MONOID EXTENSIONS ADMITTING COCYCLES
LILTANA PAVEL AND TERJE SUND

ABSTRACT. We characterize those monoid extensions which are
associated to a certain class of 2-cocycles. Algebraic, topological |
as well as involutive aspects are discussed. Applications to repre-
sentation theory are given.

INTRODUCTION.

One purpose of this article is to describe the family of all semigroup
extensions which can be associated to some “reasonable” class of 2-
cocycles. We discuss both the algebraic and the topological aspects
of the subject. For simplicity we shall assume all semigroups have an
identity element, i.e., they are monoids. Since an identity element can
be adjoined to any semigroup, a similar extension theory is valid for a
certain class of semigroups (without identity) as well.

The article is organized as follows. In §1 we adapt the basic language
of the Eilenberg-MacLane cohomology to the monoid setting. Next,
we develop the algebraic rudiments of a noncommutative extension
theory for a certain class of monoids (§2). To be more precise, we
study monoids S possessing a normal submonoid /V and a cross section
u : S/N — S such that all left and right translation maps on IV, defined
by elements in u(S/N)?, are injective. It turns out that this class of
extensions admits a description in terms of cocycles with values in the
maximal group of N, as described in §1. Conversely, any such cocycle
defines a monoid S with the above properties.

In §3 we assume the monoids are involutive. Examples of such
monoids can be obtained from groups G with an involutive automor-
phism 7 (i.e. (G,7) is a symmetric group) as follows. If g € G, we
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put ¢* = 7(g9)"'. Any submonoid S of G for which 5* = 5, is an
involutive monoid and, moreover, it is (bi-) cancellative. Of particular
interest is the case where (G, 7) is a symmetric Lie group, [HN, §7.3].
The involutive extensions are described in terms of “cocycle triplets”
consisting of a prerepresentation, a corresponding 2-cocycle, and also a
1-cochain (Prop. 3.1, and 3.2). In §4 we proceed to study the topolog-
ical properties of monoid-extensions. By analogy to groups, a monoid
extension is almost fibered (Def. 4.1) if and only if it admits a cross-
section continuous at the identity element, Prop. 4.1. Moreover, if the
cross-section is continuous at the identity, the corresponding extension
can be organized as a topological monoid in a canonical way. As an
application to the extension theory of the present article, we explain
how to obtain a proof of an analogue to the Mackey extension theorem
for multiplier (projective) representations of second countable locally
compact groups in the setting of discrete cancellative monoids, §5. In
the presence of a “Haar measure”, Mackey’s Theorem should also be
valid for many locally compact cancellative monoids. As far as we
know, the existence of such a measure remains an open question.

We are aware of very few articles in the literature devoted to cocycles
on semigroups. The only notable exception we have found is [DE],
where it is shown that a symmetric cocycle on an abelian cancellative
semigroup into a divisible abelian group must be a coboundary. We
remark also that although compact cancellative semigroups are groups,
this fails already in the countably compact case, [RS].

1. EILENBERG-MACLANE COHOMOLOGY OF MONOIDS.

Let S be a (discrete) monoid. We denote by Aut(S) the automor-
phism group of S, that is the group of all invertible maps a: S — S
which preserve the monoid composition, a(s182) = a(s1)a(ss), s1,52 €
S, and leave the identity element e = egs of S fixed. The group G(S5)
of all invertible elements in .9, is called the maximal group of S. Each
z in G(S) defines an inner automorphism I, of S by I,(s) = =7 'Sz,
s € S. The group Inn(S) of all inner automorphisms, is a normal sub-
group of Aut(S) since al, = Iyna (@ € Aut(S), z € G(S5)). The
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quotient group Out(S) = Aut(S)/Inn(S) is called the outer automor-
phism group of S.

Definition 1.1. Let @ and N be monoids, ¢: Aut(N) — Out(V)
the canonical group epimorphism. A map 6: @ — Aut(N) is a pre-
representation of @ in N if 0., =« (= the identity map of V) and its
projection y = god on Out(N) is a representation (that is a semigroup
homomorphism of @ into Out(N)).

Definition 1.2. Let @Q and N be monoids. An n-cochain (n > 1) of @
with values in N is a map f from the direct product Q" =@ x ... x @
to G(N) such that f(z1,%2,...,2,) = ey if x; = eg for some 7 (1 <
i < h). By a 0-cochain of () with values in IV, we understand an
element of the maximal group G(IN). An n-cochain f is said to be
continuous at eg (resp. locally continuous) if f is continuous (resp.
locally continuous) at (eg, eq, ... ,eq). A 0-cochain is always regarded
as continuous. We denote by C"(Q, N) the set of all n-cochains of ¢
with values in V.

We remark that C™(Q, N) is a group with pointwise multiplication
of functions as product.

Definition 1.3. Let f be an n-cochain (n > 1) of ) with values in N,
and let 6 be a pre-representation of @ in Aut(N). The n + 1-cochain
defined by

(]_]_) (5f)($1,5172,... 7mn+1) = f(.’lfl,ib'z,... , T

[H f(xla o 3 BT, - )xn—l—l)(_l)i] ' 9:1:1{f(x2am3) B 73:"71)})
1 ,

)(—1)’“rl :

is called the coboundary of f relative to #. A cochain f for which
the coboundary is constant (and hence equal to ey) is called a cocycle
relative to 6. In this case we say that the pair (f,0) is a cocycle of @
in N. If n=0and f =m, m € G(N), (6m) =mb,(m™1).

The set of n-cocycles relative to 6 is denoted by Z"(Q,N,6) and
the set of n-cochains (n > 1) which are coboundaries relative to 0 is
denoted by B™(Q, N, 8), B°(Q, N, 0) consists by definition of the single
0-cochain f = ey.
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Definition 1.4. Assume the maximal group G(N) of N is abelian,
and let f and g be two n-cochains of ) with values in N. f is said
to be cohomologous to g w.r.t. the representation  of @ in Aut(N), if
there exists an (n — 1)-cochain h of @ with values in IV such that

flz1, @0, .o 20) = g(T1, %2, . ., To) (B0, T, - .. ,wn)(_l)n_l-

(1.2)

n—1

. H h(z1, o, . .., TiTig1, - - -  2,) 0, Wz, 20, 20) 7T}

1

If G(N) is abelian, it is easy to verify that every coboundary is a co-
cycle and that Z™(Q, N, 8) and B™(Q, N, §) are subgroups of C*(Q, N),
which is then abelian. The quotient group

H"(Q,N,0) =Z™"Q,N,0)/B"(Q, N,0)

is then called the n-th cohomology group of () with values in N relative
to 8 (cf. [EM1]).

Lemma 1.1. Let Q,Q’, and N be three monoids, 8 a pre-representation
of Q" in Aut(N), ¥ a representation of Q in Q. The map *: C™(Q', N) —
C™(Q, N) defined by

W' f)(@,22,- - 20) = F((21), ¥(32), -, P(20)), @ €Q

is a representation which maps cocycles and coboundaries relative to 0
to cocycles and coboundaries relative to 01, respectively.

Corollary 1.1. If, in addition to the hypothesis of the above lemma,
the mazimal group G(N) is abelian, we obtain from *, on forming
quotients, a representation of H"(Q',N,0) in H™(Q, N, 0y).

