COHOMOLOGY OF NUMERICAL MONOIDS
GENERATED BY THREE ELEMENTS

Arne B. Sletsjge

Abstract. We calculate the dimension of the tangent space of the deformation functor for numer-
ical monoid algebras generated by three elements. Combining this with similar results of Buchweitz

we obtain an implicit formula for the Frobenius number of the monoid.

0. Introduction

A numerical semigroup S is a subsemigroup of the natural numbers N (0 included). We
shall assume that S contains N shifted by some n > 0, i.e. n+ N C S. The least number
with this property is called the conductor of S, denoted by ¢. A numerical semigroup is
called symmetric if there exists m € Z such that for all s € Z we have s € S if and only
if m—s ¢ .S. It is easy to see that this m is the greatest gap, i.e. the greatest positive
nonnumber of S, and that ¢ = m+ 1. The number m is often referred to as the Frobenius
number of S. Let # = {n > 0|n ¢ S} be the set of gaps. The cardinality of H is called
the genus of S. All numerical semigroups S =< p,q >, generated by two elements are
symmetric with m = pg —p — ¢. If g = |#| is the genus of S, a simple computation shows
that for a symmetric numerical semigroup 2¢g = m + 1.

In this paper we shall mainly be concerned with numerical semigruops generated by three
elements, nicely described by Herzog in [H]. In this case we put S =< g1, g2, 93 >. Let

R(S) = {(z1, 22, 23) € z? | z191 + z2g2 + 2393 = 0}

be the set of relations between the generators. A relation (v1,v2,v3) is minimal of type
i,1=1,2,3,if for all (21,22, 2z3) € R(S) such that either z; > 0 and z; <0, j # 4 or z; <0
and z; > 0, j # 4, we have |v;| < |z;|. A relation is minimal if it is minimal of any type.
The degree of v is given by deg(v) = Z?=1 gimax(o, v;).

A symmetric numerical monoid generated by three elements g1, g2, g3 has exactly to mini-
mal relations of degree r1, 79 and the conductor is given by ¢ = r{ +79 — g1 — g2 — g3 + 1.
To find the moduli space of k[S] we compute the tangent space T(k[S]) and the obstruc-
tion space T?(k[S]). If S is generated by three elements the associated k-algebra k[S] has
embedding dimension 3, and T?(k[S]) = 0 (see e.g. [B]). Thus the moduli space is smooth
of dimension dim7"(k[S]) = 29 — 1 + | M|, where M is the set of “maximal” gaps, i.e.
M ={heH|h+ 5S4 C S} Inthe symmetric case |M| =1 and we have

dim T (k[S]) =29 = ¢

Herzog ([H]) gives the formula m = r1 + 79 — g1 — g2 — g3 for the Frobenius number of S.
Thus we get the formula

dim T (k[S])) =r1+ 79— g1 — g2 — g3 + 1
which is verified in this paper by quite different methods.
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The non-symmetric case is somewhat more complicated. Then we have three minimal
relations and the formula for the Frobenius number is no more valid. Buchweitz ([B]) gives
a formula for the dimension of the moduli space

dim, T (k[S]) = 29 — 1 + |M]|

We prove that in the non-symmetric, three-generator case |[M| = 2 and it follows that this
dimension is 2¢g + 1. On the other hand we also prove the formula

dim T (k[S]) = r1 +72 — g1 —~ g2 — g3 + [M]| — | N]|

where 71,79 are the smallest minimal relations and N C H is a set of gaps, defined via the
order relation of S. We also prove the formula

2g=m1+1+ (27712 - 7711)A

where M = {my < m;1} and ¥ = (y—S)NN. This gives a formula involving the Frobenius
number
my + (2mg —my )+ |N|=7r14+7r2— 91— 92 — g3

The paper is divided into two parts. In the first we recall some basic and important facts
about cohomology of monoid-like sets and in the second part we do the computations in
the three-generator case.

1. Cohomology
A numerical semigroup S has the structure of an ordered set given by

s1<s9€S if FteS suchthat s+t =s9

Let L C S be some sub-ordered set.

DEFINITION (1.1). L C S is said to be ¢ monoid-like ordered set if for all
(S-)relations s1 < sg in L there exists t € L such that s; +t = s3.

Let L C S be a monoid-like set and let & be a field of characteristic zero. Let C,(L) be
the vector space on the set {(A1,...,A,) € L™ |w()) € L} where w is the weight-function
given by w()) =i~ A; € S. The symmetric group X, acts on the basis of Cy, (L) by

0-(/\1, s /\n) = (/\o_l(l), U /\U—l(n))

The group ¥, also acts on the dual groups C"(L) = Homyg(Cyr(L),k), by(¢ - 0)(A) =
#(o(A)) for ¢ € C™(L) and o € X,,.




