DECIDABILITY OF THE ISOMORPHISM PROBLEM FOR
STATIONARY AF-ALGEBRAS
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ABSTRACT. The notion of isomorphism of stable AF-C*-algebras is considered
in this paper in the case when the corresponding Bratteli diagram is station-
ary, i.e., is associated with a single square primitive nonsingular incidence
matrix. C*-isomorphism induces an equivalence relation on these matrices,
called C*-equivalence, We show that the associated isomorphism equivalence
problem is decidable, i.e., there is an algorithm that can be used to check in
a finite number of steps whether two given primitive nonsingular matrices are
C*-equivalent or not.

INTRODUCTION

In [BJKR98] we studied isomorphism of the stable AF-algebras associated with
constant square primitive nonsingular incidence matrices. This isomorphism is
called C*-equivalence of the matrices in [BJKR98] and weak equivalence of the
(transposed) matrices in [SwV099]. In this paper we prove that the isomorphism
problem in this setting is decidable. This result was announced in {BJKR98], and
the result is interesting in view of the fact that the corresponding problem for
non-constant incidence matrices is undecidable [MuPa98]. That isomorphism is
decidable means that there is an algorithm that can be used to decide, in a finite
number of steps, whether two given primitive matrices are C*-equivalent or not.

Bratteli diagrams were introduced in [Bra72] with a view to understanding the
structure and the classification of those C*-algebras which arise as inductive limits
of finite-dimensional C*-algebras, the so-called AF-algebras. In fact, the equiva-
lence relation on Bratteli diagrams which is generated by the operation of tele-
scoping is a complete C*-isomorphism invariant for the AF-algebras; see [BJO99,
Remark 5.6]. It is the decidability of this isomorphism problem in the case of sta-
tionary Bratteli diagrams which is our main result here. The diagrams are called
stationary if the incidence matrix is constant; in the general case it is not constant,
but varies from one level to the next. However, it was the stationary class of AF-
algebras which came from the problem addressed in [BJO99], and while special, this
subfamily is still general enough for the study of substitution dynamical systems, as
noted below and in [DHS99]. These systems have significance in formal languages,
quasi-crystals, aperiodic tilings of the plane [Rad96], and p-recognizable sets of
numbers, see [DHS99] for more background. Hence the classification we address
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here has some bearing not only on the original setting of AF-algebras, but also on
recent developments in dynamical systems. For a survey of other dynamical system
classifications related to more standard shifts than those considered in [DHS99],
and the relation of our present classification to these, see [BJKR98]. In particular,
it is explained in [BJKR98] that the notion of C*-equivalence of two primitive non-
singular matrices is strictly weaker than shift equivalence, strong shift equivalence,
or elementary shift equivalence. Specifically, formula (1.2) below shows that C*-
equivalence may be expressed also as a certain system of matrix factorizations, but
these conditions for C*-equivalence are less restrictive than those which define shift
equivalence. This means that some techniques which are common in the study of
shift equivalence, see, e.g., [BMT87], are also common in the study of isomorphism
of C*-algebras. The dimension group is one such tool, see [El76], [Eff81].

Our approach is partly based on studying isomorphism of ordered dimension
groups (the order is essentiall). We introduce those groups in (1.6)—(1.11), and
we formulate the associated isomorphism problem. We then go on to prove that
this problem is decidable, in Theorem 4.9. After decidability, the next question
is a presentation of the answer in terms of numerical invariants. We take this up
in Sections 5-8, which are a continuation of [BJO99]. Here the answers are not
yet complete, so we present in Section 5 (Proposition 5.1 and Corollary 5.2) a
subclass of incidence matrices for which the C*-equivalence question is decided by
the value of a numerical invariant. . The matrices A in the subclass allow a direct-
sum decomposition, A = Ag @ (A), such that Ap is unimodular up to sign, and
(A) is multiplication by the Perron~Frobenius eigenvalue A on the one-dimensional
subspace spanned by the right Perron-Frobenius eigenvector. This property is
equivalent to |det A| = A.

Section 7 and Section 10 address symmetry properties, pointing out that there
are nonsymmetric primitive incidence matrices A which are C*-equivalent to A,
the transposed matrix. But even in the 2-by-2 case, there are also examples where
A and A' are not C*-equivalent. The related symmetry question for shift equiva-
lence comes from the issue of reversibility for topological Markov chains, which was
studied in [PaTu82] and [CuKr80].

While the dimension group G (A) associated with an incidence matrix A is
torsion-free, it has a certain torsion group quotient G (A) /L by a lattice L in
G (A). This quotient is natural in the sense that it is an invariant. It is well known
that abelian torsion groups have explicitly computable and complete numerical in-
variants, and these invariants are thus also invariants for the dimension group (but
not complete because they do not reflect order and some of the group structure).
In this case they take an especially simple form, and they can be read off from
the characteristic polynomial. This is proved in Section 8. Section 9 shows that
the general case where A is primitive may be reduced to the more manageable one
where a certain reduced version of A is both primitive and nonsingular. Section 10
presents a formulation of C*-equivalence for matrices A, B in terms of a certain
explicit matrix factorization B = CAD, where the two factors C, D are specified
in the statement of the result, Theorem 10.2.

1. EQUIVALENT ISOMORPHISM CONDITIONS

Recall from [BJKR98] that two matrices A, B with nonnegative integer matrix
entries are said to be C*-equivalent if there exist two sequences ni,ns,... and
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my, My, ... of natural numbers and two sequences of matrices J (1),J(2),... and

K (1),K (2),... with nonnegative integer matrix entries such that the diagram
(1.1) below commutes.
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The diagram expresses the following two identities:
(1.2) A = K (k) J (k), B™ =J(k+1)K(k),

for k = 1,2,.... This corresponds to isomorphism of the associated stable AF-
algebras [BJKR98, Bra72], and it corresponds to homeomorphism of one-dimen-
sional connected orientable hyperbolic attractors of diffeomorphisms of manifolds by
[Jac9T]; see also [SwV099]. We will assume throughout that A and B are primitive
square matrices (i.e., sufficiently high powers have only strictly positive matrix
entries) and that A and B are nonsingular, and hence C*-equivalence implies that
they have the same dimension N, because N is the rank of the associated dimension
group [BJO99]. (We will show in Theorem 9.3 that the class of AF-algebras we
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obtain in this manner will be exactly the same if A and B are merely required to be
primitive but not necessarily nonsingular, but then N is no longer necessarily the
rank, and some arguments become more complicated). In this case we note that
J (1) and the sequences ni, ... and my, ... determine all other K (k) and J (j) from
(1.1),ie.,

K(1)=Amg 1),
J(2)=B™J(1)4A™™,

(1.3) K (2) =AMt g (1)7 BT™,
J(8) = BmMtma (1) A= ns,

etc. If n is a nonzero integer, let Prim (n) denote the set of prime factors of n.
Then (1.2) implies

(1.4) Prim (det (A)) = Prim (det (B)),
and thus (1.3) implies
(1.5) Prim (det (J (1))) C Prim (det (A)) = Prim (det (B)) .

Thus a necessary and sufficient condition for C*-equivalence of two primitive,
nonsingular N x N matrices A, B with nonnegative integer matrix entries, is the
existence of a (necessarily nonsingular) matrix J (1) with nonnegative integer ma-
trix entries and sequences ny,n2,... and my, my,... of natural numbers such that
the matrices K (1),J(2), ... defined by (1.3) have positive integer matrix entries.

Another way of formulating this is in terms of dimension groups (see [Bla86,
Eff81] for details). Let G (A) be the inductive limit of the sequence

(1.6) ZN A, N A 7N
of free abelian groups with order generated by the order defined on each ZN by
(1.7) (my,...,my) >0 <= m >0, i=1,...,N.

Since we assume det A # 0, we may realize G (A) concretely as a subgroup of QV
as follows: Put

(1.8) Gn (A) = A (ZV),
and equip G, (A) with the order
(1.9) GE(A) = A" ((ZN)+) .
Then Gy C G1 C G5 C -+ and we define
(1.10) G(A) =] GCn

n=0

with the order defined by
(1.11) g>0 if and only if g > 0 in some G, (4).
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Then one fundamental characterization of C*-equivalence is that there exists a
(necessarily nonsingular) matrix J (1) in My (Q) such that

(1.12) J(1)G(A) = G(B)
and
(1.13) J(1)G* (4) = Gt (B);

see [BJO99, Proposition 11.7]. The 1-1 correspondence between group isomorphism
0 and matrix J referred to in [BJO99] is as follows: If a matrix J = J (1) is
specified as above, then 8: G (A) — G (B), given by 0 (9) = Jg, g € G (4), will
be an isomorphism. Here the product Jg is matrix multiplication, and each g is
viewed as a column vector. Conversely, the observation in [BJO99] is that every
isomorphism arises this way. This can also be formulated in other ways, as we shall
presently do.

If A is a given primitive N x N matrix, let A 4) denote its Perron-Frobenius
eigenvalue, and let v (4) denote a corresponding left (row) eigenvector with strictly
positive components and w (A) a corresponding right (column) eigenvector with
strictly positive components, and in both cases use a normalization such that the
components are contained in the field Q [)\( A)]. Define V (A) as the orthogonal
complement of v (A). Then V (A) is an N — 1-dimensional vector space of column
vectors which will sometimes be referred to as the linear span of the nonmaximal
eigenvectors of A. Thus

(1.14) v(A) A= XAayv(4), Aw(A) = Aa)w(4), and

(v (A) |V (4)) = {0}, (v(4)|w(A4)) € Q[A4)] N (0,00).
In particular, A leaves V (A) invariant, for if u € V (A), then
(1.15) (0(4) | 40) = {0 (4) A]4) = Aay 0 (A4) |0} = 0,

and it follows that Au € V (A4). The same argument applies to the matrix J from
(1.16) below. It shows that any J satisfying (1.16) must map V (A) onto V (B);
ie., JV(A) = V(B). The number (v (A)|w(4)) from (1.14) plays an important
role in the discussion of the isomorphism problem here (Section 5) and in [BJO99].
Let us mention an alternative form of the isomorphism criterion (1.12)~(1.13),
formulated in [BJO99, Proposition 11.7]. Two primitive nonsingular N x N matrices
A, B with positive integer matrix entries are C*-equivalent if and only if there is a
nonsingular N x N matrix J = J (1) in My (Z) satisfying the two conditions:

(1.16) v(B)J = pv (4) for some p € (0,00),

(1.17) for all n € N, there is an m € N such that
B™JA™™ and A™J !B~ both have integer matrix entries;

and then J~! has matrix entries in Z [1/ det (A)] = Z [1/ det (B)]. It suffices to as-
sume that J € GL (N, R), but then (1.17) forces J, J~1 to lie in My (Z [1/ det A]) =
Mpy (Z[1/ det B]). So J is not unique: one may, for example, replace the given J
with B®JA™™ for any m,n € NU {0}. By choosing m large enough, one may
assure that B™J has integer matrix entries, and choosing it even larger one may
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also assure that these entries are positive, and in fact (1.16) may be replaced by
the condition

(1.16) J has positive matrix entries.

(But again, a given J may satisfy (1.16)—(1.17) without having positive or integer
matrix entries.) The combined two conditions (1.16), (1.17) are equivalent to the
two conditions (1.16), (1.17), and to (1.12), (1.13). For this one uses Perron-
Frobenius theory: asymptotically when m — oo, B™ behaves like /\E%) times the
projection onto w (B), and w (B) has strictly positive components.

In the two conditions (1.16)—(1.17) on J, positivity of the matrix entries is just
hidden away in the first of the subconditions. However, from (1.1), one may merge
the two conditions into the joint condition: There is a nonsingular N x N matrix
J = J(1) in My (Z) such that,

(1.18) for all n € N, there is an m € N such that

B™JA™™ and A™J"!B~" both have positive integer matrix entries.

Thus the single condition (1.18) is equivalent to each of the three pairs of conditions
(1.12)—(1.13), (1.16)'—(1.17), and (1.16)—(1.17).

Let us record a fact which was not mentioned in [BJO99], namely that the m in
(1.18) can be taken to depend linearly on n:

Proposition 1.1. Let A, B be nonsingular primitive N x N matrices with positive
integer matriz entries, and assume that there is a nonsingular matriz J € GL (N, R)
such that (1.18) holds. It follows that there exists a positive integer k and an integer
! such that

(1.19)  for all positive integers n, the matrices
BFnH g A=" and At 1 B" both have positive integer matriz entries.

Proof. To show the existence of k, | giving positivity we may modify the proof of
Theorem 6 in [BJKR98] so as to make some specific estimates, i.e., we show that
if a solution to (1.1) exists, then the sequences n;, m; may be taken to grow at
most linearly. Let A1, A2 be the maximum eigenvalues of B, A, and A3 be the
largest absolute value of any other eigenvalue, A4 the largest absolute value of the
reciprocal of any eigenvalue. Consider B™JA~™. Using the above-mentioned (see
(1.14)) two invariant complex vector-space (column vectors) decompositions

(1.20) VN =V(A)@®Cw(4) and C¥ =V (B)oCw(B),

we note that the contribution of the maximum eigenvector in (JA™") will be at
least CA;™ for some positive C. When we multiply it by B™ we get AT*CA;™. The
largest magnitude of any other term will be some AFC;AL. We want the former
terms to dominate the sum of all the others, say to be N? times the largest, where
N is the dimension of the matrices. Take logarithms, and we want

(1.21) mlog A +log C —nlog Az > mlog s +log (C1N?) + nlog A4
or rearranged equivalently as

(1.22) m (log A1 — logA3) > —log C +log (C1N?) + n (log X2 + log Ag) .
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Then some arithmetic progression where the ratio of m to n exceeds

log Mg + log A4

2
(1.23) log Ay — log A3

will give the domination.

