt ion { Po r t f o l i o d i s t r i b u t i o n s o f model 1 to model 4}

<<echo=FALSE>>=
n = 10000
D = sample_one_a s s e t ( sample_in fo , "D" )

p l o t ( dens i ty (D$pv1 ) , xl im=c (7000 ,12000) , yl im = c (0 , 0 . 0014 ) ,main
=" " , xlab =" Po r t f o l i o va lue " )

l i n e s ( dens i ty (D$pv2 ) , c o l = " red " )
l i n e s ( dens i ty (D$pv3 ) , c o l = " blue " )
l i n e s ( dens i ty (D$pv4 ) , c o l = " green " )

legend (11000 ,0 . 001 , # p l a c e s a l egend at the appropr ia t e p l ace
c ( "Model 1 " , "Model 2 " , "Model 3 " , "Model 4 " ) , # puts t e x t

in the l egend
l t y=c (1 , 1 ) , # g i v e s the l egend appropr ia t e symbols ( l i n e s )

lwd=c ( 2 . 5 , 2 . 5 ) , c o l=c ( " b lack " , " red " , " b lue " , " green " ) ) # g i v e s the
l egend l i n e s the c o r r e c t c o l o r and width

@
\end{ f i g u r e }

The most c l e a r r e s u l t i s that our f i r s t model i s gauss ian with
mean at the uppermost va lue o f the p o r t f o l i o .

By in t roduc ing l i q u i d i t y r i s k in the form o f a p o s i t i v e
parameter $k$ in model 2−4, the expected value o f the
p o r t f o l i o de c r ea s e s .

In fac t , i t seems l i k e model 2−4 have s h i f t e d t h e i r peak
p r o b a b i l i t i e s to a new point around 9500 , which i s the cent r e
o f the (A, k )−d i s t r i b u t i o n ( which i s common f o r model 2−4) . \

f oo tno t e {The value o f a p o r t f o l i o i s 9 433 at the po int $A =
10 , k = 0 . 001$ . }

The in t r oduc t i on o f l i q u i d i t y r i s k de c r ea s e s the gene ra l va lue
o f the p o r t f o l i o in t h i s model , as should have been expected .
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More i n t e r e s t i n g i s the comparison between model 2−4.
They are each s p e c i a l c a s e s o f the model $(A, k ) \sim N(\mu,\

Sigma ) $ , where $\mu$ and $\Sigma$ are a gene ra l mean vec to r
and covar iance matrix .

Comparing the emp i r i c a l d i s t r i b u t i o n s , i t i s q u a l i t a t i v e l y c l e a r
that the f a t t a i l s i n c r e a s e s from model 1 to 4 .

The f a c t can be accompanied by t e s t i n g d i f f e r e n t r i s k measures
on the p o r t f o l i o s .

In our Monte Carlo s imulat ion , we can ex t r a c t e s t imate s o f the
standard dev ia t ion , 5 pct . Value at Risk and 5 pct . Expected
S h o r t f a l l .

Let us d e f i n e the se r i s k measures in the usua l way and as the
d i s t ance from the mean o f the p o r t f o l i o \ f oo tno t e {Formally
de f ined in chapter \ r e f { s ec : marketimpact } . } .

The r e s u l t s are found in tab l e \ r e f { tb l : r i s k s t a t s } .

<<echo = FALSE, r e s u l t s= ' a s i s '>>=

median = apply (D, 2 , median )
avg = apply (D, 2 ,mean)
q = f l o o r (n ∗0 .05 )
stddev <− apply (D, 2 , sd )
VaR = avg−t (D[ q , ] )
ES = avg−apply (D[ 1 : q , ] , 2 , mean)
pp <− data . frame ( avg , stddev ,VaR = VaR, ES)
colnames (pp) <− c ( " P o r t f o l i o Value " , " Std . Dev" , "VaR" , "ES" )
rownames (pp) <− c ( "Model 1 " , "Model 2 " , "Model 3 " , "Model 4 " )

capStr = " Risk s t a t i s t i c s f o r the four exponen t i a l l y MSDC models
that are being t e s t ed . Numbers denominated in cash value . "

p r i n t ( x tab l e (pp , d i g i t s =0, capt ion = capStr , l a b e l=" tb l : r i s k s t a t s " )
)

@

We see that with a l l r i s k measures , the r i s k i n c r e a s e s from
Model 1 to Model 4 .

Although in t roduc ing l i q u i d i t y r i s k in Model 2 decreased the (
average ) va lue o f the p o r t f o l i o s i g n i f i c a n t l y , the model
sugge s t s that adding s t o c h a s t i c dynamics to the a v a i l a b l e
l i q u i d i t y has a s i g n i f i c a n t impact on the r i s k measures used .

Secondly , the c o r r e l a t i o n between the p r i c e v a r i ab l e A and the
l i q u i d i t y va r i ab l e $k$ i s important , as seen from the
d i f f e r e n c e s between Models 3 and 4 , which has a c o r r e l a t i o n
o f 0 and 0 .5 r e s p e c t i v e l y .

The c o r r e l a t i o n e f f e c t i s s i g n i f i c a n t when execut ing the model
with a c o r r e l a t i o n varying from −1 to 1 , as seen in Figure \
r e f { f i g : corES } , where we modi f i ed Model 4 and l e f t the other
model outputs with the o r i g i n a l c o r r e l a t i o n assumptions .

\ begin { f i g u r e } \ l a b e l { f i g : corES}
\ capt ion {How cor (A, k ) a f f e c t s the expected s h o r t f a l l . We can

see that only model 4 depends on the c o r r e l a t i o n between
the two models , and that the p o r t f o l i o r i s k i s h igher when
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the re i s a s t rong c o r r e l a t i o n between A and k . Model 1 (
b lack ) , Model 2 ( red ) , Model 3 ( blue ) and Model 4 ( green ) . }

<<echo=FALSE, f i g . he ight=3>>=
# See how ES v a r i e s wi th c o r r e l a t i o n o f A and k

rho . seq = seq ( −1 ,1 ,0 .2)
ESS = mat . or . vec ( nc=4,nr=length ( rho . seq ) )
f o r ( i in 1 : l ength ( rho . seq ) ) {

sample_i n f o $ rho = rho . seq [ i ]
ESS [ i , ] <− sample_one_a s s e t ( sample_i n f o )

}

matplot ( rho . seq , ESS , type =" l " , c o l = c ( " b lack " , " red " , "
b lue " , " green " ) ,

x lab = " Cor r e l a t i on A and k " , ylab = " Expected
S h o r t f a l l " )

@
\end{ f i g u r e }

There are s e v e r a l s t y l i z e d r e s u l t s that can be drawn from the
example above .

We see that the value o f the p o r t f o l i o d e c r ea s e s as one
in t roduce s l i q u i d i t y in the va lua t i on model .

The e f f e c t i s an expected r e s u l t o f the new va lua t i on model .
However , i t i s not be f o r e we int roduce s t o c h a s t i c l i q u i d i t y in

the l a t e r models that we see a l a r g e e f f e c t on the t a i l s o f
the d i s t r i b u t i o n s .

The p o r t f o l i o becomes s i g n i f i c a n t l y more heavy−t a i l e d when
s t o c h a s t i c l i q u i d i t y i s introduced .

In addit ion , a negat ive c o r r e l a t i o n between p r i c e re turn and
l i q u i d i t y has the l a r g e s t e f f e c t on the heavy−t a i l e d n e s s .

The r e s u l t s motivate us to i n v e s t i g a t e s t o c h a s t i c l i q u i d i t y −
models where we try to es t imate the s i z e o f the l i q u i d i t y
e f f e c t and impose r ea sonab l e assumptions on the d i s t r i b u t i o n
o f the d i f f e r e n t

market and l i q u i d i t y v a r i a b l e s .

.1.2 Data Initialization source code

Taking the raw data as input and then handling it as described in section
3.4. The different stocks are run through the same code just with different
input file.
\documentclass { a r t i c l e }

\usepackage {mathtools }
\newcommand{\ de feq }{\ vcentco lon=}

\begin {document}
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<<echo=FALSE>>=
#parm = l i s t ( )
#parm$ t i c k e r <− "STL"

#load ( " . . / data / b i g d i f f_compi led_YAR_v4 . Rdata " )
#opt s_chunk$ s e t ( echo=TRUE, warning=TRUE, r e s u l t s=TRUE, e v a l=TRUE)
@

\ t i t l e { I n i t i a l i z i n g data f o r Market Impact an a l y s i s }
\maket i t l e

This document i s only used f o r c r e a t i n g the r e s u l t s −vec to r that
can be used by fu tu r e an a l y s i s o f the data .

I t can be run on d i f f e r e n t time s e r i e s , t i c k e r s p e c i f i e d above .

