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Preface

Introduction

Rational curves is a central topic in algebraic geometry which has been
extensively studied. These curves are very simple in many aspects, yet they
turn out to be powerful tools used to answer many questions in algebraic
geometry. For instance in the study of higher dimensional varieties, one is
especially interested in free and very free rational curves, as these help us
answer questions of both geometrical and numerical nature. As an example
of this, consider a smooth projective variety X over a field k = k̄. It is
known that if X has a free rational curve, then H0(X,K⊗mX ) vanishes for all
positive integers m, moreover, there will also pass a rational curve through
a general point of X.

Any smooth Fano variety over an algebraically closed field of charac-
teristic zero contains a very free rational curve. In positive characteristic
however, this is still an open question. This inspires us to study rational
curves on Fano varieties over fields of positive characteristic. Furthermore on
a Fano variety in positive characteristic over an algebraically closed field k,
one can construct a rational curve of (−KX)-degree at most n+ 1 through
any point. This construction uses the Frobenius morphism. Mori proved
that one can do this in characteristic zero as well, by passing from the char-
acteristic p case. Moreover, one does not know of any proofs of this fact that
do not reduce to positive characteristic, which further motivates the study
of rational curves in characteristic p.

In this thesis we will first introduce the relevant background material
regarding higher dimensional algebraic geometry. Then we will study the
theory of free and very free rational curves on Fermat hypersurfaces in pos-
itive characteristic. The Fermat hypersurfaces that we shall consider are all
Fano varieties. We shall try to work over non (algebraically) closed fields
whenever this is possible.
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A description of each chapter

Chapter 1

We define uniruled and rationally connected varieties, and state some results
concerning such varieties to motivate the study of them.

Chapter 2

This is an interlude from higher dimensional algebraic geometry. Here we
introduce the concept of an ample vector bundle, and establish some theory
related to this topic, which will be used throughout this thesis. Everything
in this chapter is well known, but we mostly give our own proofs of the
results in this chapter.

Chapter 3

The concepts of free and very free rational curves are introduced. We es-
tablish some properties of such rational curves, and relate this to uniruled
and rationally connected varieties. From this point on, we shall be very
conscious of the field we are working over, and always try to have as few
constraints on the field as possible. Our main reference to this chapter is
chapter four in [Deb01], however we have deviated from this text at a few
points in order to develop some of the theory over non closed fields 1.

Chapter 4

The Fermat hypersurface is introduced, we prove when it is Fano, and we
discuss its moduli space of rational curves of a given degree.

Chapter 5

We here present Mingmin Shen’s article “Rational curves on Fermat hyper-
surfaces”, elaborate on the proofs in this article, and we do not make the
assumption that we are working over an algebraically closed field.

1Some time after writing this chapter, the author of this thesis admittedly found some
lecture notes by Debarre which also relax the conditions on the base field. Our exposition
is however at many points more detailed than the aforementioned notes, hence we shall
leave this chapter as it is.
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Chapter 6

The paper “Free and very free morphisms into a Fermat hypersurface”
[Bri+13], gives among other things, some constraints on the degree of a
free and a very free rational curve on the degree 5 Fermat hypersurface in
P5
F̄2

. This is done by translating the problem to a question in commutative

algebra, regarding the splitting types of two graded free k̄[x0, x1]-modules.
We will to some extent follow their approach, and give many of the same
constraints in Xd,d where d = pr + 1 for any prime number p which is the
characteristic of the field we are working over (which we do not assume to be
algebraically closed). We finish this chapter by giving a very concrete crite-
rion on the coefficients of the homogeneous polynomials defining a rational
curve of degree 2pr + 1 on Xd,d for this rational curve to be very free.

Chapter 7

In this last chapter we introduce some ideas, and discuss wether following
them up will be fruitfull or not.

Preliminaries and Conventions

Preliminaries

We assume that the reader has some familiarity with basic algebraic geom-
etry. It is hard to explain exactly what we mean by this, but roughly the
reader should be able to read most pages of one of the three texts: [Vak13],
[Liu02] , or [Har77].

We will try to refer to the three texts mentioned above, when we are
using relatively advanced theory from either of them.

Basic category theory will be used from time to time, everything the
reader needs to know about this is covered in Chapter 1 in [Vak13].

Conventions

The texts we refer to all have different conventions regarding what is meant
by a variety. For us a variety shall be a separated integral scheme over a
field k. Whenever a scheme satisfies these conditions, it will qualify for a
variety in [Deb01], [Vak13] and [Liu02].

If we only write “subscheme”, we mean a closed subscheme. The follow-
ing definition is essential throughout this entire thesis.
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Definition 0.0.1. Let X be a k-scheme. A rational curve on X is a non-
constant k-morphism f : P1

k → X. If X is a subscheme of Pnk , a rational
curve on X is determined by n+1 homogeneous polynomials of equal degree
e with coefficients in k, in this case we say that the degree of the rational
curve is e.

Notation

We denote the category of schemes by Sch and the category of S-schemes
by Sch/S (the slice category of Sch over S).

The notation Sch/S(X,Y ) denotes the set of S-morphisms from the
scheme X to Y , and we will drop the /S whenever S is Spec k.

The convention above is only used to avoid confusion as we will also
be considering a functor called HomS(X,Y ) and its moduli space (just as
above we will also here drop the S sub index whenever S = Spec k). In
order to avoid any potential confusion caused from having three different
objects all with the same name, we choose to call the scheme that repre-
sents HomS(X,Y ), MorS(X,Y ) , and we use relatively standard categorical
notation for the sets of morphisms in the category of schemes. On the other
hand we will follow the literature and still use Hom(F ,G) for the set of
morphisms between two sheaves F and G.

Both H0(X,F) and F(X) denote the set of global sections of the sheaf
F .

Acknowledgements

First of all I want to thank my supervisor Ragni Piene, who has shown a
keen interest in this project, since the very day I visited her office and asked
her if she would be my supervisor. The guidance and inspiration she has
given me, has been invaluable.

I would also like to thank Paul Arne Østvær, who was given the nearly
impossible task of teaching us scheme theory in only two months. I believe
it is fair to say that he was the perfect man for the job.

The fantastic coffee provided by Nikolai B. Hansen has proven to yield
moments of great social and academic value. For this I thank him.

Bernt Ivar Nødland inspired me to learn as much as possible during our
days as freshmen. I want to thank him for this and for being a good friend.

A special mention goes to the good people with whom I share a read-
ing room, moreover I thank the entire Department of Mathematics at the
University of Oslo for making this a pleasant place to study at.

4



Last but not least a massive thank you goes out to Martin Helsø, who
applied his cunning and incredible diplomatic skills to provide a safe passage
through the land of LATEX. Moreover when the LATEX authorities broke
their promise and sent the evil compiler minions to attack us, Martin single
handedly dodged all their filthy strikes and brought us to safety.

5



Contents

1 Motivation Part 1 8

2 Interlude 12

3 Motivation Part 2 17

3.1 A moduli problem . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Free and very free rational curves . . . . . . . . . . . . . . . . 21

3.2.1 Important definitions and basic facts . . . . . . . . . . 21

3.2.2 Connections to uniruled and rationally connected va-
rieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Lifting of free rational curves to the algebraic closure . 29

3.2.4 Fano varieties and rationally connectedness . . . . . . 31

4 The Fermat hypersurface 33

4.0.5 The space of degree e rational curves on the Fermat
hypersurface . . . . . . . . . . . . . . . . . . . . . . . 34

5 Proofs in Shen’s article 37

5.0.6 Introduction . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 What we are dealing with . . . . . . . . . . . . . . . . . . . . 37

5.2 A helpful diagram and a useful computation . . . . . . . . . . 37

5.3 The proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Theorem 1.7 and Corollary 1.8 in [She12] . . . . . . . . . . . 40

5.5 Proposition 1.10 in [She12] . . . . . . . . . . . . . . . . . . . 42

5.6 Lemma 1.5 in [She12] . . . . . . . . . . . . . . . . . . . . . . 43

5.6.1 An alternative proof . . . . . . . . . . . . . . . . . . . 43

5.7 Proposition 1.6 in [She12] . . . . . . . . . . . . . . . . . . . . 44

6



6 Further constraints on the degree of a very free rational
curve on the Fermat hypersurface obtained through alge-
braic methods 47
6.1 Passing to commutative algebra . . . . . . . . . . . . . . . . . 48
6.2 Relating the bases . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Computing the pullback along the rational normal curve . . . 51
6.4 A lower bound on the degree of a rational free curve . . . . . 52
6.5 A criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Ideas, observations and after thoughts 57
7.1 Problems related to finding a very free rational curve . . . . . 57
7.2 Other hypersurfaces with partial derivatives that are powers

of linear forms . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7



Chapter 1

Motivation part 1: Higher
dimensional analogues of
rational curves

In this chapter we will motivate and introduce uniruled and rationally con-
nected varieties. In these two motivational parts, we shall mainly base our-
selves on two texts. The first being the article Rational curves on varities by
Carolina Araujo and János Kollár, [AK03]. The second text we shall base
ourselves on is the book Higher-dimensional Algebraic Geometry [Deb01],
by Olivier Debarre, which shall also be a valuable reference in other parts
of this thesis.

It is well established that the rational curves are in many aspects the
simplest algebraic curves. From [Liu02, ch. 7, sec. 4, Prop.4.1] we have a
numerical criterion which classifies rational curves:

Proposition 1.0.2. Let X be a geometrically integral projective curve over
a field k, and assume that X(k) 6= ∅. Then we have that X ∼= P1

k if and only
if H1(X,OX) = 0.

In dimension two, rational surfaces over algebraically closed fields satisfy
a similar criterion:

Theorem 1.0.3 ([Kol96, Ch. 3, Sec. 2, Thm. 2.4]). (Castelnuovo-Zariski
Rationality Criterion) Let X be a smooth projective surface over an alge-
braically closed field k. Then X is rational if and only if

H1(OX) = H0(OX(2KX)) = 0.
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One might hope that rationality continues to be intrinsic to varieties
that satisfy H1(X,OX) = 0 or H0(X,O(2KX)) = 0 or both, however al-
ready in dimension three, we find counter examples. For instance we have
that smooth-cubic 3−folds over C share many of the properties of rational
varietes, one of them being H i(X,OX) = H0(X,O(mKX)) = 0 for every
i,m ≥ 0, but these are not rational.

As there are non-rational varieties that share most relevant properties
of rational varieties, we see that rationality is not a good classification
of the simplest algebraic varieties. A possible remedy was introduced in
[KMM92b], where the notion of a rationally connected variety was intro-
duced. The idea behind this definition was that PNk has many rational
curves, thus one might expect that the sufficient and necessary condition for
a variety to behave like PNk is that it contains plenty of rational curves.

In characteristic 0, rationally connected varieties have good analogues
of properties which are enjoyed by rational surfaces, Theorem 1.0.3 being
one of them. Hence in characteristic zero, rationally connected varieties
seem to be the correct higher dimensional analogues of rational curves and
rational surfaces. We will get back to these analogues later on in this chapter,
moreover we shall adress the characteristic p cases in Motivation part 2.

Before we define rationally connected varieties, we define the notion of
a uniruled variety as in [Deb01], which is conjectured to be a weaker notion
than that of rationally connectedness.

Definition 1.0.4. A variety X of dimension n is called uniruled if there
exist a variety Y of dimension n − 1 and a dominant rational map over k,
P1
k × Y 99K X.

It is explained in [Deb01] that if X is an n−dimensional variety over an
uncountable algebraically closed field k, then X is uniruled if and only if
there is a rational curve through every point of X.

We have the following analogue of Theorem 1.0.3 for uniruled varieties.

Proposition 1.0.5. Assume that X is a smooth projective uniruled variety
over an algebraically closed field k of characteristic 0. Then

H0(X,OX(mKX)) = 0

for all positive integers m.

This will be a corollary of the more general statement that H0(X,K⊗mX )
vanishes for any k-variety X that has a free rational curve, which we will
prove in Motivation part 2. The converse of the proposition above is con-
jectured to hold, and it does so in dimension 3 and below.
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Definition 1.0.6. A variety X is called rationally connected if it is proper
and if there exists a variety M and a rational map over k, e : P1

k×M 99K X
such that the rational map

P1
k × P1

k ×M 99K X ×X

(t, t
′
, z) 7→ ((e(t, z), e(t

′
, z))

is dominant.

We also have a more geometric description of rationally connected vari-
eties when the field k is algebraically closed. In that case a general pair of
points on a rationally connected variety can be joined by a rational curve.
We will prove this in Motivation part 2. The converse of the aforementioned
statement is also true when the field is uncountable. Thus we see that ra-
tionally connected Varieties resemble path connected topological spaces in
some sense.

Earlier in this chapter we discussed Castelnuovo’s criterion for smooth
surfaces. We shall now bring forth two other properties of smooth rational
surfaces.

Theorem 1.0.7. (1) (Deformation invariance) Let X → S be a flat fam-
ily of smooth projective surfaces over k and let S be irreducible. If Xo

is rational for some o ∈ S, there is a non-empty open subset U of S,
such that Xs is rational for all s ∈ U .

(2) (Noether’s Theorem) Let k be an algebraically closed field and let S be
a surface. If there is a dominant rational map S 99K P1

k such that the
generic fiber is a rational curve, then S itself is rational.

Proof. For(1): Since Xo is rational, we have that

H1(Xo,OXo) = H0(Xo,OXo(2KXo)) = 0,

by Castelnuovo’s criterion. From The semicontinuity theorem ([Har77, Ch.3,
Sec. 12, Thm. 12.8]), it follows that we can find a non-empty open set U

′

such that H1(Xs,OXs) = 0 for all s ∈ U
′

and we can find a non-empty
open set U

′′
such that H0(Xs,OXs(2KXs)) = 0 for all s ∈ U

′′
. Taking

U = U
′ ∩ U ′′ , we see that H1(Xs,OXs) = H0(Xs,OXs(2KXs)) = 0 for all

s ∈ U , hence Xs is rational for all s ∈ U by Castelnuovo’s criterion.

For (2): It follows from [Băd01, (Noether-Tsen), Ch.11, Thm. 11.3],
that S is birational to P1

k × P1
k, which is again birational to P2

k.
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To strengthen the statement that rationally connected varieties are the
correct higher dimensional analogues of rational curves and rational surfaces,
we now state rationally connected analogues of Castelnuovo’s criterion and
the two aforementioned properties.

Theorem 1.0.8. Assume that X is a smooth projective rationally connected
variety over an algebraically closed field of characteristic zero.

(1) (Castelnuovo’s Criterion) H0(X, (Ωp
X)⊗m) = 0 for all positive integers

m and p. In particular Hm(X,OX) = 0, for all m ≥ 1.