Consider denominators which involve some algebraic prime p. For simplicity
extend the coefficient field and assume we can diagonalize the matrices (the case
of a standard Jordan form can be treated similarly). The maximum denominator
in A™" is p~*" for some constant k, which for instance can be worked out from
the determinant. Then consider the entries in B®JA™™. They will be sums of
constants from the diagonalizing matrices times m powers of the eigenvalues of B,
Le., ), ¢;A*. The eigenvalues only involve nonnegative powers of p, since they are
algebraic integers.

The terms in this sum for eigenvalues not divisible by p must add up to be an
integer at the prime p: otherwise, no very large powers m could make the total an
integer. For the other terms, as soon as m exceeds nk plus the degrees of constants
arising from diagonalization process, we will have algebraic integers. O

There is another general observation about solving for J and K in (1.2), with A
and B given, which motivates the p-adic analysis to follow. The identities (1.2) are
quadratic. Since the matrix entries on the left are all integral, solving for J and
K is therefore a quadratic diophantine problem in the sense of [BoSh66, Ch. 1]:
We thus have a system of quadratic equations in the respective matrix entries of
J and K, and the result in [BoSh66] amounts to the assertion that the solution to
a quadratic diophantine problem is equivalent to instead solving a finite system of
related p-adic congruences, but for all p. Hence, in the following, we will be stating
criteria for C*-equivalence in terms of p-adic conditions. We will specify for which
p we need the conditions, for example in Corollary 3.2, and we will show that there
are finite algorithms for deciding the problem.

It seems to be difficult to convert Proposition 1.1 into an effective decision pro-
cedure for isomorphism, since J is not unique, and hence it is difficult to obtain a
priori estimates on the norm of J and on the coefficients &k and [. Instead we will
turn to the completely different method developed in [KiRo88], which is described
in the previous paragraph and in Section 4. Instead of starting with an explicit
norm estimate on J, we reduce the problem to a collection of congruences and norm
restrictions which are decidable by Lemma 4.1.

The simple-minded way of determining the dimension group from (1.8)-(1.11)
is to take the algebraic extension of Q determined by all the roots of the charac-
teristic equation of A, write A in Smith-Jordan form [New72], and then compute
U,A4a™™ (ZN ) in the new basis. Vestiges of this approach appear in our argument,
but instead of using the complete Jordan form we merely use a reduction to block-
diagonal form where the blocks correspond to eigenspaces, first when we determine
the subspaces which a rational matrix Jo has to preserve, and then in studying the
matrix giving the difference of the actual matrix J from Jy.

The ordered dimension groups historically came from the AF-C*-algebra clas-
sification problem [Bra72], but have now come to play a role also in dynamical
systems, see, e.g., [Kit98]. Consider, for example, a substitution dynamical system
o (letters to words) derived from a given alphabet S of size N. For 4,5 € S, let
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aij count the number of occurrences of 7 in the word o(j), resulting from the sub-
stitution o, and let A be the corresponding matrix with group G(A4) (see (1.10)).
In [DHS99], the co-authors use G(A) in their classification of these systems, which
may also be realized as shift dynamical systems on the paths in the corresponding
Bratteli diagrams.

There are some general blanket references which we will use throughout the paper
without always citing them explicitly: [PoZa97] on algorithms of algebraic number
theory, [New72] on integral matrices and their factorizations, and [Kit98], [Wag99]
on symbolic dynamics. The references represent diverse areas of mathematics which
are not always thought to be directly related. But the proofs to follow fall at the
interface of techniques from these different subjects. For that reason, we include
a bit more detail and discussion than is customary in a paper which does not cut
across boundaries between fields.

2. SUBSPACE STRUCTURE AND LOCALIZATION

In this section we will analyze the structure of subspaces of C¥ which are mapped
into each other by a possible intertwiner matrix J € My (Z). One general idea is
the following: Consider a certain subset D4 of G4 which is defined by a property
which is invariant under group isomorphism. Then

(21) DA = {g S G I Eln)nly"'anm € Z; g1,---,9m EDA > ng = Z;r;ln‘igi}
= “the subgroup of G linearly spanned by D4”

is a subgroup of G. If Gp is another subgroup of CV, and Gp = JGa, and Dp
and Dp are defined as above for Gg, we must have

(2.2) Dp=JDs, Dp=JDa,
and hence
(2.3) JRD, = RDg.

This idea was much exploited in [BJO99] on the subgroups
(24) Dm (Ga) =(),m'Ga

= the set of elements of G4 which are infinitely divisible by m,

and we will soon give an example of this in a more general setting than in [BJO99].
Note in particular that if m is a rational eigenvalue of A, then m is an integer since
the characteristic equation of A is monic, and hence Dy, (G4) is nonzero and gives
nontrivial information about J. We would like to exploit this idea also when A is an
irrational eigenvalue of A, but since G4 C Z[1/ |[det AN, G4 then clearly does not
contain eigenvectors of A. To remedy this situation, we may augment or localize G4
and G by equipping them with coeflicients outside Z, i.e., by considering tensor
products

(2.5) Ga=E®G4s, Gp=E®GSs,

where E is any Z-module, and then J still defines an isomorphism between Ga
and Gg. One then tries to choose E to optimize the information about subspaces.
In [BJOY9] this remedy was used with F finite cyclic groups, but one may use
p-adic numbers, or, as we will also do, various finite algebraic extensions of Z.
Which extension is used has to be fine-tuned to the problem. For example, if £ =




THE ISOMORPHISM PROBLEM FOR STATIONARY AF-ALGEBRAS 9

Z[1/ |det Al], then G4 = Z[1/ |det AI]N, and all information about G4 disappears
(except for its rank and the prime factors of |det A[, which both are invariants).
Similarly, if A is an algebraic integer which is a unit, i.e., is such that the constant
term in its minimal polynomial is 1, then A~* € Z[)\], and hence all elements
of Z [\] ® G4 are divisible by A, and no information on the subspace structure is
obtained. One useful choice of E is based on Theorem 10 in [BJKR98]: If G4 and
Gp are isomorphic and A4y and A(p) are the Perron-Frobenius eigenvalues of A
and B, then the fields Q [/\(A)] and Q [/\(B)] are the same, and A(4) and A(p) are
the products of the same primes over this field. A prime in this context means a
prime ideal in the associated subring O [A] of algebraic integers, i.e., O[] is the
ring of all elements of @ [\] which satisfy equations in monic polynomials over Z,
so that

(2.6) ZNCONCQP].
Recall that an ideal Z in a ring is a prime ideal if whenever Z = 7175 for two ideals

Ty, Iy, then T = T; or T = Z5. One useful choice for % is thus O [/\(A)] =0 [/\(B)].
One other choice we shall use is

(27) Q:@[)\ly-~~;)\N;ﬂ1)---;ﬂN];

where A1,..., AN, p1,...,un are the respective roots in C of the characteristic
equations of A and B:

(2.8) det (AL — A) =0, det (u1 — B) = 0.

3. p-ADIC CHARACTERIZATION OF J

We have already given several characterizations of the intertwiner J more or
less in terms of the dimension groups G (4), G (B), ie., (1.1), ((1.16) & (1.17)),
((1.16)" & (1.17)), and (1.18). Here G4 and Gp are defined in terms of asymptotic
properties of A=" and B~" as n — co. We will now give an exposition of another
property of J given in terms of asymptotic properties of the positive powers A"
and B" as n — c0. Since n — AZY is decreasing, and

(3.1) (A"zZN = {m e ZV | g (4) m = 0}

by [BJO9Y9, Proposition 12.1], where ¢ (¢) is the product of those irreducible (over
Z) factors of det (t1 — A) which have constant term %1, the lattices (), AZY
give very little information except that J has to map (), A®Z" onto (), B"Z".
However, if one replaces these intersections by p-adic limits, one can say much more.
Recall that if p € {2,3,5,7,11,...} is an ordinary prime, the ring of p-adic integers
Zpy is the projective limit

(3.2) 0 ¢ Zp P Zopo 2= Zps — -+ — Zgp),

where the left maps are multiplication by p. It can be equipped with a topology
making it into a compact totally disconnected ring. This is in fact the topology the
additive group Z) has as a dual group to Zp~ viewed as the inductive limit of the
discrete groups

(3.3) 0 Zp > Zpr — Lips % -+ — Lipes,

where the injections come from the standard realization of Zpe = Z[1/p]/7Z as
a subgroup of the circle group T; see [Kob84], [Ser79], [Ser98]. Koblitz uses the
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terminology Zj for the p-adic integers, our Z,), while we reserve Z,, for Z /pZ. Other
authors, e.g., [BoSh66], use O, for the p-adic integers. In the duality consideration
of the two groups Z) and Zpe of (3.2)—(3.3), we use the duality notion of locally
compact abelian groups, e.g., Zpe is realized as the group of continuous characters
on Z), and conversely, Z ) acts as the group of all characters on Zpe. Now Ly is
a ring and thus a Z-module, but it is not a field: If ¢ is an integer, then 1/q € Z,
if and only if ¢ is mutually prime with p. However, Z [1/p] ® Z) = Q) is a field
called the p-adic numbers.

Now if A € My (Z) is a matrix, we may view A as a matrix with matrix entries
in Z), and we may associate a unique idempotent

(3-4) Eg) (4) = E (A) € My (Z())

with A by using the following presumably known lemma (we did not find a refer-
ence).

Lemma 3.1. If A € My (Z/qZ) for a q € Z, then the semigroup { A, A%, A3, .. -}
contains an idempotent E. This idempotent is unique, and {n | A® = E'} is a sub-
semigroup of N.

Proof. Since My (Z/qZ) is finite, there is an mo € N and an ng € N such that
Arotme = Amo_ (Qur convention throughout for the natural numbers is N =
{0,1,2,...}.) But then A%*™ = A™ for all m > mq and thus A*¥mo+™ = A™
for all & € N. Choose k such that kng > mg and put m = kng. This gives
(Ak"°)2 = Akno 50 A*M0 is idempotent.

If A and A™ are idempotents, then A" = (A™)™ = (A™)" = A™, so the
idempotent is unique. If it is called FE, then if A" = A™ = E, then A™™ =
E.E=E, so{n|A™ = E} is a semigroup. O

We now turn to some of the uses of the p-adic analysis.
Fix a prime p, and let e (m) be an increasing sequence of integers such that Ac(m)
is an idempotent modulo p™ in My,

2
(3.5) (Ae(m>) = A%™)  mod p™ My (Z).

This sequence exists because of Lemma 3.1, and by thinning out the sequence, and
using Lemma 3.1 again, we may also assume

2
(3.6) (B*™)" = B mod p™ My (Z).
But by the uniqueness of the idempotent, it follows that
(3.7) m' > m=> A°(™) = 45"} mod p™,
and hence
1 e(m)
(3.8) Eypy (4) = "}1_1)2014

exists in My (Z(p)), and E,) (A) is an idempotent matrix. Correspondingly, E,) (B)
is an idempotent matrix. Write (1.17) in the form

(3.9) B™J = K, A",
(3.10) A™ = L,B"J.
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Since Zg) is compact (and metrizable), it follows that there is a subsequence of
n — oo such that lim, K, = K and lim, L, = L exist in My (Z(p)), and we get
from the relations above that

(3.11) Ep) (B)J = I{E(p) (A),
(3.12) E(p) (A) = LE(p) (B) J.

Now define the Z)-eventual row space G(p) (A) of A as the linear combinations
over Z) of the row-vectors of E(y) (A), and similarly for E) (B). Then (3.11) and
(3.12) together say that

(3.13) Gp)(B)J =Gy (4).

Thus (3.13) holds for any prime p. But conversely, by taking p-adic limits as in
the proof of Theorem 7 in [BJKR98], if (3.13) holds for all primes p in the set
Prim (det (4)) = Prim (det (B)), then we can recover (1.17). Thus

(8.13) Gy (B)J =Gy (4) for all p € Prim (det (4)) = Prim (det (B))

is equivalent to (1.17) (the equivalence of (1.17) and (3.13)' is Theorem 7 in
[BJKR98]). The details supplied above expand on the arguments from [BJKR98],
which were somewhat terse.

What makes this particularly useful for the decidability problem is that any
countably generated torsion-free module over the p-adic integers has a trivial struc-
ture: such a module is merely a direct sum of replicas of the p-adic numbers or
the p-adic integers ([Pru25]; see also [KaMab1]). The total number of direct sum-
mands in Gy (B) and G(p) (4) is bounded by the rank N of A or B. This makes
it possible to decide whether or not J exists with the property (3.13) for each p,
but the remaining problem is to find a joint J for all p in Prim (A) and to ensure
the positivity property (1.16). Note that in our setting we have G, (A) € Zg) by
construction as p-adic limits of integer vectors, and hence G() (A) cannot contain
any element which is infinitely divisible by p, and thus G ) (A) as a Zgy-module is
just a direct sum of at most N copies of Z,) (no direct summand Q) can occur).
However, be warned, since Z) is not a field, this is not as useful as knowing that
a vector space (over a field) has a certain dimension, since the usual operations
of change of basis, etc., cannot be performed within the ring Z). In particular,
(3.13) says much more than that the p-adic row spaces have the same rank. To
emphasize this, let us cast Theorem 7 in [BJKR98] in a somewhat different, but
equivalent, form:

Corollary 3.2. In order that the unordered dimension groups |J, A—"ZN and
U, B™"ZYN associated with a pair of nonsingular mairices A, B be isomorphic,
it is necessary and sufficient that Prim (det (A)) = Prim (det (B)), and that there
ezists a nonsingular matriz J € GL (N, Z [1/det (A)]) (i.e., the matriz entries of J
are in Z [L/ det (J)] and det (J) is invertible in the ring Z 1/ det (J)]) such that

(3.14) Gy (B) J = Gp) (4)

for each prime p € Prim (det (4)).