It can be shown that this representation is an isomorphism (see [Ca,

I §10]).

2. DISCRETE MONOID EXTENSIONS AND COCYCLES.

Let us begin by recalling some basic facts about congruences on
monoids, see also [H]. Assume S is a monoid and N a submonoid of
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S. We say that N is normalin S if tN = Nz for all z € S. If N is
normal in S, we may define an equivalence relation p = py on S by

(Vz,y e S) (z,y) € p<=zN =yN

Since IV is normal, p is even a congruence, i.e., it is compatible with
the semigroup operation:

(Vs,t,z,y € S) (s,t) € pand (z,y) e p= (sz,ty) € p

By p-compatibility, the family S/p of all congruence classes is also a
semigroup with its natural operation, (zp)(yp) = (zy)p. Here

zp={yeS:(z,y)ep}={yeS:zN =yN}

We refer to S/p as the quotient (semigroup) of S by N (or by p).
The quotient map p' = {(z,zp) : © € S} C S x §/p, is a semigroup
homomorphism. Its kernel is kerp' = p = {(z,9) € Sx S : zp =
yp} = {(z,y) : «N = yN}. Observe that ep = N. More generally, the
kernel ker ¢ = ¢ o ¢! of any semigroup homomorphism ¢ : S — @ is
a congruence on S, and the quotient semigroup S/ker ¢ is isomorphic
to Q. In view of this, we make the following

Definition 2.1. Let S and @ be semigroups, and let p be a congruence
on S. We say that S is an extension of @ by p, S = S(Q, p), if there
is a homomorphism ¢ : S — @ such that p =ker ¢.

Now if p is a congruence on S, the equivalence class ep of the identity
element e is a subsemigroup of .S, but it need not be normal. Further,
z-(ep) Cxzp (Vz € 5), but the two sets need not be equal.

Definition 2.2. Let p be a congruence on S. We say that p is admis-
sible if for each z in S, z(ep) = (ep)z = xp. The congruence p is left
(resp. right) admissible if z(ep) = xp (resp. (ep)r =xp) (Vz €5).

If p = py where N is normal in S, then p is always admissible. The

converse follows readily.

Lemma 2.1. A congruence p on S is admissible if and only if p = pn
where N = ep.
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Definition 2.3. We write S = S(Q,N) if p = py is an admissible
congruence on S and @ = S/p. In this case we say that S is an
extension of Q by N.

The following lemma is also clear.

Lemma 2.2. Let p be a congruence on S, and assume u 18 a CToss-
section for S/p in S with uep) = e. Then p is left (resp. right) ad-
missible if and only if each s in S can be written s = u(z)n (resp.

s = nu(z)) where n € ep and x = sp.

We remark that the decomposition s = u(sp)n of the above lemma
need not be unique. We will return to the question of uniqueness below.
Now if S carries an involution, = + z*, the quotient S/p with
any congruence p becomes an involutive semigroup with the opera-
tion (zp)* = (z*p) (z € S). In §3 we shall assume the semigroups are

involutive and (right) cancellative:
(2.0) TY=22 = Y=2 (z,y,2 € 9).
By the involutive property, this also implies a corresponding left can-
cellation, since
(2.1) yr =2z = (yx)'=(2z)" = a'y*=2"2"
= Y=z = z=y

On any semigroup S, we have left and right translation operators x
Ly, v — Ry,

Ly=zy, Ryy=yz (z,y€S)

- Assuming S is bi-cancellative, both L, and R, are injective for each
z € S, and we have operators Ly : L,S=z-S— Sand R}: S 2 — S
which are left-inverses of L, and R, respectively. Notice that if NV is
normal in S, then L,N = R,N, so that the map
(2.2)

O(z): N> N, O@@)n=RLyn=(LyR,)"'n (z€S5, neN)

is a well-defined automorphism of N. Thus we have a semigroup ho-

momorphism
©: S5 — Aut(N),




MONOID EXTENSIONS ADMITTING COCYCLES 7

whenever the restriction to IV of all left and right translation operators
of S are injective. In light of this we introduce

Definition 2.4. Let S be a monoid, N be a normal submonoid of S,
and H C S a subset.

(a) N is H-cancellative if, for each h € H, the restricted translation
maps L,|N and Ry,|N are injective.

(b) Assume r is a positive integer and put @ = S/N. We say that
N is Q"-cancellative if there is a cross section u : ¢ — S such that N
is u(Q)"-cancellative. In this case we shall also say that the extension
S = 5(Q, N) is Q"-cancellative.

Similarly, one can also formulate notions of left and right )"-cancellative
monoid extensions. In the present paper we shall only be concerned
with the cases r = 1 and 2.

Remark 2.1. It is not hard to see that if S(Q, N) is Q"-cancellative
then the injectivity properties of the above definition is valid for all
cross sections u associated to the extension. Notice also that an ex-
tension S(Q, N) is Q"-cancellative if and only if for each cross section
u: @ — S associated to the extension left and right translations on
N with every y € u(Q) - Range(w) ™! is injective. This follows from
the identity u(zy) = w(z,y)u(z)u(y), =,y € @ (w denotes the cocycle
corresponding to u).

If N is S-cancellative, we define I(N) as the subgroup of Aut(N)
generated by all ©(n) and ©(n)~! where n runs through N. O(N) =
Aut(N)/I(N) will stand for he quotient group. Clearly the inner auto-
morphism group Inn(N) is a normal subgroup of I(V). © is a repre-
sentation of the monoid S in Aut(/N) that maps N onto ©O(N) C I(N).
Furthermore, ©(NN) is a normal submonoid of Aut(V), as is a conse-
quence of the identity

a®(n) = O(a(n))a (Ya € Aut(N),n € N).
We denote by ¢y the corresponding congruence, gy = {(a, ) € Aut(V)x
Aut(N) : a®(N) = BO(N)}. Passing to quotients, © projects to a
representation y of Q = S/gn in the monoid O(N); = Aut(N)/qw,
defined by xyoqy =gy 0 ©.
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Definition 2.5. Let S = S(Q, V) be an admissible extension of monoids,
and assume N is @Q'-cancellative. Then the representation x of @ in
O(N), defined by the extension, is called the character of the exten-

sion.

Now let p be a left (resp. right) admissible congruence on S, and u
be a fixed cross section of @ = S/p in S with u(ep) = e. In the sequel,
we shall assume all cross sections are enjoying this property. In view
of Lemma 2.2, each element s of the extension S = S(Q,p) can be
written s = nu(x) (resp. s =u(z)n), n € ep, x € Q. Put N = ep. We
remark that u(z)N = z (resp. Nu(z) =z) for all z € Q.

Notice that in the representation s = nu(z) (resp. s = u(z)n),
the factor u(z) is always uniquely given by s (the cross-section u be-
ing fixed), whereas m is unique in case N is right (resp. left) u(Q)-
cancellative. Let ¢ : S — @ denote the quotient map. Then

dlu(z1)u(z2)] = 2122 = Pu(T122),

Assuming p is left admissible, we can always write

(2.3) w(Z122) = w(wy, T2)u(z)u(zs),

and

(2.4) w(zr)u(zg) = o(21, T2)u(T122), (z1,22 € Q)
where

w(z1,T2),0(x1,22) € N.