<<raw−data>>=

# RAW DATA TREATMENT OF TRANSACTION DATA
# PUT ALL TRANSACTION DOWN TO MEMBER LEVEL INTO TRADING SLOTS

with 30 min i n t e r v a l s .

raw_old <− read . t ab l e ( f i l e . path ( " . . " , " data " , paste (parm$ t i c k e r , "_
a l l . r e s u l t s " , sep=" " ) )

,

header

=

TRUE
,

sep

=
"
\
t
"
)

raw_new <− read . t ab l e ( f i l e . path ( " . . " , " data " , paste ( " t radedata_" ,
parm$ t i c k e r , "_3mnd. csv " , sep=" " ) )

,

header

=

TRUE
,
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sep

=
"
,
"
)

raw <− rbind ( raw_old , raw_new)

#raw <− raw_new
t a i l ( raw )

members <− s o r t ( unique ( raw$ACCOUNT_BUY) )
masterdate <− s o r t ( unique ( as . Date ( raw$TIME_OF_TRADE_EXECUTION) ) )
raw$TIME_OF_TRADE_EXECUTION <− as . POSIXlt ( raw$TIME_OF_TRADE_

EXECUTION)

# Asso ica te s l o t f o r each t rade
parm$ s l o t s <− seq ( 9 . 2 5 , 1 6 . 2 5 , . 5 ) # e . g . s l o t 1 i s t raded a f t e r

9:15 and b e f o r e 9 : 4 5 .
parm$ns <− l ength (parm$ s l o t s )−1 # the l a s t s l o t i s a s s o c i a t e d

wi th the ending auct ion and shou ld not be cons idered .
t imeofday <− raw$TIME_OF_TRADE_EXECUTION$h + raw$TIME_OF_TRADE

_EXECUTION$min/60
raw$ s l o t c a t <− sapply ( timeofday , func t i on (x ) sum(x >= parm$

s l o t s ) )

# Remove t ra d e s t h a t happened in s t a r t and end auc t ions
remove <− which ( raw$ s l o t c a t == 0 | raw$ s l o t c a t == parm$ns+1)
prodata <− raw[−remove , ]
t o t <− l ength ( masterdate )
N <− to t ∗parm$ns
M <− l ength (members )

# Lag mas t e r t i c k
date <− match ( as . Date ( prodata $TIME_OF_TRADE_EXECUTION) ,

masterdate )
prodata $ t i c k <− prodata $ s l o t c a t + ( date −1)∗parm$ns

maste r t i ck <− 1 :N

#prodata $ date <− as . Date ( prodata $TIME_OF_TRADE_
EXECUTION)

# Lag s u p p o r t d a t a t a b e l l som f ø l g e r t i c k ' sene nedover :
supportdata <− l i s t ( )
supportdata $ t i c k <− 1 :N

supportdata $ t i c kda t e <− s o r t ( rep ( masterdate , parm$ns ) )
supportdata $date <− c e i l i n g ( supportdata $ t i c k /parm$ns )
supportdata <− data . frame ( supportdata )
head ( supportdata )

#### CREATE POSITIONS VECTORS PR SLOT ####
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#h <− mat . or . vec ( nr=N, nc=M)
h <− l i s t ( ) #array ( data =0,dim=c (N,M, 4 ) , dimnames= l i s t ( t i c k =

1:N, members , c ( " amount " , " va lue " , " p r i c e " , " cumpos " ) ) )
h$amount <− mat . or . vec ( nr=N, nc=M)
h$ value <− mat . or . vec ( nr=N, nc=M)
h$ p r i c e <− mat . or . vec ( nr=N, nc=M)
h$cumpos <− mat . or . vec ( nr=N, nc=M)

ind_buy <− match ( prodata $ACCOUNT_BUY, members )
ind_s e l l <− match ( prodata $ACCOUNT_SELL, members )

tu rnove r t i c k = rep (0 ,N) ; Vtick = rep (0 ,N)

# Lag pos−pr−medlem−v ek t o r :
f o r ( i in 1 : nrow ( prodata ) ) {

h$amount [ prodata $ t i c k [ i ] , ind_buy [ i ] ] <− h$amount [ prodata $
t i c k [ i ] , ind_buy [ i ] ] + prodata $AMOUNT1[ i ]

h$amount [ prodata $ t i c k [ i ] , ind_s e l l [ i ] ] <− h$amount [ prodata $
t i c k [ i ] , ind_s e l l [ i ] ] − prodata $AMOUNT1[ i ]

h$ value [ prodata $ t i c k [ i ] , ind_buy [ i ] ] <− h$ value [ prodata $ t i c k
[ i ] , ind_buy [ i ] ] + prodata $AMOUNT1[ i ]∗ prodata $TRADE_PRICE
[ i ]

h$ value [ prodata $ t i c k [ i ] , ind_s e l l [ i ] ] <− h$ value [ prodata $ t i c k
[ i ] , ind_s e l l [ i ] ] − prodata $AMOUNT1[ i ]∗ prodata $TRADE_PRICE
[ i ]

t u rnove r t i c k [ prodata $ t i c k [ i ] ] <− tu rnove r t i c k [ prodata $ t i c k [ i
] ] + prodata $AMOUNT1[ i ]∗ prodata $TRADE_PRICE[ i ]

Vtick [ prodata $ t i c k [ i ] ] <− Vtick [ prodata $ t i c k [ i ] ] + prodata $
AMOUNT1[ i ]

}

# Create cumula t ive p o s i t i o n s
h$cumpos <− apply (h$amount , 2 , cumsum)

@

<<supportdata_vo l_volume_pr i ce>>=

# Price s e r i e
S = turnove r t i c k /Vtick

# I f no p r i c e . . . : f i r s t t r y to f i n d p r i c e forward in
time , then backwards .

ind = which ( i s . na (S) )
i t e r =0;max . i t e r =100
whi l e ( l ength ( ind ) > 0 & i t e r < max . i t e r ) {

S [ ind ] <− S [ ind+1]
ind = which ( i s . na (S) )
i t e r = i t e r+1

}
whi l e ( l ength ( ind ) > 0 & i t e r < max . i t e r ∗2) {

S [ ind ] <− S [ ind −1]
ind = which ( i s . na (S) )
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i t e r = i t e r+1
}

supportdata $S <− S

#### Create ( s imple ! ) in t raday v o l a t i l i t y e s t imate ####
r <− l og ( t a i l (S,−1)/head (S,−1) )
r [ which ( i s . nan ( r ) ) ] <− 0

#
# var0 <− c ( r [ 1 ] ∗ ∗ 2 )
# f o r ( k in 2 :N) {
# var0 [ k ] <− mean( r [ max(1 , k−28) : ( k−1) ]∗∗2)
# }
# suppor tda ta $ sigma <− s q r t ( var0 ∗parm$ns )

### ewma−in t raday v o l a t i l i t y e s t imate
ewma0 <− c ( r [ 1 ] ∗ ∗ 2 )
lambda = 0.99

f o r ( k in 2 :N) {
ewma0 [ k ] <− lambda∗ewma0 [ k−1] + (1−lambda ) ∗ r [ k ]∗∗2

}
ewma0 [N] <− ewma0 [N−1]

supportdata $ sigma <− s q r t (ewma0∗parm$ns )

#### Create ( s imple ! ) 10−day average d a i l y volume es t imate ####
# V <− c ( Vt ick [ 1 ] )
# f o r ( k in 2 :N) {
# V[ k ] <− mean( Vtick [ max(1 , k−parm$ns ∗10) : ( k−1) ] )
# }
# suppor tda ta $V <− parm$ns∗V

### EWMA−volume
Vewma <− c ( Vtick [ 1 ] )
f o r ( k in 2 :N) {

Vewma[ k ] <− 0 .985∗Vewma[ k−1] + (1 −0.985)∗Vtick [ k ]
}
supportdata $V <− parm$ns∗Vewma

#### var ious in fo , needed? ####
h$ relamount <− h$amount/ supportdata $V
h$ relcumpos <− apply (h$ relamount , 2 , cumsum)

#### FIND TRANSACTION PRICE ####
h$ p r i c e <−h$ value /h$amount
ind0 <− which ( ! i s . f i n i t e (h$ p r i c e ) | (h$amount >−10 & h$amount

<10) )
h$ p r i c e [ ind0 ] <− NA
@

<<STRATEGY−CREATOR>>=
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s t r a t e g i e s 0 <− data . frame ( s t a r t=c ( ) , end = c ( ) , member=c ( ) )

f o r ( t in 1 : to t ) {
f o r (m in 1 :M) {

# m = 4; t = 2
ind_t <− which ( supportdata $date ==t )

maks <− which (h$ relcumpos [ ind_t ,m] == max(h$ relcumpos [ ind_t ,m] )
)+parm$ns ∗( t−1)

min <− which (h$ relcumpos [ ind_t ,m] == min(h$ relcumpos [ ind_t ,m] )
)+parm$ns ∗( t−1)

# Regler dersom det er f l e r e maks og min :
i f ( ( l ength (maks ) > 1 | l ength (min ) > 1) & max(maks ) < min (min

) ) maks = max(maks ) ; min=min (min )
i f ( ( l ength (maks ) > 1 | l ength (min ) > 1) & min (maks ) >=max(min

) ) maks = min (maks ) ; min=max(min )

s t a r t <− min(maks , min )
end <− max(maks , min )
s t r a t_temp <− data . frame ( s t a r t=s ta r t , end=end ,member=m)
s t r a t e g i e s 0 <− rbind ( s t r a t e g i e s 0 , s t r a t_temp)
}

}

# Remove s t r a t e g i e s wi th zero t i m e l e n g t h :
remove <− which ( s t r a t e g i e s 0 $ s t a r t== s t r a t e g i e s 0 $end )
s t r a t e g i e s <− s t r a t e g i e s 0 [−remove , ]

# i n t e r p r e t s t r a t e g i e s :
to t . s t r a t <− nrow ( s t r a t e g i e s )
@

\ subsubsec t i on {Extract market data from i d e n t i f i e d s t r a t e g i e s }
Extract a l l needed va r i a b l e s (XV, sigma , tau , I , J ) f o r each

s t r a t e gy .