(2) (Deformation invariance)Let π : X → T be a proper smooth morphism,
and assume that T is connected. If f−1(s) is rationally connected for
some s ∈ S, then f−1(s) is rationally connected for every s ∈ S.

(3) (Noether’s Theorem) Let f : Z → Y be any dominant morphism of
complex varieties. If Y and the general fiber of f are rationally con-
nected, then Z is rationally connected.

Proof. (1) will be a corollary of the more general result that if a k-variety
X has a very free rational curve, then H0(X, (Ωp

Xwhich)⊗m) vanishes for
all positive integers m and p, which we shall prove in Motivation part 2.
(2) is Corollary 2.4 of [KMM92b]. The last statement is Corollary 1.3 of
[GHS03].

Just as in the uniruled case, the converse of (1) in the theorem above is
conjectured to be true.

There is also a version of deformation invariance for uniruled varieties
over fields of characteristic zero (see [Kol96, Ch. 4, Cor. 1.10]). However,
the author of this thesis has yet to see a uniruled analogue of Noether’s
Theorem.
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Chapter 2

Interlude to ample locally
free sheaves

In this chapter we shall give some definitions and results about globally
generated and ample vector bundles, mostly on P1

A, where A is a Noetherian
ring. These results are all well known, however it turns out to be hard to
find references which suit our needs, thus we shall give our own proofs of
the results in this chapter.

When we relate the notions of this chapter to rational curves on a variety
later on, we shall only be interested in k-schemes, where k is a field, however
most of the definitions and results in this chapter make sense for Noetherian
rings as well, thus we shall not make the assumption that we are working
over a field yet.

Definition 2.0.9. Let X be a scheme and let F be a sheaf of OX -modules
on X. We say that F is generated by global sections (or globally generated)
if the canonical map:

F(X)⊗OX,x → Fx

is surjective for every point x ∈ X.

This is a standard definition and can be found in both [Har77] and
[Liu02]. We will shortly give a criteria for when a locally free sheaf on P1

k is
generated by global sections. First we give a few lemmas.

Lemma 2.0.10. Let E = ⊕ri=0OP1
A

(ai), be a locally free sheaf of rank r on

P1
A. Then E is generated by global sections if and only if each line bundle
OP1

A
(ai) is generated by global sections.
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Proof. In the name of clean notation we shall assume that the rank r = 2
(the general case is completely analogous, but will require slightly more
confusing notation). As the stalk functor is a left adjoint functor it commutes
with colimits, we thus have (OP1

A
(a1)⊕OP1

A
(a2))x = OP1

A
(a1)x ⊕OP1

A
(a2)x,

where x ∈ P1
A. Our canonical map

(OP1
A

(a1)⊕OP1
A

(a2))(P1
A)⊗OP1

A,x

= (OP1
A

(a1)(P1
A)⊕OP1

A
(a2)(P1

A))⊗OP1
A,x
→ OP1

A
(a1)x ⊕OP1

A
(a2)x

is given by
∑

(bi, ci) ⊗ fi 7→
∑

(fi(bi)x, fi(ci)x). From this we see that the
map is surjective if and only if the projection onto each factor is surjective
and thus the lemma follows.

Lemma 2.0.11. Let L = OP1
A

(a) be a line bundle on P1
A. Then L is gener-

ated by global sections if and only if a ≥ 0.

Proof. This basically follows from the fact OP1
A

(a)(P1
A) = Ba if a ≥ 0 and

OP1
A

(a)(P1
A) = 0 if a < 0, where B = A[x0, x1] with canonical grading. See

for example [Liu02, Ch.5, Lem.1.22] for a proof. Assume first that a < 0
and let x ∈ P1

A correspond to a prime ideal p ∈ Proj(B). Then we have
OP1

A
(a)x = B(a)(p) = { bg | b ∈ Bdeg(g)−|a|} which is not the trivial module.

However OP1
A

(a)(P1
A) = 0 thus we see that OP1

A
(a) is not generated by global

sections when a < 0.

Conversely assume that a ≥ 0 and let x ∈ P1
A correspond to the homo-

geneous prime ideal p ⊂ B = A[xo, x1]. Then we have OP1
A

(a)(P1
A) = Ba.

Moreover we have OP1
A

(a)x = B(a)p = { bg | b ∈ Bdeg(g)+a}. Let b
g ∈ B(a)p.

Then deg(b) = a + deg(g). As any element in Ba+deg(g) can be writ-
ten as

∑
cihi, where the ci ∈ Bdeg(g)and the hi ∈ Ba. We have that∑ ci

g hi ∈ B(p) ⊗ Ba = OP1
A,x
⊗ OP1

A
(a)(P1

A), and this will map to b
g un-

der the canonical map in (2.0.9). This finishes the proof.

Corollary 2.0.12. Let E = ⊕ri=1OP1
A

(ai) be a locally free sheaf of rank r on

P1
A. Then E is globally generated if and only if each ai ≥ 0.

Proof. This follows from the two previous lemmas.

Definition 2.0.13. Let E be a locally free sheaf of rank r on P1
A. If E has

a (unique) splitting E = ⊕ri=1OP1
A

(ai), where a1 ≤ a2 ≤ . . . ≤ ar, then we
say that E has splitting type a1, . . . , an.
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Remark 2.0.14. Recall what is sometimes referred to as Grothendieck’s
theorem. It says that any locally free sheaf E of rank n on P1

k, where k is
a field, can be written as a direct sum of line bundles, in other words we
have that E ∼= ⊕ni=1OP1

k
(ai), where the integers ai are uniquely determined.

See [Vak13, Thm.18.5.6]. Thus on P1
k we always have such a splitting as we

assumed in the previous corollary, and we also have a splitting type.

These results are interesting in their own right, however they will also
help us give a criteria on when a locally free sheaf of rank r on P1

A is ample.

Recall now definition 16.6.1 in [Vak13]:

Definition 2.0.15. We say that an invertible sheaf L on a proper A−scheme
X is ample over A (or relatively ample) if for all finite type quasi-coherent
sheaves F there exists an n0 such that F ⊗L⊗n is globally generated for all
n ≥ n0.

We will now define ampleness of a locally free sheaf as it is done in
[Har66], however instead of requiring the scheme to be of finite type over an
algebraically closed field, we require it to be proper over a Noetherian ring.

Definition 2.0.16. Let X be a scheme proper over a Noetherian ring A,
and let E be a locally free sheaf on X. We say that E is ample if for every
coherent sheaf F , there is an integer n0 > 0, such that for every n ≥ n0, the
sheaf F⊗Sn(E) (where Sn(E) is the n’th symmetric power of E) is generated
by global sections.

The following lemma will be useful, and it will show that the two defi-
nitions coincide for line bundles.

Lemma 2.0.17. The following statements are true.

(1) Let L be a line bundle on X, then Sn(L)) ∼= L⊗n. In particular we
have that definitions 2.0.15 and 2.0.16 coincide for line bundles on a
scheme X proper over a Noetherian ring A.

(2) If E, E ′ are locally free sheaves of ranks r, r′ respectively. Then Sn(E⊕
E ′) =

⊕
p+q=n

Sp(E)⊗ Sq(E ′), where p, q ≥ 0.

(3) If E is a locally free sheaf with rank r, then Sn(E) is also locally free
with rank

(
n+r−1
r−1

)
.
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Proof. We only prove (1) and omit the proof of (2) and (3). We have a
canonical morphism of presheaves Tn(L)pre → Sn(L)pre and this induces
a morphism α : Tn(L) → Sn(L). Let x ∈ X. As Tn(L) and Sn(L) are
quasi-coherent, hence Tn(L)x = Tn(Lx) and similarly Sn(Lx) = Sn(L)x,
because Tn and Sn commute with localisation of modules. It remains to
show that Tn(Lx) = Sn(Lx), as then the stalk functor applied to α will be
an isomorphism, hence also α. We shall again in the name of clean notation
assume that n = 2, the general case is completely analogous, but we will
then have to deal with cumbersome notation. Let f ⊗ g ∈ T 2(Lx), if we
can show that f ⊗ g = g ⊗ f, we will be done. Since Lx is a locally free
OX,x module of rank 1, we have some h ∈ Lx that generates Lx as an OX,x
module. Let f

′
, g
′ ∈ OX,x be such that f

′
h = f and g

′
h = g. We have

f ⊗ g = f
′
h⊗ g′h = g′h⊗ f ′h = g⊗ f. The other statement of part (1) now

easily follows from the first statment and the definitions.

Proposition 2.0.18. Let A be a Noetherian ring. On P1
A a locally free sheaf

E = ⊕OP1
A

(ai) is ample if and only if each ai > 0.

Proof. First assume that ai ≤ 0 for some i, say i = 1. We have E =
OP1

k
(a1)⊕E ′ , where E ′ = ⊕i 6=1OP1

A
(ai). As Sn(E) =

⊕
p+q=n S

p(OP1
A

(a1))⊗
Sq(E ′), this is again equal toOP1

A
(na1)⊕OP1

A
((n−1)a1)⊗S1(E ′)⊕. . .⊕Sn(E ′).

Tensoring this with the coherent sheaf OP1
A

(−1) yields: OP1
A

(na1 − 1) ⊕
OP1

A
((n− 1)a1 − 1)⊗ S1(E ′)⊕ . . .⊕ Sn(E ′)⊗OP1

A
(−1). As a1 ≤ 0, we must

have na1 − 1 < 0 for all n and thus it follows from (2.0.12) that this sheaf
is not generated by global sections.

Now assume that all the ai > 0, let F be any coherent sheaf on P1
A and

let x ∈ P1
A. By [Liu02, Ch.5,Cor.1.28] there exists an integer m ∈ Z and

r ≥ 1 such that F is a quotient sheaf of OP1
A

(m)r (we could also have used

[Har77, Ch.5,cor.5.18]). We have a commutative diagram:

(OP1
A

(m)r ⊗ Sn(E))(P1
A)⊗OP1

A,x
−−−−→ (F ⊗ Sn(E))(P1

A)⊗OP1
A,xy y

(OP1
A

(m)r ⊗ Sn(E))x −−−−→ (F ⊗ Sn(E))x

where the bottom arrow is a surjection. It follows from this that it is enough
to show that OP1

A
(m)r⊗Sn(E) is generated by global sections for all n > n0.

Since this is obvious if m ≥ 0, we may assume m = −l where l is a positive
integer. We will now use induction to prove the following statement: if E is
locally free of rank k, then OP1

A
(m)r⊗Sn(E) is generated by global sections
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whenever n ≥ kl + 1. The proof uses induction on k: For the base case
k = 1 we have that E = OP1

A
(a) where a > 0, thus OP1

A
(m)r ⊗ Sn(E) =

OP1
A

((n − l)a)r which is generated by global sections by (2.0.11). Assume
now that the statement holds true for k− 1 and that E has rank k. We thus
have E = OP1

A
(a1)⊕E ′ where E ′ = ⊕i 6=1OP1

A
(ai) is locally free of rank k− 1.

As we have Sn(OP1
A

(a1)⊕E ′) =
⊕

p+q=n S
p(OP1

A
(a1))⊗Sq(E ′). We see that

OP1
A

(m)r ⊗ Sn(E)

=

r⊕
i=1

OP1
A

(na1 − l)⊕ . . .⊕OP1
A

(la1)⊗ (Sq(E ′)⊗OP1
A

(−l))⊕D

where D = OP1
A

((l− 1)a1)⊗ Sq+1(E ′)⊗OP1
A

(−l)⊕ . . .⊕ Sn(E ′)⊗OP1
A

(−l).
As we have chosen n ≥ kl + 1 it follows from the induction hypothesis that
Sq(E ′) ⊗ OP1

A
(−l) is generated by global sections and thus each linebundle

in this direct sum is twisted positively. We also clearly have that all the
Sp(OP1

A
(a1)) are generated by global sections and thus by (2.0.12) it follows

that
⊕r

i=1OP1
A

(−l) ⊗ Sn(E) is generated by global sections. This finishes
the proof.

We conclude this chapter by giving a lemma which will be useful later
on.

Lemma 2.0.19. Let A 6= 0 be a ring. Then HomP1
A

(OP1
A

(n),OP1
A

(m)) = 0
if and only if n > m.

Proof. It follows from [Vak13, Ch.13.,Ex.13.1.F] (or [Har77, Ch.2.,Ex.5.1])
that Hom(OP1

A
(n),OP1

A
(m)) = OP1

A
(m− n). Thus we have that

HomP1
A

(OP1
A

(n),OP1
A

(m)) = OP1
A

(m− n)(P1
A) = A[x0, x1](m−n),

which is equal to 0 if and only if m− n < 0, where the last equality follows
from [Liu02, Ch.5,Lemma 1.22].
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Chapter 3

Motivation part 2: Free and
very free rational curves

3.1 A moduli problem

One can study rational curves on a variety by studying a certain fine mod-
uli space of a moduli problem, the k-points of this fine moduli space will
correspond to rational curves. In this section we will define the moduli prob-
lem, and discuss some of the properties of the fine moduli space. Moreover
we shall relate this space to uniruled and rationally connected varieties.
Through this we shall justify some of the claims regarding the geometric
notions of uniruled and rationally connected varieties from Motivation part
1.

Proposition 3.1.1. Let e be a positive integer and let k be a field. There
exists an open subscheme More(P1

k,PNk ) of PNe+N+e
k , such that there is a

bijection between

Sch(Spec(k),More(P1
k,PNk ))

and

{k-morphisms of degree e, f : P1
k → PNk }

Proof. Giving a morphism f : P1
k → PNk is the same as giving N + 1 ho-

mogeneous polynomials in k[x0, x1] of equal degree e without nonconstant
common factors (see [Vak13, Ch.16, sec.4] or [Har77, Ch.2,sec.7,Thm.7.1]).
Let these N + 1 homogeneous polynomials be denoted by F0, . . . , FN . We
claim that the Fi have no nonconstant common factor in k[x0, x1] if and
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only if they have no nontrivial zero in k̄, the algebraic closure of k. In-
deed, if the Fi have a common nontrivial zero in the algebraic closure
of k, say (a, b) ∈ Z+(Fi)i, where we assume that a 6= 0, which means
that (1, b/a) is also a common nontrivial zero of the Fi. From this it fol-
lows that the polynomials Fi(1, y) ∈ k̄[y] have a common nonconstant fac-
tor g(y), thus the Fi have xe0g(x1/x0) as a common nonconstant factor.
Conversely if the Fi have a common nonconstant factor g(x0, x1), then
as the polynomial g(1, y) has a zero in k̄, it follows that the Fi have a
common nontrivial zero in k̄. By the Nullstellensatz we have that the Fi
have no common nontrivial zero in k̄ if and only if the ideal generated by
(F0, . . . , FN ) in k̄[x0, x1] contains some power of the irrelevant ideal (x0, x1).
This in turn can equivalently be phrased in terms of linear algebra as fol-
lows: There exists a surjective k-linear map (k̄[x0, x1])N+1

m−e → k̄[x0, x1]m
which is given by (G0, . . . , GN ) 7→

∑N
i=0GiFi. Thus we see that the Fi

have a common nonconstant factor if and only if for every m all m + 1
minors of the matrix to the above map vanish. Since all the minors are
polynomials in the coefficients of the Fi, we can interpret them as poly-
nomial in k[y{0,0}, y{0,1}, . . . , y{0,e}, y{1,0}, . . . , . . . , y{N,e}], and the k-points
not contained in the vanishing of these polynomials will uniquely determine
morphisms P1

k → PNk . Hence the degree e morphisms are parametrized by
a Zariski open subset of PNe+N+e

k . We denote this quasi-projective variety
More(P1

k,PNk ).