Similar relations follow if p is right admissible.

Lemma 2.3. Let S = S(Q, p) be a left admissible monoid extension
and u : Q — S be a cross-section with u(ep) = e, and let w and o be
as in (2.8) and (2.4).

(a) Assume the restricted right translation operator Ry lep is ingec-
tive for all x in Q (i.e., ep is right Q-cancellative). Then o(x,y)
is a left (resp. right) inverse to w(z,y) (Vz,y € Q).

(b) Assume the restricted right translation operator Ry(yuy)lep is in-
jective for all z,y in Q (i.e., ep is right Q*-cancellative). Then w
and o are cochains mapping @ X Q into the mazimal group G(ep)
of ep. In addition, o(z,y) = w(z,y)"! (Vz,y € Q).
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Proof. We have
u(zy) = w(z, y)u(z)u(y)
= w(z,y)o(z,y)u(zy)
Using cancellation to the right by u(zy), we find that
w(z,ylo(z,y)=e  (z,¥€Q),
which proves (a). On the other hand,
u(z)u(y) = o(z,y)u(zy)
= o(z,y)w(z, y)u(z)u(y)
Assuming ep is Q*-cancellative to the right, we find
o(z, y)w(z,y) =e.
Consequently o = w™'. In addition, u(eg) = e, so that w is a 2-cochain
of @ X @ into G(ep), and (b) follows. 0
Remark 2.2. Replacing (2.3) and (2.4) with
u(zy) = u(z)u(y)7(z,y),
w(@)uy) = ulzy)u(z,y), =2,y €Q, 7(z,y),u(z,y) €N,
we find that the above lemma holds true for 7 and p if we assume that
each Ly@yuy)|N (2,9 € Q) is injective, N = ep.

If N is (left and right) Q'-cancellative, the following relations follows
readily,

(2.5)

w(z,y) = 0,0,7(x,y)
and
o(z,y) = Ogyu(z,y) =,y € Q.

Next we characterize those monoid extensions which are cancellative.

Proposition 2.1. Let S,Q, and N be monoids, and assume S =
S{Q, N) is an extension of @ by N. Then S is left (resp. right) can-
cellative if and only if
(a) both @ and N are left (resp. right) cancellative, and
(b) for any cross-section u: @ — S and each x € Q, the translation
operators Ly (resp. Ruw)): N — Nu(z) are injective.
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Proof. We shall verify the left property, the right one being similar.
Let p: S — @ be the quotient map. Let @ be left cancellative and
u: @ — S be a cross-section. Assume

mu(z)nu(y) = mu(z)n'u(y’) (m,n € N;z,9,9 € Q).

On applying p to both sides, we derive at once that zy = zy’. Hence
y = 1/ by the left cancellation law of Q. Consequently u(y) = u(y’),

and

mu(z)nu(y) = mu(z)n'u(y).
Since N is normal, there are ny,n} € N such that

w(z)n = mu(z), u(z)n' =nju(z).
Hence, if o is as in (2.3), we find
mu(z)nu(y) = mniu(z)u(y) = mnio(z, y)u(zy)
and
mu(z)n'u(y) = mnyo(z, y)u(zy) (o(z,y) € N)
Now, if Ry(sy) is injective on N, then
mnyo(z,y) = mnyo(z,y),

which yields nijo(z,y) = njo(z,y) if N is left cancellative. In view
of Lemma 2.3 (a) we conclude ny = nj. Thus we have shown that
u(z)n = u(z)n’. Hence, since Ly, is injective, n = n’, and we have
shown that S is left cancellative. Conversely, if S is left cancellative,
it is obvious that N is so. Let us verify that ) is left cancellative.
Assume z,y,y € @ and zy = zy’. Then u(zy) = u(zy'), and if 7 is
as in Remark 2.2, we find u(z)u(y) = u(z)u(y’)7(z,y"). Consequently,
using injectivity of Ly on S, u(y) = u(y')7(z,y’). On applying the
quotient map S — @, we obtain y = 3. Thus @ is left cancellative.
Finally, statement (b) of the proposition is obvious. O

Now assume S = S(@, N) is an extension of monoids. Let u : @ — S
be a cross section. If for each z in @) the translations Ly(;) and Ry(g)
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are injective on NNV, then each z in @ defines an automorphism 8, =
R;(m)Lu(w) of N. Expanding the cross section of products, we obtain:

w(z1(z223)) = w(x1, T2x3)u(T) )u(wxs)
3)u(z1)w(xe, 3 )u(zs)u(zs3)

Ju(z1)
223)U(21)
973) 05, w(Ta, T3)u(z1u(2)u(3)
273) (

)0, 0(

II

W T, T
x

(
w( )

w(z, (

w(T1, 2973)05,w (s, T3)0 (21, To)u(T122)u(Ts3)

w(T1, T9%3)05,w(Ts, T3)0 (11, Ta) o (2122, T3)u((2122)T3)

Here w and o are as in (2.3) and (2.4). Further, using the associative
law and the fact that Ry((z;4,)as) is injective on N, we find

(2.6) w(w1, Tom3) 0y, w(, T3)o (21, Ta)o (2122, T3) = €
Consequently, if N is right Q*-cancellative, we find
(2.7) w(xy, T273)05w(T2, T3) = w(T1T9, T3)w(T1, T2),

which is called the cocycle identity, cf. Definition 1.3. In addition, the
following representation property follows easily,

(28) 69:1:1:2 = w(ml,mg)0w19x2 (w1a$2 € Q)

(where I,(n) = znz~! for each z € G(N), n € N). Hence we have

shown,

Lemma 2.4. Let S be a monoid, N be a normal submonoid. Assume
u: Q = S/N — S 1is a cross-section and each Rygyuy) (2,9 € Q) s
injective on N. Then the 2-cochain w: @ X Q — G(N) defined by (2.3)
(cf. Lemma 2.3 (b)) is a 2-cocycle for @ with values in N relative to
the pre-representation 0 = @ o u: Q — Aut(N).

The composition law on S can be expressed as follows,

mu(z)nu(y) = ml;(n)u(z)u(y)

= mb(n)w(z,y) " u(zy)

Another cross-section v of @ in S will give, in a similar way, a differ-
ent cocycle o relative to another pre-representation p. Since v(z) =
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f(@u(z), u(z) = g(z)v(z) (f(z), 9(z) € N), we find that f(z) € G(N).

In addition, we derive at once the relations

(2.9) a(w,y) = f(2)0:[f (y)lw(z, y) f (2y) ™"

and
(2.10)
p(z)(n) = f(2)0s(n)f(2) ™ = Ipmybu(n)  (z,y€Q, n€N)

Definition 2.6. Let @ and N be monoids. Two cocycles (w,8) and
(a, p) of @ with values in IV are said to be equivalent if there exists
a l-cochain f € CY(Q, N) such that the relations (2.9) and (2.10) are
satisfied.

We remark that if the maximal group G(N) is abelian, this equiva-
lence relation reduces to the cohomology relation between cocycles.