<<ext ra c t_data_from_s t r a t e g i e s >>=

r e s u l t a t e r 0 = data . frame ( s t r a t n r = c ( ) , s t a r t s l o t =c ( ) , s t a r t da t e
= c ( ) , X=c ( ) ,V=c ( ) , sigma=c ( ) , tau=c ( ) , I=c ( ) , J=c ( ) , sigma_de l t a

=c ( ) )
f o r ( i in 1 : to t . s t r a t ) {

s t r a t <− s t r a t e g i e s [ i , ]
i n t <− s t r a t $ s t a r t : s t r a t $end
s t a r t da t e <− supportdata $ t i c kda t e [ s t r a t $ s t a r t ]
s t a r t s l o t <− s t r a t $ s t a r t

S0 <− supportdata $S [max(1 , s t r a t $ s ta r t −1) ] # p r i c e b e f o r e order
Sp <− supportdata $S [ min (N, s t r a t $end+1) ] # p r i c e a f t e r order
Sbar <− sum(h$ p r i c e [ int , s t r a t $m] ∗ h$amount [ int , s t r a t $m] , na . rm

=TRUE) / sum(h$amount [ int , s t r a t $m] )

sigma <− mean( supportdata $ sigma [ i n t ] ) # per day
sigma_de l t a <− supportdata $ sigma [ s t r a t $end ] − supportdata $

sigma [ s t r a t $ s t a r t ]
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tau <− ( s t r a t $end−s t r a t $ s t a r t ) /parm$ns # per day

X <− sum(h$amount [ int , s t r a t $m] ) # no . s t o c k s
V <− mean( supportdata $V[ i n t ] ) # [ Average d a i l y volume over

t r a d i n g hor i zon ]
I = Sp/S0−1
J = Sbar/S0−1

newl ine <− data . frame ( s t r a t n r = i , s t a r t s l o t , s ta r tdate , X,V,
sigma , tau , I , J , sigma_de l t a )

r e s u l t a t e r 0 = rbind ( r e s u l t a t e r 0 , newl ine )
}

r e s u l t a t e r 0 $XV <−r e s u l t a t e r 0 $X/( r e s u l t a t e r 0 $V) # s t o c k s as
percentage o f d a i l y volume . (STL/)

r e s u l t a t e r 0 $XVT <− r e s u l t a t e r 0 $XV/ r e s u l t a t e r 0 $ tau # s t o c k s as
percentage o f volume during the t rade

@

\ subsec t i on {Market Impact ana l y s i s }

\ subsubsec t i on { Out l i e r s }
<<remove−zero−pos>>=
# Fjern a l l e små− og n u l l p o s s e r
meansigma <− mean( r e s u l t a t e r 0 $sigma , na . rm=TRUE)

p = 0.03
i n l i e r s <− quan t i l e ( r e s u l t a t e r 0 $XV∗ r e s u l t a t e r 0 $ sigma/meansigma ,

probs=c (p,1−p) , na . rm=TRUE) #c ( − .05 , .05)#
remove_i n l i e r s <− ( r e s u l t a t e r 0 $XV∗ r e s u l t a t e r 0 $ sigma/meansigma>

i n l i e r s [ 1 ] & r e s u l t a t e r 0 $XV∗ r e s u l t a t e r 0 $ sigma/meansigma<
i n l i e r s [ 2 ] )

p l o t ( s o r t ( with ( r e s u l t a t e r 0 ,XV∗ sigma/meansigma ) ) , yl im = i n l i e r s
∗10)

ab l i n e ( i n l i e r s [ 1 ] , 0 , c o l=" red " )
ab l i n e ( i n l i e r s [ 2 ] , 0 , c o l=" red " )

round ( i n l i e r s , 2 )

# Remove too b i g p o s i t i o n s
p = 0.005
o u t l i e r s <− quan t i l e ( r e s u l t a t e r 0 $XV, probs=c (p,1−p) ) #c ( − .05 , .05)

#
remove_o u t l i e r s <− ( r e s u l t a t e r 0 $XV<ou t l i e r s [ 1 ] | r e s u l t a t e r 0 $XV>

ou t l i e r s [ 2 ] )

p l o t ( r e s u l t a t e r 0 $XV, ylim = o u t l i e r s ∗3)
ab l i n e ( o u t l i e r s [ 1 ] , 0 , c o l = " red " )
ab l i n e ( o u t l i e r s [ 2 ] , 0 , c o l = " red " )

# Remove s t rong s i g n a l in J
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va r i <− with ( r e s u l t a t e r 0 ,XV/(J∗ sigma/meansigma ) )
h i gh s i gna l <− quan t i l e ( var i , probs = c ( 0 . 0 0 5 , 0 . 9 9 5 ) , na . rm

=TRUE)

p lo t ( var i , yl im = 2∗ h i gh s i gna l )
ab l i n e ( h i gh s i gna l [ 1 ] , 0 , c o l=" red " )
ab l i n e ( h i gh s i gna l [ 2 ] , 0 , c o l=" red " )

remove_h i gh s i gna l_J <− var i<h i gh s i gna l [ 1 ] | var i>
h i gh s i gna l [ 2 ]

# Remove s t rong s i g n a l in I
va r i <− with ( r e s u l t a t e r 0 ,XV/( I ∗ sigma/meansigma ) )
h i gh s i gna l <− quan t i l e ( var i , probs = c ( 0 . 0 0 5 , 0 . 9 9 5 ) , na .

rm=TRUE)

p lo t ( var i , yl im = 2∗ h i gh s i gna l )
ab l i n e ( h i gh s i gna l [ 1 ] , 0 , c o l=" red " )
ab l i n e ( h i gh s i gna l [ 2 ] , 0 , c o l=" red " )

remove_h i gh s i gna l_I <− var i<h i gh s i gna l [ 1 ] | var i>
h i gh s i gna l [ 2 ]

# p l o t ( r e s u l t a t e r 0 $ s t a r t d a t e , r e s u l t a t e r 0 $ I /( r e s u l t a t e r 0 $XV∗
r e s u l t a t e r 0 $sigma ) , main = "Remove l i q u i d i t y s i g n a l s above
prede f ined t h r e s h o l d " , y l a b = " Gradient s i g n a l " , x l a b = " Date
" , y l im = c ( −50 ,50) ∗3)

# a b l i n e (50 ,0 , c o l = " red " )
# a b l i n e ( −50 ,0 , c o l = " red " )

r e s u l t a t e r <− r e s u l t a t e r 0 [−which ( remove_h i gh s i gna l_J | remove_
h i gh s i gna l_I | remove_i n l i e r s ) , ]

dim( r e s u l t a t e r )

@

<<save_workspace>>=
hfun <− f unc t i on (XVT, sigma ) s i gn (XVT) ∗ sigma∗abs (XVT) ∗∗(3/5)
r e s u l t a t e r $h_dat <− hfun ( r e s u l t a t e r $XVT, r e s u l t a t e r $ sigma )

save . image ( f i l e = paste ( " . . / data/ b i g d i f f_compiled_" ,parm$ t i ck e r ,
"_v4 . Rdata " , sep=" " ) )

@

\end{document}
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.1.3 Regression analysis source code

Regressions on each stock

The following source code is used on each stock to identify permanent and
temporary impacts through regression.
\documentclass { a r t i c l e }

\usepackage {mathtools }
\newcommand{\ de feq }{\ vcentco lon=}

\begin {document}
<<load−reg−data>>=
load ( " . . / data/ b i g d i f f_compiled_STL_v4 . Rdata " )

#load ( f i l e = pas t e ( " . . / data / b i g d i f f_compi led _" ,parm$ t i c k e r , "_v4
. Rdata " , sep ="") )

@

\ subsubsec t i on {D iv i s i on in to t r a i n i n g and t e s t data}

<<>>=
parm$ t r a i n t e s t r a t i o <− 0 .7
s e t . seed (6 )
draw <− r un i f ( nrow ( r e s u l t a t e r ) )
ind_t r a i n <− draw < parm$ t r a i n t e s t r a t i o
ind_t e s t <− draw > parm$ t r a i n t e s t r a t i o

t r a i n <− r e s u l t a t e r [ ind_tra in , ]
t e s t <− r e s u l t a t e r [ ind_tes t , ]
@

\ subsubsec t i on {Ana lys i s o f permanent impact}
Ins tead o f r e l y i n g on \ r e f {eq : permanent_model } , we l e t ($ I /\

sigma $) be r e g r e s s ed nonparametr i ca l l y on the v a r i a b l e s us ing
g en e r a l i z e d l i n e a r models .

<<a l t e r n a t i v e_permanent_models>>=
par (mfrow=c (1 , 1 ) )
rmseI=l i s t ( )
rmseI $ nu l l <− sd ( t e s t $ I )
maeI <− l i s t ( )
maeI$ nu l l <− mean( abs ( t e s t $ I ) )
r e qu i r e (mgcv)

reg_o r i g i n a l I <− gam( I ~ I (XV∗ sigma )−1, data=t r a i n )
summary( reg_o r i g i n a l I )
predI_o r i g i n a l <− p r ed i c t ( reg_o r i g i n a l I , newdata=t e s t )
rmseI $ o r i g i n a l <− sd ( t e s t $ I−predI_o r i g i n a l , na . rm=TRUE)/ rmseI $
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nu l l
maeI$ o r i g i n a l <− mean( abs ( t e s t $ I−predI_o r i g i n a l ) , na . rm=TRUE)/

maeI$ nu l l

reg_o r i g i n a l_smooth <− gam( I ( I ) ~ s ( I (XV∗ sigma ) )−1, data=tra in ,
fami ly = gauss ian ( l i n k = i d en t i t y ) )

summary( reg_o r i g i n a l_smooth )
p l o t ( reg_o r i g i n a l_smooth )
predI_o r i g i n a l_smooth <− p r ed i c t ( reg_o r i g i n a l_smooth , newdata=

t e s t )
rmseI $ o r i g i n a l_smooth <− sd ( t e s t $ I−predI_o r i g i n a l_smooth , na . rm=

TRUE)/ rmseI $ nu l l
maeI$ o r i g i n a l_smooth <− mean( abs ( t e s t $ I−predI_o r i g i n a l_smooth ) ,

na . rm=TRUE)/maeI$ nu l l

reg_gam1 <− gam( I ~ s (X,V, tau , sigma )−1, data=tra in , fami ly =
gauss ian ( l i n k = i d en t i t y ) )

summary( reg_gam1)
predI_gam1 <− p r ed i c t ( reg_gam1 , newdata=t e s t )
rmseI $gam1 <− sd ( t e s t $ I−predI_gam1 , na . rm=TRUE)/ rmseI $ nu l l
maeI$gam1 <− mean( abs ( t e s t $ I−predI_gam1) , na . rm=TRUE)/maeI$ nu l l