Denote by Sh,, (L) the subspace of Cy, (L) generated by all shuffle-products, i.e. the sub-

module s, - C,(L), where s, = Zn_ll Sin—q i the sum of all (i,n — 7)-shufflings and let

C5(L) = Homy(Cn(L)/Shn (L), k).
The inhomogenous differential

6" C"HL) — C™(L)
is defined by

S"EAL -y An) =E(Aa, .. +Z E s A+ i1y An)

+ (_ ) g(/\la ey )‘n—-l)
For n=1 we put 6*¢ = 0.
Notice that the differential acts as a graded derivation with respect to the shuffle product.

DEFINITION (1.2). The inhomogenous Harrison cohomology HA™(L, k) of the or-
dered set L is the cohomology of the cocomplex Cg(L) with the inhomogenous differential
J.

In this paper we have fixed a ground field k£ and without any confusion we may skip the &
in the expression HA™(L, k).

There is also a relative version of Harrison cohomology. Let Lo C L C .S and suppose Lo
isfullin L, ie. if y € L, v9 € Lo and vy > g, then v € Lg. Then S — Ly is a monoid-like
set. The relative Harison cocomplex is given by

C3(L = Lo, L) = {¢ € C™(L ~ Lo, L) | ¢(Shn(L)) = 0}

where

C™(L — Lo, L) ={¢ € C"(L) | $(2) = 0 for w(A) € L — Lo}
and relative Harrison cohomology, HA™(L — Lg, L) is cohomology of the relative complex.
There is a long-exact sequence
0 — HAYWL — Ly, L) — HAY(L) — HA'(L — Ly)
— HA*(L — Lo, L) — HA*(L) — .
relating Harrison cohomology of the ordered sets L and L — Ly with relative cohomology.

There is a close relation between Harrison cohomology of a numerical semigroup and the
graded parts of algebra cohomology of the associated semigroup algebra. The associated
semigroup algebra is a curve with an isolated singularity at the origin and the cohomology
groups Harr™ (S, k[S]) for n > 2 have finite dimension. Thus we have an isomorphism

> Hanr™*(S, k[S]) = Harr™ (S, k[S])
ANEZ




for all n > 1. The graded cohomology group Harr™*(S, k[S]) is obtained from the subco-
complex of homogenous cochains of degree A. (See [S]] for details.)

The relation between graded Harrison cohomology groups and Harrison cohomology of
ordered sets is stated in the next theorem and proved in [S]].

THEOREM (1.3). With the notation as above there is an isomorphism in cohomology
Harr™*(S, k[S]) = HA™MS, —S_,,5;,) n>1

where Sy = (A+S) NSy, and Sy =S — {0}.
Proof. See [S]]. 0

For n = 1 it is easy to see that
HAY (S, — S_x,84) ~ Harrb (S, k[S]) ~ Der’*(S, k[S])

The dual of the cohomology group Harr?(S, k[S]) equals the tangent space T (k[S]) of the
deformation functor for the k-algebra k[S]. Thus we have

dim, 7" (k[S]) = >~ HA*(Sy — S_5; S4)
AEZ

In the next section we shall give an explicit formula for the dimension of this group for an
arbitrary numerical monoid generated by three elements.

2. The case of three generators

In this section we study numerical monoids generated by three elements as described in
the introduction.

- PROPOSITION (2.1). The first relative Harrison cohomology group is given by

k  when —A € SUM

1 _ ~
HA(S4 SA,S+)—{0 when —X\ ¢ SU M,

where M = {A € H| A+ S; C S} is the set of “mazimal” gaps.

Proof. Since S C Ny it is easy to see that dim Derb*(S, k[S]) < 1. Tt follows that
Der*(S, k[S]) # 0 if and only if there exists a graded derivation D such that D(g;) # 0
forall1=1,2,3,ie. g; + A€ S. O

It is easy to see that HA(S,) ~ k and from [S]] we know that HA™(S;) =0 for n > 2.
Thus in this case the long-exact sequence reduces to the exact sequence
0 — HAY Sy — Sy, S4) — k — HAY (S, — S\) — HA*(Sy — Sy, S4) — 0
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Combining this with Prop. (2.1) we get
dim HA?(S, — Sy, S4) = dim HAM(S — Sy) + xsum(=A) — 1
where ysua is the characteristic function of S UM, i.e.

1 AeSuM

XSUM(A):{O A SUM

To compute the dimension of the tangent space we need some more information about
HAYS, — Sy, S4) for various \ € Z.