12 OLA BRATTELIL, PALLE E. T. JORGENSEN, KI HANG KIM, AND FRED ROUSH

4, DECIDABILITY OF C*-EQUIVALENCE

In this section we will prove that the problem of finding an integer matrix
J = J (1), satisfying any of the equivalent conditions (1.12)—(1.13), (1.16)—(1.17),
(1.16)'—(1.17), (1.18), (1.19), (3.13)’ together with positivity, is decidable. In these
considerations, positivity will only play a minor role, but instead we will, as par-
tially explained in Section 2, work in various algebraic extensions R of Z. The idea
is roughly that if J satisfies (1.12):

(4.1) J(1)G(4) =G (B),
then J (1) also satisfies
(4.2) J(1) (R®z G (4)) = R®z (G(B)),

and, conversely, if (4.2) has no solution J (1) € My (R), then (4.1) certainly has no
solution, and this can be used to decide absence of C*-equivalence.

The operator J must preserve Galois conjugation on the maximal eigenspace.
The conditions (4.1)—(4.2) amount to having a linear mapping which preserves a
lattice of subspaces defined by a lattice of basis elements over an extension field,
having only specified primes in its determinant, and satisfying congruences. In
addition we can multiply the matrix J (1) by powers of A, B which can automati-
cally make it divisible by any power of 7 at the m-eigenspace. We will show these
conditions are decidable.

By congruences, we mean that a finite set of vectors over a ring R has its image
modulo some ideal I to lie in a specified finite set where R/I is finite: in particular
any Boolean or logical combination of congruences is a set of congruences. We can
test congruences by testing each element of this set of residue classes.

Over the integers, a matrix which preserves a sequence of rational subspaces
in a direct sum decomposition can be conjugated into a block-triangular form, by
taking bases over the integers corresponding to the sequence of subspaces [New72].
Every subgroup of a free abelian group is free, and a finitely generated subgroup
is a summand if and only if it has no elements which are not divisible by a prime
p in it but are divisible in the total group [Kap69]. However, an integer matrix
which preserves a sequence of rational subspaces in a direct sum decomposition
cannot always be conjugated further to be block-diagonal over the integers without
introducing fractions.

In an algebraic number ring, some finite, computable power of any ideal (the
order of the class group [Ser79]) will be principal. This means that congruences to
a modulus which is an ideal, or fractions whose denominators lie in an ideal, can
be restated as congruences to a modulus which is an element, or fractions whose
denominators divide a power of some element. Thus we need only to consider ideals
(m) generated by a single element m € € in the following lemma.

Lemma 4.1. Let Q be an algebraic number ring with quotient field F, and let my,
me be relatively prime elements of Q, i.e., (m1)+(ma) = Q. Let f € F be relatively
prime to my also. Let CC[ma, ma, f] be the following set of congruence classes of
matrices M :

(4.3) CClmyi,ma, f]={M (mod my)|M € Mn(Q2[1/m2]) and
there exists an © € Q[1/mz] such that 1/z € Q[1/ms] and det (M) = fa}.
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In words, CC [my, mg, f] is the set of modulo-my reductions of matrices M over F
whose entries m;; can be expressed as fractions of elements of {) whose denomina-
tors divide a power of mo and such that the determinant of M is a product of units
and powers of primes dividing my and f.

It follows that there is a finite algorithm to determine the finite set CC[my, my, f).

Remark 4.2. The set CC[m1,ma, f] is finite since my is invertible modulo m;.
It is a subset of My (£2/(m1)), and the quotient ring Q/ (m1) is finite. That an
algorithm determines something means that the algorithm always gives the correct
answer in a finite number of steps.

Proof of Lemma 4.1. We will first put the matrix M (mod m1) into a standard
diagonal form, where each main-diagonal entry divides the next, using elementary
matrices (row and column operations). Note that we can assemble factorizations
modulo separate primes using a form of the Chinese remainder theorem (making
each elementary matrix off-diagonal to be divisible by a power of all but one prime
of my). And moreover an elementary matrix over the quotient ring Q/m1Q lifts to
an elementary matrix over {2, since any element of the quotient ring lifts.

Products of elementary matrices will give all permutations, except that we may
have to introduce a negative sign to allow for the determinant being 1. We may
use row and column operations to produce the sequence of matrices below:

» 6 G (o)

Now we use the standard procedures involved in determining torsion numbers,
locally at each prime. We find some entry divisible by a minimal power of the
prime and put it in the (1,1) matrix entry location, and use it to clear out its row
and column; and then work on the submatrix obtained by deleting these.

Thus by elementary operations on M, we can put the matrix M (mod m;) into
the prescribed diagonal form, say with main-diagonal entries d;;, each dividing the
next. Now we may state the condition, that a matrix modulo m; in this form is
the reduction of a matrix over Q[1/mg]: there must be elements of the latter ring
ri; reducing to d;; modulo my, and such that the determinant has the correct form
modulo (mjlv , My Hllv"l 7). This criterion is decidable, since it depends only on
congruences modulo m{, including a knowledge of the multiplicative units of the
ring to this modulus.

The criterion is necessary, since if a matrix has the given form, its determinant
is determined modulo (mjlv ,my Hllv_l 7ii). We consider the fact that each entry
can vary only by multiples of m;, hence the effect of changing any entry will be to
change the determinant by a multiple of the minor of this entry. At any prime p,
the p-part of each term in a minor (times m;) must be at least this great, and this
amount is realized when the (N, N) entry is chosen, and the specific term in the
minor is the product of the other diagonal entries.

Finally we will show sufficiency. Choose numbers m;; with the given reductions.
At each prime p|m; we may alter the (N, N) entry by a multiple of m; and high pow-
ers of other primes to alter the determinant by any multiple of (m{’, m; Hjlv_l i)
modulo m¥. For this, we want that det(M) is correct modulo m?'; this is linear in
mpyp, and in the coefficient of mpyy the lowest powers of all primes in my occur in
the term Hf\:ll m;;, so that we can adjust by any multiple of its greatest common




14 OLA BRATTELI, PALLE E. T. JORGENSEN, KI HANG KIM, AND FRED ROUSH

divisor with m{’. Now we have a diagonal matrix with the right determinant mod-

ulo mjlv. Now if we make m;;43 =mq, i =1,2,..., N —1, and make my1 = smy
we alter the determinant by any multiple smY¥ and hence make it to have exactly
the right form. O

We next describe the algebra of endomorphisms which preserves a collection of
subspaces like the ones here.

Definition 4.3. Let A, B be matrices with rational matrix elements. Let K denote
the field generated by the eigenvalues of A and B. Assume that A and B act on
vector spaces V, W over ). Let R be a subring of K. Then A and B act in a
natural manner-on V ®g R and W ®g R respectively. Then DGI(A, B, R) denotes
the additive group of R-homomorphisms J (1) from V @ R to W ® R such that

() the direct sum of all nonmaximal eigenspaces is preserved,

(B) for each algebraic prime 7 of K which divides an eigenvalue, J (1) preserves
the span of the eigenspaces E (w) whose eigenvalues are divisible by =,

(v) the 0-eigenspaces are preserved.

We shall use the abbreviation DGI, for “dimension group isomorphisms”, although
“dimension group pre-isomorphisms” would be a more accurate description.

Note that DGI(A, B, R) really depends on A, B and not merely on V, W,
because the eigenspaces and eigenvalues of A and B occur in these conditions.
Then our criterion for a dimension group isomorphism says that there is such a
map J(1) defined over Z with the following additional properties (we identify J (1)
with the map it defines on various sub- and quotient-modules):

(1) J(1) is nonzero modulo the nonmaximal eigenspaces (which can be ensured
by congruences relatively prime to ),
(ii) on the quotient V/E (m) the determinant of J (1) is relatively prime to 7,
(iii) the determinant of J (1) is divisible only by primes 7| det(A) det(B), restricted
to the nonzero eigenspaces.

Here (i), (ii) are congruence conditions and (iii) is a determinant condition; these
will be transformed a little so that they become the basic criteria whose satisfiability
we must decide. By linear algebra [New72] we find a nonsingular map Jo over the
rational numbers satisfying the first three conditions (a)—(7), if it exists, from V'
to W, and then a general hypothetical map must differ from Jy by a map J, in
DGI(4,A,Q): J(1) = JoJs. Replace Jy by some coJo, co € Q, so that Ite
My (Z), where My (R) is the algebra of all N x N matrices over the ring R. Then
Ja € MN(Z). White Jo = J./Ne, Jc € My(Z), N € Z. Then (i), (ii), (iii) translate
into congruence conditions and norm conditions on Jg:

(ia) JeJa on a chosen maximal eigenvector of A is nonzero modulo p, (a fixed
prime relatively prime to det(A), det(Je), Ne;
(iia) JeJq on the quotient V/E(r) has determinant a multiple of NJ¥ by a invertible
number modulo 7(N,, 7)V;
(iii,) the determinant of J, is N2¥/det(J.) times a number dividing some power of
det(A) det(B);

(4.5) JeJo =0 (mod N).
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The vector space DGI(A4, A, Q) is in fact also an algebra, which we next describe.
Let K denote the field generated by the eigenvalues of A. The next proposition
is based on general principles of Galois theory, see, e.g., [Rot98] and [Jac75], as
well as standard facts about linear resolutions, see [New72], [Ser77}, [Ser98]. The
proposition also extends a more primitive variant which appeared earlier in [BJO99,
Corollary 9.5]. To understand the statement of the proposition, recall the following
standard terminology: If K D Q is a number field, the Galois group I' = Gal (X/Q)
is the group of automorphisms y of K which fix Q pointwise, i.e., v (2) = z for
v €T and £ € Q. But we shall also consider T as a group of transformations of
column vectors KV, If & = (2;)l, € KV, we set v (z) = (y (1’1))5\;1
Proposition 4.4. There is a filtration V;, i = 0,...,s, of the vector space on
which A acts in which DGI(A, A, K) has a block-triangular structure. The ideal
J ={M € DGI(A, A, K) | MV; C V;41, : =0,...,s — 1} is a nilpotent ideal and
DGI(A, A, K)/J has a natural embedding by the block structure into @; GL(Vi/Viy1).
This embedding is an isomorphism. There is a subfiltration V(;y defined over Q such
that Vs(,-)/Vs(i_H) is a direct sum of Galois conjugates of Vs(iy1)—1/Ve(iy1). These
structures can be finitely computed.

Proof. We find the eigenvalues of A, diagonalize A over K, factoring ideals into
primes, using standard algorithms, e.g., [PoZa97]. We consider matrices which
preserve F () (and preserve the sum of all non-Perron—Frobenius eigenspaces, to
ensure positivity). These subspaces E () will be direct sums of sets of eigenspaces,
and these sets of eigenspaces will be permuted according to Galois action on .
The effect of Galois action and the families of intersections of these spaces can
be considered by taking Galois-invariant bases By for E (w). All intersections of
subsets of the £ (r) must be invariant. Order the intersections I; with bases B; so
that the number of sets being intersected is increasing, and put Galois conjugates
adjacent to each other, and relabel them as the new V; spaces.

Then the subspace generated by all bases succeeding any given basis is preserved,
and we have a block-triangular structure corresponding to it, and a larger block-
triangular structure, whose blocks are the sets of Galois-conjugate blocks of those
from the former structure. The latter will be defined over Q as required. Since
elements J increase filtration, any s-fold product is zero; they are the matrices in
the algebra which are zero on the main-diagonal blocks, and so the quotient maps
isomorphically into the sum of the general linear groups on V;/V;41 with basis
Boj = Bj \ Uk>j B;.. But we note that the general linear group on the span of By;
will preserve all subspaces E (m), hence the subquotient is precisely this general
linear group. 0

1t follows that all Galois-invariant linear maps on V;(;)/V;(j41) will also lift to

DGI(4, 4,Q).

Proposition 4.5. Suppose a vector space V over Q is a direct sum over an ez-
tension field K O Q of Galois-conjugate subspaces V; (with corresponding bases),
transitively permuted by the Galois group of K. Then the algebra of automorphisms
of V over Q which preserve each space V; is tsomorphic to the general linear group
of Vi over the minimal field K1 required to define Vi, which corresponds to the
subgroup N of the Galois group that sends Vi to itself.
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Proof. If V1 can be defined over a subfield of K, then the Galois group of that field
must fix V1 ; conversely if the Galois group fixes V3, it will also fix the complementary
sum of eigenspaces, hence it will fix a projection operator to the subspace whose
kernel is the complementary sum of eigenspaces, and from the columns of a matrix
for this operator, the subspace can be defined.

Given an endomorphism of V; over K which arises from a mapping over Q, the
endomorphisms of all other V; are uniquely determined as its Galois conjugates.
This means we have a one-to-one linear mapping from endomorphisms of V' over Q
fixing V3 (and these by Galois conjugacy fix every V;), into the general linear group
of V1 over K. In fact the image lies in the general linear group over K since over it,
we can define a projection operator to Vi. This mapping is also an epimorphism,
since given any K;-linear mapping h of V; to itself, there are Galois conjugates
defined on the other V; (the Galois operator is unique up to the subgroup fixing
V1, which also fixes h). We can take the sum of h and its Galois conjugates on
the other V;, and the sum will be a Galois-invariant mapping of V, and therefore
defined over Q. O

Example 4.6. We might consider a case of a matrix with three eigenvalues p, ¢,
pq with respective eigenspaces Ey, E3, F3, so that the two sum spaces F, @ E's and
E5® E5 are preserved under the Galois action, as is their intersection Ez. Then the
algebra of endomorphism has a block-triangular structure with three blocks and
the main-diagonal blocks are isomorphic to the respective endomorphism algebras
End(E:), End(F;), End(Es). Suppose now that p and ¢ are Galois conjugates
so that the product pg is Galois-invariant. The larger block structure will then
correspond to the two spaces By @ Es and F3. The group of endomorphisms of
E1 @ E, over the rational numbers will be isomorphic to the automorphisms of
E; over a quadratic extension field corresponding to the Galois conjugation which
interchanges p and q.