If X is a closed subscheme of PNk defined by homogeneous polynomials
(G1, . . . , Gm), then giving a morphism of degree e from P1

k → X is the same
as giving N +1 homogeneous polynomials of equal degree e in k[x0, x1] such
that Gj(F0, . . . , FN ) = 0 for j = 1, . . . , j = m. Using this one can show the
following:

Proposition 3.1.2. Let X be a closed subscheme of PNk . There is a closed
subscheme More(P1

k, X) of More(P1
k,PNk ) such that we have a bijection be-

tween

Sch(Spec(k),Mor(P1
k, X))

and

{k-morphisms f : P1
k → X}

In the next chapter we will write more explicitly what More(P1
k, X) is

when X is a Fermat hypersurface in Pdk. We shall now define our moduli
problem which we mentioned in the introduction to this section.
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Definition 3.1.3. Let X/S and Y/S be S-schemes. HomS(X,Y ) is the
functor HomS(X,Y ) : (Sch/S)op → sets defined by

HomS(X,Y )(T ) = {T -morphisms X ×s T → Y ×S T}

If T ′ → T is a morphism of S-schemes, then

HomS(X,Y )(T )→ HomS(X,Y )(T
′
)

is given as follows: Let g ∈ HomS(X,Y )(T ). The map T ′ → T induces a
map X ×s T ′ → X ×s T , now the composition of the aformentioned map
together with g induces a map h : X ×S T ′ → Y ×S T ′, we let

HomS(X,Y )(T ′ → T )(g) = h.

Under the correct circumstances there is a fine module space. More
precisely we have:

Theorem 3.1.4 ([Kol96, Ch. I, Sec. 1, Thm. 1.10]). Let X/S and Y/S be
projective schemes over S. Assume that X is flat over S. Then HomS(X,Y )
is represented by an open subscheme

MorS(X,Y ) ⊂ Hilb(X ×S Y/S)

One actually has that Homk(P1
k,PNk ) (resp.) Homk(P1

k, X) is represented

by Mor(P1
k,PNk ) =

∐
e≥0

More(P1
k,PNk ) (resp.) Mor(P1

k, X) =
∐
e≥0

More(P1
k, X),

where X is as in Proposition 3.1.2.
If HomS(X,Y ) is represented by a scheme MorS(X,Y ) with natural

isomorphism η : HomS(X,Y )→ hMorS(X,Y ) we follow the litterature and call
the morphism funiv = η−1(idMorS(X,Y )), the universal morphism. It has the
following property: If g : T → MorS(X,Y ) is an element of hMorS(X,Y )(T ),
then η−1(g) = HomS(X,Y )(g)(funiv). Further we let

ev(1) : X ×MorS(X,Y )→ Y

be the morphism pr1 ◦ funiv, and call this morphism the evaluation map.
When we specialize to the case X = P1

k and Y = PNk , and if ((u, v), f) is
a k-point of P1

k ×Mor(P1
k,PNk ), then we have funiv((u, v), f) = (f(u, v), f)

and ev(1)((u, v), f) = f(u, v).
Now let X be a projective variety over a field k and assume that X is

uniruled. Let e : P1
k × Y 99K X be a dominant rational map where we have

dimY = n−1. By possibly shrinking Y we can assume that e is a morphism.
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This induces a morphism e′ : P1
k × Y → X × Y such that prX ◦ e′ = e. Thus

e′ ∈ Homk(P1
k, X)(Y ), hence there is some morphism g : Y → Mor(P1

k, X)
such that e′ = Homk(P1

k, X)(g)(funiv). Thus e factors as

P1
k × Y → P1

k ×Mor(P1
k, X)

ev(1)

→ X

with ev(1) is dominant1. From this we see that when k is algebraically closed,
there is a rational curve through a general point of X.

When X is rationally connected, there is a similar situation. Let

ev(s) : (P1
k)
s ×Mor(P1

k, X)→ Xs

be the morphism induced by ev(1). Let e : (P1
k)

2 ×M 99K X × X, be a
dominant rational map. After possibly shrinking M we may assume that
the dominant map

e : P1
k × P1

k ×M 99K X ×X

is a morphism. By arguments similar to those in the uniruled case this
factors as:

P1
k × P1

k ×M → P1
k × P1

k ×Mor(P1
k, X)

ev(2)

→ X ×X. (3.1.1)

With ev(2) dominant. Thus when the field k is algebraically closed, we
see that when X is projective and rationally connected, then there passes
a rational curve through a general pair of points of X. We also remark
that by using the universal property of fibered products together with the
universal property of representable functors, and the fact that surjectivity
is preserved under base change, one can show that a variety X over k,
is uniruled respectively rationally connected if and only if XK is uniruled
respectively rationally connected for some field extension K of k. We now
state a useful result conserning the tangent space of Mor(X,Y ).

Proposition 3.1.5 ([Deb01, Ch. 2, Sec. 2, Prop. 2.4]). Let X and Y be
varieties, with Y quasi-projective and X projective, and let f : X → Y be a
morphism. One has

TMor(X,Y )[f ]
∼= H0(X,Hom(f∗Ω1

Y ,OX))

In particular when Y is smooth along the image of f ,

TMor(X,Y )[f ]
∼= H0(X, f∗TY ).

1we may infact replace Mor(P1
k, X) with Mord(P1

k, X) for some positive integer d.
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Let X/S and Y/S be schemes, B ⊂ X a subscheme, proper over S and
g : B → Y a morphism. Just as one can study morphisms from X to Y by
studying MorS(X,Y ) one can study morphisms from X to Y that restrict
to g by studying a fine moduli space MorS(X,Y, g). More precisely we have:

Definition 3.1.6. (Notation as above) HomS(X,Y, g) is the functor

Hom(X,Y, g)(T ) =

{
T -morphisms f : X ×S T → Y ×S T
such that f |B×ST = g ×S idT .

}
When X and Y are projective, this functor is represented by a subsceme

MorS(X,Y ; g) of MorS(X,Y ). When X and Y are projective varieties we
have

TMor(X,Y ;g),[f ]
∼= H0(X, f∗TX ⊗ IB).

where IB is the ideal sheaf of B.

3.2 Free and very free rational curves

This section is the corner stone of this chapter. We will here define free and
very free rational curves, and connect these notions to uniruled and ratio-
nally connected varieties. We shall also use the existence of free respectively
very free rational curves on a uniruled respectively rationally connected vari-
ety over an algebraically closed field of characteristic zero, to prove Theorem
1.0.5 respectively Theorem 1.0.8 (1).

3.2.1 Important definitions and basic facts

Definition 3.2.1. Let X be a smooth variety and let f : P1
k → X be a

rational curve on X. We say that f is free (respectively very free) if f∗TX
is globally generated (respectively ample).

Remark 3.2.2. If the variety X in the definition above is of dimension n.
Then f∗TX is a locally free sheaf on P1

k of rank n, hence we have a splitting

f∗TX ∼=
n⊕
i=1

OP1
k
(ai)

for unique integers a1, . . . an. It follows from Corollary 2.0.12 respectively
Proposition 2.0.18 that f is free respectively very free if and only if ai ≥ 0
respectively ai > 0 for all i.
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In light of the remark above we follow [Deb01] and give the following
generalisation of Definition 3.2.1:

Definition 3.2.3. A rational curve f : P1
k → X on a smooth variety X is

r-free if f∗TX ⊗OP1
k
(−r) is globally generated.

Notice that free (respectively very free), coincides with 0-free (respec-
tively 1-free). We also give a numerical criteria for r-freeness, which we shall
use later in this thesis.

Proposition 3.2.4. Suppose X is a smooth projective variety over a field
k. Let f : P1

k → X be a rational curve on X. Then f is r-free if and only if

H1(P1
k, f
∗TX ⊗OP1

k
(−r − 1)) = 0

Proof. We have integers ai such that f∗TX =
⊕dimX

i=1 OP1(ai), then we have
f∗TX ⊗OP1(−r − 1) = OP1(ai − r − 1). Now

h1(P1, f∗TX ⊗OP1(−r − 1)) = h0(P1,ΩP1 ⊗Hom(⊕OP1(ai − r − 1),OP1)

which is again equal to h0(P1,Hom(⊕OP1(ai − r − 1),O(−2))), where we
have used Serre duality in the computations. This number is 0 if and only
if ai − r − 1 > −2 which is the case if and only if ai − r ≥ 0. Since we have
that f∗TX ⊗ OP1(−r) = ⊕OP1(ai − r) it follows from corollary 2.0.12 that
f∗TX ⊗OP1(−r) is globally generated if and only if ai− r ≥ 0. This finishes
the proof.

3.2.2 Connections to uniruled and rationally connected va-
rieties

In this subsection we will prove that a projective variety over a field k that
has a free (respectively very free) rational curve is uniruled (respectively
rationally connected), where the converse holds if the characteristic of the
field k is 0 and the field k is algebraically closed. We will later use this
to prove the Castelnuovo’s criterion analogues that we stated in Motivation
part 1. The literature usually restricts itself to the algebraically closed case
while developing this theory. We shall on the other hand do this over non
closed fields. We will use Propositions 4.8 and 4.9 in [Deb01] which are stated
and proved for varieties over an algebraically closed field in [Deb01], however
if we alter the statements to become statements about k-rational points
rather than arbitrary points, the results will be valid over any field k. We will
shortly be giving our formulations of the aforementioned propositions and
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elaborate on their proofs, however we shall need some facts about smooth
morphisms first.

Recall from Chapter 12 in [Vak13] that a morphism of schemes π : X →
Y is smooth at a point p ∈ X if there is an open neighborhood U of p
such that π|U is smooth. Further we recall that the locus of X where the
morphism π : X → Y is smooth is open (this is [Vak13, Ch. 12, Sec.
6, Ex.12.6.F]). The proof of Proposition 4.8 in [Deb01] uses Proposition
[Har77, Ch.3, Sec. 10, Prop. 10.4] which is formulated for non-singular
varieties over algebraically closed fields. As the author of this thesis could
not find a reference for an analogue of this result for arbitrary fields, we
shall state and prove a version for perfect fields, and a “point version” for
arbitrary fields.

Proposition 3.2.5. Let π : X → Y be a morphism of smooth k-varieties.
Let n = dimX − dimY . Then the following statements are true:

(1) If k is a perfect field (or k(x) is separable over k for any closed point
x ∈ X) and the induced map of Zariski tangent spaces

Tπ,x : TX,x → TY,y ⊗k(y) k(x)

is surjective for every closed point x ∈ X. Then π is a smooth mor-
phism.

(2) Let x ∈ X and y = π(x). If k(x)/k and k(y)/k are separable, and if
Tπ,x is surjective, then π is smooth at x.

Proof. For (1): By [Vak13, Ch. 25, Sec. 2, Thm. 25.2.2] and [Vak13, Ch.24.
Sec.5, Ex. 24.5J] it is enough to prove that π is flat and that ΩX/Y is locally
free of rank n = dimX − dimY . By the open condition of flatness (Thm.
24.5.13 in [Vak13]) and the fact that every point of a k-variety has a closed
point in its closure, it is enough to prove that π is flat at every closed point,
to prove that π is flat.

Let x ∈ X be a closed point of X, and let y = π(x). Since Y and X
are smooth k-varieties, we have that OY,y and OX,x are regular local rings.
Let t1, . . . , tr be a system of parameters of OY,y (see Chapter 11 in [AM69]).
Then as Tπ,x is surjective,the map (my/m

2
y) ⊗k(y) k(x) → (mx/m

2
x) is injec-

tive, hence the images of t1, . . . , tr in OX,x form part of a system of parame-
ters of OX,x. Now since OX,x/(t1, . . . , tr) is flat over OY,y/(t1, . . . , tr) = k(y)
(everything is flat over a field), we can now either apply [Vak13, Ch. 24,
Sec. 6, Thm. 24.6.5] or [Har77, Ch.3, Sec. 10, Lem. 10.3A] together
with descending induction on i to show that OX,x/(t1, . . . , ti) is flat over
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OY,y/(t1, . . . , ti) for every 0 ≤ i ≤ r. In particular OX,x is flat over OY,y.
This proves that π is flat.

By [Vak13, Ch.13, Sec.7, Ex.13.7K], it is enough to prove that the rank
of ΩX/Y at x given by

dimk(x) ΩX/Y |x = dimk(x) ΩX/Y x ⊗OX,x
k(x),

is constant and equal to n for every x ∈ X, in order to prove that ΩX/Y

is a locally free sheaf of rank n. Let p ∈ X be a point in X. By upper
semicontinuity of rank (see [Vak13, Ch.13, Sec. 7, Ex.13.7.J]), we have that
dimk(p) ΩX/Y |p ≤ dimk(q) ΩX/Y |q, for every point q contained in the closure
of p. From this we see that it is enough to show that dimk(ξ) ΩX/Y |ξ ≥ n,
where ξ is the generic point of X, and that dimk(x) ΩX/Y |x = n for every
closed point x ∈ X, in order to prove that ΩX/Y is a locally free sheaf of
rank n.

Since π is flat, π is dominant, hence if ξ is the generic point of X, then
π(ξ) is the generic point of Y . Thus ΩX/Y |ξ = ΩK(X)/K(Y ). Now by [Har77,
Ch.2, Sec.8, Thm.8.6A], we have that

dimk(ξ) ΩK(X)/K(Y ) ≥ tr. degK(X)/K(Y ).

By additivity of transcendence degrees (see [Lan02, Ch.8, Ex.3]), we have
that tr.degK(X)/K(Y ) = tr.degK(X)/k− tr. degK(Y )/k, which is again
by [Vak13, Ch.11, Sec.2, Thm 11.2.1] , equal to

dimX − dimY = n.

Thus we have dimk(ξ) ΩX/Y |ξ ≥ n.