Proposition 2.2. Let S = S(Q,N) be a Q'-cancellative extension of
monoids. Then the cocycles associated to the extension form an equiv-

alence class.
Proof. This is similar to the group case. (W

We are now ready to characterize the class of all monoid extensions

associated to cocycles.

Theorem 1. Let () and N be discrete monoids. An extension S =
S(Q, N) of Q by N is Q*-cancellative if and only if S(Q, N) is associ-
ated to a cocycle (w,0) of Q in N.

Proof. In fact, if (w, 6) is a cocycle of Q) in N, we can define a semigroup
operation on the direct product N x @) by letting

(2.11) (m,z)(n,y) = (mOgnw(z,y)™", zy).

Associativity follows from the cocycle-identity (2.7) and the represen-
tation property (2.8). That S(Q, N) is Q*-cancellative, follows from
the fact that w as well as each 8, (z € Q) are invertible. Conversely,
suppose S = S(Q, N) is a Q*-cancellative extension, and let u : Q — S
be a cross section such that Ryyu(y) and Ly(zyu(y) are invertible on N
for all z,7 in @. In light of Lemma 2.4, we can find a cocycle (w,0)

associated to S(Q, N). O
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Let @, N, and (w,0) be as in the above theorem. The extension
S(Q, N) given by 2.11 is called the canonical (algebraic) extension of
@ by N associated to the cocycle (w,0).

Definition 2.7. Two extensions S = S(Q, N) and S" = S'(Q, N) of
monoids are said to be equivalent if there is an isomorphism f: S — 5’
whose restriction to N and projection on @ (identified to S’/N) are
the identity maps. f is called an equivalence isomorphism of S(Q, N)

onto S'(Q, N).

Thus an equivalence isomorphism of S = S(Q, N) onto S' = S'(Q, N)
maps each cross-section of ) in S onto a cross-section of ) in S’. Hence

we have

Lemma 2.5. The cocycles associated with two equivalent extensions

are equivalent.

Proposition 2.2, Theorem 1, and the above lemma are summarized
in
Proposition 2.3. (“Schreier’s theorem for monoids”) Let Q and N
be two discrete monoids. Then there is a bijective correspondence be-

tween the equivalence classes of @Q*-cancellative extensions S(Q, N) and
the equivalence classes of cocycles (w,0) of Q with values in N.

We also mention the following analogue to [EM2, Thm. 11.1] for
monoids.

Proposition 2.4, Assume @Q and N are discrete monoids and x: Q) —
Out(N) is a representation. If there exist cocycles (w,0) of Q with val-
ues in N such that ¢0 = x (0: Aut(N) — Out(N) the canonical map),
then their families of equivalence classes are in bijective correspondence
with H*(Q, Zn, x), where Zy stands for the center of N in the mazimal
group G(N), Zy = Cent(N) N G(N).

Proof. This is similar to the group case.
3. EXTENSIONS OF *-MONOIDS.

In this section S will denote a (discrete) monoid possessing an invo-
lution. Assume, in addition, S is an extension S = S(Q, N) of monoids
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@ and N in which N is Q'-cancellative. Clearly, both N and ) inherit
natural involutions from S. Let u: @ — S be a cross-section. Both
u(z*) and u(z)* (z € Q) projects onto z*, hence there are mappings
w,v: ¢ — N such that

u(@)* = v(z)u(z®),
0 W) = wa)ule
Therefore,
u(z) = u(z*)*v(z)* and wu(z) = u(z") p(z"),

:u(x) = 1/(3:*)*,

by the Q'-cancellation property. (3.0) can then be rewritten as

we)" = v(z)u(a),

(3.1) u(z*) = u(z)'v(z*)*

We can also write u(z)* = u{z*)s(x), 11(z) € N, and combining this

with (3.1), we derive

hence
vi(z)v(z*)* = en,
and we conclude that v(z) and v1(z) are invertible, hence are elements

of G(N). Moreover, v1(z) = v(z)*. In particular,

(3.2)

and hence,

(3.3) v(z*) = Ov(x)
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Lemma 3.1. Let S = S(Q,N) be a monoid with involution. As-
sume N is Q'-cancellative, and let u: @ — S be a cross-section.
Then there is a one-cochain v of Q into the mazimal group G(N) of
N,v e CHQ,G(N)), such that

u(z)” = u(zv(z") = v(zu(z’) (z€@)
v is uniquely given by u, and also satisfies the relation
v(z") = Oufu(x)]

Combining the product property of the involution with the definition
of 0, we easily find

(3.4) 0, (n*) = [Oxn]* (neN, z€Q)

Moreover, if 6,+n = m, we derive u(z*)n = mu(z*), so that v(z) " u(z)*n

mv(z) tu(z)*, or

Hence

or by (3.4),

Lemma 3.2. With notations as above, the pre-representation 6 is en-

joying the property
(3.5) Opr = Lm0 (2€0Q)
Applying (3.5) twice, we also derive,
(3.6) Ley0 = Op o)
On calculating the involution of a product u(z)u(y), we obtain;
[u(@)u@)]" = [w(z,y) " u(@y)]" = v(ey)yo Wiz, y)ulys")
and
[u(@)u()]" = u(y) u(z)” = v(y)uly’)ve)u(=)
= vy v (@)]uly)u(@) (2,9 €Q)

Hence we have the following important relationship between v(z), v(y),

and v(zy).




16 LILIANA PAVEL AND TERJE SUND

Lemma 3.3. Let S(Q,N) be a monoid with involution. Assume N is
Q'-cancellative and let w : Q — S be a cross section. Then

(3.7 v(y)0ylv(z)] = v(zy)Oyes [w(z, y)|w(y", =*) (z,y € Q).

We remark that for central extensions (i.e. § = 1 and N abelian)
(3.7) reduces to

v(y)v(z) = v(zy)w(z, y)w(y”, =)
If in addition w is normalized, this is simply anti-multiplicativity, v(y)v(z)
= v(zy).
Definition 3.1. We say that an extension S(Q, N) of two monoids ¢
and N with involution is an involutive extension, if S has an involution

which yields the involution of N and @ by restriction and projection,
respectively.

Proposition 3.1. A Q'-cancellative extension S(Q, N) of discrete monoids
Q@ and N with involution is an involutive extension if and only if, for

any cross-section u : @ — N and corresponding cocycle (w,8) associ-
ated to the extension, there exists a 1-cochain v: Q — G(N) such that
(8.7) is satisfied. In this case the involution on S(Q,N) is uniquely
gien by the relation

(3.8) (nu(z))" = v(z)0+ (n)u(z*)  (nEN, z€Q)

Proof. First, if S(Q, N) is involutive, we have already seen that (3.7)
holds. Conversely, by (3.7)

* 1 *

[mu(z)nu(y)]” = [mbs(n)w(z,y) ™ u(zy)]
= v(2Y)0(ay [w (2, ¥)ba(n")mJu((zy)")
= v()By+ [V (@) (¥, ) 0y O (1) Oy - (M Yu((2)")
and
[nu(y)]"Imu(z)]" = [v(y)by (n)u(y")][v(z)0z (m*)ulz")]
= ()0 (n*)0y« [V ()00 (M*)w (v, *) T u(y*z*)