When we conjugate an algebra of matrices by a fixed matrix, this will mod-
ify congruences on the algebra in a computable way, where we may multiply the
denominators involved in the matrix conjugation by the previous moduli. In par-
ticular, we apply this idea to a block diagonalization of DGI(A, A, Q). Take an
integer matrix Jy, whose columns are bases, taken in order, for V¢)/Vs(iz1), so
that Jg = det(J;)Jy 17,7 ; puts J, into block-triangular form. The previous con-
gruences and determinant conditions translate to:

(ig) JoJsJgdet(J,)Jy ! on a chosen maximal eigenvector of A is nonzero modulo
pa (which is a fixed prime relatively prime to det(A), det(J;), N, det(J));
(ilg) JJ;Jgdet(J)J; ! on the quotient V/E(m) has determinant a multiple of
det(Jf)QNN(fV by an invertible number modulo (N det(Jf)ZN, 7);
(iilg) the determinant of Jg is det(J f)N NX/det(J,) times a number dividing some
power of det(A) det(B);
(ivg)

JpJ,det(J;)J7 =0 (mod det(Jy)?),
0 (mod N.det(J;)?)
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(any further multiples by constant matrices could be treated in similar fashion;
we are multiplying matrices by these quantities, so when we take determinants we
multiply by Nth powers).

Recall some aspects of the theory of finite-dimensional algebras with unit over a
field. Our background reference is [Jac75]. The Jacobson radical is the intersection
of all maximal proper ideals, equivalently the maximal nilpotent ideal, equivalently
in characteristic 0, the kernel of the Trace representation Tr(xy), where algebra
elements are represented as matrices acting on a basis for the algebra. Modulo
the Jacobson radical, the algebra is semisimple, which means it has no nilpotent
ideals, and then that every element @ is regular in the sense there exists & such that
axa = a. A semisimple algebra is isomorphic to a direct sum of simple algebras; this
decomposition is unique, and corresponds to the set of central idempotents of the
algebra. We will not have to go into simple algebras here because they will be given
as matrix algebras over algebraic number rings. However, simple finite-dimensional
algebras must always be full matrix algebras over division rings.

We will apply the next proposition to integer matrices in J 7 t DGI(4, A,Q)J¢
and the congruences (ig), (ilg), (ivg), and the determinant condition (iiig).

Note that we can write any Boolean combination of congruences on a single
matrix variable  to various moduli in the form

(4.8) JseS>z=s (modm)

for a finite computable set S. In the application of Proposition 4.7, m can be taken
as, say, the product of the 2Nth power of all denominators and determinants for
A) -B) Mc) Mf: Pa-

Proposition 4.7. Let A be a finite-dimensional algebra of matrices over a commu-
tative ring R in block-triangular form, and let J be its Jacobson radical consisting
of matrices which have zero main-diagonal blocks. If we can solve any finite sys-
tem of additive congruences on A/J subject to any restrictions on the determinant,
then we can solve any finite system of additive congruences on A subject to any
restrictions on the determinant. More generally we can restate the congruences on
A as congruences on A/J and use the same determinant conditions.

Proof. Note that for our matrix representation the norm conditions on 4 will give
norm conditions on .4/J, since the latter gives the main-diagonal blocks in a block-
triangular representation, and the product of their determinants is the determinant
in A. The condition that the determinant is a fixed algebraic integer F' times
products from a finite list of primes and units will translate into a finite list of
similar conditions at each main diagonal block, based on the prime factorizations
of F'. Additively, write an element which is to have determinant involving certain
primes, and satisfy congruences, as ¢ + j where j is in the Jacobson radical. The
congruences will say, for some j € J, a Boolean combination of congruences z+j = ¢
(mod m) hold. If we take all possibilities jo for j (mod m), this will be a Boolean
combination of congruences ¢ = ¢ — jo (mod m). O

Congruences on an element of a ring {2 modulo m will not be changed if we pass
to an extension field (but require the element to belong in the original ring), and
it will suffice to take congruences modulo the prime power factors of m in the new
ring,.
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We make one further transformation of our congruences and determinant condi-
tions. Since it is of the same nature as the previous changes except that we must
use Lemma 4.1 and Proposition 4.7 in a way which is difficult to predict, we will
not state the formulas explicitly but describe the changes. Using Proposition 4.7,
we pass to congruences on the indecomposable blocks of the matrix representations.
We use Lemma 4.1 and a further conjugation to pass to congruences over an alge-
braic number field on particular eigenspaces. This will result in congruences (iy),
(iin), (ivn), and a determinant condition (ilin). The conditions (ii), and so on, will
bound the powers of all primes occurring in the determinant of J(1), Ja, Jg at that
eigenspace, except for those which divide the eigenvalue.

Proposition 4.8. We may replace the congruences (in), (iin), (ivn) by equivalent
congruences in which the moduli for each eigenspace are relatively prime to the
corresponding eigenvalue . Moreover it suffices to find matrices satisfying these
conditions which lie in Q[1/x].

Proof. We can eliminate this dependence and the denominators by multiplying by
a power of the defining matrix A large enough to cancel off the denominators.
That is, if we have a solution mapping J. at a particular eigenspace which satisfies
congruences for all primes except those which divide the eigenvalue A, then A™J,
will produce a solution at all the other primes, which is congruent to zero modulo
any set power of the primes in A and exists over Q. And if any solution does exist,
multiplication by a large power of A must produce one which is congruent to zero
modulo high powers of the primes in A, hence one that can be found in this way. 0O

Theorem 4.9. There is an algorithm to decide isomorphism of stationary AF-
algebras arising from primitive matrices.

Proof. This result is a consequence of the preliminary discussion and the proposi-
tions above. That is, we first reduce the problem to one of finding a matrix J(1)
which preserves certain subspaces, has certain primes in its determinants, and sat-
isfies congruences, going from A to B. We find such a matrix Jy over the rational
numbers; the proposed solution must differ from it by multiplying with a matrix
Js from A to B meeting corresponding conditions (we multiply by a constant N,
to arrange that J, have integer entries). We find the Jacobson radical and the
simple components of the quotient by it, and restate the congruences in terms of
those simple components. They are determined in terms of certain combinations of
eigenspaces, as general linear groups over algebraic number rings. Again we conju-
gate, and obtain a new set of finite congruences of the same general nature as the
originals, (in), (iin), (ivn), and a determinant condition (iil,). We use Proposition
4.8 to ensure that the congruences involve moduli relatively prime to the eigenval-
ues and can allow these eigenvalues as denominators. By Lemma 4.1, we can solve
them. O

5. THE CASE A = |det (A)|

Theorem 4.9 gives, in principle, a finite algorithm to decide whether two square,
nonsingular, integer primitive matrices A, B are C*-equivalent or not. In special
cases, like those considered in [BJO99], this algorithm can be substantially simpli-
fied. One nice feature of the algorithm is that it uses only “elementary” algebraic
results, and avoids using the deep results on decidability from [GrSe80a, GrSe80b].
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Nevertheless, the implementation of the algorithm for general pairs A, B may of
course be complicated. Let us pick up and generalize one special case from [BJO99].
In Theorem 17.18 and Corollary 17.21 there, it was proved that if A, B had a spe-
cial form, and A4y = |det (4)| and A(p) = |det (B)|, then the ideal generated by
(v(A)|w(A)) in Z [1/ det (A)] is a complete invariant, if the left and right Perron—
Frobenius éigenvectors are taken to have integer components, and ged (v (4)) = 1,
ged (w (A)) = 1, where ged denotes the greatest common divisor of the components.
We now prove that this is also true for more general matrices A, B.

In stating this more general result, there is a technical complication. In picking
extension fields F' and an associated ring R of algebraic integers, it is not auto-
matically true that the ideals in R are principal. But by a result in [Wei98] or
[Ser79], there is always a finite extension E of F in which the associated ideals are
automatically principal. We refer to this in the statement of the proposition. To
further simplify the terminology in the statement of the proposition we denote the
above-mentioned respective Perron—Frobenius column vectors w, w', i.e., Aw = Aw
and Bw' = Mw', and similarly v, v’ for the two respective Perron—Frobenius row
vectors.

Proposition 5.1. Choose a finite extension E of the algebraic number field F' of
the eigenvalues of primitive nonsingular integer matrices A, B in which all ideals
of F' become principal and consider primes in il.

(i) An isomorphism J on ordered dimension groups from the dimension group of
A to that of B sends the row Perron-Frobenius eigenvector v/ (normalized so
all entries are algebraic integers with ged1) of B to a multiple ¢ times the
row Perron—-Frobenius eigenvector v of A.

(ii) The two Perron—Frobenius eigenvalues generate the same algebraic number
field and involve the same primes of that field.

(iii) If the Perron-Frobenius eigenvalue A as compared with any other eigenvalue
of either matriz A, B, is divisible by some algebraic prime not in the other,
then the Perron—Frobenius column eigenvector w is mapped to a multiple £
times the other Perron—Frobenius eigenvector w'.

(iv) The former coefficient ¢ involves only primes dividing A.

(v) The latter coefficient & involves only the primes in the Perron-Frobenius
eigenvalue. If we ignore normalization and work directly with images of eigen-
vectors, then the inner products are equal: v/ Jw' = cvw’ = (¢/&) vJw. There-
fore the inner product of the normalized Perron-Frobenius eigenvectors is thus
an invariant up to units in the algebraic number ring generated by 1/,

. Proof. The first assertion is by [BJKR98, Theorem 6], and the second is by [BJKR9S,
Theorem 10].

The third assertion follows because the space of vectors in the dimension group
such that some fixed multiple is arbitrarily divisible by a given prime is sent to
the corresponding subspace of the other dimension group, and this set is the sum
of the eigenspaces for all eigenvalues divisible by the prime. If these spaces are
intersected over all primes dividing the Perron—Frobenius eigenvalue, we get, by
our hypothesis, only the Perron—Frobenius eigenspace.

The fourth assertion follows because the eigenspace of v will consist precisely
of those vectors in the dimension group which are divisible by arbitrary powers
of primes occurring only in A, so it must be preserved by any isomorphism of
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dimension groups. In addition, vectors in this 1-dimensional space which are not
divisible by primes other than those in A will be unique up to multiplication by
units and primes dividing A, so they will be preserved by any isomorphism, up to
such multiplication.

The fifth assertion follows by [BJKR98, Theorem 7], at all primes not in A the
isomorphism induces an isomorphism on eventual row spaces, and the image of the
Perron-Frobenius eigenvector (times any power of A) will be nonzero modulo such
a prime. O

The following is a partial converse to Proposition 5.1.

Corollary 5.2. Suppose A, B are nonsingular primitive integer matrices, their
Perron—-Frobenius eigenvalues are integers and that the inner products as above
are equal, the primes dividing the Perron—Frobenius eigenvalues are equal, and the
dimensions of the matrices are at least 3. Suppose the Perron—Frobenius etigenvalues
are the determinants of A, B up to sign. Then there exists an tsomorphism between
the ordered dimension groups of A and B.

Proof. By Lemma 17.19 of [BJO99], there is a unimodular matrix J sending the
Perron-Frobenius row eigenvector of A to the Perron-Frobenius row eigenvector of B
and the Perron-Frobenius column eigenvector of A to the Perron-Frobenius column
eigenvector of B (and we can choose signs for positivity). By [BJKR98, Theorem 6]
this gives a positive mapping on dimension groups. Since the row eigenvectors are
perpendicular to the sum V (A) of all non-Perron-Frobenius eigenspaces, JV (4) =
V (B), and also v (B)J C Qu(A) as noted in Section 1. Write any vector v as a
direct sum according to (1.20), v = z+y. This splitting can introduce certain fixed
primes p in the denominator.

Note that the matrix A is unimodular and integer restricted to the integer vectors
in V (A) (and similarly for the matrix B), because each determinant is the prod-
uct of its determinant on this space and its determinant on the Perron—Frobenius
eigenspace, and because it is an integer matrix preserving this subspace. Multipli-
cation by A is multiplication by A on z (see Figure 1), and the same is true for
B.

V (4) Cw (A)
* - * 0

Alv(a) . :
: with : : V (4)

A~ |det (Alv )| =1
% - X 0
A(a)

0 0 = |det 4] Cw (A)

FIGURE 1. The case |det A| = A(4): Decomposition relative to
(1.20) and unimodular restriction.

For v to be in the dimension group means for all sufficiently large n, A"v has inte-
ger entries. Any prime p which does not divide A will not occur in the denominator
of the expression B"JA™"(z + y).
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Consider those primes p which divide A. We claim that they cannot occur in
denominators of y. Restricted to vectors y, the matrix A is unimodular, so modulo
any powers of those primes it lies in a finite group, GL(N, Zp:). Thus we can choose
arbitrarily large n so that A" is congruent to the identity. But then in A™(z + y),
the denominators in & have vanished, being multiplied by A” and those in y remain.
So z + y is not in the dimension group, a contradiction.