Now let x ∈ X be a closed point of X and consider the relative cotangent
exact sequence:

π∗ΩY → ΩX → ΩX/Y → 0

which gives the exact sequence:

(π∗ΩY )|x → ΩX |x → ΩX/Y |x → 0

Since k(x) is seperable over k, we have that ΩX |x ∼= (mx/m
2
x), and since

(π∗ΩY )|x = Ωy|π(y) ⊗k(y) k(x), we have that

(π∗ΩY )|x ∼= (my/m
2
y)⊗k(y) k(x).
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From this and surjectivity of Tπ,x it follows that (π∗ΩY )|x → ΩX |x is injec-
tive. Together with the rank theorem for finite dimensional vector spaces,
this yields:

dimk(x) ΩX/Y |x = dimk(x) ΩX |x − dimk(x)(π
∗ΩY )|x = dimX − dimY = n

where we have used that sinceX and Y are smooth k-varieties, ΩX and π∗ΩY

are locally free sheaves of rank dimX respectively dimY . This completes
the proof of (1).

For (2): This follows from upper semicontinuity of rank,Exercise 13.7K
in [Vak13], the fact the locus of points where π is flat is open in X, and
arguments similar to those given in the proof of (1).

Proposition 3.2.6. Let X be a smooth quasi-projective variety over a field
k, let r be a nonnegative integer, let f : P1

k → X be an r-free rational curve
and let B be a finite subscheme of P1

k of length b. Let s be a positive integer
such that s+ b ≤ r + 1. The evaluation map

evM = ev(s)|(P1
k)s×Mor(P1

k,X;f |B) : (P1
k)
s ×Mor(P1

k, X; f |B)→ Xs

is smooth at (t1, . . . , ts, f) whenever the points t1, . . . , ts are k-rational and
{t1, . . . , ts} ∩B = ∅.

To proceed as in the proof given in [Deb01] we need that k(ti) = k, and
k(f(ti)) = k for all i. These conditions will be satisfied whenever the points
are k-rational.

Proof of the Proposition. If (t1, . . . , ts, g) is a k-rational point, then we have
evM (t1, . . . , ts, g) = (g(t1), . . . , g(ts)), further the tangent map to the mor-
phism evM at the point (t1, . . . , ts, f) is the map

s⊕
i=1

TP1,ti ⊕H
0(P1, f∗TX(−B))→

s⊕
i=1

TX,f(ti)
∼=

s⊕
i=1

(f∗TX)|ti

where f∗TX(−B) = f∗TX ⊗ IB and (f∗TX)|ti = (f∗TX)ti ⊗ k(ti), moreover
this map is given by

(u1, . . . , us, σ) 7→ (Tt1f(u1) + σ(t1), . . . , Ttsf(us) + σ(ts))

where Ttif(ui) is the image of ui in (f∗TX)|ti under the composition of the
tangent map TP1,ti → TX,f(ti) and the isomorphism TX,f(ti)

∼= (f∗TX)|ti,
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and σ(ts) is the image of σ in (f∗TX)|ti under the following composition:
H0(P1, f∗TX(−B)) → H0(P1, f∗TX) → (f∗TX)|ti. Thus we see that the
tangent map to the morphism evM will clearly be surjective if the evaluation
map

H0(P1, f∗TX(−B))→ H0(P1, f∗TX)→ ⊕si=1(f∗TX)|ti (3.2.1)

given by σ 7→ (σ(t1), . . . , σ(ts)) is surjective. Now we have integers a1, . . . an

such that f∗TX =
n⊕
j=1

OP1(aj). Moreover since B is a finite subscheme of

length b on P1, we have IB = OP1(−b). Thus we have

f∗TX(−B) ∼=
n⊕
j=1

OP1(aj − b)

Now consider the following commutative diagram:

⊕n
j=1H

0(P1,OP1(aj − b)) −→
⊕n

j=1H
0(P1,OP1(aj)) −→

⊕n
j=1

⊕s
i=1 k(ti)x x

H0(P1,OP1(aj − b)) −→ H0(P1,OP1(aj) −→
⊕s

i=1 k(ti)

If the composition of arrows at the bottom of the diagram is surjective for
each j, then the composition of arrows at the top will be surjective as well,
which in turn yields surjectivity of the composition given in (3.2.1). Since
B ∩ {t1, . . . , ts} = ∅, we have that

H0(P1,OP1(aj − b))→ H0(P1,OP1(aj))→
s⊕
i=1

k(ti) (3.2.2)

is not the zero map, in fact composing this with any projection onto k(ti) will
not be the zero map. Further pick a basis element ei = (0, . . . 1, 0 . . . 0) in
s⊕
i=1

k(ti), we shall find an element in H0(P1,OP1(aj−b)) which is mapped to

ei under (3.2.2). For each i, let hi be the degree 1 polynomial which generates
the prime ideal ti, for example if ti = (x0− a0

a1
x1) then hi = x0− a0

a1
x1. Since

aj − b ≥ s − 1, we can find a polynomial g of degree aj − b − (s − 1) ≥ 0
which is not contained in the prime ideal ti. Let f(x0, x1) be the polynomial
g
∏
j 6=i hj ∈ H0(P1,OP1(aj − b)). The polynomial f is mapped to ei under
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(3.2.2). From this we conclude that the tangent map to the evaluation
map evM is surjective. Since H1(P1, f∗TX(−B)) vanishes, we have that
Mor(P1, X; f |B) is smooth at [f ] (this is explained in [Deb01, Ch.2, Sec.3])
thus evM is a map between two smooth varieties and the tangent map of
this morphism at the point (t1, . . . ts, f) is surjective, hence evM is smooth
at this point by (2) in Proposition 3.2.5.

Corollary 3.2.7. Let X be a smooth quasi-projective variety over k. If X
contains a free (respectively very free) rational curve, then X is uniruled
(respectively rationally connected).

Proof. If X has a r free rational curve f , then the map

ev
(r+1)
M = ev(r+1)|P1

k×Mor(P1
k,X))

is smooth at a point (t1, . . . , ts, f) by the proposition above. From this it
follows that the restriction of this map to the unique component containing
this point is dominant (otherwise it would factor through a proper closed
subset of X and the this would imply that the tangent map is not surjective).
Hence if r is 0, f is free and X is uniruled. If r is 1 , f is very free and X
is rationally connected.

We now give a partial converse to Proposition 3.2.6:

Proposition 3.2.8. Let X be a smooth quasi-projective variety over a field
k, let f : P1

k → X be a rational curve, and let B be a finite subscheme of P1
k

of length b. If the tangent map to the evaluation map evM , defined as in
Proposition 3.2.6, is surjective at some k-rational point of (P1

k)
s × {f}, the

rational curve f is min(2, b+ s− 1)-free.

Proof. Upon possibly replacing B with a subscheme and s by a smaller
integer, we may assume b+ s ≤ 3. Our assumption is that the map

TevM ,p :

s⊕
i=1

TP1,ti ⊕H
0(P1, f∗TX(−B))→

s⊕
i=1

TX,f(ti)
∼=

s⊕
i=1

(f∗TX)|ti

given by (u1, . . . , us, σ) 7→ (Tt1f(u1)+σ(t1), . . . , Ttsf(us)+σ(ts)) is surjective
for some t1, . . . , ts. This implies that the evaluation map

H0(P1, f∗TX(−B))→ H0(P1, f∗TX)→
s⊕
i=1

((f∗TX)|ti/Im(Ttif)) (3.2.3)
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is surjective. We may assume that the dimension of X is at least two.
Under this assumption we have that (f∗TX)|ti has dimension at least two,
and since TP1,ti has dimension one, it follows that Im(Ttif) has at most
dimension one, thus (f∗TX)|ti/Im(Ttif) does not vanish for any i. From
this and the surjectivity of the map given in (3.2.3) we conclude that no ti
is contained in B. Now consider the commutative diagram:

H0(P1, f∗TX(−B))
e−−−−→

⊕s
i=1(f∗TX)|tix x(Tt1f,...,Ttsf)

H0(P1, TP1(−B))
e′−−−−→

⊕
TP1,ti

Since b+ s ≤ 3 we get that 2− b ≥ s− 1, hence we have

deg(TP1(−B)) ≥ s− 1

and e′ is surjective by arguments that are similar to those which proved
surjectivity of the map given in (3.2.2) in the previous proof. Since e′ is
surjective, we see that the image of the map e in the commutative diagram
above, contains Im(Tt1f, . . . , Ttsf). As the map given in (3.2.3) is surjective,
we can now conclude that e is surjective. With the notation of the previous
proof, we see that each map

H0(P1,OP1(aj − b))→ H0(P1,OP1(aj))→
s⊕
i=1

k(ti)

for j = 1, . . . , n, is surjective, hence aj−b ≥ s−1 and f is (b+s−1)-free.

We have the following geometric interpretation of the Proposition above
together with Proposition 3.2.6:

Corollary 3.2.9. Let X be a smooth projective variety over an algebraically
closed field k. Assume that X has a free (respectively very free) rational
curve, then there passes a free (respectively very free) rational curve through
a general point of X.

Proof. We first fix some notation: Let ev
(s)
M be evM as in Proposition 3.2.6,

so s = 1 if f is free, and s = 2 if f is very free. Moreover we let Y be the

source of ev
(s)
M .

By Proposition 3.2.6 there is an open subset U of Y such that the eval-

uation map ev
(s)
M |U is smooth, hence dominant. Since the closed points are
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dense in a scheme of finite type over k, we see that the image of the closed
points of U are dense in X. This proves that there is a rational curve through
a general point of X. To see that this rational curve can be taken to be free
(respectively very free), we have that the tangent map of ev(s)|U is surjective
at a closed point (t1, . . . , ts, g) of U since it is smooth, thus by Proposition
3.2.8 the rational curve g is s− 1-free.

When the characteristic of the field k is zero we have a converse to
Corollary 3.2.7:

Proposition 3.2.10. Let X be a projective variety over an algebraically
closed field k of characteristic zero. Assume that X is uniruled (respec-
tively rationally connected), then X has a free (respectively very free) ratio-
nal curve.

Proof. We only prove the rationally connected case, as the uniruled case is
completely analogous. Let π : (P1

k)
2×M 99K X ×X be a dominant rational

map. The dominance of this implies that the morphism ev(2) : (P1
k)

2 ×
Mor(P1

k, X) → X × X is dominant (as in (3.1.1)). By generic smoothness
[Vak13, Ch. 25, Sec.3, Thm. 25.3.3] we have a dense open subset U of X
such that ev(2)|(ev(2))−1(U) is a smooth morphism. The rest now follows by
Proposition 3.2.8.

Remark 3.2.11. The hypothesis of the field being algebraically closed in
the Proposition above can be relaxed. Indeed we only need the existence of
a k-rational point of (ev(2))−1(U).

We will shortly adress Castelnuovo’s criterion for uniruled and rationally
connected varieties, however we will first apply the technique of flat base
extension to obtain some results which will help us generalise Theorem 1.0.5
and 1.0.8 (1).

3.2.3 Lifting of free rational curves to the algebraic closure

If X is a projective variety over a field k, and X has a r-free rational curve
f , then we want Xk̄ to have a r-free rational curve as well, as we then can
exploit the geometric result of Corollary 3.2.9. This will yield results about
Xk̄, and by using the technique of flat base extension again, we will see that
these results are also true for X.

Setup: Let X be a projective variety over a field k. Let µX : Xk̄ → X be
the projection onto X. This is a flat morphism, since flatness is preserved
under base change. We let µP1

k
: P1

k̄
→ P1

k be the projection onto P1
k.
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Lemma 3.2.12. (notation as above) We have that µ∗XTX
∼= TXk̄

.

Proof. By [Vak13, Ch. 21, Sec.2, Thm. 21.2.27 (b)] we have that

µ∗XΩX
∼= ΩXk̄

,

From this we see that we will be done if

µ∗XHom(ΩX ,OX) ∼= Hom(µ∗XΩX ,OXk̄
)

Since uX is a flat morphism, and ΩX is finitely presented it follows from
[Eis95, Ch.2, Sec. 2, Prop. 2.10] that this is the case.

Proposition 3.2.13. Let X be a projective variety over a field k and let f
be a rational curve on X. Let f̄ denote the induced rational curve on Xk̄.
We have that f is r-free if and only if f̄ is.

Proof. We have f̄∗TXk̄
= f̄∗(µ∗XTX) by the lemma above. Further we have

that f̄∗µ∗XTX = µ∗P1
k
(f∗TX). Hence

f̄∗TX ⊗OP1
k̄
(−r − 1) ∼= µ∗P1

k
(f∗TX ⊗OP1

k
(−r − 1)).

Hence by flat base extension [Liu02, Ch. 5, Sec. 2, Cor. 2.27]:

H1(P1
k, f
∗TX ⊗OP1

k
(−r − 1))⊗k k̄ ∼= H1(P1

k̄, f̄
∗TXk̄

⊗OP1
k̄
(−r − 1))

Since k̄ is faithfully flat over k we have that

H1(P1
k, f
∗TX ⊗OP1

k
(−r − 1)) = 0

if and only if
H1(P1

k̄, f̄
∗TXk̄

⊗OP1
k̄
(−r − 1)) = 0.

The proposition now follows from this and Proposition 3.2.4.

We see from the proposition above that if X has a very free rational
curve, then so does Xk̄. It is proved in [Kol99] that the converse of the
aforementioned statement is true when the field k is local 2.

Theorem 3.2.14. Let X be a smooth projective variety of dimension n over
a field k. Then:

2 By a local field we mean either R,C,Fq((t)) or a finite degree extension of a p-adic
field Qp.
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(1) If X has a free curve, H0(X,K⊗mX ) = 0 for all m ≥ 1.

(2) If X has a very free curve, H0(X, (Ωp
X)⊗m) = 0 for all m, p ≥ 1.

Proof. Let µX : Xk̄ → X be the projection onto X. We have µ∗XΩX
∼=

ΩXk̄
. Moreover since u∗X commutes with all tensor operations, we have

µ∗X(Ωp
X)⊗m ∼= (Ωp

Xk̄
)⊗m. From this and flat base extension, we see that we

can assume that k = k̄ in (1) and (2).
We now prove (1): Assume that f : P1

k → X is a free rational curve on X.
We have f∗TX =

⊕n
i=1OP1

k
(ai). By the conormal exact sequence for smooth

varieties (Theorem 21.3.8 in [Vak13]) we have the inclusion TP1
k
→ f∗TX .

From this and Lemma 2.0.19 we see that some ai ≥ 2. Since f is free, all
the other ai ≥ 0 and f∗KX must have negative degree. Thus any section of
K⊗mX must vanish on f(P1

k), since the pullback of the locus where a section
vanishes is the locus where the pulled back section vanishes. By Corollary
3.2.9 there passes a free rational curve through a general point of X hence
a section of K⊗mX vanishes on a dense subset of X hence on X.