It is easily seen that for a monoid-like subset K C S of a monoid S generated by three
elements, we have

dim HAY(K) = ao(K) — a1(K)

where ag(K) is the number of generators of S inside K and a1 (K) is the number of minimal
relations of S inside K, upward bounded by 2. We shall compute the number of generators
and minimal relations of S inside K = S, — S, for various A € Z. In fact what we shall
compute the sum of the numbers

dim HA?(S, — Sy, Sy) = ao(Sy — Si) — a1(S: — S)) + xsum(—A) — 1

when A ranges over all of Z.
Observe that for A << 0 we have Sy — Sy =0, - € SUM and therefore

dim HA*(S; — 8),84)=0—-0+1-1=0

In the other end, for A >> 0 we have ag(S4+ — Sx) =3, a1(S4 —S)) =2, - A ¢ SUM
and consequently
dim HA?*(Sy — S),54)=3-2+0—-1=0

The vanishing outside a bounded set also follows from the fact that k[S] is an isolated
singularity.

So consider A € [—n, n] where n is big enough. A simple computation shows that for any
element v € Sy we have v € Sy — Sy if and only if —A ¢ .S — . Suppose we have given
v € Sy. The number of A such that —A ¢ S — v equals the cardinality of the complement
(inside [—n,n]) of (—y + S)N[—n,n] =S N[—n+v,n+ v]. This number is easily seen to
be 2n+1)~(n+v+1—g) =n—~v+g. On the other hand the number of A € [—n,n]
such that xsum(—A) # 0 is given by n+ 1 — g+ |M|.

LEMMA (2.2). For a symmetric monoid S we have M = {m}, the mazimal gap.

Proof. For a symmetric monoid the set of gaps H = (m — S) N Z = rh, thus for all
he€H —{m} there isa A € Sy such that h+A=m ¢ S. m




Recall that a symimetric monoid generated by three elements has to minimal relations.
The following theorem is due to Buchweitz ([B]) and the formulac = 7y +7r2—91—92—9g3 is
proved by Herzog in [H]|. We give an alternative proof for the dimension formula, involving
cohomology of monoid-like sets as described above.

THEOREM (2.3 (Buchweitz)). For a symmetric monoid S =< g1,92,93 > with
minimal relations Ry, Ro of degree 1,79 the dimension of the moduli space 1s given by

dim, THE[S]) =r14+1m2—g1—g2a—gs+1=c

Proof. From the discussion above we get

dim, T (k[S]) = ) | HA*(Sy — S», 54)
AEZ

and thus

dimpTHk[S) =(n—g1+g)+(n—ga+g)+ (n—9g3+9)
—(n—m+g)—n—-re+g)+n+1-g+|M[))—-(2n+1)
=r+r-—g-g2—gt+l=c

O

For the non-symmetric case the situation is somewhat more complicated.

We shall compute the cardinality of M when S is non-symmetric, generated by three
elements. Let S =< g1, ¢2,93 > be a numerical semigroup generated by three elements
and let s # 0 be an element of S. Let B(s) = {bo,...,bs—1} be the Apéry set with respect
to s , i.e. bp = s and for 4 > 0 b; is the least integer in S having s-residue distinct from
those of by, ...,b;_1. For the set B(s) we define

B(s)={be€ B(s)|b#by,b+b; ¢ B(s) foreveryi=0,...,s—1}

PROPOSITION (2.4 (Cavahiere-Niesi)). Let S be a numerical monoid generated
by three elements. Then the cardinality |B(s)| of B(s) is independent of choice of s and
we have

~ |1 if § is symmetric
|B(s)] = {2 if S 1s non-symmetric

Proof. see [CN] (2.6 and 5.1) [

Let x € B(s) and suppose  — s € . Then z,x — s have the same s-residue, contrary to
the definition of B. Thus (B(s) —s) NS = 0.

We can sharpen the result of the Cavahiere-Niesi-proposition, using the set ]3’(3) —S.




PROPOSITION (2.5). The set B(s) — s is independent of choice of s and we have

B(s)—s=M

Proof. Let x € B(s) C B(s) and suppose  — s € S. Then z,z — s have the same
s-residue, contrary to the definition of B(s). Thus

(B(s)—s)NS =4

Let s = g1 + g + g3. Then g1, 9,95 € B(s). For & € B(s) we have « + g1,z + g2, T + g3 ¢
B(s), by definition. Thus, for each i = 1,2, 3, there is a ¢; > 0 such that

x—tis+g; €8
Now suppose t; > 2. Then t; —1 > 0 and we get
r—s=(x—t;s+g;)+((t;i—1)s—g;) €S

since s—g; € S. But this contradicts the fact that x € B(s). Thus¢; = landz—s+g; € S
Vi=1,2,3andz—s+ S CS.