Therefore in

(5.1) B"JA ™™ (¢ +y) = B"JA "z + B"JA™"y
=JNMX " Pg 4+ B™JA ™"y

both terms are integer for sufficiently large m (with a symmetrical argument the
other way) which verifies the conditions in Section 1 for isomorphism of ordered
dimension groups. 0

6. THE CASE OF NO INFINITESIMAL ELEMENTS AND THE CASE OF RATIONAL
EIGENVALUES

In this section we will consider the C*-equivalence problem in two extreme cases.
To describe these two cases, let us recall some facts from [Eff81], [BJO99]. We define
a functional 74 on G (A) by the formula

(6.1) Ta(g)=((A)lg), g€G(4),

where v (A) is a left Perron-Frobenius eigenvector for A. This functional 74 is called
“the” trace since it defines a trace on the corresponding C*-algebra. It follows from
the eigenvalue equation that v (A) can be taken to have components in the field
Q [\] = Q[1/A], where ) is the Perron—Frobenius eigenvalue. But multiplying v (A)
by a positive integer, we may assume that the components of v (A) are contained
in the ring Z [t/)]. It then follows from (1.8), and v (A) A™" = A™"v (4), that

(6.2) T4 (G(A) CZ[L/N].

Furthermore, 74 (G (4)) is invariant under multiplication by elements of Z and by
1/, so it is a Z[1/A]-module. In particular, 74 (G (4)) is an ideal in the ring
Z[1/A]. We need only verify that +74 (g) is in ran (r4) for all g € G (4). Pick
g €G(A), and set g = A™"m, n € N, m € ZN. Then 74 (9) = (v(4) A™? |g> =
(v(A)|A™'g) = 74 (A=(**+Vm) € ran(ra) as claimed. This is a very special
feature of the constant-incidence-matrix situation which is not shared by the range
of a trace on a general dimension group of general AF-algebras. This range is not
even closed under multiplication in the general case when the incidence matrix is
not assumed constant, We have the natural short exact sequence of groups

(6.3) 0 — ker (14) = G (A) & 74 (G (4)) — 0
and the order isomorphism
(6.4) G (A) [ ker (14) = ran (1a) C Z [1/Ma)] »

where ran (74) inherits the natural order from Z [1/)]. Note that for the particular
matrices we considered in [BJO99], we had

(6.5) ran (74) = Z[1/A]




22 OLA BRATTELI, PALLE E. T. JORGENSEN, KI HANG KIM, AND FRED ROUSH

(see [BJO99, (5.21)-(5.22)]), but be warned that this is not a general feature. This
will be discussed further in Remarks 7.5 and 7.7. Chapter 5 in [BMT87] also has
a nice treatment of ran (74) in the general case. Let us already at this point state
and prove the remarkable fact that any subset I of Q[A] which is an ideal over
Z[1/)] occurs as the image of the trace for a suitable primitive nonsingular matrix
A (this is a version of [BM'T87, Corollary 5.15] which is a consequence of results of
Handelman, see [Han81]):

Proposition 6.1. Let ) be a real algebraic integer larger than the absolute value of
any of its conjugates, and let I C Q [A] be an ideal over Z[1/)]. Then I can occur
as the image of the trace for some matriz whose Perron—Frobenius eigenvalue is a
power of A (the size of the matriz will be the degree Q [A] /Q).

Proof. Let I = I NZ [\]; it will be a Z [A]-ideal which spans I over Z [L/}].

Now define an integer matrix M which expresses the action of A on I3, that is,
form an additive basis w; for Iy, let Aw; = zj mijw;, Mmi; € Z. This matrix will
have an eigenvalue ), and we claim that at the corresponding eigenspace, the image
of the trace is isomorphic to I. This is because the action of M on Z" has been
forced to be that of X on I, and because the trace reflects this module structure,
by means of the short (nearly exact) sequence.

Finally we claim that we can conjugate M over GL(N,Z) to a matrix whose
powers are eventually positive; then those powers will be nonnegative matrices
whose image of trace is the same. To get eventual positivity, given that X is the
largest eigenvalue (the largest of its Galois conjugates), it is necessary and sufficient
that its row and column eigenvectors for this eigenvalue be positive, by a limit
argument somewhat like that in Proposition 1.1. Let v,w be row and column
eigenvectors at the eigenvalue X, with signs chosen so that their inner product is
positive. Multiply each by a large integer, and then take relatively prime integers
approximating its components. Such a pair of vectors can be mapped over GL(N, Z)
to any vectors whose entries are relatively prime integers having the same inner
product, by [BJO99, Lemma 17.19], in particular, to ones which are positive, if
N > 2. If N = 2 we use the same result and get a congruence condition, but that
is compatible with positivity. O

Remark 6.2. The quotient of the ring Z [1/A] by any of these ideals will be finite.
The ideal can be lifted to an ideal inside the rank N additive group Z [A], and
the quotient of two rank-N free abelian groups is finite—its order is given by the
determinant of the map expressing the inclusion.

Let us return to the two special cases of C*-equivalence we shall discuss in this
section. These are the following.
(i) The kernel ker (r4) is 0, i.e., G(A) has no infinitesimal elements, i.e., the
characteristic polynomial of A is irreducible over Z (equivalent: over Q).
(ii) All the eigenvalues of A are rational (thus integer), each of them is relatively
prime to the rest, and none is equal to 1.
In Sections 7 and 10 we will apply this to many examples. See, for example,
Example 7.9 for an application in the situation (ii) above.

Theorem 6.3. Two primitive N x N matrices A, B over Z with irreducible char-
acteristic polynomials are C*-equivalent if and only if the following three conditions
all hold:
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(i) the roots of their characteristic polynomials generate the same field,
(i1) their Perron-Frobenius eigenvalues are divisible by the same algebraic primes,
and
(iii) their dimension groups, as modules over Z[1/)] (or a full-rank subring), are
isomorphic. These modules are isomorphic to the fractional ideals given by
the image of the trace T.

Moreover, these three conditions are equivalent to the one condition:

(iv) the two ordered additive subgroups in Z[1/)] defined by the ranges of the
respective traces are isomorphic.

If in addition the characteristic polynomials of A, B are equal, then C*-equivalence
(isomorphism of ordered dimension groups) is the same as shift equivalence.

Note that taking powers of the matriz will preserve the Z [1/A]-module mentioned
in (iil), i.e., the tdeal in Z[1/}], and not replace it by its powers.

Remark 6.4. To say that the dimension groups G (A) and G (B) as modules over
7 [1/A] are isomorphic means that there is an isomorphism ¢: G (4) — G (B) of
abelian groups such that

(6.6) v (wg) = wp(g)

for all ¢ € G(A), w € Z[1/)]. This is not the same as saying that G (4) is
isomorphic to G (B) as ideals in Z [1/A]. The latter concept means that there is an
automorphism ¢ of the ring Z [1/A] such that ¢ (G (4)) = G (B). When we talk
about equivalence of ideals it is the first concept we are thinking about, i.e., there
is an element of the quotient field Q [1/A] = Q [A] mapping the one ideal into the
other by multiplication.

Proof of Theorem 6.3. The first statement follows from [BJKR98, Proposition 10].
The properties (1.10) and

(6.7) Tao AT =2"1ry,

imply that the image of the trace is a module over Z[1/A] and a subset of Z[1/}]
and that it is (using the standard basis for Z") generated by (v|e;) = v; as a
module over Z[1/)A]. The trace mapping is an epimorphism over the rationals.
Hence its kernel is zero and it maps between the dimension groups isomorphically.
So it gives the same ideal considered in [BJKR98, Proposition 10]. To prove shift
equivalence assuming equality of characteristic polynomials, it will suffice to show
that the matrices themselves represent the same field element acting on this module.
Because they are roots of the same irreducible characteristic polynormials, they must
be Galois conjugates. But in terms of positivity, they both represent the Perron—
Frobenius eigenvalue, so that we can say they are equal.

FEquivalence to (iv): First assume (iv). Then the images of the traces generate
the fields Q [/\(A)] =Q [/\(B)]. In case the rings Z [)\(A)] and Z [)\(B)] are different,
the isomorphism of modules in Proposition 10 of [BJKR98] is to be understood in
the sense of modules over the intersection ring Z [)\( A)] NZ [)\( B)]; which will have
additive rank N since each of the two rings has rank N. Note that the module struc-
ture over such a subring determines the module structure over any larger subring of
Q [A( A)] where a module structure exists, by linear extension. These images of the
traces are isomorphic to the dimension groups G (4), G (B), and the ring Z [)\( A)] N
Z [A(p)] will at least be a subring of {z € Q (}) | G (4) C G (4), =G (B) C G (B)}
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so that the dimension groups are isomorphic as modules over this ring. Isomorphism
implies the prime divisibility condition, as the primes will be those which can occur
to arbitrary powers in the denominators.

Conversely, suppose we are given (i), (ii), (iii). The equality of fields asserted
in Proposition 10 of [BJKR98], which could be clarified as “equality of Q [)\( A)]
and Q [/\( B)] as subfields of the real numbers”, gives embeddings of Z [)\( A)] and
Z [\m)] into the real numbers. The modules are embedded in Q [A(4)] (they are
isomorphic to ideals over subrings), so they have natural corresponding embeddings
in the real numbers. The isomorphism of modules as additive groups acted on by
subrings of Q [/\( A)] having full rank additively will mean there is some element of
the quotient field mapping one to the other: this element a ratio of corresponding
elements under the isomorphism, which by the module isomorphism is the same for
any two elements which correspond under the isomorphism. This is the same sense
in which the trace images are isomorphic. O

Note that this applies in particular to Example 7.8 below.

Theorem 6.5. Let A, B be matrices over Z., all of whose eigenvalues are ratio-
nal, and each of which is relatively prime to the rest, and none is one. Assume A,
B have the same characteristic polynomial. Let E,, Ey be their matrices of column
eigenvectors normalized to be integer vectors having greatest common divisor 1. Let
D be a diagonal matriz whose entries involve only powers of primes in the respec-
tive eigenvalues, let D, be a diagonal matriz consisting of precisely the diagonal
eigenvalues. Then the following are equivalent:

(i) A and B are C*-equivalent;

(i) A and B are shift equivalent, as follows: for some choice of signs in Eq,
Ey, and some choice of D, and for all sufficiently large n, EGDDI,"E'Z,"1 and
E,D~iDPE;! are integer matrices. .

Proof. Consider an isomorphism of dimension groups. The eigenvectors generate
the 1-dimensional spaces of vectors such that some multiples of those vectors are in
the dimension group and are divisible by arbitrary powers of the respective eigen-
values. Hence any dimension group isomorphism must preserve those subspaces.
Moreover we claim a dimension group isomorphism must send normalized eigenvec-
tors to one another, that the rational multiples of a normalized eigenvector v with
eigenvalue 7 which lie in the dimension group are {(n/m)v | n € Z, m|y’, j € Z4}.
These will lie in it, obtained from integer vectors by negative powers of the ma-
trix. And if w € A~"Z" is in this subspace then 7w € Z¥ so it is a multiple of
v. It follows that dimension group isomorphism implies isomorphism of Q¥ which
sends each eigenvector to a multiple of the other eigenvector by a number which
divides a power of 1. Such a mapping must preserve the action of multiplication
by A, given the characteristic polynomials are equal, because this multiplies each
eigenvector by its eigenvalue, and the eigenvalues are the same. So it will be a
shift equivalence. Let D be the diagonal matrix whose main diagonal entries are
the multiples just mentioned. Then the isomorphism of dimension groups will be,
specifically, Ey(FE,D)~1 if it exists. It must be, if we multiply it and its inverse on
the left by a large power of A, B respectively that they exist over the integers. And
these multiples are the matrices stated in the theorem. O
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7. THE TRANSPOSE MAP AND C*-SYMMETRY

In this section we will study the behavior of the dimension group (G (4) , G (4) +)
under the transpose map A — A%, In particular, we say that A is C*-symmetric if
A is C*-equivalent to A™, i.e., G (4) and G (A') are isomorphic as ordered groups.
We give several examples showing that A may be C*-symmetric, (7.2), Remark
7.5, or not, Example 7.6 (2 X 2 matrices with rational eigenvalues), Example 7.8
(2 x 2 matrices with irreducible eigenvalues) and Example 7.9. An interesting
feature with these particular examples is that when A is a 2 x 2 matrix, then C*-
symmetry is equivalent to shift-symmetry (i.e., A and A*™ are shift equivalent). For
2 x 2 matrices, symmetry seems to be more common than non-symmetry. Our first
example, while very simple, illustrates both C*-symmetry and a nontrivial Ext-
element. It has A = A(4) = 2. The Ext-group represents another contrast between
the two cases, A rational (and hence integral), and A irrational. In the first case,
we generally have ker (14) # 0, and as we note in Remark 7.5, ran (14) = Z [1/A].
Hence this extra extension structure for G'(A) arises only in the rational case: The
corresponding short exact sequence

(7.1) 0 — ker (t4) — G(A) B Z[1/N] — 0

may be non-split, which means that G (A) is then not the direct sum of the two
groups ker (74) and Z [1/A].

Example 7.1. The dimension group defined by A may be order isomorphic to
that defined by its transpose B = A®. Hence an AF-C*-algebra built on such a
matrix A (i.e., from the corresponding stationary Bratteli diagram) has a nontrivial
period-two symmetry corresponding to A ~+ A'™. An example here is

(7.2) A:(; é) Atr:G (2))

In this case A and A™ have eigenvalues 2 and —1, and both of the dimension groups
G and G* are in Ext (Z[1/2],Z). It can be checked (by use of [BJO99, Corollary
11.28]) that this Ext-element is not zero. Here ker (1) = Z, ran (1) = Z[1/2}, and
the corresponding short exact sequence

(7.3) 0—Z—G(A) D Z[1/2] —0

does not split. Equivalently, G (A) is not Z@Z[1/2) as a group. If it were, we would
get 7 (w) ™ € Z[1/2] by [BJO99, Corollary 11.28]. But we computed 7 (w) = 3, and
1/3 is not in Z [1/2]. Since A(4) = 2 = |det A|, it is tempting to apply Theorem 5.2.