@

<<permanent−c ros s−va l i da t i on>>=
# do a 10− f o l d c ros s v a l i d a t i o n
b <− nrow ( r e s u l t a t e r )
r e s u l t a t e r_cv <− r e s u l t a t e r [ sample ( 1 : b , b) , ]
pred_c r o s s v a l i d <− c ( ) ; c o e f f_cv <− c ( )
f o r ( i in 1 : ( b/10) ) {

ind_t e s t c v <− (10∗ ( i −1)+1) : (10∗ ( i −1)+10)
t r a i n_cv <− r e s u l t a t e r_cv[− ind_tes tcv , ]
t e s t_cv <− r e s u l t a t e r_cv [ ind_tes tcv , ]
reg <− gam( I ~ I (XV∗ sigma )−1, data=t r a i n_cv )
predI_cv <− p r ed i c t ( reg , newdata=t e s t_cv )
pred_c r o s s v a l i d [ i ] <− mean( abs ( predI_cv−t e s t_cv$ I ) )
c o e f f_cv [ i ] <− reg $ c o e f f i c i e n t s

}

p l o t ( pred_c r o s s v a l i d /mean( abs ( r e s u l t a t e r_cv$ I ) ) )
p l o t ( c o e f f_cv )
mean( pred_c r o s s v a l i d ) /mean( abs ( r e s u l t a t e r_cv$ I ) ) #p r e d i c t i o n

power
mean( c o e f f_cv ) # p r e d i c t e d cv−c o e f f
sd ( c o e f f_cv )

I_cv <− l i s t ( c o e f f = c o e f f_cv ,
MAE = pred_c r o s s v a l i d /mean( abs ( r e s u l t a t e r

_cv$ I ) ) )

@

<<r e s u l t s= ' a s i s '>>=
l i b r a r y ( " x tab l e " )
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xtab l e ( t ( as . data . frame (maeI ) ) , d i g i t s =3,
capt ion = " var i ous mean abso lu t e e r r o r s f o r p r ed i c t i n g

permanent impact " )
@

\ subsubsec t i on {Ana lys i s o f temporary impact}

<<temporary_impact_ana ly s i s>>=
rmseJ =l i s t ( )
rmseJ$ nu l l = sd ( t e s t $J−t e s t $ I /2)
maeJ <− l i s t ( )
maeJ$ nu l l <− mean( abs ( t e s t $J−t e s t $ I /2) )

reg_o r i g i n a l J <− gam( I (J−I /2) ~ h_dat−1,data=t r a i n )
summary( reg_o r i g i n a l J )
predJ_o r i g i n a l <− p r ed i c t ( reg_o r i g i n a l J , newdata=t e s t )
rmseJ$ o r i g i n a l <− sd ( t e s t $J−t e s t $ I /2 − predJ_o r i g i n a l ) /rmseJ$

nu l l
maeJ$ o r i g i n a l <− mean( abs ( t e s t $J−t e s t $ I/2−predJ_o r i g i n a l ) ) /

maeJ$ nu l l

reg_o r i g i n a l_smooth <− gam( I (J−I /2) ~ s (XVT) , data=t r a i n )
summary( reg_o r i g i n a l_smooth )
p l o t ( reg_o r i g i n a l_smooth , main = "Temporary impact as

Almgren05 but smoothed XVT" )
predJ_o r i g i n a l_smooth <− p r ed i c t ( reg_o r i g i n a l_smooth , newdata=

t e s t )
rmseJ$ o r i g i n a l_smooth <− sd ( t e s t $J−t e s t $ I /2 − predJ_o r i g i n a l_

smooth ) /rmseJ$ nu l l
maeJ$ o r i g i n a l_smooth <− mean( abs ( t e s t $J−t e s t $ I/2−predJ_

o r i g i n a l_smooth ) ) / maeJ$ nu l l

reg_gam1 <− gam( I (J−I /2) ~ s ( I (X/V) , sigma , tau , bs=" tp " )−1,data=
t r a i n )

summary( reg_gam1)
predJ_gam1 <− p r ed i c t ( reg_gam1 , newdata=t e s t )
rmseJ$gam1 <− sd ( t e s t $J−t e s t $ I /2 − predJ_gam1) /rmseJ$ nu l l
maeJ$gam1 <− mean( abs ( t e s t $J−t e s t $ I/2−predJ_gam1) ) / maeJ$ nu l l

p l o t ( reg_o r i g i n a l_smooth , xlim=c ( − . 5 , . 5 ) , y lab = " Teporary Impact
" , x lab=" Smoothed XVT va r i ab l e " )

@

<<plo t 4dim smooth model>>=
# Plot example p r e d i c t i o n : .

gam_a l l <− gam( I (J−I /2) ~ s (X,V, sigma , tau , bs=" tp " ) , data=
r e s u l t a t e r )

#gam_a l l <− gam( I ( ( J−I /2∗ s i gn (−X) ) ) ~ s ( abs (X) ,V, sigma , tau , bs
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="tp " ) , data=r e s u l t a t e r )

xr = quan t i l e ( r e s u l t a t e r $X, probs=c ( 0 . 0 5 , 0 . 9 5 ) )

TAU = c ( 0 . 3 , 0 . 5 , 0 . 7 , 1 )
p l o t (0 , 0 , xl im=xr/mean( r e s u l t a t e r $V) , ylim=c ( − . 003 , .003) , type="n" ,

xlab = " Pos i t i on S i z e as percent o f da i l y traded volume " ,
ylab = "Temporary Impact " )

l egend ( " t op r i gh t " , l egend=paste0 ( " tau " ,TAU) , lwd=2, c o l=rainbow (4)
)

f o r ( i in seq_along (TAU) ) {
example = data . frame (X = seq(−5e6 , 5 e6 , l ength . out=50) ,

sigma
=0.01 ,

V

=

4000000 ,

tau

=

TAU
[
i
] )

temp_impacts = pr ed i c t (gam_a l l , newdata=example )
l i n e s ( example$X/example$V, temp_impacts , type = " l " , c o l =

rainbow (4) [ i ] )
}
@

<<r e s u l t s= ' a s i s '>>=
requ i r e ( x tab l e )

x tab l e ( t ( as . data . frame ( rmseJ ) ) , d i g i t s =3,
capt ion = " var i ous root mean squared e r r o r s f o r

p r ed i c t i n g temp . impact " )
@

<<temporary−c ros s−va l i da t i on>>=
# do a 10− f o l d c ros s v a l i d a t i o n
b <− nrow ( r e s u l t a t e r )
r e s u l t a t e r_cv <− r e s u l t a t e r [ sample ( 1 : b , b) , ]
pred_c r o s s v a l i d <− c ( ) ; c o e f f_cv <− c ( )
f o r ( i in 1 : ( b/10) ) {

ind_t e s t c v <− (10∗ ( i −1)+1) : (10∗ ( i −1)+10)
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t r a i n_cv <− r e s u l t a t e r_cv[− ind_tes tcv , ]
t e s t_cv <− r e s u l t a t e r_cv [ ind_tes tcv , ]

#reg <− gam( I (J−I /2) ~ h_dat −1, data=t r a i n_cv )
reg <− gam( I (J−I /2) ~ s (X,V, sigma , tau , bs=" tp " ) , data=t r a i n_cv )
predJ_cv <− p r ed i c t ( reg , newdata=t e s t_cv )
pred_c r o s s v a l i d [ i ] <− mean( abs ( t e s t_cv$J−t e s t_cv$ I/2−predJ_cv )

)
#c o e f f_cv [ i ] <− reg $ c o e f f i c i e n t s

}

J_cv <− l i s t ( c o e f f = c o e f f_cv ,
MAE = pred_c r o s s v a l i d /mean( abs ( r e s u l t a t e r

_cv$J−0.5∗ r e s u l t a t e r_cv$ I ) ) )

p l o t ( pred_c r o s s v a l i d /mean( abs ( r e s u l t a t e r_cv$J−0.5∗ r e s u l t a t e r_cv$
I ) ) )

p l o t ( c o e f f_cv )
mean( pred_c r o s s v a l i d ) /mean( abs ( r e s u l t a t e r_cv$J−0.5∗ r e s u l t a t e r_cv

$ I ) )
mean( c o e f f_cv )
@

<<temp−using−only−J>>=
reg <− gam(J ~ s (X,V, sigma , tau , bs=" tp " )−1,data=t r a i n )

predJ <− p r ed i c t ( reg , newdata=t e s t )

e r r o r s <− abs ( t e s t $J−predJ )#/ t e s t $J
maeJ_gam <− mean( e r r o r s ) / mean( abs ( t e s t $J ) )

summary( reg )
@

<<temporary−using−J−d i r e c t l y >>=
b <− nrow ( r e s u l t a t e r )
r e s u l t a t e r_cv <− r e s u l t a t e r [ sample ( 1 : b , b) , ]
pred_c r o s s v a l i d <− c ( ) ; c o e f f_cv <− c ( )
f o r ( i in 1 : ( b/10) ) {

ind_t e s t c v <− (10∗ ( i −1)+1) : (10∗ ( i −1)+10)
t r a i n_cv <− r e s u l t a t e r_cv[− ind_tes tcv , ]
t e s t_cv <− r e s u l t a t e r_cv [ ind_tes tcv , ]

reg <− gam(J ~ s (X,V, sigma , tau , bs=" tp " ) , data=t r a i n_cv )
predJ_cv <− p r ed i c t ( reg , newdata=t e s t_cv )
pred_c r o s s v a l i d [ i ] <− mean( abs ( t e s t_cv$J−predJ_cv ) )
#c o e f f_cv [ i ] <− reg $ c o e f f i c i e n t s

}

MAE_J_cv = pred_c r o s s v a l i d /mean( abs ( r e s u l t a t e r_cv$J ) )

p l o t (MAE_J_cv )
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mean(MAE_J_cv )

@

\ subsubsec t i on {Example}
Assuming that da i l y v o l a t i l i t y o f 10 pct . and a t rad ing time o f

0 . 2 days , us ing the r e s u l t s found above we can c a l c u l a t e the
expected l i q u i d i t y impacts :

<<echo=TRUE>>=
par (mfrow=c (1 , 1 ) )
gamma <− reg_o r i g i n a l I $ c o e f f
eta <− reg_o r i g i n a l J $ c o e f f
d a i l y v o l = 0.010
trad ingt ime = 0 .2

XV = seq ( −0 . 2 , 0 . 2 , 0 . 05 )

I = gamma∗ da i l y v o l ∗XV
K = eta ∗hfun (XV/ tradingt ime , d a i l y v o l )

J = I/2+K

data . frame (XV, Ibp=I ∗1e4 , Jbp=J∗1 e4 )

p l o t (XV, J∗1e4 , type = " l " , c o l = " red " ,
ylab = " Impact ( bps ) " ,
x lab = " Stock share o f da i l y volume " ,
main = paste ( " L iqu id i t y Impacts f o r " ,parm$ t i c k e r ) ,
sub = " Rea l i zed ( red ) , Permanent ( green ) , Temporary ( grey )

, 10 pct . v o l a t i l i t y "
)

l i n e s (XV, I ∗1e4 , c o l = " green " )
l i n e s (XV,K∗1e4 , c o l = " grey " )
@

An i n t e r s t i n g f e a tu r e o f the c a l i b r a t e d model i s that the
r e a l i z e d expected impact i s l e s s than the permanent impact
f o r t rade s over h a l f o f the da i l y traded volume .