For (2): This is very similar to (1), the reason we need very free is to
ensure that all the ai in the splitting type of f∗(Ωp

X)⊗m are negative.

Corollary 3.2.15. Let X be a smooth projective variety over a field k of
characteristic zero.

(1) If k is algebraically closed and X is uniruled, then H0(X,K⊗mX ) = 0
for all m ≥ 0.

(2) If X has a very free curve then Hm(X,OX) = 0 for all m ≥ 1. In
particular Hm(X,OX) = 0 if k = k̄ and X is rationally connected.

Proof. (1) follows from Proposition 3.2.10 and Theorem 3.2.14. (2) By
Hodge theory, we have that hp,0 = h0(X,Ωp

X) = h0,p = hp(X,Ω0
X) =

hp(X,OX) for all p (see section 21.5.10 in [Vak13]). By Theorem 3.2.14
hp,0 = 0.

3.2.4 Fano varieties and rationally connectedness

We shall now define Fano varieties and cite a theorem which tells us that
they are rationally connected whenever they are over an algebraically closed
field of characteristic zero.

Definition 3.2.16. Suppose X is a smooth projective k-variety. Then X
is said to be Fano if K∨X is ample.
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Theorem 3.2.17 ([KMM92a]). Let X be a smooth Fano variety of dimen-
sion n over an algebraically closed field k of characteristic zero. Then X is
rationally connected. In particular X has a very free curve.

It is an open problem wether this is true in charactersitic p as well. Some
advances have been made however. Yi Zhu proved in [Zhu11] that a gen-
eral Fano hypersurface in projective space over an algebraically closef field
has a very free rational curve. Using methods from logarithmic geometry,
Zhu and Qile Chen, also gave a positive answer for general Fano complete
intersections in [CZ13].

We also expect and want PNk , where k is any field, to be rationally
connected. By considering the Euler exact sequence ([Vak13, Ch. 21, Sec.
4, Thm. 21.4.6]), we have a surjection: OPN

k
(1)N+1 → TPN

k
. Now let f be

any rational curve on PNk of degree e. Then the map

f∗OPN
k

(1)N+1 = OP1
k
(e)N+1 → f∗TPN

k

is surjective, which implies that f∗TPN
k

is ample3. Hence PNk has a very free

rational curve, thus PNk is indeed rationally connected.
In the rest of this thesis we will mostly investigate the theory of free

and very free rational curves on Fermat hypersurfaces. The Fermat hyper-
surfaces that we shall consider are very special Fano hypersurfaces, thus we
cannot take advantage of the results in [Zhu11].

3The proof of this claim is similar to the proof which we shall give of Lemma 5.3.1 (1)
in Chapter 5.
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Chapter 4

The Fermat hypersurface

In this chapter some of the fundamental properties of the Fermat hypersur-
face will be discussed. We start by recalling the definition.

Definition 4.0.18. Let k be a field of characteristic p. Let N, d be positive
integers where p does not divide d and N ≥ 2. We define the degree d
Fermat hypersurface Xd,N in PNk to be V (G), where G is the homogeneous
polynomial of degree d given by

G =

N∑
i=0

xdi (4.0.1)

We want the Fermat hypersurface to be a reduced scheme, hence we
required d not to be divisible by p, moreover by the Jacobi criterion we see
that this is also the sufficient and necessary condition for the Fermat to be
smooth and hence irreducible.

We will almost exclusively be studying rational curves of relatively high
degree on the Fermat hypersurface. The reader may however take a look at
[Deb01, Ch.2,Sec.4] for theory regarding lines on the Fermat hypersurface.
We also recommend the highly readable article [BC66] where the authors
prove that any Hermitian variety in finite projective N -dimensional space
over the Galois field of q2 elements, is projectively equivalent to a Fermat
hypersurface. Enumerative, respectively geometric, notions such as counting
of points and linear subspaces, respectively tangent spaces at points are also
discussed in the aforementioned article.

Recall that a smooth projective variety X is Fano if the anticanonical
bundle K−1

X is ample.

Proposition 4.0.19. Let X = Xd,N be a Fermat hypersurface. Then X is
Fano if and only if d ≤ N.
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Proof. We compute KX . By [Vak13, Ch.21,Sec.3,Thm.21.3.8] we have the
conormal exact sequence:

0→ N ∨ → i∗ΩPN
k
→ ΩX → 0

From [Har77, Ch.2,Sec.5,Ex.5.16] we thus have that

i∗
N∧

ΩPN
k

= N ∨ ⊗
N−1∧

ΩX .

We have N ∨ = OX(−d) and by the exact sequence given in [Har77, Ch.2,
Sec.8, Thm. 8.13]:

0→ ΩPN
k
→ OPN

k
(−1)N+1 → OPN

k
→ 0

we see that
∧N ΩPN

k
= O(−(N + 1)). All in all we have that KX = OX(d−

N − 1), thus K−1
X = OX(N + 1− d). Now if d ≤ N, we have that N + 1−

d ≥ 1 and thus K−1
X is ample by [Har77, Ch.2,Sec.5,Ex.5.13] and [Vak13,

Ch.16,Sec.6,Ex.16.6.G].
Conversely if d > N, then N + 1− d ≤ 0. In that case K−1

X ⊗OX(−1) =
OX(−r), for some r > 0. We show that there are no non-trivial global
sections of this sheaf, hence it is not globally generated, thus not ample.

Consider the equalizer exact sequence:

0→ OX(−r)(X)→
∏
i

OX(−r)(D+(xi))⇒
∏
i,j

OX(−r)(D+(xixj))

The elements in
∏
iOX(−r)(D+(xi)) are of the form (fi/x

hi
i ), where fi

is a homogeneous polynomial (considered as an element in the quotient
k[x0, . . . xn]/(G), where G is the polynomial in (4.0.1) ) of degree hi − r
for some integer hi ≥ r. We have that (fi)i is mapped to the same element

under the two maps if and only if we have (fix
hi
j − fjx

hj
i ) ∈ (G) for all i, j.

We see that this is the case if and only if (fix
hi
j −fjx

hj
i ) = 0 in k[x0, . . . , xN ],

and as deg(hi) > deg(fi) for all i it follows that this is again equivalent to
having all fi = 0. Hence we see that OX(−r)(X) = 0. This concludes the
proof.

4.0.5 The space of degree e rational curves on the Fermat
hypersurface

We will here explicitly describe the scheme More(P1
k, X), for X = Xd,d ⊆ Pdk.

The equations that define this space will be useful at several points in this
thesis.

34



Proposition 4.0.20. Let d = pr + 1 for some positive integer r, and let
X = Xd,d. There is a bijection between the degree e morphisms from P1

k → X
and the k-rational points of a quasi-projective subvariety Me of Pde+d+e

k .

Proof. Giving a degree e morphism f : P1
k → X is the same as giving

n+ 1 homogeneous polynomials F0, . . . Fd ∈ k[x0, x1]e without common fac-
tors, such that

∑d
i=0 F

d
i = 0 (see [Vak13, Ch.16,sec.4]). We shall now let

Fi(x0, x1) =
∑e

j=0 aijx
e−j
o xj1. We now compute:

d∑
i=0

F di =
∑
i

(
e∑
j=0

aijx
e−j
0 xj1)d

=
d∑
i=0

(
e∑
j=0

ap
r

ij (xe−j0 xj1)p
r
)(

e∑
j=0

aijx
e−j
0 xj1)

=

d∑
i=0

(

epr+e∑
k=0

xep
r+e−k

0 xk1(
∑

jpr+l=k
l≥0

ap
r

ij ail))

=
de∑
k=0

xde−k0 xk1(
d∑
i=0

∑
jpr+l=k
l≥0

ap
r

ij ail)

Hence
d∑
i=0

F di =
de∑
k=0

xde−k0 xk1(
d∑
i=0

∑
jpr+l=k,
l≥0

ap
r

ij ail) (4.0.2)

Now let A = k[{yij}0≤i≤d, 0≤j≤e], further let

ck =
d∑
i=0

(
∑

jpr+l=k,l≥0

yp
r

ij yil) ∈ A.

From (4.0.2) we see that the Fi give a morphism to X if and only if we
have {aij}ij ∈ ∩dek=0Z+(ck) = Z+(c0, . . . , cde) and the Fi don’t have a com-
mon nonconstant factor, that is the {aij}i,j ∈ Z+(c0, . . . , cde)∩More(P1

k,Pdk)
where the intersection is taken in Pde+d+e

k . We have that the k-rational points
of Y = Proj(A/(c0, . . . , cde)) are in bijection with points of Z+(c0, . . . , cde),
by [Liu02, Ch.2, Cor. 3.44.], thus we conclude that the k-rational points of
Me = Y ∩More(P1

k,Pdk), are in bijection with morphisms P1
k → X.
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Definition 4.0.21. We shall call the scheme Me given in the proof of the
previous proposition, the space of degree e morphisms. As explained in the
previous chapter, this space is More(P1

k, X).

Remark 4.0.22. As Me is the intersection of de + 1 hypersurfaces in
Pde+e+d, we expect the dimension of Me to be de+d+e−(de+1) = e+d−1.
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Chapter 5

Proofs in the article
“Rational curves on Fermat
hypersurfaces” by Mingmin
Shen

5.0.6 Introduction

We will here try to make the proofs in [She12] more accessible. Moreover
we show that all the results in this article are true without the hypothesis
that the field k is algebraically closed.

5.1 What we are dealing with

Throughout this chapter k is a field of characteristic p (not necessarily alge-
braically closed),r is a positive integer, d = pr + 1 and N is an integer such
that N ≥ d. We let Xd,N denote the Fermat hypersurface in PNk , given by
Xd,N = V (G), where G =

∑
xdi . We will sometimes just write X instead of

Xd,N .

5.2 A helpful diagram and a useful computation

In the proofs that are to come we will consider a few exact sequences and
a diagram in order to investigate the tangent sheaf of X. In this section
we give these sequences and put them into a diagram. As X ⊆ PNk is non-
singular, we have the exact sequence:
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0→ N∨ → ΩPN ⊗OX → ΩX → 0

by [Vak13, Ch.21, Thm.21.3.8] . Here I denotes the ideal sheaf ofX. Further
we have that N∨ = I/I2 ∼= OX(−(pr+1)). Now consider the following map:

I/I2 → OX(−1)N+1

which is given by multiplication with


∂G
∂x0
...
∂G
∂xN

 =

x
pr

0
...

xp
r

N

.

Dualizing this yields the map

OX(1)N+1
(xp

r

0 ,...,xp
r

N )
−−−−−−−→ OX(pr + 1).

The kernel of this map is the dual of the sheaf of principal parts of X, (P1
X)∨.

After dualizing, all of this fits in the commutative diagram:

0 0x x
0 −−−−→ TX −−−−→ TPN

k
|X −−−−→ O(pr + 1) −−−−→ 0x x ∥∥∥

0 −−−−→ (P1
X)∨ −−−−→ OX(1)N+1 (xp

r

i )
−−−−→ O(pr + 1) −−−−→ 0x x

OX OXx x
0 0

(5.2.1)

Now by [Vak13, Ch.21,Thm.21.4.6] we have the exact sequence:

0 −−−−→ ΩPN
k
−−−−→ OPN

k
(−1)N+1 (xi)−−−−→ OPN

k
−−−−→ 0,

where OPN
k

(−1)N+1 is isomorphic to the sheaf of principal parts of PNk .
Pulling this back to X and applying a positive twist gives us:

0→ ΩPN
k
⊗OX(1)→ ON+1

X → OX(1)→ 0. (5.2.2)
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Let F : X → X be the Frobenius morphism. We apply (F ∗)r to (5.2.2) and
obtain:

0 −−−−→ (F ∗)rΩPN
k
⊗OX(pr) −−−−→ ON+1

X

(xp
r

i )
−−−−→ OX(pr) −−−−→ 0,

hence it follows that

(P1
X)∨ ∼= (F ∗)rΩPN

k
⊗OX(pr + 1). (5.2.3)

5.3 The proofs

We start by giving a lemma.

Lemma 5.3.1. Let f : P1
k → X be a rational curve on X. Assume that

f∗(P1
X)∨ ∼= ⊕Ni=1OP1

k
(fi) and f∗TX = ⊕N−1

i=1 OP1
k
(ai).

(1) If all the fi > 0, then all the ai > 0 as well, in particular f will be
very free.

(2) If one of the fi < 0, then f is not free.

(3) If two of the fi = 0, then f is not very free.

Proof. (1) Assume that ai ≤ 0 for some i. By applying f∗ to the first column
in 5.2.1 we have a surjection

h : f∗(P1
X)∨ � f∗TX .

Let hi : ⊕Ni=1OP
1
k(fi) = f∗(P1

X)∨ � OP1
k
(ai) given by composing h with

the canonical projection. As fj > 0 for all j, we have that the only map
OP1

k
(fj) → OP1

k
(ai) is the trivial map, by (2.0.19), for all j , thus the com-

position σj : OP1
k
(fj) −−−−→ f∗(P1

X)∨ = ⊕OP1
k
(fk)

hi−−−−→ OP1
k
(ai) must be

the 0-map. Let gj denote the canonical map OP1
k
(fj)→ ⊕OP1

k
(fk). We have

σj = 0 ◦ gj for all j, but we also have σj = hi ◦ gj for all j, by the universal
property of the co-product we must have hi = 0, which is a contradiction.

(2) Consider the short exact sequence:

0→ OP1
k
→ f∗(P1

X)∨ = ⊕Ni=1OP1
k
(fi)→ f∗TX = ⊕N−1

i=1 OP1
k
(ai)→ 0.

This gives us a long exact sequence in cohomology:

0→ H0(P1
k,OP1

k
)→ H0(P1

k,⊕Ni=1OP1
k
(fi)) = ⊕Ni=1H

0(P1
k,OP1

k
(fi))

→ ⊕N−1
i=1 H

0(P1
k,OP1

k
(ai))→ H1(P1

k,OP1
k
) = 0→ . . .
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Thus we have a surjective map⊕Nl=1H
0(P1

k,OP1
k
(fi))→ ⊕N−1

i=1 H
0(P1

k,OP1
k
(ai)).

Assume that we hace fi < 0 for some i and we may further assume that we
have f1 ≤ f2 ≤ . . . ≤ fN and a1 ≤ a2 ≤ . . . ≤ aN−1. If we have a1 ≥ 0,
then as we have

∑N
i=1 fi =

∑N−1
i=1 ai, we must have fN > aN−1 ≥ . . . a1.

Then by this and (2.0.19) it follows that the surjective map ⊕Ni=1OP1
k
(fi)→

⊕N−1
i=1 OP1

k
(ai) factors through ⊕N−1

i=1 OP1
k
(fi), and by possibly repeating this

procedure, we may further assume that fN−1 ≤ aN−1., and thus have fi ≤ ai
for 1 ≤ i ≤ N − 1. It follows that we have a surjective map

ϕ : ⊕N−1
i=1 H

0(P1
k,OP1

k
(fi))→ ⊕N−1

i=1 H
0(P1

k,OP1
k
(ai)).