In fact the inner-product invariants are (v|w) = (2 1) G) = 3, and (v |w') =

(1 1) (?) = 3. But since the dimension is 2 (< 3), Theorem 5.2 does not apply

directly, and instead we will verify directly that A and A" are C*-equivalent. Define
matrices J, K by

(7.4) J:G (1)> K:<(1) g)

One verifies that
(7.5) A=K/J, AT = JK.
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Thus A and A™ are elementary shift equivalent, and it follows that they are shift
equivalent and C*-equivalent (see the discussion in [BJKR98]).

However, we will see in Examples 7.9 and 10.4 that this is not a general feature
of the transpose map.

We may analyze the C*-symmetry question by dimension-group analysis: If we
show that the ordered group G (A) is order isomorphic to G (A™), then A is C*-
equivalent to A%, i.e., A is C*-symmetric. Clearly then the two groups G (4) and
ran (t4) are order isomorphic whenever ker (74) = 0, and we have the result:

Proposition 7.2. Let A € My (Z) be nonsingular and primitive, and suppose its
characteristic polynomial p4) (x) is irreducible, and ran (14) = ran (74w ): then A
is C*-equivalent to A%, Note in particular that this holds if:

(i) N=2,
(ii) the Perron—Frobenius eigenvalue A 4) is irrational, and
(iil) ran (74) = ran (7Taer).

Proof. This follows directly from Theorem 6.3. O

Remark 7.3. We saw that by scaling out denominators in the entries v; of the
left (row) Perron—Frobenius eigenvector v (A) = (v1,...,vn) We can arrange that
v; € Z [1/A] for all i. But then a further scaling with a power of A we can get each
v; in the subring Z [\] C Z [1/)]. Suppose that the characteristic polynomial of A
is irreducible. Note that, as a group, Z [A] is then a copy of the lattice ZN so the
entries v; may therefore be viewed as vectors in ZY. Then pick v (A) such that
ged (vi) = 1 for each . In this case the matrix V with the v;’s as rows is in My (z)
and is nonsingular. The number |det V| is the index of 7 (G (A4)) in Z [1/A] where
A = A4). If we could define greatest common divisors in the ring Z [A] then we
could divide v by this greatest common divisor and obtain some new v defined over
Z )] which has g.c.d. 1. Then the image of its trace would contain the span of its
coordinates v; over Z [\], that is, the entire ring Z [A]. Moreover the image of the
trace will be contained in this ring, so they are equal. In general, however, this ring
will not be a principal ideal domain, so that the class of the ideal generated by the
trace becomes an obstruction. In fact, the subgroup in Z [\] which is generated by
the v;’s is also an ideal in Z [A]. Indeed, for m € ZN, 3", myv; = 7 (m) = (v|m),
s0 AS; miv; = (vA|m) = (v|A"m), and A"™m € Z". As a consequence, we get
that the special incidence matrices A which we considered in [BJO99] satisfy the
condition ran (r4) = Z [1/A(4)]. However, this fails for the matrix A from Example
7.8, and others.

Proposition 7.4. Assume that the Perron—Frobenius row eigenvector v s cho-
sen to lie in ZN [\]. Then the inclusion map is an epimorphism and its kernel
is those elements annihilated by A" for sufficiently large n. That is, the map
AZ ] JT(ZN) — Z[L/N /7 (G) is an isomorphism.

Proof. The inclusion gives a natural mapping. If we multiply any element in Z [1/A}
by a power of power of A\, we can get an element of Z [}, so this mapping is an
epimorphism. We also claim that if we multiply any element of = (@), say vA~™"z,
£ € ZY by a power of A\, we will get an element of 7 (ZN ) This is because
vA™"z = vA" "z using the left two factors.
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Note that since 7(G) and Z [1/A] are both torsion-free and M-divisible, their
quotient has no A-torsion. Hence every element annihilated by a power of A lies in
the kernel.

Let y be in the kernel of this mapping. Then y € 7 (G), so that for some n € Z,
Ay e r(zZV ) and is zero in the original group. This identifies the quotient. The
left hand group, the quotient of a free abelian group by a full rank subgroup, is
finite, so some fixed n works for the whole kernel. O

Remark 7.5 (Rational A). Even if N = 2, the dimension group G (A) is not yet
completely understood [BJO99] (perhaps far from it!). If A = A(4) is rational,
and therefore an integer, we can have nonisomorphic G (4;) and G (Az) even when
A; and A, have the same characteristic polynomial and thus the same Perron-
Frobenius eigenvalue A, as different extensions, ¢ = 1,2,

(7.6) 0— Z[1/u] — G (4;) = Z[1/A] — 0,

i.e., as different elements of the group Ext (Z [1/A],Z [1/4]). Here p is the other root
of the characteristic polynomial, so s is a nonzero integer with |g| < A. See (6.3) and
(6.4). This may even happen when Aj is the transpose of the matrix A;, by Example
7.6 below. Since here ) is rational one may arrange that 74 (G'(A)) = Z [L/A] by
choosing v with ged (v) = 1, and ker (74) is a rank-1 nonzero group isomorphic to
Z [1/u); see also below. There are specimens of 2 x 2 primitive matrices A, even
with integral Perron-Frobenius eigenvalue such that A(4) < |det A, and yet the
two groups G (A) and G (A™) are order isomorphic. For example, A = (}5) has
that property. To see this, we may use (1.16)—(1.17). Since J = (32) satisfies
JA = A% J, the two conditions hold, and hence the matrix A is C*-symmetric. So
for this particular pair A, A%, the respective groups G (4) and G (A*) from the
middle term in the diagram (7.6) will then in fact represent the same zero element
of Ext (Z [1/6],Z{1/2]). For this particular A,

(7.7) GA)Y=Z[1/2|®Z[1/6] (ker (1) = Z[1/2])

as direct sum of abelian groups. For this, note that the integral column eigenvectors
for A are (}) and (5). Since det (} %) = —8 = —2? and the cigenvalues of A
are 6 = 2-3 and —2, we have Z [1/2]* C G (4). Thus G (4) = U, A™"(Z [1/2]%),
and (7.7) follows. Specifically, the representation (7.7) may be derived from (1.20),
(6.1), and the two identities

(7.8) ker (r4) = V (4) NG (A) = Z[1/2] ( _53)
and
(7.9) G (A) N Cw (4) = Z[1/6]w (A),

where w(A) = (}). The present computation of G (A) is simplified by the fact
that the orthogonal complement of the trace vector v (A4) = (3, 5) is spanned by
the nonmaximal column eigenvector. Here A(4) = 6, and so Z [)\( A)] = Z. That
7 (G (A)) = Z[1/6] in this case follows from Remark 7.3 and the general observa-
tion that with our choice of v (4), we will have 7 (G (4)) = Z [1/A(4)] provided
the ideal in Z [X( A)] generated by the v; (A) entries is principal. Ideals in Z are
principal, of course. Here in this case the Ext-element corresponding to G (A) is
trivial. (Looking at prime factors in det A, one could also get a G (A) which is
non-split. For example, taking A = (}§), we get the spectrum {5, -2} and that
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the corresponding dimension group G (A) is here represented by a nonzero element
of Ext (Z[1/5],Z[1/2]). The analysis here is analogous to that presented above:
We get ker (14) = Z[1/2], ran(ra) = Z[1/5), and the corresponding short exact
sequence

(7.10) 0 — Z[1/2] — G(A) — Z[1/5] — 0

is now non-split. The example A = (3} §) is C*-symmetric, as A and A are in fact
shift equivalent: Take R = (' %) and S = (]%). Then RS = A" and SR = A.
It follows from [BJO99] that G (A), when represented in the Ext-group, is generally
not the zero element.)

Example 7.6. Here we will exhibit a primitive nonsingular 2 x 2 matrix A with
rational eigenvalues such that A is not C*-equivalent to A" (and thus is not shift
equivalent to A™). The respective dimension groups G (A4) and G (A™) are not
even isomorphic as groups, let alone order isomorphic, and hence this A in (7.11)
is “more” nonsymmetric then the corresponding specimen (7.14) in Example 7.8.
The example is

65 7
(7.11) A= (24 67) .
Putting
-7 1\ -2 12 (53 0
(7.12) EA—(12 2)’ EB‘(1 7)’ D‘(o 79)’
we have
(7.13) A=E,DE;', B=A"=EyDEz".

The eigenvalues of A and B are 53 and 79, which are both prime and congruent
to —1 mod 13. Using Theorem 6.5 it follows that if A and B were C*-equivalent
there would exist some diagonal matrix Dy = (ﬁ 2) where z, y are congruent to 1
mod 13 such that E, DyE5" would have integral entries. But the (1,1) entry of this
matrix is (49z + y) /26. If this is an integer, and z = 1 +n1 - 13, y = €2 + na - 13,
where ny, ns are integers and e; = %1, then 1—15 (49z +y) = 11—3 (4-13-3)z+y) =
—€1 —13—3+62 11—3 mod 1, but this can never be an integer. Thus A is not C*-symmetric.

Remark 7.7 (Irrational A). The assumption in Proposition 7.2 that the range of
the respective traces 74 and T4+ be the same (viewed as subgroups of Z [1 /¢ A)])
cannot be omitted. It is true in general that ran (74) is an ideal in Z [1/A(4)], but
the ideal may be proper, and it may be different from one to the other. An example
showing this to be the case can be found in [BMT87, p. 104], [PaTu82, pp. 79-83].
The example is a matrix A such that A and its transpose B = A" are not shift
equivalent.. We will give another example of this, and then apply Theorem 6.3 to
show that they are not C*-equivalent either:

Example 7.8. The example is A = (Y 3). Here A = 10 + /101, so the charac-
teristic polynomial is irreducible and therefore ker (74) = 0. Since det A = —1, the
unordered dimension groups G (4) and G (A™) are both Z2. However, we will show
that they are not order isomorphic. We have

(19 5 e (19 4
(7.14) A_<4 1), B=A ~(5 1).




THE ISOMORPHISM PROBLEM FOR STATIONARY AF-ALGEBRAS 29

We prove that the two ideals ran (74) and ran (74 ) are nonisomorphic. The eigen-
values are 10 + v/101. Let w = (1 ++/101)/2 so that 1,w form a Z-basis for the
algebraic integers in Q(v/101). (The fact that all algebraic integers in a quadratic
field have this form is [Wei98, Theorem 6-1-1, p. 234]. One can check that 1, w are
algebraic integers, then that the trace must be an algebraic integer, and see what
happens when we subtract some @ + bw to simplify, in terms of the norm being an
algebraic integer.) The respective (column) eigenvectors for A, A™ are

o (1) () = () (3)

By transposing and interchanging the two, we get as Perron—Frobenius row eigen-
vectors for A, A*

(7.16) (2, w=5), (w+4, 2).

Let I1, I, denote the ideals they generate. We note that w — 5 = (—9 + v/101) /2
and that the norm of this number is (81 — 101)/4 = —5. Hence over the algebraic
number ring which is Z[w] and properly contains Z[1/A] both ideals would be the
entire ring (1) = Z ] if they were equivalent. We will now complete the proof.

If the ideals were equivalent, some element in the quotient field would multiply
one ideal to the other, as additive groups, or modules over Z[1/A] = Z[\] = {a +
bV/101 | a,b € Z}.

Note that the two generators listed in (7.16) will actually generate each ideal over
7Z additively, not just as modules over Z[}], since multiplication by V101 = 2w —1
sends

(7.17) (1, w) = (2w—-1, 2W+25)-w)=@w-1, w+50),
(7.18) (2, w—5) — (4w—2, (W+50)—52w—1)) = (4w —2, 55—9w),

(7.19) (4+w, 2) — (W+50)+4(2w—1), 4w—2) = (9w+46, 4w—2),

which are still in the same additive subgroups.
The additive spans of the two pairs of generators in (7.16) are, respectively

(7.20) 2Z+(w—5)Z={a+bw]|a,b€Zsuchthata—-b=0 (mod2)},
(721) 2Z+4+(w+4)Z={a+bw|a,b€Zsuchthata—b=1 (mod2)}.

These are preserved by multiplication by v/101 = 2w —1 = 1 (mod 2), so that each
span over Z is a Z [A]-module.

If the ideals were isomorphic under multiplication by some f € Q[}A], then f
cannot involve primes of the algebraic number ring, since both ideals span the
complete algebraic number ring as modules over it. Therefore f is a unit. Thus
f is up to a sign a power of A = 9 + 2w = 1 (mod 2). Hence multiplication by
f preserves the congruence conditions defining the two additive spans, and thus it
preserves cach ideal separately. So it is impossible for a unit to send one ideal to
the other.

Example 7.9. The following is an example of integer matrices A, B which have iso-
morphic dimension groups (unordered) but such that the corresponding transposed
matrices A", B*™ do not have isomorphic dimension groups. They are constructed
as fairly typical block-triangular matrices, for which there will be differences be-
tween the extensions in dimension groups for the originals and transposes. A4, B,
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and most matrices in the construction will be block-triangular; they will be 6 x 6
maitrices blocked into 2 x 2 blocks. Let the main-diagonal entries of A, B, their
eigenvalues, be distinct primes p1, ..., pg, which are all congruent to 1 modulo the
cube of some prime p, which is where the obstruction to isomorphism of dimension
groups will be nontrivial. Let D denote the diagonal matrix whose main-diagonal
entries are the p;. We will write A = E~1DE, B = F~'DF where E, F will be
triangular matrices giving the column eigenvectors of A, B. We assume I, F have
1 on the main diagonal and their only denominators are p. Then, for instance,
A=E"Yp I+ p3D,)E = p1I + p?E~1D,pE is an integer matrix.