Whether t h i s i s due to a m i s s p e c i f i e d framwork or prob lemat ic
c a l i b r a t i o n s can be d i s cu s s ed .

I t i s at l e a s t a l a r g e ex t r apo l a t i on :
90\% of the t rade s in the datase t ranges from \Sexpr{round (

quan t i l e ( r e s u l t a t e r $XV, 0 . 1 ) ,2 ) } to \Sexpr{round ( quan t i l e (
r e s u l t a t e r $XV, 0 . 9 ) ,2 ) } o f order s i z e s o f da i l y volume .

\ subse c t i on {Conc lus ions }
The ana l y s i s shows s i g n i f i c a n t p o s i t i v e c o e f f i c i e n t s $\ eta $ and

$\gamma$ .
The $R^2$ value i s small , around 1 and 3 pct . , but the l e v e l s

are at the same or h igher l e v e l s than in \ c i t e {almgren05 } .
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However , a l t e r n a t i v e models seems to g ive h igher $R^2$ ' s .

Weakness : the se r e g r e s s i o n models does not account f o r time
v a r i a b i l i t y . Should check by time s e r i e s a n a l y s i s : e . g .
Kalman F i l t e r .

<<save_r e s u l t s >>=
save . image ( paste ( " . . / data/ r e g r e s s i o n_ana l y s i s _" ,parm$ t i ck e r , "_

v4 . Rdata " , sep ="") )
@

\end{document}

Temporary impact regression using all stocks

The following code is used to find a temporary impact coeffcient across all
stocks.
\documentclass { a r t i c l e }

\ begin {document}

<<>>=
## Temporary impact us ing a l l s t o c k data
setwd ( "C: / Users /Os loC lea r i /Dropbox/master1/almgren_ f i l t e r " )
## LOAD AND ORGANIZE INTO a l l r e s u l t s
load ( " . . / data/ r e g r e s s i o n_ana l y s i s_STL_v4 . Rdata " )
r e s u l t a t e r $ s tock <− "STL"
r e s u l t a t e r $gamma <− 1 .07
a l l r e s u l t s <− r e s u l t a t e r
load ( " . . / data/ r e g r e s s i o n_ana l y s i s_YAR_v4 . Rdata " )
r e s u l t a t e r $gamma <− 0 .92
r e s u l t a t e r $ s tock <− "YAR"

a l l r e s u l t s <− rbind ( a l l r e s u l t s , r e s u l t a t e r )
load ( " . . / data/ r e g r e s s i o n_ana l y s i s_SCH_v4 . Rdata " )
r e s u l t a t e r $gamma <− 0 .18
r e s u l t a t e r $ s tock <− "SCH"
a l l r e s u l t s <− rbind ( a l l r e s u l t s , r e s u l t a t e r )

@

<<permanent−impact>>=

a l l r e s u l t s $STL <− c ( a l l r e s u l t s $ s tock == "STL" ) ∗1
a l l r e s u l t s $YAR <− c ( a l l r e s u l t s $ s tock == "YAR" ) ∗1

r eg I <− lm( I ~ I ( sigma∗XV) + STL+YAR−1,data=a l l r e s u l t s )
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summary( r e g I )

@

<<temp−on−a l l >>=
parm$ t r a i n t e s t r a t i o <− 0 .7

random_e f f e c t <− data . frame ( seed=c ( ) , g rad i ent=c ( ) , stddev = c ( ) ,
MAE=c ( ) )

f o r ( k in 1 : 10 ) {
s e t . seed (k )
draw <− r un i f ( nrow ( a l l r e s u l t s ) )
ind_t r a i n <− draw < parm$ t r a i n t e s t r a t i o
ind_t e s t <− draw > parm$ t r a i n t e s t r a t i o

t r a i n <− a l l r e s u l t s [ ind_tra in , ]
t e s t <− a l l r e s u l t s [ ind_tes t , ]

reg_o r i g i n a l I <− lm( I (J−I /2) ~ h_dat−1, data=t r a i n ) #am( I ~ I (
XV∗ sigma ) −1, data=t r a i n )

predI_o r i g i n a l <− p r ed i c t ( reg_o r i g i n a l I , newdata=t e s t )
nu l l <− mean( abs ( t e s t $ I ) )
maeI <− mean( abs ( t e s t $ I−predI_o r i g i n a l ) , na . rm=TRUE)/ nu l l

newl ine <− data . frame ( seed=k , g rad i en t = summary( reg_o r i g i n a l I )
$ c o e f f i c i e n t s [ 1 ] , stddev = summary( reg_o r i g i n a l I ) $
c o e f f i c i e n t s [ 2 ] , MAE = maeI )

random_e f f e c t <− rbind ( random_e f f e c t , newl ine )
}
random_e f f e c t <− data . frame ( random_e f f e c t , row . names=" seed " )

x tab l e ( random_e f f e c t , d i g i t s =3, capt ion = " L iqu id i t y g rad i en t s
with d i f f e r e n t seeds " , l a b e l = " tab l e : seedchanger " )

@

<<temp−a l l >>=
reg_al l temp <− lm( I (J−I /2) ~ h_dat−1, data=a l l r e s u l t s ) #am( I ~

I (XV∗ sigma ) −1, data=t r a i n )
summary( reg_al l temp )

#p l o t ( wi th ( a l l r e s u l t s , J−I /2) / p r e d i c t ( reg ) )

@

<<temporary−part−cv>>=
# Estimate permanent impact
#a l l r e s u l t s $ I <− a l l r e s u l t s $XV∗ a l l r e s u l t s $ sigma∗ a l l r e s u l t s $gamma

# REGRESSION:
r e qu i r e (mgcv)
b <− nrow ( a l l r e s u l t s )
a l l r e s u l t s_cv <− a l l r e s u l t s [ sample ( 1 : b , b) , ]
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pred_c r o s s v a l i d <− c ( ) ; c o e f f_cv <− c ( )
f o r ( i in 1 : ( b/10) ) {

ind_t e s t c v <− (10∗ ( i −1)+1) : (10∗ ( i −1)+10)
t r a i n_cv <− a l l r e s u l t s_cv[− ind_tes tcv , ]
t e s t_cv <− a l l r e s u l t s_cv [ ind_tes tcv , ]

reg <− gam( I (J−I /2) ~ h_dat−1,data=t r a i n_cv )
predJ_cv <− p r ed i c t ( reg , newdata=t e s t_cv )
pred_c r o s s v a l i d [ i ] <− mean( abs ( t e s t_cv$J−t e s t_cv$ I/2−predJ_cv )

)
c o e f f_cv [ i ] <− reg $ c o e f f i c i e n t s

}

J_cv_a l l <− l i s t ( c o e f f = c o e f f_cv ,
MAE = pred_c r o s s v a l i d /mean( abs ( a l l r e s u l t s_cv$J−0.5∗

a l l r e s u l t s_cv$ I ) ) )

p l o t ( pred_c r o s s v a l i d /mean( abs ( a l l r e s u l t s_cv$J−0.5∗ a l l r e s u l t s_cv$
I ) ) )

p l o t ( c o e f f_cv )
mean( pred_c r o s s v a l i d ) /mean( abs ( a l l r e s u l t s_cv$J−0.5∗ a l l r e s u l t s_cv

$ I ) )
eta <− mean( c o e f f_cv )

t i c k e r = c ( "STL" , "YAR" , "SCH" )
e r r o r = c ( )
f o r ( i in 1 : 3 ) {
ind0 <− which ( a l l r e s u l t s $ s tock == t i c k e r [ i ] )
e r r o r [ i ] <− with (

a l l r e s u l t s [ ind0 , ] ,
mean( abs (J−I/2−eta ∗h_dat ) ) / mean( abs (J−I /2) )

)
}

e r r o r_J a l l_cv <− mean( pred_c r o s s v a l i d ) /mean( abs ( a l l r e s u l t s_cv$J
−0.5∗ a l l r e s u l t s_cv$ I ) )

J_cv_a l l $ temperrors <− data . frame ( t i c k e r = t i ck e r , MAE = round (
er ror , 3 ) )

x tab l e ( temperrors , d i g i t s =3)

@

<<save>>=
save ( reg_alltemp , J_cv_a l l , e r r o r_J a l l_cv , f i l e = " . . / data/

temporary_e f f e c t_a l l_data . Rdata " )
@

\end{document}
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.1.4 Temporary filter source code

The code chunk is used to produce the temporary filter in section 3.6.4
\documentclass { a r t i c l e }

\ begin {document}

<<load−needed−data>>=
#d = 1

RES <− l i s t ( )
SUP <− l i s t ( )

# S t a t o i l
load ( ' . . /data/ b i g d i f f_compiled_STL_v4 . Rdata ' )
RES [ [ 1 ] ] <− r e s u l t a t e r [ order ( r e s u l t a t e r $ s ta r tdate , r e s u l t a t e r $

s t a r t s l o t ) , ]
RES [ [ 1 ] ] $ t i c k e r <− "STL"
SUP [ [ 1 ] ] <− supportdata