On the other hand, if h ¢ S and h + Sy C S we have h + s € S and consequently
h+s € B(s). Obviously h+s # s. Since h+b € S for all b € B(s) we have h+b+s€ S
and the minimality property ensures that h 4+ b+ s ¢ B(s). Thus h 4+ s € B(s) and
h € B(s) — s, proving that the two sets are equal. O

COROLLARY (2.6). If S is a numerical semigroup generated by three elements, and
M is as defined above, then we have

1 S symmetric
i ={

2 S 1is not symmetric

Proof. Combine the two last propositions. O

In the non-symmetric case there are three minimal relations Rq, Rq, R3 of degree 71,79, 3.
Using the same argument as above we obtain the formula

dilllk(@/\ezHAz(S+ — Sy, S+))
=ri+r9—g1— 92— g3+ |M|—(n—r3+g)+|K|
where K’ = {A € Z|ry,7r9,73 € S4 — Si}.

Now v € 54 — 5, if and only if A € v — FL, where H is the extended set of gaps, i.e.
H =7 — 5. Thus we can write

K/:(7’1—H)O(T2—%)ﬂ(7"3—%)
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or more convenient as a disjoint union
K'=KU][rs+1,n]

where K = (r1 —H) N (ro — H) N (r3 — H) and |K’'| = | K| +n — r3. There is a one-to-one
correspondance between the set K and

L=HN(rs—r +H)N(rs —ro+H)
given by a — r3 —a. Let
N:Hﬂ[(?"g—T1+S)U(T3—Tz—l—S)]

Then |N|+ |K| = ¢g. The minimality of the relation R implies rg — r1,7r3 — 2 € H.
- With this notation we have

dimg T (k[S]) =71+ 72 — g1 — g2 — g3 + |M| = |N|

The next lemma gives a generalization of the fact that for a symmetric monoid H = m—S,
where m is the maximal gap.

LEMMA (2.7).
H=M-S= U (m —S)

meM

Proof. Since M C H it is obvious that m — S C H.
On the other hand, for each h € H we have h + S, C S, or h + S, ¢ S. In the first case
heMand h=m-0¢€& M—S. In the other case there exists v € Sy such that h++v € H:
Repeat the argument until h+ s+ 5S4 C S, where s = A1+ ...+ A;. Then h+s€ M and
we get H C M — S. 0 :

Using the S-order relation on Z, i.e. ny < ng if ng —ny € S we recognize the set N as the
-elements lying in between {mq,mq} and {rs — r1,73 — r2}.
Thus we have the following theorem.

THEOREM (2.8). For a non-symmetric monoid S =< g1, gs2,gs > with minimal
relations Ry, Ro, Ry of degree 11 < ro < r3 the dimension of the tangent space of the
deformation functor equals the conductor c of the monoid, i.e.

dimyT*(k[S]) = r1+ 72 — g1 — g2 — g3 + M| — |N|
where N 1is the set

N=[(mi—S)U(my—-9)N[(rs—ri1+S)U(rs —ra+95)]

Proof. Follows from the above discussion. O




We can give another formula for this dimension, using the result of [B], stating that the
dimension equals 2g + 1. \
Let M = {m; > mg}. It is easily seen that the set {0,m,] is contained in the disjoint
union

[0,mq) C SUMy U (mig —miy)

Counting the elements inside [0,m1] we get the formula 2g + |(niq — 131)|. Because of the
maximality property of mq we have my —msq € H. Furthermore we have m; — (mq —msg) =
me ¢ S and Lemma 2.7 gives m; — mg € my — S, and thus 2mg —my € S.

LEMMA (2.9). There is a one-to-one-correspondance
(2mg —my ) — Mg — My

given by s — s+ (my —ma2).

Proof. Let u € S such that my —u € miy. Suppose mg —u € iy, i.e. my—mo+u ¢ S.
Since mgy ¢ S we have m; — mo + u ¢ my — S and we must have m; —mg +u € my — S,
say mi — my +u = mg —t, t € S. But the we have (mg — u) — (my —mq) =t € 5, and
we have proved that m; —mg <mg —u < mg or 0 < (mg —u) — (Mg —ma) = 2mg —my.
For 0 < v < 2mg —my, v € S we have my — mg < 7+ my; — mg < my. Suppose
y4+my —mg < my, ie. my— (y+my—mg) =mg—7 €S5. Then my € S which is obvious
a contradiction. It follows that v+ m; — mg € Mg — My. O

Using this lemma we get a formula relating the maximal elements (including the Frobenius
number mq)
mi+ (2mg —mi )+ |N|=r1+7r2 — 91— 92 — 93
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