Since the eigenvalues of A, B are distinct primes, the dimension group over Q
is a direct sum of the corresponding eigenspaces. The p; eigenspaces consists of
those vectors such that some multiple is divisible by an arbitrary value of p;. An
assumed isomorphism realized by a matrix over Q between the dimension groups
must preserve the eigenspaces, and therefore will have the form FDoE~!, where
Dy is a diagonal matrix. Moreover the least integer vectors in these eigenspaces are
unique up to sign and powers of p;, so they must map to one another. We assume
for each pair of corresponding eigenvectors, one is divisible by p if and only if the
other is, so that either the originals, or p times them, are these least integer vectors.
Then Dy has as its (¢,7) entry :I:pf" for some k; € Z.

Only the p;’s occur as denominators in the dimension group, and hence also in
this matrix and its inverse. For transposes, we are working with the corresponding
equation on the transposes of the row eigenvectors of the matrices. But the row
eigenvectors of a matrix are given by the inverse of a matrix of column eigenvectors.
So for the transposes, we have a similar problem but with a mapping (F 1) Dy E*T,
or equivalently ED; F~1.

To be specific, let

I 0 0
(7.22) E=|4 1 0
By C I
I 0 0
(7.23) F=|4 I 0
By Cp I

Let the main-diagonal entries of Dy, D; be denoted as Xy, Yy, Zg; X1, Y1, Z1.
Then set B*"JA™" = ED; F~! where

X 0 0
(1.24) EDyF~l= A1 Xy — Y14 4 0
Bi X1 —CiY1As+ Z1A3Cy — Z1By CiY1 — 21Cy 74

Xo 0 0
(7.25) FDoE~' = AsXo — Yoy Yo 0
By Xy — CoYo Ay + ZoA1C1 — Zo By CoYy — Z0Ch Zo

These matrices will have fractions only having denominators powers of the prime p.
Let A; and A, have the same fractional part Fy, that is Ay — A2 € My (Z), and
C1 and C5 have the same fractional part F., where FoF, = F.F,;. Let all these
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fractional parts be

(7.26) F = G ?) .

The congruences modulo p for the (1,2) and (2,1) matrix entries require that
the signs in the diagonal matrices Dy, D; be all the same, so that after possibly
multiplying these matrices by —I, which won’t affect unordered isomorphisms, we
have plus signs and X;, Z; = I (mod p®). Choose Bj, By so that the first matrix,
B™JA™™ in (7.24), consists of integers; hence we have an isomorphism from one
dimension group to the other. Choose the integer parts of Az, Cy (giving a difference
in the two equations), so that the second equation, (7.25), cannot hold. Then the
(3,1) entry cannot be an integer at the prime p. This difference is congruent to

(7.27) —C1Ag + AyCy + Co Ay — A1 Ch,

since the parts involving B; are congruent. To do this, we need only adjust the
integer Wyo part of Ap, for instance, by a matrix which does not commute with
F; modulo p, since the effect of this change is solely reflected in —Fy Wya + Weo .
Thus the transpose dimension groups are not isomorphic.

Remark 7.10. It follows from Theorem 3.1 of Boyle and Handelman [BoHa93]
that there are nonnegative integer matrices that are shift equivalent to the pair in
Example 7.9 and hence have the same dimension groups. It seems nearly certain
that an example could also be constructed where the ordered dimension groups are
isomorphic for two matrices, but for the transpose matrices, the ordered dimension
groups are not isomorphic. However, this example would be even more complicated.
In effect, we could add a large positive eigenvalue which is distinct, so that the
sum of nonmaximal column eigenspaces is automatically preserved, and so that
the direct sum of the new eigenspace and the old is either conjugate over Z to a
nonnegative matrix, or can be converted to one by the techniques of Boyle and
Handelman.

8. THE QUOTIENT G/ZN IS AN INVARIANT

Recall that G = G4 = [J3o, A™"Z". In this section we will consider the quotient
group G/Z". Here Z" can be replaced with any free abelian subgroup L of G such
that

(8.1) Ga=|JA™L
n=0

and

(8.2) AL C L.

We used the quotient group in [BJO99], but at the time we did not know if
it was an invariant, and what the isomorphism classes were (in the category of
abelian torsion groups). These issues are now resolved in the next proposition,
which implies that the quotient is indeed an isomorphism invariant, i.e., that a
given C*-isomorphism implies that the corresponding two quotients are isomorphic
groups.

Abelian torsion groups are classified in general by the so-called Ulm invariant
[Kap69, pp. 26-27], [KaMabl, and references given there]. The Ulm invariant
in general is a sequence of natural numbers suitably indexed by ordinals. These
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numbers are calculated as dimensions of certain vector spaces over the field F, =
Z/pZ. First, any given torsion group decomposes over its p-subgroups, and the
Ulm dimensions are then calculated for each ordinal, when p is fixed. In the present
application, the Ulm invariant is, as we show, very simple and concrete.

Example 8.1. The quotient group G/ZY for the special case of Section 5. It is
easy to understand concretely the torsion group quotient for the special case of
Section 5 when it is assumed that |det A| = A(4). Of course then A(4) is an in-
teger, and we may therefore form Z [1 2N A)] the usual way as an inductive limit
Unes Zry,, 3 described in (3.3) with natural embeddings L,y — Z/\ml, and

it follows from the discussion in Section 3 and Section 5 (Figure 1) that there is
then a natural isomorphism between the two groups G (4) /ZN and Z [1/A(4)] /Z.
Hence, in this very special case, Prim ()\( A)) is a complete invariant for the corre-
sponding torsion group quotient. See also [BJO99] for more details. It is the case
of dimension groups G (A4) more general than that of Section 5 which requires a
nontrivial localization. The next two propositions deal with the general case, and
the appropriate localizations.

One method of localizing at a prime p is to take the tensor product of an abelian
group with Z [1 /2,1/3,.. .,1//73, . .], inverting all primes except p; another is to
tensor with the p-adic integers. Both agree for all torsion groups; the latter lo-
calization factors through the former. These tensor products are exact functors of
abelian groups A which are subgroups of QV, that is, they preserve exact sequences;
this follows from [CaEi56, Proposition 7.2, p. 138], since the group D(A) is a direct
sum of copies of R/Z which has no nontrivial continuous homomorphisms into the
totally disconnected p-adics. Thus Tor! (A, C) is zero. Unless otherwise specified
we will mean the former, smaller tensor product when we localize.

Proposition 8.2. Let G = |, A"ZN be the dimension group of a primitive
nonsingular integer matriz A. Then for all sufficiently large lattices (finitely gener-
ated free abelian subgroups) L in G, the group G/L is a torsion group and the order
of any element is a product of primes dividing det A. In particular, this is true for
all lattices L such that|),, A" L = G. For each such prime p, its p-torsion part (the
elements G (p) whose order in G/L is a power of p, G/L = EBP orime G (p)) is p-
divisible and the subgroup of order p is finite. Hence the rank at each such prime pro-
vides a complete invariant of G/L. This rank is an isomorphism invariant of G, and
in fact, if we write the characteristic polynomial as V¥ +c12¥ 1+ - -+ev_1z+cn,
it is the largest j such that p does not divide c;. The extension of the free abelian
group L by the torsion group G/L is computable; it will lie in a direct sum of copies
of the p-adic integers for these primes p.

Proof. G written as Uflo:o A" (ZN ) will have as denominators only primes dividing
det A. If I includes Z¥ then we have a torsion group whose torsion involves only
primes in det A.

We first argue that locally at each prime p in it, G' consists of those vectors dual
to the eventual p-adic tow space R(E4) of A. That is,

83) GoZ [1/2,...,1//};,...] ={veQV | (w|v) € Zpy Yw € R(Ea)} .

The dimension group is the group of vectors z such that for some n, A"z € N,
This is the group of vectors such that 3n € Z% such that for Vw € ZN, we have




THE ISOMORPHISM PROBLEM FOR STATIONARY AF-ALGEBRAS 33

wA"z € 7Z. This is the group of rational vectors whose products with the row space
of A" is integer. This construction also goes through if we localize at any prime.
To say that a vector has p-integer product with the row space of A™ for some n
then implies that it has p-integer product with the idempotent p-adic limit E4 of
powers of A, mentioned in Lemma 3.1 and in Theorem 7 of [BJKR98]. Conversely
suppose it has p-integer product with the idempotent p-adic limit, then by p-adic
continuity, it must have p-integer product with some finite power. This gives the
claim.

Now to show that the quotient group at the prime p is p-divisible, take a p-adic
dual basis to the row space of E4, which like any p-adic torsion-free module, must
be a free module (the p-adic integers are a principal ideal domain, and argue as with
the ordinary integers). Approximate these vectors p-adically by rational vectors b;
using a p-adic approximation theorem such as [Wei98, 1-2-3, p. 8]. Take the free
abelian group L; generated by b; and add in the free abelian group Z~ and take
a basis for the result. As soon as we have a lattice L including L;, the p-adic
dimension group consists of a sum of copies of the p-adic integers corresponding to
L1 and a sum of copies of the p-adic field corresponding to the remaining vectors
(in the null space of E4—we can take additional basis vectors for it). When we
divide by L, we are dividing out by all the L; part p-adically, and by something
isomorphic inside a p-adic field in the rest, and the result will be p-divisible.

In fact, for any lattice L such that | J,, A" L is the dimension group, the quotient
will be isomorphic to this, since multiplication by A~! gives an isomorphism of
pairs (|, A™"L,L) — (U, AL, A~'L), and eventually this lattice must be large
enough.

Now consider the p-adic rank, in relation to the characteristic polynomial. By
Newton’s method [Wei98, 3-1-1, p. 74], if the characteristic polynomial has the
given form, we can factor it over the p-adics as a product of two polynomials, one
of which is ¥=7 modulo p, and the other of which has invertible constant term
over the p-adics. We can put the matrix into corresponding block form. The former
part will be p-adically nilpotent, and the null space will be its row space. O

Remark 8.3. As noted, our groups G (A) are contained in RY (even in QY) where
N is the rank of G (A4). But it is clear that general lattices L in RY are given by a
choice of basis in R" as a vector space. Writing the vectors in a basis, equivalently
the generators for I, as column vectors, we note that the lattices L may be viewed
as, or identified with, nonsingular real matrices. Making this identification, and
fixing the rank N, we further note that the containment L C L, for two given
lattices, holds if and only if there is some C' € My (Z) such that we have the
following matrix factorization:

(8.4) L=1LC.

There is a similar version of this for row spaces {or lattices defined from row vectors),
as well as a p-adic variation, mutatis mutandis; and we have already seen an instance
of the latter in (3.11)-(3.13).

Remark 8.4. We now show, using (8.4), that the conditions on L from Proposition
8.2 are all rationality conditions. There are three in all, and we proceed to spell
them out. If A is given as usual, and if G (A) is the corresponding group, i.e.,
Up>y A" (ZV), then a lattice L is a subgroup, i.e., L C G (4), if and only if there
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is a natural number n such that
(8.5) AL € My (Z).

Some given lattice L will satisfy the invariance property A (L) C L if and only if
the conjugate matrix L1 AL satisfies

(8.6) L7YAL € My (Z).

The further condition on L that it is generating, i.e., that | Jo—, A™" (L) = G (4),
holds if and only if for some natural number n we have

(8.7) LA™ € My (Z).

The three conditions should also be compared with (1.17) from Section 1.

Now Proposition 8.2 applies when G (A) is given and some lattice satisfies all
three conditions (8.5)—(8.7), and we get as a corollary that if two lattices L and L’
both satisfy the conditions, then the two torsion groups G (4) /L and G (A) /L' are
isomorphic groups.

In the study of dimension groups, it is convenient o explicitly compute certain
extensions. Let Zye denote the union of Z,» under inclusion, a divisible p-torsion
group whose order p subgroup has rank 1. By standard theory [CaEi56], the ex-
tension group Ext(Zpe,Z) can be computed using the exact sequence

(8.8) 0Z—->Q—-Q/Z—-0

as the cokernel of the map Hom(Zpw, Q) — Hom(Zp~,Q/Z); the former group is
zero and the latter group is Hom(Zpeo, Zp). Every p-adic integer gives a mapping
in this group; we check this mapping is one-to-one and onto, so that the Ext group
is the p-adic integers. (To check “onto”, note that we get every mapping Zp» — Zpn
and take limits.) In general, we are dealing with a direct sum of copies of these Ext
groups.

Next we look at the problem of isomorphism of dimension groups in a somewhat
different way, by showing that dimension groups can easily be computed as exten-
sions. In some cases this leads to a quick decision about whether two dimension
groups are isomorphic. However in the most general case, the problem of deciding
isomorphism given this extension structure seems to still require the methods of
Section 4. In view of Remark 8.3 we need only state the result for the case when
the lattice L is ZV.

Corollary 8.5. As in Proposition 8.2, consider an unordered dimension group as
an eztension of ZVN by a divisible torsion group G/ZY whose structure, computed
as in Proposition 8.2, is a direct sum of n; copies of Zpe. The extension class in
Ext!(G/ZN,ZY) is an element of ), @;_'__1 Zy(iy. We write this as an N x ) ;n;
matriz whose entries are p;-adic integers. Its columns consist precisely of a basis
for the null-space of the matrices E4 taken at each prime p;. Two such matrices
My, My represent isomorphic unordered dimension groups if and only f there is
a matriz C € GL(N,Z {1/ det(A)]) and an invertible direct sum of p;-adic integer
matrices D such that CM1D = M>.