We calculate the expression

A= v(@)0y [v(@)]w(y", 57) 7 Oy bz (1) 0y 0 (M)
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Here
W(y*, 27) 7 Oy g (n*) = Oy OO (0w (y*, 7)™
= [0y Ly o)1 (0w (y", 2*) 7

A = v()0y [v(2))0y [v(2) 0y [0 v (@) (5", 77) Oy (M)
= v(y)0y- (n*)0y [V ()]0, Or (M) (y*, 2*)
= v(y) 0y (n*) 0y [V(2)0e (M) (y*, z*) .
This yields readily the product property of the involution:
(3.9) [mu(@)nu(y)]* = [nu(y)]* [mu(e)]"
As remarked above, the product property (3.9) implies (3.6). Hence
[mu(z)]™ = [v(z)bs (m*)u(z")]"
= v(2*)0, [0 (m)v(z) Mu(2)
= O, [v()0- (m)v(z) u(z)  (by (3.3))
= 0,07 (m)u(x) (by (3.6))
= mu(z).
We have shown that (3.8) defines an involution on S(@, N). Clearly
then, S(Q, N) is involutive. O

Proposition 3.2. If a monoid S is an involutive Q?-cancellative ez-
tension, S = S(Q, N), then we can find a triplet (w,8,v) satisfying the
cocycle identity (2.10), the pre-representation property (2.11), and the
involutive relation (3.7).

Definition 3.2. A triplet (w, 0, v) as in Proposition 3.2, determined by
a cross-section u: @ — N, is called an (involutive) cocycle associated
to the extension S(Q, N).

Assume S(Q@, N) is an involutive Q*-cancellative extension with a
cross-section u:  — S and an associated cocycle (w, 8, v). Any other
cross-section v: @ — S gives in a similar fashion a cocycle (o, p, 1)
associated to S(Q, N). Since

v(@) = f(2)u(z), ulz)=g(@)v(z) (2€Q),
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where f(z),g(z) € N, we find f(z) = g(z)~! and hence f(z) € G(N).
Consequently f € CY@Q,N). In addition to the relations (2.9) and
(2.10), we derive
(3.10) we) = v(@)llef(2)71f (@) (eQ)
In fact, this follows from the identities
v(z)" = pz)v(z") = px)f(a")u(z")
and
v(z)" = [f(2)u@)]" = u(e) f(2) " = v(z)u() f(2)
= v(2)0 [ f () u(x*)
Definition 3.3. Two involutive cocycles (w,8,v) and (o, p, ) associ-
ated to an involutive Q%-cancellative extension S(@, N) of monoids are

said to be equivalent if there exists a 1-cochain f € C*(Q, N) satistying
the relations (2.9), (2.10), and (3.10).

Proposition 3.3. The involutive cocycles associated to an extension

form an equivalence class.

Proposition 3.4. Assume Q and N are discrete monoids with invo-
lution. Each involutive cocycle (w,0,v) of Q with values in N s asso-
ciated to an involutive Q*-cancellative extension S(Q, N).

Proof. Exactly as for ordinary monoids, the direct product S = Q x N
is endowed with the composition law of (2.11):

(m, ) (n,y) = (Mbz(n)w(z,y) ™", 2y)
Next, the involution is defined by
(3.11) (m,z)* = (v(z)0- (M*),z") (me N, z€Q).

Since the cocycle is involutive, the identity in (3.8) holds. Hence S is
an involutive extension by Proposition 3.1. 0

Equivalence between two involutive extensions is defined analogously
to the case of ordinary monoid exensions, see Definition 2.4 (the iso-
morphism is now required to be involutive). An equivalence isomor-
phism of two involutive extensions S(Q, N) and S’(Q, N) maps each
cross-section of ) in S onto a cross-section of @ in 5.
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Lemma 3.4. The cocycles associated with two equivalent involutive ez-

tensions are equivalent.

We also have the following analogue to Schreier’s theorem for invo-

lutive monoids:

Proposition 3.5. Let @ and N be two discrete monoids with involu-
tion. Then there is a bijective correspondence between the equivalence
classes of involutive Q?-cancellative extensions S(Q, N) and the equiv-

alence classes of cocycles (w,0,v) of Q with values in N.

In Section 4 we shall extend this result to topological monoids. Let us
mention that an analogue to Proposition 2.5 also holds for cancellative

monoids with involution.

4. EXTENSIONS OF TOPOLOGICAL MONOIDS.

In this section we study the topological properties of monoid exten-
sions. Because of the lack of an inverse operation, special care must be
taken when developing an extension theory. A semigroup S is said to
be topological, if S is equipped with a topology which makes the map

(4.0) (z,y) > zy, SxS—S

continuous (where S x S is endowed with the product topology). In
the sequel we shall assume all topological semigroups are Hausdorff.
Clearly, since translations need not be open maps, a neighborhood base
at a single point does not always determine the entire topology on a
semigroup. A simple example is provided by the nonnegative real num-
bers with addition and the relative topology from R. Similar examples
can be obtained by looking at monoids for which the identity element
is contained in the topological boundary. If a topological semigroup S
carries a continuous involution

(4.1) =z, §— 85,

we say that S is an involutive topological semigroup, or simply a topo-
logical *-semigroup. By analogy to the case of topological groups, an
extension S(@, N) of topological monoids is called fibered if there ex-
ists a continuous cross section u : ¢ — S. We also make the following
definition, cf.[C, Def. 3.2],
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Definition 4.1. An extension S(@), V) of topological monoids is called
almost fibered if it admits a cross-section u: ¢ — S such that the map
h: nu(z) — (n,z), of S onto the direct product semi-group N x @, is
continuous at the point eyu(eq) and such that the inverse map h™" is

continuous at the point (ey, eg)).

In the almost fibered case it is clear that the cross-section u is contin-
uous at eg. For, the map (en, ) LA enu(z) = u(z) is continuous at
(ew, eq). We shall see next that for Q'-cancellative extensions S(Q, N),
the converse statement also holds.

Proposition 4.1. Let S be a topological monoid, and assume S =
S(Q, N) is a Q'-cancellative extension of topological monoids @ and
N. Then S(Q, N) is almost fibered if and only if there exists a cross-
section u: Q — S which is continuous at the identity eq.

Proof. Assume u: Q — S is a cross-section continuous at eg, and let
p: S — @ be the canonical map. Obviously h7': (n,z) — nu(z),
N x @ — S, is continuous at (ey, eg). In order to verify the continuity
property of h, let U x V be a neighborhood of (ey,eq) in N X Q. It
suffices to find a neighborhood of e = eyu(eg) contained in A~ (U X
V) =U-u(V). Let W be a neighborhood of e such that WNN = U and
p(W) C V. Since u is continuous at eg, we can find a neighborhood
W, of e such that Wi C W and u o p(W) C W;. For each z in p(W,),
let UL = p~'({z}) N Wi. Then

Ul = (Nu(z)) N Wy C Uu(z),

and consequently
wi= |J U,
z€p(W1)
OnU,, p(x)~ = Ry, is well-defined (since Nu(z) = p(z)N C Range p(z)).
Put U, = p(z)~U.. Then, since U, C Uu(z), we have U, C U. Now

Uy = p(x)~ UL = p(z)~(Nu(z) N W7) C N,

and since p(z) is continuous, its left inverse p(x)™ is an open map, and
we find that U, is a neighborhood of ey in N. Hence

Wi= |J pl@)U:. cUuV)=r"(VxU).

z€p(Wh)
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The converse implication is clear. This completes the proof. O

In order to investigate further the connection between 2—cocycles
and extensions of topological monoids, we shall need the following,

Proposition 4.2. Assume S is a cancellative monoid, and let © :
S — Aut(S) be as in (2.2). Let U be a family of subsets of S which all
contains the identity e of S. Assume the following properties hold:

(1) For allU in U, there is a V in U such that V2 C U.