# S c h i b s t e d
load ( ' . . /data/ b i g d i f f_compiled_SCH_v4 . Rdata ' )
RES [ [ 2 ] ] <− r e s u l t a t e r [ order ( r e s u l t a t e r $ s ta r tdate , r e s u l t a t e r $

s t a r t s l o t ) , ]
# [−which ( r e s u l t a t e r $ s t a r t d a t e == '2014−01−16 ') , ]
SUP [ [ 2 ] ] <− supportdata [−which ( supportdata $ t i c kda t e == '

2014−01−16 ' ) , ]
RES [ [ 2 ] ] $ t i c k e r <− "SCH"

# # Yara
load ( ' . . /data/ b i g d i f f_compiled_YAR_v4 . Rdata ' )
RES [ [ 3 ] ] <− r e s u l t a t e r [ order ( r e s u l t a t e r $ s ta r tdate , r e s u l t a t e r $

s t a r t s l o t ) , ]
SUP [ [ 3 ] ] <− supportdata
RES [ [ 3 ] ] $ t i c k e r <− "YAR"

masterdate <− supportdata $ t i c k
# masterdate <− masterdate0 [−which ( masterdate0 == '2014−01−16 ') ]

RESA <− rbind (RES [ [ 1 ] ] , RES [ [ 2 ] ] , RES [ [ 3 ] ] )

RESA = RESA[ order (RESA$ s t a r t s l o t ) , ]

r e s u l t a t e r <− RESA[ 1 , ]
f o r ( t in 1 :max(RESA$ s t a r t s l o t ) ) {

ind0 <− which (RESA$ s t a r t s l o t == t )

#i f ( l e n g t h ( ind0 ) == 0) #r e s u l t a t e r [ t , ] <− 0
# I f m u l t i p l e o b s e r v a t i o n on same s l o t , choose

the b i g g e s t t rade
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i f ( l ength ( ind0 ) >= 1) {
ind0 <− ind0 [ which .max( abs (RESA$

XVT[ ind0 ] ) ) ]
r e s u l t a t e r [ t , ] <− RESA[ ind0 , ]

}
}

# Remove zero pos
r e s u l t a t e r <− r e s u l t a t e r [−which ( i s . na ( r e s u l t a t e r $XV) ) , ]

d = 1#l e n g t h (RES)
to t <− l ength ( masterdate )
N = tot

#
#r e s u l t a t e r <− RESA

@

<<>>=
L = nrow ( r e s u l t a t e r )
A = l i s t ( )
Q = c ( )
R = c ( )

n = 1
R[ 1 ] = r e s u l t a t e r $ sigma [ 1 ] ∗∗2
Q[ 1 ] = R[ 1 ] /100
A [ [ 1 ] ] <− 0

@

<<>>=
# s t a r t p r e d i c t i n g in s t a t e k=2
xbarmin <− mat . or . vec (L , n)
xbar <− mat . or . vec (L , n)
xbar [ 1 ] <− 0 .1
Pmin <− l i s t ( )
P <− l i s t ( )
P [ [ 1 ] ] <− 0 .04 ∗∗2
K = l i s t ( )

f o r ( k in 2 :L) {
A [ [ k ] ] <− r e s u l t a t e r $h_dat [ k ]

s i g n a l <− r e s u l t a t e r $J [ k ]−0.5∗ r e s u l t a t e r $ I [ k ]
# Time update ( p r e d i c t )
xbarmin [ k ] <− max(0 , xbar [ k−1]) # Add f l o o r at zero
Pmin [ [ k ] ] <− P [ [ k−1] ] + Q[ [ k−1] ]

# Measurement update ( c o r r e c t )

K[ [ k ] ] <− Pmin [ [ k ] ]%∗%t (A [ [ k ] ] ) %∗% 1/ (A [ [ k ] ]%∗%Pmin [ [ k ] ] ∗ t (A [ [
k ] ] ) + R[ k−1])
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xbar [ k ] <− xbarmin [ k ] + K[ [ k ] ] %∗% ( s i gna l− A[ [ k ] ]%∗%xbarmin [ k ] )
P [ [ k ] ] <− ( d iag (n) − K[ [ k ] ]%∗%A[ [ k ] ] ) %∗% Pmin [ [ k ] ]
Q [ [ k ] ] <− Q[ [ k−1] ] #var ( xbar [ 1 : k ] )
R[ k ] <− r e s u l t a t e r $ sigma [ k ] ∗∗2 ∗ r e s u l t a t e r $ tau [ k ]
}

@

<<est imate−MAE−temp>>=

# Predic ton
l = length ( xbarmin )
n u l l s i g n a l s <− abs ( ( r e s u l t a t e r $J−0.5∗ r e s u l t a t e r $ I ) )
MAE_f i l t e r_nu l l <− mean( n u l l s i g n a l s )
mode l s i gna l s <− abs ( xbarmin∗ r e s u l t a t e r $h_dat − ( r e s u l t a t e r $J−0.5

∗ r e s u l t a t e r $ I ) )
MAE_f i l t e r_J <− mode l s i gna l s /MAE_f i l t e r_nu l l

#l i b r a r y ( zoo )

q = round ( seq (1 , l , l ength . out=6) )

t i c k s ha r e = l i s t ( )
posshare <− c ( )
smoothMAE <− c ( )
f o r ( i in 1 : ( l ength (q )−1) ) {
smoothMAE [ i ] <− mean( mode l s i gna l s [ q [ i ] : q [ i +1] ] / mean(

n u l l s i g n a l s [ q [ i ] : q [ i +1 ] ] ) )

t i c k s ha r e [ [ i ] ] <− t ab l e ( r e s u l t a t e r $ t i c k e r [ q [ i ] : q [ i +1 ] ] )
t i c k s ha r e [ [ i ] ] <− t i c k s ha r e [ [ i ] ] /sum( t i c k sha r e [ [ i ] ] )

posshare [ i ] <− mean( abs ( r e s u l t a t e r $XVT[ q [ i ] : q [ i +1 ] ] ) )
}

smoothMAE

mean(smoothMAE)
mean(MAE_f i l t e r_J )

p l o t ( u n l i s t (K) )

@

<<save_to_the s i s >>=

temporary_ f i l t e r <− data . frame (
date = r e s u l t a t e r $ s ta r tdate ,
xbarmin = xbarmin ,
P = un l i s t (P) ,
Q = un l i s t (Q) ,
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MAE = MAE_f i l t e r_J ,
mode l s igna l s ,
n u l l s i g n a l s
)

save ( temporary_f i l t e r , f i l e=" . . /data/ t h e s i s_ f i l t e r . Rdata " )
@

<<plot s−temporary>>=
par (mfrow=c (2 , 1 ) )

p l o t ( r e s u l t a t e r $ s ta r tdate , xbar , type = " l " , yl im = c ( − . 05 ,0 .4 )
,
main = " Estimate o f l i q u i d i t y g rad i ent " ,
x lab = "Date " ,
y lab = " eta es t imate " )

polygon ( c ( r e s u l t a t e r $ s ta r tdate , rev ( r e s u l t a t e r $ s t a r t da t e ) ) , c (
xbar+sq r t ( as . double (P) ) , rev ( xbar−s q r t ( as . double (P) ) ) ) , c o l =
" grey40 " , border = NA)

l i n e s ( r e s u l t a t e r $ s ta r tda te , xbar , type = " l " , main = " Estimate o f
l i q u i d i t y g rad i en t " )

p l o t ( u n l i s t (P) ∗∗ . 5 , type = " l " , main = " Estimate o f c ond i t i o na l
e r r o r covar iance " , yl im = c (0 ,max( u n l i s t (P) ∗∗ . 5 ) ) )

#p l o t ( ( r e s u l t a t e r $ I / u n l i s t (A) ) , type = " o " , main = " Permanent
Impact s i g n a l ( y_t /A_t ) " )

#p l o t ( u n l i s t (K) , type = " l " , main = "Kalman Gain ")
@

\end{document}

.1.5 MSDC surface example

The following code calculates the value of a portfolio given a msdc, and is
used in section 2.

#### VALUE FUNCTION ####
#proceed <− f unc t i on ( pi ,V, tau , sigma ,gamma, eta , S0 , ep = 0) S0∗ p i

∗(1+ep ) − s i gn ( p i ) ∗ sigma ∗(0 .5∗gamma∗ abs ( p i ∗∗2/V) + V∗ tau ∗ e ta ∗
abs ( p i /(V∗ tau ) ) ∗∗(8/5) )

# proceed (2 e6 ,15 e6 , 0 . 5 , 0 . 2 , 1 , 0 . 2 , 1 0 0 , ep=−.05) / (2 e6 ∗100)
#
# P = rep (1 e6 , 3 )
# a = 10e6

# Finds the acerb i −va lue o f a p o r t f o l i o g i ven t h a t p0<a :

#### Functions ####



Appendix 92

# msdc
msdc_f u l l <− f unc t i on ( sv , tau , sigma , gamma, eta , S0 ) S0 + S0∗ s i gn

(−sv ) ∗ sigma ∗ (gamma∗abs ( sv ) + 8/5∗ eta ∗abs ( sv/ tau ) ∗∗(3/5) )
msdc_f u l l_pars <− f unc t i on (x , p a r s i ) msdc_f u l l (x , p a r s i $tau ,

p a r s i $sigma , pa r s i $gamma, pa r s i $ eta , p a r s i $S0 )
# i n v e r s e o f msdc

msdc_inv <− f unc t i on ( output , p a r s i ) {
m <− f unc t i on (x ) msdc_f u l l ( x/ pa r s i $V, pa r s i $tau , p a r s i $sigma ,

pa r s i $gamma, pa r s i $ eta , p a r s i $S0 )−output
tryCatch ( un i root (m, c(−pa r s i $V, pa r s i $V) ) $ root , e r r o r=func t i on (

e ) NA)
}
msdc_inv <− Vecto r i z e (msdc_inv , " output " )