Proof. Regarding the last statement, suppose C, D exist and the columns of My,
M form bases for summands of Z(;,), then the extensions are isomorphic, by taking
the corresponding maps on ZY, G/ZY. The action of the p-adic integer matrices
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just gives an isomorphism on G/ZY, and hence it gives an isomorphism on the
extensions. The same is true for a mapping C € GL(N,Z).

The given structure is an isomorphism invariant because the p-adic row spaces
of E, are invariants. Theorem 7 of [BJKR98] showed that a rational matrix over
Z[1/ det(A)] giving an isomorphism on dimension groups must give an isomor-
phism on the p-adic row spaces, hence the dual p-adic null spaces of E(A). In fact
[BJKR98, Theorem 7] gives as necessary and sufficient conditions for unordered
dimension group isomorphism, in effect, existence of C, D: the p-adic symme-
tries just mean we are considering the row spaces up to isomorphism, and the
GL(N,Z [1/ det A]) symmetry means that we have a rational map which is an iso-
morphism at all primes other than the ones considered here.

The extension class of any extension of Z" by a group G/ ZY may be computed
by extending the map Z¥ C QY to a mapping G — QY, and letting this give a
map in Hom(G/Z",(Q/Z)N) = Ext'(G/Z",Z"). This is the remark of Cartan—
Eilenberg [CaEi56, p. 292]. To identify this class it suffices to look at the p-torsion
subgroup of G/Z" for each prime p since the group is the direct sum of its p-
torsion subgroups. To identify this class, take the tensor product of G with the
p-adic integers, getting a localized extension of Zg) by the p-torsion subgroup of

G/ZN, which is G®ZJ(Z). But if we write all p-adic vectors as the direct sum K @ R
of the p-adic null space of R4 and a complementary space R, by Proposition 8.2,

(8.9) GOZy = (K ®Qp) © (RO Zg)).
Thus the extension class is represented taking
(8.10) (K ®Qp) ® (R®Zg)) = (K + R) ® Qg

and collapsing by Zg) to give the inclusion

(811)  (K®Qp)/(K ®Zg) = (K + R)® (Qp)/Zg) = (Qu)/Zg))" -
This map is induced by the map

(8.12) (K ® Qp)) = (K + R) ®Qp) = ZY @ Q)

which can be taken to send the ith unit vector on the left to the ith vector in a
basis for K on the right. This means taking basis vectors for the null space of E4
as forming the columns of the matrix giving the extension. 0

9. REDUCTION TO THE NONSINGULAR CASE

Throughout this paper we have considered AF-algebras defined by nonsingular
primitive matrices A, B, . ... The purpose of the present section is to point out that
even though the condition of nonsingularity is convenient in several arguments, it is
not essential for the definition of the class of C*-algebras we consider. We will prove
in Theorem 9.3 below that the class of C*-algebras remains exactly the same if the
condition of nonsingularity of the matrix A is removed and A is merely assumed to
be primitive, 1.e., some power of A has only strictly positive matrix elements. In
the case when A is not assumed invertible, we may introduce the eventual range of
A!

(9.1) W(A) = ﬁ AIQN = ANQN.

=0
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Note that A is bijective as a map W (A4) - W(4). We may now introduce an
additive group G (A) by

(9.2) G (4) :={g € W(A) | A*g € Z" for some k € N},

and one notes that this group G (A) identifies with the inductive limit of the se-
quence (1.6),1i.e. G (A) is the dimension group when it is equipped with the obvious
order. Let us give some details. An element of the inductive limit (1.6) can be repre-
sented by a sequence {gm, gm+1, . - } in ZY with Ag, = gny1 forn=m,m+1,....
Two such sequences represent the same element if they coincide from a certain step
n onward. Given such a sequence, there is a unique sequence {hy, ha,...} in W (A)
such that Ahy = hyy1 for n=1,2,... and such that h, = g, for all large n. Then
h; is the element of G (4) C W (A) representing the dimension group element in
(9.2), so this shows the equivalence between the two definitions (9.2) and (1.6) of
G (A). The definition (9.2) is the definition used in [BMT87, p. 49]. If A is non-
singular and, as in (9.2), Akg =m € ZV, then ¢ = A~*m is a typical element of
the (1.8)—(1.10) version of G (A), and vice versa. If A is primitive, we still have the
Perron—Frobenius data, and the order can be defined as before, mutatis mutandis.

Lemma 9.1. Given a vector u € R” there exist r vectors w; € Z" such that the
conver cone generated by the w; contains an open neighborhood of u, and the de-
terminant of the matriz the w; form is 1.

Proof. The standard unit vectors do this for any vector in the half space of strictly
positive integer vectors. We claim transforms of these by integer row and column
operations, permutations, and reversals of sign, take any vector to the interior of
this half space—-then just reverse those operations on the standard basis vectors. In
fact, we get all coordinates nonzero by certain linear combinations, then reverse
their signs. O

Remark 9.2. It is not in general possible to get a determinant-1 system of ma-
trices which approximate multiples by some positive constant C' of a given set of
nonnegative vectors u;. This is easiest to see when the vectors u; are chosen diag-
onally dominant. But Lemma 9.1 can probably be strengthened a little.

Theorem 9.3. Every ordered dimension group arising from any nonnegative prim-
itive integer matriz A is order isomorphic to one arising from a nonsingular positive
integer matriz B.

Proof. Note that by results in {BoHa91], this is not true for shift equivalence, but
the ability to replace matrices by powers of themselves gives much more flexibility
here. Let the dimension of A be d and the rank of all sufficiently large powers
A® be r. By Lemma 9.1, we find a set of » vectors w; in the eventual row space
R, that is, the row space of AN, or some specific higher power, a rank-r subspace
of Z4 such that the cone over Q4 generated by this set includes a neighborhood
of the maximum eigenvector v within R. This is sufficient to establish that all
sufficiently large powers of A have their rows expressed as (unique) nonnegative
linear combinations of w;, since all rows of A® divided by their lengths converge to
fixed multiples of v and hence are eventually in the convex cone; but to be in the
convex cone means that we have these convex combinations.

However, we also need that it can be chosen that these convex combinations are
eventually integer. For that, it suffices that the determinant of the w; expressed
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as combinations of a basis for the integral vectors in the eventual row space, i.e.,
RN Z% arank-r free abelian group, is 1 or —1. This follows from the lemma.
Now let B be the matrix of A® expressed as acting on the vectors w;, which will
be nonnegative, and positive. Then B is shift equivalent to A° over the integers
(maybe with negative entries), just by the inclusion mapping given by the vectors
w;. By a theorem of Parry and Williams [PaWi77] (reproved in our 1979 paper
[KiRoT9]), any shift equivalence over Z of primitive matrices can be realized by
a shift equivalence over Z,. This shift equivalence will induce an isomorphism of
ordered dimension groups. O

10. STRONG LOCAL ISOMORPHISM

Definition 10.1. We will say that two dimension groups G, G' are strongly locally
isomorphic at the prime p if and only if there is an isomorphism GQZ () — G'Q®Zp)
which is induced by a matrix of rational integers.

Theorem 10.2. Strong local isomorphism is decidable and corresponds to the iso-
morphism condition of Corollary 8.5 if we take the submatriz corresponding to one
specific prime. That is we form a matriz whose rows are a basis for the p-adic
eventual row space, whose rank is ny,. Two dimension groups are strongly locally
isomorphic if and only if the corresponding two matrices A, B for each p admit
some matrices C and D where C € GL(N,Q), D € GL(np,Z()), and the two
matrices C and D satisfy CAD = B.

Proof. The latter condition follows from Theorem 7 of [BJKRI8], which is identical
to Corollary 3.2 in the present paper. We may determine an algebraic number field
over which the p-adic eventual row spaces of both matrices may be realized; the
field generated by all their eigenvalues will suffice. Then the required p-adic matrix,
if it exists must be a matrix over this field, having denominatgri relatively prime to
p. It can be expanded as a larger matrix over Z[1/2,1/3,...,1/p,...], using a basis
for the p-adic algebraic integers of this field. The conditions that a rational matrix
C exist are linear, corresponding to Galois invariance./’I‘\hen in this linear space of
matrices, we must have a matrix over Z[1/2,1/3,...,1/p,...], which is p-adically
invertible. We can determine a basis for this linear space, write the determinant
as polynomial in variables representing an expansion of a given matrix in terms of
this basis, and test each case of congruence classes for the variables to see if the
determinant is nonzero modulo p. O

Example 10.3. Let

(10.1) A:(‘f ;) B:(Z ‘1))

The respective characteristic polynomials are z? — 6z 4 7 and 22 — 8z + 7, with
determinant 7, and we consider the local dimension groups at 7. Since 7 does not
divide 8, only one root of the former polynomial is divisible by 7. Thus only the
identity element of the Zy Galois group fixes the eigenvalue not divisible by 7. This
implies that the 7-adic row space is irrational, and the minimal fields over which
eventual row spaces are defined are respectively Q [\/ﬂ , Q, so the dimension groups
are not locally isomorphic. Note that, even so, the two quotient groups G (A) /Z2
and G (B) /Z? are isomorphic. This follows from Proposition 8.2: Recall, to verify
this we need only compute the respective Ulm numbers from the characteristic
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polynomials, and there is only the prime p = 7 to check. So the T-reduced rank is
1 for each of the two quotient torsion groups calculated from A and B.

Example 10.4. Consider

(10.2) A= (g ;)

and its transpose B = A®; for this particular choice of the pair A, B, the minimal
fields over which eventual row spaces are defined are isomorphic. We can arbitrarily
choose which root of the characteristic polynomial % — 6z + 7, the same as for 4 in
Example 10.3, is divisible by 7 (representing the unique p-adic root which is divisible
by 7), say 3 — v/2. The eventual row eigenspaces are spanned by the corresponding
row eigenvectors, which are (1 —+/2) for B and (-2 1) for A. A mapping of
eigenspaces must map one to a multiple ¢ times the other. If it commutes with the
Galois action, then it must do the same for their conjugates, so that it has the form

(10.3) (‘2 8) .

The determinant restricted to the eventual 7-adic row space is ¢, so the congruences
are ¢ = 0 (mod 7), which are solvable. The dimension groups of this matrix and its
transpose are locally isomorphic at the prime 7. Since 7 is the only prime involved,
this implies global isomorphism of the unordered dimension groups.

Note also in this case that A and A" are conjugate by the unimodular matrix
(93); and hence it even follows directly as in Example 7.1 that A and A" are
(elementary) shift equivalent.

Note finally that if one denotes the A matrices in (10.1) and (10.2) by Az, Aj,
respectively, and one defines

(10.4) J= G (1))

then AyJ = JA;, and thus if K = A;J~! we have the system
(10.5) Ay = JK, A =KJ.

But K does not have positive matrix entries, so this does not imply elementary
shift equivalence. However, if we redefine

_a2.-1__ (11 6
(10.6) K=A3J _<1 3)
then we have the pair of shift relations for the squares,
(10.7) A2=KJ, Ai=UK,

which is the assertion that A% and A2 are elementary shift equivalent. In particular,
A; and A, are C*-equivalent. This latter conclusion and the one in Example 7.1
also follow the next general observation:

Observation 10.5. If A, B are nonsingular primitive N x N matrices and there
exists a unimodular matrix J in My (Z) such that

(10.8) v(B) J = pv (4)
for a positive number y, and
(10.9) BJ=JA,
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then A and B are C*-equivalent.
Proof. Since J is unimodular, we have
BrJATr = JATAT" = J € My (Z),
AMJ 1B = APATM I =T € My (Z),

and the observation follows from (1.16)—(1.17). (The condition (10.8) may be re-
placed by the strictly stronger requirement that J and J~! have only nonnegative
matrix entries.) O

Remark 10.6. In fact we have the “partial” implication (10.9) = (10.8), but (10.8)
for some real scalar p, while the positivity restriction on p is not a consequence
of (10.9) alone. We further stress that (10.9)-(10.8) are more restrictive than
C*-equivalence, even more restrictive than shift equivalence: take, for example,
A=(3}) and B =(22), which are shift equivalent by [Bak83}, but do not satisfy
(10.9).

To summarize, the two examples have four matrices in all, and the first one in
Example 10.3 is C*-equivalent to the two in Example 10.4, but ( $) from Example
10.3 is not C*-equivalent to the other three. The first one, (f}) in Example 10.3,
is symmetric, and A from Example 10.4 is C*-symmetric in that it is C*-equivalent
to 1ts own transpose.

Remark 10.7. Note that the two matrices A;, As in (10.1), (10.2) considered
above are elementary shift equivalent over Z since they are conjugate over Z. But
while A%, AZ are elementary shift equivalent over Z, A; and A are not! (These
types of 2x2 examples have been considered earlier by Kirby Baker [Bak83, Bak87].)
This is seen as follows: Suppose A; = C'D where C, D are nonnegative integer 2 x 2
matrices. Then C expresses the rows of A; as nonnegative integer combinations of
the rows of D. The entries 1 in the rows of A; can only come from entries 1 in the
rows of D). Moreover these 1’s can only be in the same row. Furthermore, in the
linear combinations these 1’s can only be multiplied by 1’s. So the product CD
looks like, up to symmetry,

1-612 d11-1 _ 4 1
(1011) ((321 -1 1 -d22> - (1 2> ’

But if we write out the equations, there are no solutions unless one of C, D is a
permutation matrix, and thus DC cannot be equal to A;.

(10.10)

11. CONCLUDING REMARKS

In the paper we addressed the interplay between the local and the global versions
of the isomorphism problem. There are different, but related, decidability results
in the literature. Ax and Kochen [AxKo65a, AxKo65b, AxKo66] and Grunewald
and Segal [GrSe82] address decidability in a p-adic setting.
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Richtiges Auffassen einer Sache und Missverstehen der gleichen Sache

schliessen einander nicht vollstindig aus.

—FRANZ KAFKA
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