(11) For ollU in U and all x in U, there ts a V in U such that
Ve CU.

(i12) For all U in U and all x in S there is a V in U such that
O(z)V CU.

(iv) For oallU andV inlU, there is a W in U such that W C UNV.
Then the family {Ux : z € S,U € U} is an open basis for a topology of
S. With this topology, S is a topological monoid.

If, in addition, S is involutive and

(v) For allU in U, there is a V in U such that V* C U,

then S 1s an involutive topological monoid with the above topology.

Proof. S is a topological monoid: Let a,b € S, U € U. By (i) there
is a V € U such that V2 C U and, by (i) there is a W € U with
O(a)W C V. Hence VaWb = (VO(a)W)ab C (VV)ab C Uab, and the
map (a,b) — ab, S xS — S is continuous.

Next, assume S is involutive and satisfies (v). If a € S and U € U,
there is a W € U with ©(a*)W C U, using (i%). By (v) there is a
V € U such that V* C W. Hence

(Va)* =a*V* = (0(a*)V*)a* C O(a*)W)a* C Ua®,
and it follows that the involution a — a* is continuous on S. O

Definition 4.2. Let @ and N be topological monoids and let (w,0)
be a cocycle of () with values in N. (w, ) is said to be continuous at
the identity eg of @ (resp. continuous) if

(a) the 2-cochain w is continuous at (eg, eg) in @ x @ (resp. contin-
uous on @ x @),

(b) for each z € Q, the mapping s — w(®(s)z, s)'w(s,z) is contin-
uous at eg (resp. on @), in which ®(s) = R; L;, and
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(¢) the mapping (n,z) — 0,(n), N x Q@ — N, is continuous at each
point (n,eq), n € N (resp. on N x Q).

Let @ and N be topological monoids. Assuming (w, 6) is a cocycle
of @ with values in N, we have seen above (Theorem 1 of §2) how to
construct (algebraically) a monoid extension S(Q, N,w,d) of @ by N,
associated to the cocycle (w, ), by defining the composition rule

(4.2) (m,z)(n,y) = (MO (n)w(z,y) ™", zy)

on the direct product N x Q. S(Q, N,w,0) will be Q*-cancellative
in view of Theorem 1. If (w,f) is continuous at the identity, we can
topologize this extension as follows. As a neighborhood base U at
e = (en, eq), we take the family of all sets U x V where U, resp. V, is
a neighborhood of ey, resp. eg. A neighborhood base at an arbitrary
point (n,z) is obtained by translation. If the semigroup composition
of (4.2) is compatible with this topology, then S = S(Q, N,w, 0) is by
definition an almost fibered extension. Let us verify the conditions of
Prop. 4.2. (4): Is similar to the group case. (44) and (iv) are clear.
(143): Let U x V € U and (n,z) € S. Since S is cancellative, the
map O(m,z) = R, ,yLimz) is well-defined for all (m,z) € S. For

(m,z),(n,y) € S arbitrary, we write
©(m,z)(n,y) = (k,v)

This means

(m, z)(n,y) = (k,v)(m, z)
or

(Ml (n)w(z,y) ™, 2y) = (b, (m)w(v,z) ™", vz)
Equivalently,
v =0(x)y
and
k0, (m) = mOy(n)w(z,y) ‘w(v, )

Let {(n,,y»)}vea be a net in S that converges to the identity. Put

Uy = O5(nw), my = 0y, (m),

and
O(m, z) (1w, yu) = (kv, vy).
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Then
k,0.,, (m) = mb, (nu)w(xa y,,)_lw(@(:z:) (yv)) ZL‘),

and since (w, f) is continuous at e, we find
k,m,—m, m,—m

Hence, in view of the cancellation property, it is clear that k,—ey.
Indeed, assume instead {k,}, does not converge to ey, and let V,, be
an arbitrary neighborhood of m. Then we can find a vy € A such that

k,m, € Vi, and m, € Vi, for v = v

If U, is an arbitrary neighborhood of ey, we can find a subnet of {k,},,
also denoted {k,},, such that for all v, k, ¢ U.. Then, using cancella-
tion, .

k,m, ¢ Usm,

By convergence of the nets {k,m, }, and {m, },, we find that m ¢ U,m,
clearly a contradiction. Thus k,—en,n,—eg, and (i) follows.

Definition 4.3. Let @, N, and (w,6) be as above. We assume the
cocycle (w,0) is continuous at eg. The extension S(Q, N, w,8), topol-
ogized as above, is called the canonical (topological) extension of @) by
N associated to (w, ).

By its definition, a canonical extension S(Q, IV, w, 0) is almost fibered.
Conversely, assume S(Q, N) is an almost fibered cancellative exten-
sion. If u: @ — S(Q,N) is a cross-section, continuous at eg, and
(w, 8) denotes the corresponding cocycle, then the map nu(z) — (n, z)
of S(@, N) onto S(Q, N,w, 8) is bicontinuous at the identiy, and is an
equivalence isomorphism (cf. Def. 2.5). However, since the topology
of S(Q, N) can not in general be recovered from a neighborhood of
the identity element, the canonical topological extension S(Q, N,w,0)
need not agree topologically with S(Q, N). We summarize the above
arguments in

Proposition 4.3. A cancellative extension S(Q,N) is almost fibered
if S(Q, N) is equivalent to the canonical extension of Q by N associated
to a cocycle (w, 8), via an equivalence isomorphism that is bicontinuous
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at the identity. The converse implication holds true if translations on

S(Q, N) are open maps.

Let (w,#) and (o, p) be two equivalent cocycles, both continuous
at eg. If the two cocycles correspond to cross sections u and v, re-
spectively, then there is a map f : @ — G(N) such that v(z) =
f@)u(z) (z € Q) (cf. (2.9) and (2.10)). The map (n,z) — (nf(z), )
is an equivalence isomorphism (in the algebraic sense) of S(Q, N, a,p)
onto S(Q, N,w, ). If the maximal group G(NN) is a topological group
(i.e. if the inverse operation on G(N) is continuous), this map is bi-
continuous at the identity if and only if f is continuous at eq.

Definition 4.4. Two cocycles (w, ) and (o, p) of @ with values in N
are said to be continuously equivalent at the identity (resp. continuously
equivalent) if there is an f € C'(Q, N) which satisfies

(43) a(z,y) = f(2)0:[f W)w(z,y) f(zy) ™

and

(44) p(z)(n) = f(2)0:(n)f(2) 7 = Ij0)f(n)  (z,y €Q, n€N),

and such that the corresponding equivalence isomorphism (n,z)
(nf(z),z); S(Q,N,o,p) = S(Q, N,w,0) is continuous at the identity
eq (respectively continuous).