# The proceed
#proceed <− f unc t i on ( pi , par i ) par i $S0∗ p i − s i gn ( p i ) ∗ par i $ sigma

∗(0 .5∗ par i $gamma∗ abs ( p i ∗∗2/ par i $V) + par i $V∗ par i $ tau ∗ par i $
e ta ∗ abs ( p i /( par i $V∗ par i $ tau ) ) ∗∗(8/5) )

proceed <− f unc t i on ( pi , pa r i ) p i ∗ par i $S0∗ (1−0.5∗ par i $gamma∗ par i $
sigma∗ pi / pa r i $V − s i gn ( p i ) ∗ par i $ eta ∗ par i $ sigma∗abs ( p i /( pa r i $
tau∗ par i $V) ) ∗∗(3/5) )

# Given a lambda , f i n d r−v ec t o r ( used as i n t e r n a l f u nc t i on in
o p t i m i z a t i o n )

rootV <− f unc t i on ( lambda , pars , a , p0 = 0) {
proceed_sum = 0
r = c ( )
f o r ( k in seq_along ( pars ) ) {

r [ k ] <− msdc_inv ( pars [ [ k ] ] $ S0/(1+lambda ) , pars [ [ k ] ] )
proceed_sum = proceed_sum + proceed ( r [ k ] , pars [ [ k ] ] )

}

l i s t (
proceed_sum = proceed_sum ,
roo tva l = a−2∗p0−proceed_sum ,
r = r )

}

# The Acerbi va lue f unc t i on :
value <− f unc t i on ( pos , pars , a ) {

# F i r s t f i n d opt imal lambda
f <− Vecto r i z e ( func t i on ( l ) rootV ( l , pars , a ) $ r oo tva l ) # root

f unc t i on to f i n d lambda
# Find max p o s s i b l e lambda :
l i n t = c (0 , suppressWarnings ( optim (0 , f ) $par ) )
lambda <− un i root ( f , l i n t , t o l =.Machine$double . eps ∗ ∗ . 5 ) $ root

# Ca l c u l a t e r−v ec t o r :
i n f o = rootV ( lambda , pars , a ) # Round down to i n t e g e r ?

# Value remaining p o r t f o l i o Mtm:
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remaining_mtmpos <− pos − i n f o $ r
mtmprice <− sapply ( pars , f unc t i on (x ) x$S0 )
ava l <− sum( remaining_mtmpos∗mtmprice ) + i n f o $ proceed_sum
mtm_l i q_va l <− sum( i n f o $ r ∗mtmprice )
mtmval <− sum( pos∗mtmprice )

l i s t ( r = ( i n f o $ r ) ,
lambda = lambda ,
a c e rb i_value = aval ,
mtm_value= mtmval ,
mtm_l i q_va l = mtm_l i q_va l )

}

#### INPUT PARAMETERS ####
# Base i n f o on under l y ing s t o c k s (NB: some parameters must be

equa l on a l l ! )
STLinfo = l i s t (

S0 = 100 ,
gamma = 1 . 1 ,
eta =0.1 ,
V = 2e6 ,
sigma = 0 . 1 ,
tau = 0 . 2 )

YARinfo = l i s t (
S0 = 100 ,
gamma = 0 . 9 ,
eta =0.1 ,
V = 0 .5 e6 ,
sigma = 0 .15 ,
tau = 0 . 2 )

SCHinfo = l i s t (
S0 = 100 ,
gamma = 0 . 2 ,
eta =0.1 ,
V = 1e5 ,
sigma = 0 . 2 ,
tau = 0 . 2 )

pars = l i s t ( STLinfo=STLinfo , YARinfo , SCHinfo )
#### Test o f f u n c t i o n s ####
# Check t h a t we a c t u a l l y g e t the i n v e r s e :
par i = pars $STLinfo
p r i c e s <− seq (99 , 101 , 0 . 1 )
inv <− msdc_inv ( p r i c e s , pa r i )
msdc_f u l l ( inv / par i $V, pa r i $tau , pa r i $sigma , pa r i $gamma, pa r i $ eta ,

pa r i $S0 )
p l o t ( p r i c e s , msdc_inv ( p r i c e s , pars $STLinfo ) , type=" l " )
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# Test whether the d e r i v a t i v e o f the proceed i s m numer ica l l y :
s = par i $V∗ seq ( − . 2 , . 2 , 0 . 0 5 )
m <− msdc_f u l l ( s / pa r i $V, pa r i $tau , pa r i $sigma , pa r i $gamma, pa r i $ eta ,

pa r i $S0 )
proc <− proceed ( p i = s , pa r i )
p rocde r iv <− d i f f ( proc ) / d i f f ( s )
s_num <− s [−1] − d i f f ( s ) /2 # the d e r i v a t i v e i s " b e s t va lued " at

the between p o i n t s in s
p lo t ( s ,m, type = "p" )
l i n e s ( s_num, procde r iv )
ab l i n e (0 , 1 ) ; ab l i n e (100 ,0 )
# OK!

#### va lue p l o t s ####
pars = l i s t ( STLinfo = STLinfo ) #SCHinfo=SCHinfo , YARinfo=YARinfo

, SCHinfo=SCHinfo
a_va l s <− seq (1 e5 , 5 e7 , 5 e6 ) #c (1 e6 ,5 e6 ,7 e6 ,1 e7 ,3 e7 ,5 e7 ,8 e7 ,1 e8 )
pval=c ( ) ; lambda_temp=c ( ) ; r=c ( )

va l_temp <− l i s t ( )
f o r ( i in seq_along ( a_va l s ) ) {

va l_temp [ [ i ] ] <− value ( pos = rep (0 e6 , l ength ( pars ) ) , pars , a =
a_va l s [ i ] )

lambda_temp [ i ] <− va l_temp [ [ i ] ] $ lambda
pval [ i ] <− va l_temp [ [ i ] ] $ a c e rb i_value#/ v a l_temp$mtm_l i q_v a l
r [ i ] <− sum( va l_temp [ [ i ] ] $ r )

}

p l o t ( a_vals , r / pars $STLinfo$V, type = " l " )
l i n e s ( a_vals , a_va l s ∗1/100/ pars $STLinfo$V)

par (mfrow=c (2 , 1 ) )
p l o t ( a_vals , pval , type = " l " , main = " In c r e a s i ng the need f o r

Cash " ,
xlab = "Cash l i q u i d i t y po l i c y " , y lab = " Value o f p o r t f o l i o "

)

r_de r i v <− 100∗ d i f f ( r ) / d i f f ( a_va l s )
a_num <− a_va l s [−1]− d i f f ( a_va l s ) /2
p l o t ( a_num, r_der iv , type = " l " ,

main =" dr/da " ,
sub = " Incrementa l ext ra need o f l i q u i d a t i n g s to ck s g iven

incrementa l i n c r e a s e in cash l i q . p o l i c y " ,
x lab = "Cash l i q u i d i t y po l i c y " ,
y lab = " dr/da [∗100 ] " )

par (mfrow=c (1 , 1 ) )
# Comment : I f needed l i q u i d i t y i s increased by one , how many

ex t ra s t o c k s are needed?
# I t i s not cons tant as your buying / s e l l i n g p r i c e i s g e t t i n g

worse and worse .
# The d e r i v a t i v e shows i t w e l l . You s t a r t wi th a 100/1 r a t i o but

ends up on almost 101/1 r a t i o .
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der iv_pval <− d i f f ( pval ) / d i f f ( a_va l s )
a_va l s_num <− a_va l s [−1] − d i f f ( a_va l s ) /2
p l o t ( a_va l s_num, de r i v_pval , type=" l " ,

x lab = " L iqu id i t y po l i c y " ,
y lab = "Marginal change in p o r t f o l i o va lue " ,
main = "Marginal dec r ea s e in p o r t f o l i o va lue g iven

incrementa l i n c r e a s e in cash l i q . p o l i c y " )

# Comment : When Cash l i q u i d i t y Po l i cy i s increased , what i s the
va lue o f the p o r t f o l i o ?

# Observe : not l i n e a r due to two e f f e c t s :
# 1 − Your s e l l i n g p r i c e i s d e t e r i o r a t i n g
# 2 − More and more s t o c k s goes from be ing ev a l ua t e d

by the mtm p r i c e to the execu t i on p r i c e ( due to
d e f i n i t i o n o f va lue o f p o r t f o l i o )

der iv2_pval <− d i f f ( de r i v_pval ) / d i f f ( a_va l s ) [−1]
p l o t ( r [ − (1 :2) ] , de r iv2_pval , type = " l " , main ="d∗∗2(V) / da∗∗2 :

Second d e r i v a t i v e i s e s s e n t i a l l y ze ro " )
# Comment : Second order i s zero .