Now as f1 < 0 ≤ a1 and we have fi ≤ ai, it follows that we have

dimk⊕N−1
i=1 H

0(P1
k,OP1

k
(fi)) < dimk⊕N−1

i=1 H
0(P1

k,OP1
k
(ai))

which contradicts surjectivity of ϕ.
(3) Assume that f1 = f2 = 0 ≤ f3 ≤ . . . ≤ fN , and that 0 < a1 ≤

a2 ≤ . . . aN−1. By arguments similar to those given in (2), we get that
fN > aN−1. and we can again assume that fN−1 ≤ aN−1. Moreover we also
get a surjective map ϕ : ⊕N−1

i=1 H
0(P1

k,OP1
k
(fi)) → ⊕N−1

i=1 H
0(P1

k,OP1
k
(ai)),

but as f1 = f2 = 0 < a1 and fi ≤ ai for all other i ≤ N − 1 it follows that
dimk⊕N−1

i=1 H
0(P1

k,OP1
k
(fi)) < dimk⊕N−1

i=1 H
0(P1

k,OP1
k
(ai)) which contradicts

surjectivity of ϕ.

5.4 Theorem 1.7 and Corollary 1.8 in [She12]

We shall now state and prove Theorem 1.7 in [She12]. This theorem gives us
a criterion for when a curve of degree e into the Fermat hypersurface X =
Xd,d is not very free, where as before Xd,d denotes the Fermat hypersurface
of degree d in Pdk.

Theorem 5.4.1. Let X = Xd,d be the Fermat hypersurface of degree d =
pr + 1 in Pdk. Let f : P1

k → X be a rational curve of degree e. If there exists
some 0 ≤ m ≤ d− 3 = pr − 2, such that md < e ≤ (m+ 1)(d− 1), then f is
not very free.

Proof. As the degrees of f∗(P1
X)∨ and f∗TX are the same (i.e., the sum of

their splitting types are the same), we conclude that if either two of the
summands of f∗(P1

X)∨ have a trivial twist or one of the summands has a
negative twist, then f will not be very free (see Lemma 5.3.1). From this we
can conclude that if we want to avoid this, the best possible situation will be
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when the twists of the summands are as close to each other as possible. By
(5.2.3), we see that this will be the case when f∗ΩPd

k
is balanced, this means

that the twists of this sheafs summands are as close to each other as possible.
Now assume first that f∗ΩPd

k
is balanced. Under this assumption we shall

now compute the splitting type of f∗ΩPd
k
. We have the exact sequence

0→ ΩPd
k
|P1
k → OP1

k
(−e)d+1 → OP1

k
→ 0

Thus as OP1
k
(−e)d+1 has degree −(d + 1)e, because of this exact sequence,

we have that the degree of f∗ΩPd
k

is also −(d + 1)e, this will let us find

it’s splitting type, under the assumption that it is balanced. We now let

a =
⌊

(d+1)e
d

⌋
= e +

⌊
e
d

⌋
. Let l

′
= e (mod d), and let l = d − l′ , then we

have that f∗ΩPd
k

= OP1
k
(−a)l ⊗ OP1

k
(−a − 1)l

′
. A simple calculation yields

l
′

= (d+ 1)e− da. Using this and (5.2.3) we can now compute:

f∗(P1
X)∨ = f∗((F ∗)rΩPd

k
⊗OX(pr + 1))

which we identify with

f∗(F ∗rΩPd
k
)⊗ f∗OX(pr + 1)

which is equal to

OP1
k
(−apr)l ⊕OP1

k
((a− 1)pr)l

′
⊗OP1

k
((pr + 1)e)

finally this equals

OP1
k
(−apr + (pr + 1)e)l ⊕OP1

k
((−a− 1)pr + (pr + 1)e)l

′
.

Set b1 = −apr + (pr + 1)e and b2 = (−a − 1)pr + (pr + 1)e. Observe also
that f∗(P1

X)∨ is highly unbalanced unless e (mod d) = 0 as then l
′

= 0,
however the assumption that there exists m, 0 ≤ m ≤ d − 3, such that we
have md < e ≤ (m+ 1)(d− 1) implies that e (mod d) 6= 0, thus in this case
f∗(P1

X)∨ will be heavily unbalanced. If md < e < (m+ 1)d, then m will be
the largest integer such that md < e and e = md+ (e (mod d)). From this
it follows that a = e+m. Thus we have:

b2 = −(a+ 1)pr + e(pr + 1) = e− (m+ 1)(d− 1)

where we have used that d = pr + 1. Hence if e < −(m+ 1)(d− 1) we will
have b2 < 0 thus f is not very free. Notice that we still haven’t used the
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assumption that m ≤ d − 3, this will be needed now when we consider the
case where e = (m+ 1)(d− 1). In this case we will have l

′
= d−m− 1, and

if m ≤ d− 3, then l
′ ≥ 2. Thus we have at least two summands with trivial

twists, and again f is not very free.

We state the corollary as well.

Corollary 5.4.2. Let X be as above. If there exists N0 such that for all e
satisfying e > N0 , there is a very free rational curve of degree e on X, then
N0 > pr(pr − 1).

5.5 Proposition 1.10 in [She12]

In this section we are going to deal with proposition 1.10. The proof which
we are going to give uses the fact that if f : P1

k → PNk is a rational normal
curve of degree N , then we have

f∗ΩPN
k

∼= OP1
k
(−N − 1)N .

The proof which we shall give of this fact belongs naturally in the next
chapter, and thus that is where the proof shall be given as Lemma 6.3.1.

Proposition 5.5.1. Let X = Xd,N . If f : P1
k → X is a rational normal

curve of degree N (viewed as a rational curve on PNk ), then f is very free
on X.

Proof. We have f∗ΩPN
k

∼= OP1
k
(−N − 1)N , since f : P1

k → PNk is a rational

normal curve. Using (5.2.3) we thus obtain:

f∗(P1
X)∨ = f∗(F ∗rΩPN

k
⊗OX(pr + 1))

= f∗(F ∗rΩPN
k

)⊗ f∗OX(pr + 1)

= OP1
k
(−(N + 1)pr)N ⊗OP1

k
((pr + 1)N)

= OP1
k
((−N − 1)pr + (pr + 1)N)N

= OP1
k
(N − pr)N

As N ≥ d = pr + 1 we see that f is very free.
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5.6 Lemma 1.5 in [She12]

In this section we shall prove [She12, Lemma 1.5]. In our proof we shall
use a result from [Har66]. The setting in this article is that all schemes are
over a base field k which is assumed to be algebraically closed. Proposition
3.2.13 lets us pass to this setting. We shall also give an alternative proof
using Proposition 3.2.4.

Lemma 5.6.1. If Xd,N contains a very free curve for N = d = pr + 1, then
Xd,N contains a very free curve for all N .

Proof. We realize Xd,N as a hyperplane section of Xd,N+1, thus we have a
closed embedding i : Xd,N → Xd,N+1 whose image is V (xN+1). Assume
that f : P1

k → Xd,N is very free. We claim that g = i ◦ f : P1
k → Xd,N+1 is

very free.
Let J be the ideal sheaf of Xd,N in Xd,N+1. We see that i∗(J /J 2) ∼=

OXd,N
(−1). We have an exact sequence:

0→ OXd,N
(−1)→ ΩXd,N+1

|Xd,N → ΩXd,N
→ 0.

We dualize the exact sequence above and pull it back along f to obtain:

0→ f∗TXd,N
→ f∗TXd,N+1

|Xd,N = g∗TXd,N+1
→ OP1

k
(e)→ 0.

Here e is as usual the degree of the curve f . Let µP1
k

: P1
k̄
→ P1

k and

µX : Xk̄ → X be the canonical projections. As µ∗P1
k
f∗ = f̄∗µ∗X (for any

rational curve f) we get an exact sequence:

0→ f̄∗TXk̄d,N
→ ḡ∗TXk̄d,N+1

→ OPk̄1 (e)→ 0

Since OP1
k
(e) is ample and f∗TXd,N

is ample by assumption, this is still

the case after pulling this sequence back to P1
k̄

by Proposition 3.2.13. It
follows that ḡ∗TXk̄d,N+1

is ample as well, by [Har66, Cor.3.4]. After applying

Proposition 3.2.13 again, we are done.

5.6.1 An alternative proof

We shall here apply Proposition 3.2.4 to prove Lemma 5.6.1 as follows: Let
f and Xd,N be as in Lemma 5.6.1. Further let i be as in the proof of Lemma
5.6.1 above. Consider the following exact sequence:

0→ f∗TXd,N
⊗OP1

k
(−2)→ (i ◦ f)∗TXd,N+1

⊗OP1
k
(−2)→ OP1

k
(e− 2)→ 0
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From this we obtain the exact sequence:

H1(P1
k, f
∗TXd,N

⊗OP1
k
(−2))→ H1(P1

k, (i ◦ f)∗TXd,N+1
⊗OP1

k
(−2))

→ H1(P1
k,OP1

k
(e− 2)

We compute that h1(P1
k,OP1

k
(e − 2)) = h0(P1

k,OP1
k
(−e)) = 0, using Serre

duality and the fact that Ω1
P1
k

= OP1
k
(−2). Thus H1(P1

k,OP1
k
(e − 2)) = 0,

further it follows from the lemma above that H1(P1
k, f
∗TXd,N

⊗OP1
k
(−2)) = 0

since we have assumed that f is very free. Thus by exactness we have that
H1(P1

k, (i◦f)∗TXd,N+1
⊗OP1

k
(−2)) = 0, hence (i◦f) : P1

k → Xd,N+1 is a very
free rational curve by the lemma above. This completes the proof.

Remark 5.6.2. Proofs that heavily use (co)homology often have the ad-
vantage that it is easy to see exactly what makes them work, and one
may then relax or increase the assumptions in order to obtain similar re-
sults. In the above proof we saw that the essential ingredient was that
H1(P1

k,OP1
k
(e−2)) = 0, it is not hard to see that H1(P1

k,OP1
k
(e−r−1)) = 0

if e ≥ r. Hence if we require the degree of the curve e to be greater than or
equal to r, we obtain the result for r-free curves as well.

5.7 Proposition 1.6 in [She12]

Finally we have now come to Proposition 1.6 in [She12]. The proof that
follows is perhaps the most intricate given thus far.

Lemma 5.7.1. Let f : P1
k → X be a degree e morphism. Then we have

dimMe ≤ dimkH
0(P1

k, f
∗TX).

Proof. It follows from Proposition 3.1.5 that we have

TMe,[f ] = TMor(P1
k,X),[f ] = H0(P1

k, f
∗TX).

The inequality now follows because we have dimMe ≤ dimk TMe,[f ].

We shall also need the following lemma:

Lemma 5.7.2. Let f : P1
k → X be a rational curve of degree e, then

deg f∗TX = e(N − pr).

Proof. By (5.2.3) we have f∗((P1
X)∨) = (F ∗)rΩPN

k
⊗OX(pr+1). Furthermore

we have by [Vak13, Ch.21,Thm.21.4.6] that the degree of ΩPN
k

is −(N + 1).

From this it follows that f∗((P1
X)∨) has degree e(N−pr) and it follows from

the first column of (5.2.1) that this is also the degree of f∗TX .
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Our final two ingredients in our proof shall be the Riemann–Roch the-
orem for locally free sheaves, and Serre duality . We state the version we
shall need of the Riemann–Roch theorem here.

Theorem 5.7.3 (Riemann–Roch). Let X be a normal projective curve over
a field k. Let F be a locally free sheaf of rank r on X. Then we have

χ(F) = deg(det(F)) + rχ(OX),

where χ(F) is the Euler-Poincaré characteristic of the sheaf F .

Proof. This is [Liu02, Ch.7., Ex. 3.3b)]. One can also see [Ful98] for a more
comprehensive and general theory regarding the Riemann–Roch theorem.

We are now ready to prove Proposition 1.6 in [She12], without the as-
sumption that k = k̄.

Proposition 5.7.4. Let X = Xd,d be the Fermat hypersurface of degree
d = pr + 1 in Pdk. Let Me be the space of degree e morphisms from P1

k → X.
Then for Me to have the expected dimension (see Remark 4.0.22), e has to
be at least pr − 1. In particular, if e < pr − 1, then there is no free rational
curve of degree e.

Proof. By Riemann–Roch we have

χ(f∗TX) = h0(P1
k, f
∗TX)− h1(P1

k, f
∗TX)

= deg(det(f∗TX)) + rank(f∗TX)

= e+ d− 1.

From this we have

h0(P1
k, f
∗TX) = e+ d− 1 + h1(P1

k, f
∗TX).

Serre duality (see [Vak13, Ch.18., Thm.18.5.1]) yields:

h1(P1
k, f
∗TX) = h0(P1

k,Ω
1
P1
k
⊗Hom(f∗TX ,OP1)

= h0(P1
k,Hom(f∗TX ,OP1

k
(−2)))

where we have used [Har77, Ch.2., Ex.5.1b)] and that Ω1
P1
k

= OP1
k
(−2). Now

by (4.0.2), we see that if e < pr−1, then dimMe > d+e−1. This is because
in that case we never have jpr + l = mpr − 1 for m = 0, . . . , e. Thus some
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of the polynomials which define Me are 0. Hence it is given by intersecting
strictly fewer that de+ 1 polynomials in Pde+d+e

k . We thus have

h0(P1
k, f
∗TX) = e+ d− 1 +h0(P1

k,Hom(f∗TX ,OP1
k
(−2))) ≥Me > e+ d− 1,

hence we must have some contribution from h0(P1
k,Hom(f∗TX ,OP1

k
(−2)))

so f is not free.
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Chapter 6

Further constraints on the
degree of a very free rational
curve on the Fermat
hypersurface obtained
through algebraic methods

From (5.2.3) we obtain the following:

Proposition 6.0.5. Let X = Xd,N be the Fermat hypersurface of degree
d = pr + 1 in PNk and let f : P1

k → X be a rational curve of degree e.
Let e1, . . . , eN be the splitting type of f∗ΩPN

k
and let f1, . . . , fN denote the

splitting type of f∗((P1
X)∨) then we have fi = prei + de.

Proof. By (5.2.3) we have f∗((P1
X)∨) = (F ∗)r(f∗ΩPN

k
) ⊗ f∗OX(d). The

proposition follows from this.