According to this, each almost fibered extension is canonically associ-
ated to a class consisting of cocycles continuous at eg and continuously
equivalent at the identity. In particular, if G{/N) is a topological group,
this is the class of cocycles defined by cross-sections continuous at the
point eg, Prop. 4.1. Now, two equivalent extensions are associated to

the same class of cocycles, and we have:

Proposition 4.4. Let Q and N be cancellative monoids. There is a bi-
jective correspondence between the equivalence classes of almost fibered
extensions S(Q, N) and the classes of cocycles (w,8) of Q with values
in N, continuous at eq, which are continuously equivalent at the iden-
tity. If G(N) is a topological group, this is the class of cocycles defined
by cross-sections continuous at the point eq.
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5. APPLICATIONS TO REPRESENTATION THEORY.

We shall now apply the above extension theory to the theory of
representations of cancellative monoids. With a few exceptions we
do not assume the monoids are involutive. There are several possible
choices for representations, such as representations by bounded oper-
ators, by invertible operators, by isometries, or by unitary operators
in Hilbert spaces. We shall confine ourself to the isometric and uni-
tary cases. More specifically, we shall treat the problem of extending a
unitary representation from a normal S-cancellative submonoid N to
its stability submonoid in S. Just as for groups it becomes necessary
to consider multipliers (cocycles) and multiplier representations, [Ma,
Theorem 8.2]. Let w be a fixed multiplier on N. As we shall see below
(Cor. 5.1), the cancellation property induces an w—action of S on N,
the set of equivalence classes of irreducible unitary w representations
of N, by automorphisms. Although the following results are valid for
many locally compact second countable monoids S possessing a Haar
measure, we give here the details only in the discrete case. Notice that
by the cancellation property, the left and right translation operators
preserve cardinalities. Hence counting measure is translation invari-
ant on a discrete cancellative monoid. As far as we know, existence
of a Haar measure on a locally compact cancellative semigroup is an
open problem. In view of the fact that right (and left) translations
need not be surjective, the right regular and induced representations
are generally isometric but not unitary, cf. Example 5.1.

We remark that all ray semigroups (i.e. semigroups generated by
their one-parameter subsemigroups) are cancellative, [G]. On the other
hand, all C,*®—semigroups in the sense of [G] are locally cancellative,
but need not be cancellative. Also, there exist cancellative semigroups

which do not embed in a topological group.

Definition 5.1. Let S be a discrete monoid. By a multiplier on S
we understand a 2-cocycle w of S with values in the multiplicative
group C* of nonzero complex numbers and with respect to the trivial
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pre-representation 6, i.e., w: S x § — C* is enjoying the properties

(1) w(z,e) =w(y,e) =1
(i) wlzy, 2)w(z,y) =w(@,y2)w(y,2) (89,2 €S5)

If in addition S has an involution z — z* and w is enjoying the

(5.1)

further property
wlz,z*)=1 (zef),
we shall say that w is normalized. w is unitary if lw(z,y)|=1 (Vz,y €

S).

Remark 5.1. It is clear from the definition that multipliers correspond
to central extensions of S by C*, or by the circle group T in the unitary
case, cf. §81 and 8. If S is involutive, one can prove that each unitary
multiplier is similar to a normalized one. If w is unitary and normalized

one can also show that w(z,y)™ = w(y*, =*).

Definition 5.2. Let S be a monoid and w be a multiplier on S. A
map T of S into the monoid B(H) of all bounded linear operators on a
Hilbert space H = Hy is called an w representation of S if the following
conditions hold true for all z,y € S,

(@) T.=1

(i1) Tpy = w(z,y)TuTy.

T is isometric if each operator T} is an isometry, and T is unitary if

(5.2)

each T} is unitary. If in addition S carries an involution, it is also
natural to require that T be a x-representation, i.e.,

(119) T,," = w(a™, x) Ty

(We remark that unitary *-representations are not extremely interest-
ing in the present context, since their existence implies that S is a

group with inverse operation z7! = z*.)

Example 5.1. Let S be a cancellative monoid and assume w is a uni-
tary multiplier on S.

(1) There exist isometric w representations. The right regular w repre-
sentation of S on 12 = 12(S) can be defined by

(Rof)(y) =w(y,z) ' flyz)  (VfeP zyebl)
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The fact that counting measure on S is translation invariant implies
that R is isometric. R is unitary if, in addition, right translations are
surjective. In the present context, the left regular representation is
defined (and is unitary) if left translations are surjective.

(2) There exist unitary representations. In fact, the "conjugation”
representation C of S on 2 by inner automorphisms is given by

(Cof)w) = f(O(2) YY) (VfEP(S), my€9).

Since the automorphisms O (z) preserve cardinalities, C' is unitary. The
kernel of C' is the centre of S.

(3) Let I(S) denote the subgroup of Aut(S) generated by all ©(s) and
O(t)™L, s,t € S. Assume w is given by a multiplier ¢ on I(S), ie.,
w(z,y) = ¢(0(z),0(y)), =,y € S. In this case we can define a unitary
representation U of S on 2(I1(S)) by Upf(¢) = w(z,y) 1 f(O(z)(), = €
S,¢ € I(S). U is the identity on the centre Z of S. The lifting of U to
S/Z can be identified with the restriction to S/Z =2 ©(S) of the right
regular w representation of I(.S). Via restriction, ?(S/Z) is embedded
as an S/Z invariant subspace of #(I(S)). On this subspace U operates
as the right regular w representation R of S/Z.

When trying to transfer the ”multiplier action” of Mackey [Ma,
Lemma, 4.2] from the group situation to the unitary dual of a normal
submonoid of S, the first problem one encounters is that the expression

9s(2) = w(sz, s Hw(s, ) /w(s™ s)
does not make sense on monoids. However, this is solved relatively
comfortably by noting that on groups the relation

-1 -1

w(sz, s Hw(s™, s) ™ = w(szs™, s)

holds true. This is a consequence of the cocycle identity. Now, on
cancellative monoids, the right hand side of this formula has the obvious
analogue w(©(s)z, s) 71, suggesting the following result,

Lemma 5.1. Let S be a monoid, K be a submonoid of S, and assume

w 18 a multiplier on S. Further, assume x € S normalizes K, zK =
Kz, and both Ly|K and R;|K are injective. Put

W'(y,z) = w(O(2)y, O(z)2) (Yy,z € 9).
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Then the multipliers ' and w are similar. Indeed,
(5.3) W'y, 2) w(y, 2) = :(¥2)/ 9(Y) g2 (2)
where g,(y) = w(O(z)y, 7) " w(z,y).