#### MONTE CARLO SIMULATION eta , gamma, sigma ####

# Assume a p o r t f o l i o o f one s t o c k wi th mtm−va lue o f 10k
# indexes :
# ( sigma , gamma, e ta )

# S t a t s i s a named ve c to r wi th (S0 , gamma, e ta ) v a l u e s on each
row

ac e rb i_value <− f unc t i on ( s ta t s , tau=0.2 , pos = 0) {
s tock_temp = l i s t (

S0 = as . double ( s t a t s [ 'S0 ' ] ) ,
gamma = as . double ( s t a t s [ 'gamma ' ] ) ,
e ta = as . double ( s t a t s [ ' eta ' ] ) ,
V = 2e6 ,
sigma = 0 . 1 ,
tau = tau )

va l_temp <− value ( pos = pos , l i s t ( s tock_temp) , a = as . double (
s t a t s [ ' a ' ] ) )

va l_temp$ ac e rb i_value }

N = 5000
A = 2e6 ∗100∗0.1
vo l0 <− c ( 0 . 1 , 0 . 2 , 0 . 2 )
i n i t i a l_va lue s <− c ( 1 0 0 , 1 . 1 , 0 . 1 )
p o r t f o l i o_va lues <− l i s t ( )
l i b r a r y ( "MASS" )

# No l i q u i d i t y model (mtm−va lue )
cor0 <− diag (3 )
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cov0 <− outer ( vol0 , vo l0 ) ∗ cor0
r e tu rn s <− mvrnorm(N,mu=rep (0 , l ength ( vo l0 ) ) , Sigma=cov0 )
s t a t eva r <− t ( i n i t i a l_va lue s ∗ t (1+ re tu rn s ) )
R <− data . frame ( s tatevar , a=A)
colnames (R) <− c ( " S0 " , "gamma" , " eta " , " a " )
p o r t f o l i o_va lues $ no l i q <− R$S0 ∗ (0) # S e l l w i thou t l i q u i d i t y msdc

# With cons tant l i q u i d i t y parameters
vo l_const <− c ( 0 . 1 , 0 , 0 )
cor0 <− diag (3 )
cov0 <− outer ( vo l_const , vo l_const ) ∗ cor0
r e tu rn s <− mvrnorm(N,mu=rep (0 , l ength ( vo l_const ) ) , Sigma=cov0 )
s t a t eva r <− t ( i n i t i a l_va lue s ∗ t (1+ re tu rn s ) )
R <− data . frame ( s tatevar , a=A)
colnames (R) <− c ( " S0 " , "gamma" , " eta " , " a " )

va l <− apply (R, 1 , a c e rb i_value )
p o r t f o l i o_va lues $ no l i q v o l <− va l

# With zero c o r r e l a t i o n
cor0 <− diag (3 )
cov0 <− outer ( vol0 , vo l0 ) ∗ cor0
r e tu rn s <− mvrnorm(N,mu=rep (0 , l ength ( vo l0 ) ) , Sigma=cov0 )
s t a t eva r <− t ( i n i t i a l_va lue s ∗ t (1+ re tu rn s ) )
R <− data . frame ( s tatevar , a=A)
colnames (R) <− c ( " S0 " , "gamma" , " eta " , " a " )
va l <− apply (R, 1 , a c e rb i_value )
p o r t f o l i o_va lues $ z e roco r <− va l

# With p o s i t i v e c o r r e l a t i o n
# l i b r a r y ( "MASS")
# cor0 <− mat . or . vec (3 ,3) +.3 + diag (3) ∗(1 −0.3)
# cov0 <− outer ( vo l0 , vo l 0 ) ∗ cor0
# re turns <− mvrnorm(N,mu=rep (0 , l e n g t h ( vo l 0 ) ) , Sigma=cov0 )
# s t a t e v a r <− t ( i n i t i a l_v a l u e s ∗ t (1+ re turns ) )
# R <− data . frame ( s t a t e va r , a=A)
# colnames (R) <− c ( " S0 " , "gamma" , " e ta " , " a " )
# v a l <− app ly (R,1 , a c e r b i_va lue )
# p o r t f o l i o_v a l u e s $ poscor <− v a l

# With n e g a t i v e cor
l i b r a r y ( "MASS" )
a = c (1 , − .5 , − .5)
b = c ( − . 5 , 1 , . 5 )
c = c ( − . 5 , . 5 , 1 )
cor0 <− rbind (a , b , c )
cov0 <− outer ( vol0 , vo l0 ) ∗ cor0
r e tu rn s <− mvrnorm(N,mu=rep (0 , l ength ( vo l0 ) ) , Sigma=cov0 )
s t a t eva r <− t ( i n i t i a l_va lue s ∗ t (1+ re tu rn s ) )
R <− data . frame ( s tatevar , a=A)
colnames (R) <− c ( " S0 " , "gamma" , " eta " , " a " )
va l <− apply (R, 1 , a c e rb i_value )
p o r t f o l i o_va lues $ negcor <− va l
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ES <− f unc t i on (x , q=0.05) mean(x [ which (x<=quan t i l e (x , q ) ) ] )
exp <− round ( sapply ( p o r t f o l i o_values ,mean) /A, 3 )
d i s t r_s t a t s <− data . frame (
Expected_value = exp
, Stddev = round ( sapply ( p o r t f o l i o_values , sd ) /A, 3 )
, VaR95 = exp−round ( sapply ( p o r t f o l i o_values , f unc t i on (x ) quan t i l e

(x , 0 . 0 5 ) ) /A, 3 )
,CVar95 = exp−round ( sapply ( p o r t f o l i o_values ,ES) /A, 3 )
)

rownames ( d i s t r_s t a t s ) <− paste0 ( "Model " , c ( 1 , 2 , 3 , 4 ) )
d i s t r_s t a t s
l i b r a r y ( xtab l e )
x tab l e ( d i s t r_s ta t s , d i g i t s =3)

par (mfrow=c (2 , 3 ) )
sapply ( p o r t f o l i o_values , qqnorm)
par (mfrow=c (1 , 1 ) )

l i n e s ( dens i ty ( p o r t f o l i o_va lues $ no l i q ) , xl im = c (−0.5 e6 , 1 . 4 e4 ) )
l i n e s ( dens i ty ( p o r t f o l i o_va lues $ no l i q v o l ) )
l i n e s ( dens i ty ( p o r t f o l i o_va lues $ z e ro co r ) )
p l o t ( dens i ty ( p o r t f o l i o_va lues $ negcor ) )

# Comments :
# The mark−to−market model , wi th a cons tant msdc ( x )=S0 , g i v e s

the p r e d i c t e d mean(V) = 10k
# When ex tend ing to a cons tant msdc−model , the mean va lue

decrease s .
# The th r e e 3− f a c t o r models ( zerocor , poscor and negcor ) . . .
# When s e l l i n g s tock , a n e g a t i v e c o r r e l a t i o n between s t o c k and

l i q u i d i t y g r a d i e n t s i s the worst e f f e c t : seen in f i g u r e s .
# zero cor or sma l l p o s i t i v e cor does not seem to have a b i g

e f f e c t .

#### P o r t f o l i o va lue as func t i on o f execu t i on time ####

taus <− c ( 0 . 0 5 , 0 . 1 , 0 . 1 5 , 0 . 2 , 0 . 4 , 0 . 6 , 1 , 1 . 5 , 2 )
#taus <− c ( 0 . 0 1 , 0 . 1 , 0 . 4 , 0 . 6 , 1 , 2 )

#taus <− c ( 0 . 0 5 , 0 . 5 , 0 . 8 , 1 , 2 )
N = 1000
A = 2e6 ∗100∗0.1
vo l0 <− c ( 0 . 0 3 , 0 . 3 , 0 . 3 )
i n i t i a l_va lue s <− c ( 1 0 0 , 1 . 1 , 0 . 1 )

a = c (1 , − .5 , − .5)
b = c ( − . 5 , 1 , . 5 )
c = c ( − . 5 , . 5 , 1 )
cor0 <− rbind (a , b , c )
cov0 <− outer ( vol0 , vo l0 ) ∗ cor0
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p o r t f o l i o_value_tau <− mat . or . vec ( nr=N, nc=length ( taus ) )
r e tu rn s <− mvrnorm(N,mu=rep (0 , l ength ( vo l0 ) ) , Sigma=cov0 )

f o r ( i in seq_along ( taus ) ) {
s t a t eva r <− t ( i n i t i a l_va lue s ∗ t (1+ re tu rn s ∗ s q r t ( taus [ i ] ) ) )
s t a t eva r [ which ( s t a t eva r <0) ] <− 0 .01
R <− data . frame ( s tatevar , a=A)
colnames (R) <− c ( " S0 " , "gamma" , " eta " , " a " )

p o r t f o l i o_value_tau [ , i ] <− apply (R, 1 , f unc t i on ( r ) a c e rb i_value ( r
, tau=taus [ i ] ) )

}

# probs <− seq ( 0 . 0 1 , 0 . 9 9 , 0 . 0 1 )
# H <− app ly ( p o r t f o l i o_va lue_tau ,2 , f unc t i on ( x ) q u a n t i l e ( x , prob=

probs ) )
# matp lo t ( t (H) /A∗100 , type = " l " )
# contour (H/A∗100)
# l i b r a r y ( r g l )
# persp ( y = taus , x=probs ,H/A∗100 , t h e t a =−45,
# z l a b = " P o r t f o l i o va lue [ pc t ] " ,
# x l a b = " Quant i l e " ,
# y l a b = " Execut ion time " ,
# main = " Empir ica l CDFs o f p o r t f o l i o va lue f o r a l l

e xecu t i on t imes " , t i c k t y p e =" d e t a i l e d " , shade=TRUE
# )
#

# d i s t r_s t a t s_tau <− data . frame (
# expec ted_va lue=app ly ( p o r t f o l i o_va lue_tau ,2 , mean)
# , var05 = app ly ( p o r t f o l i o_va lue_tau ,2 , f unc t i o n ( x ) q u a n t i l e ( x

, 0 . 1 ) )
# , var01 = app ly ( p o r t f o l i o_va lue_tau ,2 , f unc t i o n ( x ) q u a n t i l e ( x

, 0 . 0 1 ) )
# , var99 = app ly ( p o r t f o l i o_va lue_tau ,2 , f unc t i o n ( x ) q u a n t i l e ( x

, 0 . 9 9 ) )
# , var95 = app ly ( p o r t f o l i o_va lue_tau ,2 , f unc t i o n ( x ) q u a n t i l e ( x

, 0 . 9 0 ) )
# )
# p l o t ( taus , d i s t r_s t a t s_tau $ expec ted_va lue /A∗100 , type = " l " , y l im

=range ( d i s t r_s t a t s_tau /A∗100) )
# polygon ( c ( taus , rev ( taus ) ) ,100/A∗c ( d i s t r_s t a t s_tau $var01 , rev (

d i s t r_s t a t s_tau $ var99 ) ) , c o l ="grey80 " , border=FALSE)
# polygon ( c ( taus , rev ( taus ) ) ,100/A∗c ( d i s t r_s t a t s_tau $var05 , rev (

d i s t r_s t a t s_tau $ var95 ) ) , c o l ="grey70 " , border=FALSE)
# l i n e s ( taus ,100/A∗ d i s t r_s t a t s_tau $ expec ted_value , c o l = " b l u e " )

save . image ( f i l e=" . . / data/msdc_su r f a c e_example_computation . Rdata "
)