The paper [Bri+13] considers the Fermat hypersurface of degree 5 in P5
k

where k is an algebraically closed field of characteristic 2. In this paper the
authors prove the proposition above by reducing this to a question concern-
ing graded free R-modules. More specifically given a rational curve ϕ on
X5,5 they study two modules which they denote ΩX(ϕ) and EX(ϕ) such

that we have Ω̃X(ϕ) = ϕ∗ΩP5
k

and ẼX(ϕ) = ϕ∗((P1
X)∨). The authors find a

way of relating the bases of these modules and from this they deduce that
if fi denotes the splitting type of EX(ϕ) and ei denotes the splitting type
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of ΩX(ϕ) where 1 ≤ i ≤ 5 then fi = 4ei + 5e. The first part of this chapter
will be devoted to following [Bri+13] and obtain a similar result in the case
where X = Xd,d, where d = pr + 1 and p is the characteristic of the field
k which we are working over, as an alternative to the way we proved the
proposition above. In this setting we will have to assume that the field k
contains all pr’th roots.

In the second part of this chapter we shall prove the claim from the
previous chapter concerning how the pullback of the cotangent bundle splits
when we are pulling it back along a rational normal curve of degree N
which is the dimension of the projective N -space containing our Fermat
hypersurface X. After this we shall show that when pr > 3, the degree
d = pr + 1 Fermat hypersurface does not contain a degree e free curve for
e < 2pr. This is shown in the case X = X5,5 ⊂ P5

k in [Bri+13], the arguments
given by the authors work very nicely in our setting as well, thus we shall
to some extent follow their approach again.

Finally we end the chapter by giving a criteria for when a degree 2pr + 1
rational curve on Xd,d is very free, where d = pr + 1.

6.1 Passing to commutative algebra

Throughout this section we shall let X = Xd,d ⊂ Pdk be the degree d =
pr + 1 Fermat hypersurface over a field k of characteristic p, unless we say
otherwise. Moreover we shall assume that it contains a rational curve

f : P1
k → X

Where f is given by d + 1 homogeneous polynomials F0, . . . Fd ∈ k[x0, x1]
of equal degree e ≥ 1, thus f is a degree e curve. Moreover we shall let
R = k[x0, x1].

In Chapter 2: Interlude, we defined the splitting type of a locally free
sheaf of rank r on P1

k. We shall now define the analogue for graded R-
modules.

Definition 6.1.1. A graded free R-module is a finite direct sum of R(e)’s.
Thus M is said to be a graded free R-module if we have M ∼= ⊕ri=1R(ei). In
that case we say that the splitting type of M is e1, . . . , er.

Lemma 6.1.2. The kernel of a graded morphism of graded free R-modules
is graded free.
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Proof. We only sketch the proof. A more detailed account can be read in
Tabes Bridges notes from an REU of the summer 2012 1.

Let ϕ : M → N be a graded morphism of graded free R-modules. Let
L = ker(ϕ) = ⊕Ker(Mn → Nn). We can use the snake lemma to obtain an
exact sequence L/x1L → M/x1M → N/x1N of R = k[x0]-modules. One
can show that a submodule U of a graded free R-module is graded free , by
using Noetherianess to argue that we can pick a minimal generating set of
U and using the fact that U has no x0-torsion to show that this minimal
generating set is a basis. As M/x1M , N/x1N are graded free R-modules, it
follows that L/x1L is also graded free, thus we can pick a basis l1, . . . , lr for
L/x1L. Let l1, . . . , lr be homogeneous elements of L which have images li in
L/x1L. Now using induction on n one can show that for each n the li span
Ln. Thus it only remains to show linear independence of the li. As we can
assume that x1 doesn’t divide li for all i, we can prove linear independence
the same way as one does when showing that a submodule of an R-module
is graded free.

Definition 6.1.3. Let f : P1
k → Xd,N be a rational curve of degree e

given by N +1 homogeneous polynomials F0, . . . , FN ∈ k[x0, x1]e. We define

Ω(f) = ker(R(−e)N+1 (Fi)−−−−→ R and EX(f) = ker(R(e)N+1 (F pr

i )
−−−−→ R(de))

where the (Fi), respectively (F p
r

i ), above the maps means that they are

given by multiplication by (F0, . . . , FN )t, respectively (F p
r

0 , . . . , F p
r

N )t).

It follows from Lemma 6.1.2 above that these are graded free modules,
and they are in fact closely related to sheaves we have already studied.

Lemma 6.1.4. Let f : P1
k → Xd,N be a rational curve on the Fermat

hypersurface Xd,N . Then Ω̃(f) ∼= f∗ΩPN
k

and ẼX(f) ∼= f∗(P1
X)∨. Further

the splitting type of Ω(f) (respectively EX(f)) equals the splitting type of
f∗ΩPN

k
(respectively f∗(P1

X)∨).

Proof. Recall the exact sequences

0 −−−−→ ΩPN
k
−−−−→ OPN

k
(−1)N+1 (xi)−−−−→ OPN

k
−−−−→ 0

0 −−−−→ (P1
X)∨ −−−−→ OX(1)N+1 (xp

r

i )
−−−−→ OX(pr + 1) −−−−→ 0

1http://math.columbia.edu/ dejong/reu/lib/exe/fetch.php?media=lecture notes.pdf
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We obtain the pullback of the map in the middle of the first sequence by ap-

plying the (̃•)− functor to R(−e)N+1 (Fi)−→ R and the pullback of the middle

map of the second sequence is similarly obtained by applying the (̃•)-functor

to R(e)N+1 (F pr

i )
−→ R(de). Since the (̃•)-functor is exact, it commutes with

kernels, hence f∗ΩPd = Ω̃(f) and f∗(P1
X)∨ = ẼX(f). The last statement of

the lemma follows from uniqueness of splitting type and the fact that (̃•)−
is a left-adjoint functor, thus it commutes with colimits.

6.2 Relating the bases

Throughout this section we let f : P1
k → Xd,d be a rational curve on the

Fermat hypersurface Xd,d, where d = pr + 1.

If (A0, . . . , Ad) ∈ Ω(f), then
∑d

i=0AiFi = 0 and by the Frobenius

endomorphism it follows that (Ap
r

0 , . . . , A
pr

d ) ∈ EX . Further we shall let

T = {(Ap
r

0 , . . . , A
pr

d ) | (A0, . . . , Ad) ∈ Ω(f)}. We denote the R-module gen-
erated by T as R〈T 〉.

Lemma 6.2.1. Let X = Xd,d ⊂ Pdk, where k is a field of characteristic p
where every element a ∈ k has a pr ′th root in k. Then EX(f) = R〈T 〉.

Proof. We have already seen one of the inequalities. Now we show the
other: Let (B0, . . . , Bd) ∈ EX , where we can assume that all the Bi are ho-
mogeneous of the same degree b. Assume that b ≡ m (mod pr), then every
monomial term of Bi is either of the form (c1/prxl0x

k
1)p

r
xm−n0 xn1 , where c ∈ k

and 0 ≤ n ≤ m, or of the form (c1/prxl0x
k
1)p

r
xp

r+m−n
0 xn1 where c ∈ k and

m < n < pr. We obtain Bi = ap
r

i0x
m
0 + ap

r

i1x
m−1
0 x1 + . . . ap

r

i(pr−1)x
m+1
0 xp

r−1
1 ,

after collecting terms, where the aij are elements of R. Since we have∑d
i=0BiF

pr

i = 0, it follows that

(
d∑
i=0

ai0Fi)
prxm0 + . . .+ (

d∑
i=0

ai(pr−1)Fi)
prxm+1

0 xp
r−1

1 = 0.

Since the degree of x0 in each term is distinct modulo pr, we must have
(
∑d

i=0 aijFi)
pr = 0 for each j hence (

∑d
i=0 aijFi) = 0 for all j, thus we see

that (a0j , . . . , a
pr

dj ) ∈ T , hence (B0, . . . , Bd) ∈ R〈T 〉.

Remark 6.2.2. There are many fields which satisfy the criteria of the
lemma above. For instance let q = pr, then as we have xq = x for ev-
ery x ∈ Fq, it follows that all elements of Fq has a qth root in Fq, moreover
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as every finite field extension of Fq is isomorphic to Fqn and as xq
n

= x for

all x ∈ Fqn , we see that (xq
n−1

) is a q’th root of x, hence every finite field
extension of Fq also satisfies the criteria of the lemma.

Proposition 6.2.3. Let X be as in the lemma above. If xi = (xi0, . . . , xid),
where 1 ≤ i ≤ pr + 1 = d form a basis for Ω(f), then yi = (xp

r

i0 , . . . , x
pr

id )
form a basis for EX(f).

Proof. We first show that the yi span EX(f). Let y ∈ EX(f), then by the
previous lemma we have y =

∑
rj(a

pr

j0, . . . a
pr

jd), (ajo, . . . , ajd) ∈ Ω(f) and
rj ∈ R for all j. As the xi form a basis for Ω(f), we can find ci ∈ R such
that we have (aj0, . . . , ajd) =

∑
cixi. The Frobenius endomorphism yields

(ap
r

jo , . . . , a
pr

jd) =
∑
cp

r

i (xp
r

i0 , . . . , x
pr

id ). This shows generation.
Linear independence of the yi follows from the fact that EX(f) is a free

module of rank pr over an integral domain.

From this we obtain a slightly weaker version of the isomorphism given
in (5.2.3), as we obtained this in Chapter 5 without needing all prth roots
in the base field k.

6.3 Computing the pullback along the rational nor-
mal curve

In Proposition 5.5.1 we used the following:

Lemma 6.3.1. Let f : P1
k → PNk be a rational normal curve in PNk of degree

N, then f∗ΩPN
k

∼= O(−N − 1)N .

Proof. We want to show that Ω(f) = ker(R(−N)N+1 (Fi)−→ R) is isomorphic
to R(−N − 1)N . We assume first that f is given by the N + 1 homogeneous
polynomials xN0 , x

N−1
0 x1, . . . , x

N
1 ∈ k[x0, x1]N . Let

y1 = (x0,−x1, 0, 0, . . . , 0), y2 = (0, x0,−x1, 0 . . . , 0), . . . ,

yn = (0, 0, 0, . . . , x0,−x1).

We see that the yi are linearly independent and generate Ω(f). Let M
be the matrix whose rows are the yi, By multiplying with M we get an
isomorphism R(−N − 1)N → Ω(f).

We now show the general case. As the Fi are a basis for k[x0, x1]N we
have an invertible matrix A such that A(F0, . . . FN )t = (xN0 , . . . x

N
1 )t. Then

the rows of MA form a basis for Ω(f) and the map R(−N − 1)N → Ω(f)
given by multiplication with MA is an isomorphism.
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6.4 A lower bound on the degree of a rational free
curve

We shall now show that in most cases there doesn’t exist a free curve of
degree less than 2pr on the degree d = pr+1 Fermat hypersurface X = Xd,d.
We shall start by giving a couple of lemmas and a corollary, which might be
considered as mere observations.

Lemma 6.4.1. Let f be a degree e rational curve on the Fermat hypersurface
X = Xd,N . Then the degree of f∗ΩPN

k
= −(N + 1)e.

Proof. We have the exact sequence

0→ ΩPN
k
→ OPN

k
(−1)N+1 → OPN

k
→ 0

pulling this back along f yields our result.

Lemma 6.4.2. Let f be a degree e rational curve on Xd,N . Let ei, fi denote
the splitting type of f∗ΩPN

k
and f∗(P1

X)∨ respectively. If f is free then ei ≥
−de
pr , with strict inequality if f is very free.

Proof. This immediately follows from Proposition 6.0.5.

Proposition 6.4.3. Let X = Xd,d ⊂ Pdk, d = pr + 1. The following state-
ments are true:

(1) There does not exist a free rational curve of degree pr+j for 1 < j < pr.

(2) Any free rational curve of degree d must be very free, moreover if f
is a very free rational curve of degree d,then f∗ΩPd

k
has splitting type

ei = −pr − 2 = −d− 1 for 1 ≤ i ≤ d.

(3) There does not exist a very free rational curve of degree pr.

(4) There does not exist a free curve of degree pr − 1 on X.

(5) There does not exist a very free rational curve of degree 2pr.

Proof. For (1) We denote the splitting type of f∗ΩPd
k
ei. By (6.4.2) we must

have ei ≥ −de
pr = −(pr + 1)(pr + j)/pr = −(pr + j + 1 + j/pr) in order for

this to be an integer we must have ei ≥ −(pr + j + 1). From this it follows
that

∑
ei ≥ −(pr + 1)(pr + j + 1). On the other hand by (6.4.1) we must

have
∑
ei = (−d − 1)(pr + j) = −(pr + 2)(pr + j) which will be less than

−(pr + 1)(pr + j + 1) unless j = 1.
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For (2) We see that by (6.4.2) we must have ei > −d2

pr = −pr − 2 − 1
pr ,

for each i, thus we must have ei ≥ −pr − 2. It follows that the ei must sum
to (−d− 1)d by (6.4.1). These two constraints together yield that we must
have ei = −pr − 2 = −(d+ 1) for i = 1, . . . , d.

For (3) We have ei > −(pr + 1)(pr)/pr = −(pr + 1), thus ei ≥ −pr.
However we must have

∑
ei = −(pr + 2)pr, which isn’t possible since the

rank of f∗ΩPd
k

is d = pr + 1, thus
∑
ei ≥ −(pr + 1)pr.

For (4) We must have ei ≥ −(pr + 1)(pr − 1)/pr = −pr + 1/pr, and from
this it follows that ei ≥ −pr + 1. From this it follows that

∑
ei ≥ −pr + 1.

However we must also have
∑
ei = (−pr− 2)(pr− 1) = −p2r−pr + 2, which

is strictly less than −pr + 1.

The last statement follows from arguments which we are now highly
familiar with.

Lemma 6.4.4. Let f : P1 → Xd,d be a rational curve of degree e defined
by homogeneous polynomials F0, . . . , Fd ∈ k[x0, x1]e. Let −e1, . . . ,−ed be the
splitting type of f∗ΩPd Then:

(1) ei ≥ e for all i.

(2) The Fi are linearly independent over k if and only if ei > e for all i.

Proof. We first recall that the kernel of f̃ : R(−e)d+1 → R, which we denoted
Ω(f) has the same splitting type as f∗ΩPd . Now as the morphism f̃ has trivial
kernel in all degrees lower than e, we see that all the ei ≥ e, for all i. This
proves (1).

For (2), we have that if the Fi are linearly independent, then Ω(f)e is
trivial, hence we must have ei > e for all i.

Conversely if the Fi are not linearly independent over k, then Ω(f)e is
not trivial, hence we must have some ei = e.

Proposition 6.4.5. Assume that pr > 2. Let X = Xd,d be the degree d =
pr+1 Fermat hypersurface in Pdk. This Fermat hypersurface does not contain
a very free rational curve of degree d = pr + 1.