Proof. On multiplying with denominators, the formula in (5.3) is seen

to be equivalent to

w(O(2)y, O(2)2)w(O(z)(y2), 2)w (@, y)w(2, 2)
= w(z,y2)w(y, 2)w(O(z)y, 2)w(y, 2)w(O(2)z )

Now, using the cocycle identity, we find

w(O(w)y, O(7)2)w(O(z)(yz), ¥)

(5.4)

(5.5) = w(9(2)y, O(z)2)w(0(z)yO(z)2, T)
= w(O(x)y, 22)w(O(x)z, x)
Further,
w(O(2)y, z2)w(z, 2) = w([O(z)y]z, 2)w(O(2)y, =)
(> = oy, (O(2)y, )
and
5.7 wlay, (e, ) = wle, v, 2)

Combining the equations (5.5)-(5.7), we obtain

w(O(z)y, O(2)2)w(O(2)(yz), z)w(z, y)w(z, y)w(z, 2)
(5.8) = w(O(z)y, 22)w(0(2)z, T)w(z, 2)w(z,y) (by (5.5))

= w(zy, 2)w(O(2)y, z)w(z, y)w(O()z,2) (by (5.6))

= w(z, yz)w(y, 2)w(0(z)y, )w(O(z)z,z) (by (5.7))
which proves the lemma. O

Corollary 5.1. Let S, K, z, and w be as in the above lemma. If T is
an w representation of K then the mapping

y— w(O(z)y, z)w(z,y) oy

is an w representation of K.
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Remark 5.2. Let the hypothesis be as in Lemma 5.1. The w repre-
sentation defined in the corollary is denoted by ,T*, or simply by T®.
Just as for groups we find T** = (T*)* whenever x and u satisfy the
hypothesis of Lemma 5.1. Moreover, for ally € K,

Togy Tz = w(©(2)y, 2) ' To@) )
=w(0(2)y, z) Ty = w(O(2)y, z) 'w(z, )T, T,
Hence, if T, is invertible,
T = T,L,T," (VyeK)

If S is a cancellative monoid with a unitary multiplier w, K is a
submonoid of S, and T is an isometric w representation of K, the
induced w representation U = w-ind(T) can be defined exactly as
for groups [Ma, §4], using right translations on the space of functions
f : S — Hp satisfying f(kz) = w(k,z)Tif(z) (Vk € K,z € 5),
and Y g/ I f(2)||* < oo, and with the *(S/K) inner product. Thus
(U f)(z) = w(z, 8) f(xs). U is always isometric, but need not be unitary
even if T is so.

Theorem 2. (Mackey’s extension theorem) Let S be a discrete monoid,
K be a normal S-cancellative submonoid of S, and let o be a unitary
multiplier on S. Assume L is an irreducible unitary o representation
of K such that L* = L (unitary equivalent) for all & in S. Then
there exists a unitary multiplier T on S and a unitary T representa-
tion M of S such that L, = M, for all z € K. T may be chosen so
as to be the product with o of a multiplier of the form 1/w o p where
p:S xS —S/py X S/pn is the canonical homomorphism and w 1s a
multiplier on S/K. When 7 is so chosen, w is uniquely determined by
o and L up to multiplication by a trivial multiplier.

Proof. In view of the above lemma and its corollary, the original proof
of Mackey applies with only minor changes, when stripped of measure
theoretical arguments. We remark only that in [Ma, p. 300], the
Subgroup Theorem [Ma, Theorem 4.5] is used to prove that the induced
representation W = w-indz(I) is the identity on K. However, this can
be verified directly, I being the one dimensional identity representation
of K.
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We include the proof for the sake of completeness:
Since L* =2 L for all x there exists a unitary M, such that for all z € K,

M,L, M, =L

Since L is irreducible, M, is uniquely determined up to a multiplicative
constant. We shall show that these constants may be chosen so that
z — M, has the properties stated in the theorem. It will be convenient
to do this in stages. Let U(H ) denote the unitary group of the Hilbert
space Hy. Since I® = L,L,L,”' (Vz,z € K) and L is unitary, we
may assume L, = M, for each z in K. Hence we see that

[P = ML, M, (V(z,z) € K x 5)
Now, for all (k,z,y) € K x S x S, we have

Moy LMy, ™t = L™ = (L*)}
(5.9) (M,LM, 1) = My LY M, !
= MM, LM, M, ™

Thus for all z,y € S the operator M, M, M, " commutes with Ly, for
all ¥k € K. Since L is irreducible it follows that there exists a nonzero
complex number of modulus one, 7’'(z,y), such that

My, = 7'(z,y) MM,

Thus ¢ — M, is a 7' representation of S and 7’ is a multiplier on
S. Let v(z,y) = o(z,y)/7'(x,y). Then v is a multiplier for .S which
reduces to the identity on K. However v need not be of the form
wop. As the final stage in the construction of M we show that we
may change M so that the corresponding v is of the desired form. Let
I denote the one dimensional identity representation of K. Since v is
the identity on K it follows that [ is a v representation. Hence we may
form the induced isometric v representation W = indg(I) of S. Now
for all (k,z) € K x S we have Wy, = W, W,v(k, x). Moreover (I%); is
multiplication by v(©(z)k, z)v(z, k). But

Lo@My = Mo@yMy = 7' (0()k, ) My,

(5.10) _ T’(@(m)k,ﬂ?)T’(x;k)_leMk
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and

(5.11) MyLiM, ™' = ¥ = 6(0(z)k,z)o(z, k) "' Lo
Combining these two equations we deduce at once that
(5.12) v(O(2)k,x)v(z, k)t =1 (V(k,z) € K x.5)

Thus I® is the one dimensional identity for all z € S. Now W can be
realized on the space of all complex-valued functions f on S such that

fkz) = v(k,2)Ipf(z) = V(k,x)f(x) (Vk e K,z € 5)

and W, f(y) = ﬁf(y:c) (Vz,y € S). In particular, for all £ €
K,z es,

Wi (2) = s (oK) = 5y F(O(2)E)
(5:13) = o (O(a), ) o () = £(2)

Hence W;, is the identity for all k£ € K, and therefore

Wie = v(k, )W, (Vk,z €K xS).

Now let u : S/K — S be a cross-section with u(K) = e, and let
q: S — S/K be the canonical map. For each z € S, there is a unique
k(z) € K such that u(z) = k(z)z. We put W, = Wiy (Vz €5).
Since W is a v representation we find that W' is a v/ representation,

in which
; 9(zy)
Ve, y)=v(z,y) ———~ (x,y €19).
=9 gy BV
We now define A, for all x € S as R%]\@. Since M is a 2 (= 7')

g

representation of S, it follows that A is a 2 representation of S. But
since W' is constant on the K cosets of S and W' is a v/’ representation
of S it follows at once that ¢/ is of the form wop. That Ay = Ly (k €
K) follows from the fact that Wy, is the identity. To complete the proof
of the theorem we have now only to establish the essential uniqueness
of w. Let N be a 0/w’ o p representation of S which agrees on K with

L. We compute at once that

N,LiN,™ ' = A, L A, = L7 (Vke K,z €5)
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and hence that NV, = p(z)A, for all z, where p(z) is a complex number
of modulus one. Hence

Ny = p(kz)My, (Vk € K,z € S).
Since (w' op)(k,z) = (wop)(k,z) = 1 we conclude that
o(k,z) Ly Ny = p(kx)o(k,x) LAy,
Hence p(kz) = p(z), and p is constant on the K cosets. Since

wop(z,y) = (W op)(z,y)p(z,y)/p(z)p(y)

the desired result follows at once. ]
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