Proof. Assume (for the sake of contradiction) that X has a very free curve

f of degree d, given by Fi =
∑
aijx

d−j
0 xj1 where 0 ≤ i ≤ d. By Lemma 6.4.1

and Lemma 6.4.2 we must have that f∗ΩPd
k

∼= ⊕di=1OP1
k
(−d− 1).

Now let M be the d + 1 × d + 1 matrix whose i, j′th entry is aij . From
Lemma 6.4.4 (2), we see that the matrix M must have full rank. Now by
setting k = mpr +2 in (4.0.2) for m = 0, 1, . . . , d, we must have l = 2, j = m

53



in order to obtain the equality jpr+ l = k,since pr > 2. From this we deduce
that

∑d
i=0 a

pr

ij ai2 = 0 for 0 ≤ j ≤ d. Now let M be the matrix (ap
r

ij ), it

follows that M has full rank, since det(M)p
r

= det((ap
r

ij ) by the Frobenius
endomorphism and M has full rank. This contradicts the fact that we must
have

(a02, . . . , ad2)M = (0, 0, . . . 0).

It can also be shown that if pr > 3 then Xd,d does not contain a free
rational curve of degree pr. The proof is similar to the one above, and it
is proved in detail for X5,5 in [Bri+13]. We summarize our results in a
theorem.

Theorem 6.4.6. Let X = Xd,d be the degree d = pr+1 Fermat hypersurface
in Pdk. If pr > 3 then Xd,d does not contain a free rational curve of degree
e < 2pr. Moreover if pr > 2, then X does not contain a very free rational
curve of degree e ≤ 2pr.

Proof. The case e < pr−1 follows from (5.7.4). The other cases follow from
Proposition 6.4.3, Proposition 6.4.5 and the comment above.

From (5.6.1) we know that the most interesting question for us is whether
Xd,d contains a very free rational curve, as if it does then Xd,N will also
contain a very free rational curve for all N ≥ d. Moreover (5.5.1) tells us
that it is interesting to see whether Xd,N contains a rational normal curve of
degree N , because then it will contain a very free rational curve. However
we have just seen that Xd,d does not contain a very free curve of degree
d, hence not a rational normal curve of degree d, thus we cannot hope to
obtain a very free curve in Xd,d by finding a rational normal curve of degree
d in X. We state this as a corollary.

Corollary 6.4.7. Let X = Xd,d be the degree d = pr + 1 Fermat hypersur-
face. Then X does not contain a rational normal curve of degree d.

6.5 A criterion

Lemma 6.5.1. Let f be as in Lemma 6.4.4. Let Ω(f) be as in the proof of
Lemma 6.4.4, so Ω(f) =

⊕d
i=1R(−ei). Assume that e1 ≤ e2 . . . ≤ ed. If the

degree e homogeneous polynomials that define f , F0, . . . , Fd ∈ k[x0, x1]e are
linearly independent, and h = dimk Ω(f)e+1 6= 0, then for all i ≤ h we have
ei = −(e+ 1).
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Proof. By Lemma 6.4.4 we have ei ≥ e+ 1 for all i, hence Ω(f) = R(−(e+
1))l ⊕di=s R(−es) where l is some non-negative integer possibly equal to 0,
s ≥ 1 where we set s = d+1 if all the ei = e+1, and use the convention that
indexing from an integer s to an integer d is the same as indexing through
the empty set if s > d. From this we see that Ω(f)e+1 = R(−(e+1))le+1 = kl,
thus dimk Ω(f)e+1 = l, but then l = h 6= 0 and we must have e1 = . . . =
eh = e+ 1.

We saw in Theorem 6.4.6 that a very free rational curve of degree less
that 2pr + 1 does not exist on most degree d = pr + 1 Fermat hypersurfaces
of the form Xd,d. Hence it will mostly be of interest to us studying the
rational curves on the Fermat hypersurface Xd,d of degree greater than or
equal to 2pr + 1. We shall now apply the results above to give a criteria for
when a rational curve of degree 2pr + 1 on the Fermat hypersurface is very
free.

Proposition 6.5.2. Let d = pr + 1. Let X = Xd,d be the degree d Fermat
hypersurface in Pdk. Further let f : P1

k → X be a rational curve of degree e =
2pr+1, given by d+1 homogeneous polynomials of degree e which we denote
F0, . . . , Fd ∈ k[x0, x1]e. Then f is very free if and only if dimk Ω(f)e+1 = 1.

Proof. By Lemma 6.4.2 and Lemma 6.4.1 it follows that f is very free if and
only if f∗ΩPd

k
has splitting type

− (2pr + 2),−(2pr + 3),−(2pr + 3), . . . ,−(2pr + 3). (6.5.1)

If f∗ΩPd
k

has splitting type −e1, . . . − ed where e1 < e2 ≤ . . . ed, then if

e1 = 2pr + 2, we see that all the other ei = 2pr + 3 by Lemma 6.4.1. Hence
the necessary and sufficient condition for f to be a very free rational curve
is that the smallest integer in the splitting type is equal to −(2pr + 2) and
all the other integers in the splitting type are less than this. By Lemma
6.4.4 we see that if f is very free then, the Fi must be linearly independent
over k, further from Lemma 6.5.1 we must have dimk Ω(f)e+1 = 1.

Conversely if dimk Ω(f)e+1 = 1, then we must have that the Fi are
linearly independent, otherwise Ω(f)e is non zero, hence we can find some
element m ∈ Ω(f)e, and x0m, x1m are two linearly independent vectors in
Ω(f)e+1 contradicting dimension 1. It now follows from Lemma 6.5.1 that
Ω(f) = R(−(e + 1)) ⊕di=2 R(−ei) where ei > 2pr + 2. Hence the necessary
and sufficient condition on the ei is satisfied, hence f is a very free rational
curve.
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We will now translate the content of the Proposition above to the lan-
guage of matrices.

Let f be a rational curve of degree e = 2pr+1 given by d+1 homogeneous
polynomials of degree e, F0, . . . Fd[x0, x1]e, where Fi =

∑2pr+1
j=0 aijx

2pr+1−j
0 xj1.

Let f̃ : R(−(2pr +1))d+1 → R be given by multiplication with (F0, . . . , Fd)
t.

Then we have Ω(f)2pr+2 = ker(f̃2pr+2), where f̃2pr+2 denotes the 2pr +
2′th graded piece of f̃ . By the rank theorem we have that ker(f̃2pr+2) +
rank(f̃2pr+2) = 2(d + 1) = 2(pr + 2) = 2pr + 4. Now as the target of this
morphism is R2pr+2 which has dimension 2pr+3, we see that dimk Ω(f) = 1
if and only if f̃2pr+2 is surjective. Hence f is very free if and only if the
matrix of f̃2pr+2 which we denote Af has full rank, that is if and only if Af
has rank 2pr + 3. We now explicitly write down the matrix:

Af =


a00 0 a10 0 · · · 0
a01 a00 a11 a10 · · · ad0
...

...
...

...
. . .

...
a02pr+1 a02pr a12pr+1 a12pr · · · ad2pr

0 a02pr+1 0 a12pr+1 · · · ad2pr+1

 (6.5.2)

We reformulate Proposition 6.5.2 in terms of the rank of Af .

Proposition 6.5.3. Let X = Xd,d be the degree d = pr + 1 and let f be a
rational curve on X given by F0, . . . , Fd ∈ k[x0, x1] where Fi is of the form∑2pr+1

j=0 aijx
2pr+1−j
0 xj1. Then f is very free if and only if the matrix Af given

in (6.5.2) has full rank.

We can translate this to a condition onMe, the space of degree e = 2pr+1
rational curves on X as follows:

Corollary 6.5.4. Let S be the set of 2pr + 3 minors of a matrix of the
form (6.5.2). Let U ′ = Pde+d+e

k \ V (S), and let U = U ′ ∩Me. If U has a
k-rational point, then X has a very free rational curve. If U is non-empty,
then U contains a closed point, and there exists a field extension K of k,
such that XK has a very free rational curve.
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Chapter 7

Ideas, observations and after
thoughts

7.1 Problems related to finding a very free ratio-
nal curve

Consider the Fermat hypersurface X5,5 over F2. By Theorem 6.4.6 the
smallest degree a very free rational curve on X5,5 can have is 2 · 4 + 1 = 9.
In the paper [Bri+13], the authors actually give a very free rational curve
on X5,5 over F2, by explicitly writing down the polynomials that define it.
As these polynomials have their coefficients in F2, it follows that they also
give a very free rational curve on X5,5 over F2.

In the light of Proposition 6.5.3, one might hope that one could program
a computer to check whether Xd,d has a very free rational curve of degree
2pr+1 for a given d = pr+1, by checking all possibilities. The problem is that
there quickly become way too many possible matrices of the form (6.5.2).
For instance if we want to naturally follow the X5,5 case up, by letting p = 3

and r = 2, then d = 10 and e = 19 and there are approximately
(

318

11

)
possible rational maps to P10

k , and one must check for each of these whether
it gives a map to X10,10 and whether the coefficients of the polynomials
definining this map satisfy the matrix criteria of Proposition 6.5.3.

The author of this thesis used Sage to write a class which consists of the
following methods:

• colelts: A recursive method which is used to create a list of all the
coefficients a homogeneous polynomial of degree e = 2pr + 1 can have
(the coefficients of a homogeneous polynomial is given as a list).
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• makepolynomials: This method takes a list of coefficients and returns
a list of homogeneous polynomials of equal degree e with the given
coefficients.

• listofpolynomials: This is a recursive method which generates a list
consisting of all lists C of d + 1 = pr + 2 elements, where C the
elements in C are polynomials.

• mapstoPN : Takes a list of d+ 1 polynomials and checks wheter these
polynomials have gcd = 1.

• isonfFermat : Checks if a morphism to Pdk also give a morphism to the
Fermathypersurface

• Containsveryfreerationalcurve: Uses the above methods to check wheter
the degree d Fermat hypersurface contains a very free rational curve
of degree e. This method finishes as soon as a very free rational curve
is found and returns the polynomials defining it.

The author of this theses hoped that the program above could find a
very free rational curve on X10,10, within reasonable time, however on all
attempts, the program timed out. Perhaps one can extract some information
from the equations given in Propostion 4.0.20 and use this to vastly decrease
the number of cases one has to check? The program was also not written
with parallelization in mind, perhaps if one paralellized the methods and ran
this on a super computer, we could get lucky and find a very free rational
curve?

7.2 Other hypersurfaces with partial derivatives
that are powers of linear forms

In the two previous chapters we use that

(P1
X)∨ ∼= (F ∗)rΩPN

k
⊗OX(pr + 1)

in several proofs, many of which follow directly from this isomorphism.
Hence a lot of this theory should be valid for other varieties satisfying this
isomorphism. We recall from the previous chapter that the aforementioned
isomorphism was obtained by identifying the kernel of a map given by mul-
tiplying with the partial derivatives of the polynomial defining the Fermat
hypersurface, with the kernel of the Euler exact sequence, after it had been
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pulled back by the Frobenius endomorphism r times. From this we see that
if another smooth hypersurface Y = V (F ) for some polynomial F of degree
pr + 1 such that the partial derivatives are pr powers of linear forms, then
(P1

Y )∨ ∼= (F ∗)rΩPN
k
⊗ OY (pr + 1), hence we could generalize a lot of the

theory developed in the two last chapters to any such hypersurface.
On the other hand a hypersurface whose derivates are pr powers of linear

forms may be isomorphic to a Fermat hypersurface. Consider for instance
the following example:

Example 7.2.1. Let N be an odd integer, and let q = pr, with p a prime
number different from 2. Consider the polynomial F in Fq[x0, . . . , xN ], given
by

F = X0X
q
N −XNX

q
0 +X1X

q
N−1−XN−1X

q
1 + . . .+Xq

N+1
2

XN−1
2
−Xq

N−1
2

XN+1
2

which can also be given as:

(
X0 X1 . . . XN

)
M


Xq

0

Xq
1

...
Xq
N


where M is the N + 1×N + 1 skew symmetric matrix (mij), where the only
nonzero entries in M are

m(N+1)−(j−1),j =

{
−1 if j ≤ N+1

2

1 if j > N+1
2

Now let y ∈ Fq2 \ Fq, and set z = y − yq. By the choice of y, it follows
that z 6= 0. Let C = zM ∈ GL(N + 1,Fq2) (where we consider M as a
matrix in GL(N + 1,Fq2)).

Following [BC66] we make the following conventions/definitions: Let
H = (hi,j) be an invertible matrix with entries in Fq2 .

(1) We let H(q) be (hqi,j).

(2) The matrix H is Hermitian if H(q) = HT .

(3) Assume that H is Hermitian, and let G be an other invertible Her-
mitian matrix with entries in Fq2 , we shall say that H and G are
equivalent, if there exists an invertible matrix A with entries in Fq2

such that ATHA(q) = G.
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Now looking back at our matrix C we see that it is Hermitian. Indeed we
have that (±z)q = ∓z. Since C is Herimitian it follows from Theorem 4.1
in [BC66], that C is equivalent to the identity matrix IN+1. From this we
gather that the hypersurface V (F ) = V (zF ) is isomorphic to the Fermat
hypersurface V (Xq+1

0 + . . .+Xq+1
N ) in PNFq2

1. It might be possible that the

Heisenberg hypersurface V (F ) and the Fermat hypersurface V (G), where G
is the homogeneous polynomial G = Xq+1

0 + . . . + V q+1
XN

, aren’t isomorphic
over Fq, as varieties can be in different isomorphism classes over some base
field, but become isomorphic over a bigger field. An example of this is
given in Remark 8.19 in [HKT08] where one considers the Fermat curve

V (X
√
q+1

0 + X
√
q+1

1 + X
√
q+1

2 ), where q = p2r, for a prime number p and

a positive number r, and the hypersurface V (X
√
q

0 X1 + X
√
q

1 X2 + X
√
q

2 X0)
which are not isomorphic over Fq but become isomorphic over Fq3 .

The example(s) given above suggest that the the degree d = pr+1 Fermat
hypersurface in PNk , where k is an algebraically closed field of characteristic
p, might be isomorphic to any hypersurface of degree d in PNk whose partial
derivatives are pr powers of linear forms. This is actually the case and it
is proved in [Bea90]. More precisely Beauville proves that if Y is some
hypersurface of some degree d in PNk , then Y is isomorphic to the Fermat
hypersurface Xd,N if an only if d−1 is a power of p and the partial derivatives
of Y are powers of linear forms. Even though we don’t necessarily have this
isomorphism over non closed fields, this still diminishes the appeal to pursue
the study of rational curves on such hypersurfaces further.

1This example was explained by S. Kleiman in the case N = 3, q = 2 at the workshop:
“ Workshop II: Tools from Algebraic Geometry, April 7-11, 2014” which was hosted by
IPAM UCLA.
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